

MASTER MASTER

**APORT—A Program for the Area-Based
Apportionment of County Variables
to Cells of a Polar Grid**

David E. Fields
Craig A. Little

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

OAK RIDGE NATIONAL LABORATORY
OPERATED BY UNION CARBIDE CORPORATION · FOR THE DEPARTMENT OF ENERGY

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
Price: Printed Copy \$5.25; Microfiche \$3.00

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report, nor represents that its use by such third party would not infringe privately owned rights.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ORNL/TM-6418
Distribution Category UC-11, UC-41

Contract No. W-7405-eng-26

HEALTH AND SAFETY RESEARCH DIVISION

APORT — A PROGRAM FOR THE AREA-BASED APPORTIONMENT OF
COUNTY VARIABLES TO CELLS OF A POLAR GRID

David E. Fields*

and

Craig A. Little

*Computer Sciences Division

— NOTICE

Date Published: November 1978

Prepared by the

OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37830

operated by

UNTON CARBIDE CORPORATION

for the

DEPARTMENT OF ENERGY

16

THE HISTORY OF THE UNITED

CONTENTS

List of Figures	v
List of Tables.	vii
ACKNOWLEDGMENTS	ix
ABSTRACT.	1
1. INTRODUCTION.	2
2. APORT COMPUTER CODE STRUCTURE	3
3. PREPARATION OF CODE INPUT	6
4. INTERPRETATION OF OUTPUT.	7
5. APPLICATION OF THE APORT CODE TO DATA FOR THE OYSTER CREEK, NEW JERSEY, NUCLEAR REACTOR SITE	9
6. USE OF APOPLT PLOTTING CODE	11
7. SUMMARY	12
REFERENCES.	13
APPENDIX A: Job Control Language for Execution of APORT Code on IBM System 360/91 Computer.	25
APPENDIX B: FORTRAN IV Source Listing of APORT Code.	27
APPENDIX C: Listing of Code SUBSET	33
APPENDIX D: Sample APORT Input Data Set.	36
APPENDIX E: APORT Output Corresponding to Appendix D	43
APPENDIX F: Job Control Language for APOPLT Plotter Code	49
APPENDIX G: FORTRAN IV Source Listing of APOPLT Plotter Code . . .	51

LIST OF FIGURES

FIGURES

1. Subprogram structure of code APOR T 15
2. Preparation of county-base APOR T data set. 16
3. County polygons plotted using APOPLT code. 17

LIST OF TABLES

TABLES

1.	Structure of input data set	18
2.	Output variables describing each intersection polygon . .	20
3.	Number of beef cattle in counties intersecting region of interest from 1967 Agricultural Census	21
4.	Number of beef cattle in cell sectors by manual and computer methods	22

ACKNOWLEDGMENTS

The authors wish to thank E. L. Etnier for kindly making available prepublication copies of her data, intermediate computations, and results. We are indebted to F. G. Goff for suggesting the basic approach to solution of the problem. We also thank P. S. Rohwer for his encouragement and support. C. J. Emerson assisted by coding the first version of the POLYVRT data manipulation code given in Appendix C. Technical reviewers were E. L. Etnier, B. D. Murphy, and M. R. Patterson.

APORT - A PROGRAM FOR THE AREA-BASED APPORTIONMENT OF
COUNTY VARIABLES TO CELLS OF A POLAR GRID

David E. Fields and Craig A. Little

ABSTRACT

The APORT computer code has been developed to apportion variables tabulated for polygon-structured civil districts onto cells of a polar grid. The apportionment is based on fractional overlap between the polygon and the grid cells. Centering the origin of the polar system at a pollutant source site yields results that are very useful for assessing and interpreting the effects of airborne pollutant dissemination. The APOPLT graphics code, which uses the same data set as APORT, provides a convenient visual display of the polygon structure and the extent of the polar grid. The APORT/APOPLT methodology was verified by application to county summaries of cattle population for counties surrounding the Oyster Creek, New Jersey, nuclear power plant. These numerical results, which were obtained using approximately 2-min computer time on an IBM System 360/91 computer compare favorably to results of manual computations in both speed and accuracy.

1. INTRODUCTION

Assessment of environmental impact from a polluting facility on a human population implies a summation of numerical estimates of pollutant transport and concentration along various pathways (Rohwer and Struxness, 1972). Models of airborne pollutant transport (Moore, 1975; Culkowski and Patterson, 1976; Moore, 1976) often estimate pollutant concentration in each of several cells of a polar coordinate system centered on the source location. The cells are designated by specified radius values and by direction vectors.

Determining the human population within each polar cell has heretofore been accomplished either by manual estimation using maps overlaid by a grid or by computer methods that add a county's total population to the polar cell containing the geographic centroid of the county (Corley et al., 1977). Both of these methods are subject to error; therefore, to help alleviate both the drudgery and error of manual estimation and the error of centroid-inclusion methodology, the APORT code was developed to apportion county-based data (including human census information) into polar grid cells.

The APORT code is a numerical procedure for computing the magnitude of an extensive variable (Zemansky, 1957) appropriate to cells of a polar grid based on known magnitudes of the variables for given polygons. As used herein, an extensive variable is one that is divided as the polygon is divided; thus, a subregion containing a fraction, F , of the polygon area would contain a variable magnitude of F times the variable value of the polygon. The polygons referenced in our test application

are counties, while the extensive variable is the number of beef cattle quartered in each county; however, the methodology is appropriate for many types of county-based or regional data.

The APOR T methodology should provide in all cases equal or significantly greater accuracy than the sometimes-used method of ascribing the entire extensive variable of a polygon to the cell containing the polygon centroid (Corley et al., 1977). An assumption made in both the APOR T methodology and the centroid-inclusion methods of Corley et al. is that the extensive variable (beef cattle in this case) is homogeneously distributed throughout the polygon (county). Errors may be introduced into APOR T estimates by high-density regions of the extensive variables (e.g., cattle feed lots, and major cities). However, the average error for those using the APOR T method should always be smaller than that induced by using the centroid-inclusion methodology.

This report also discusses the APOPLT code, which uses the same data set as APOR T and plots the county polygons and corresponding FIPS (Federal Information Processing Standards) identification numbers. The APOPLT code also superimposes a set of concentric circles corresponding to radii of the polar coordinate system with origin at the pollutant source site.

2. APOR T COMPUTER CODE STRUCTURE

The subprogram structure of the APOR T code is diagrammed in Fig. 1. The APOR T code consists of the main program and seven subprograms. The calling order of the subprograms is from top to bottom in this figure. Job control language for APOR T is included as Appendix A, while a code listing constitutes Appendix B.

The main program accepts input data pertaining to two separate coordinate systems: the first is the SYMAP system (Dougenik and Sheehan, 1975) in which coordinates are expressed in map inches to the right of and above an origin, while the second coordinate system is a cylindrical polar grid with origin normally fixed at the site of the pollutant source. Distances in the polar system are expressed in miles. The main program first reads the origins of the two coordinate systems and the scale factor for the SYMAP system. The main program also computes scale factors and offset magnitudes for transformations between the two coordinate systems. Included too in the main program are most of the program logic governing flow of control, most of the program output statements, and calls to all subprograms. Subroutine SENSE is, in addition, called by one other subprogram.

Subroutine PLYCOR reads map coordinates in the SYMAP coordinate system, separates them into coordinate pairs corresponding to individual polygon vertices in the polar system, and stores each set of coordinate pairs in vectors XP and YP. It also provides the number of coordinate pairs (the number of vertices) to the main program. The coordinate pairs furnished to the main program have been translated and scaled to correspond to the polar coordinate system.

Subroutine PLYCEN computes the coordinates of polygon centroids and returns these coordinates, in the polar system to the main program.

Subroutine CELCEN uses the sector and radial bounds of grid cells of the polar system to compute the coordinates of centroids and returns these to the main program.

Logical function FAR returns a value "TRUE" to the main program if the polar cell and the polygon centroids are sufficiently separated so that cell-polygon interaction is impossible. It is the responsibility of the user to choose a test value, FARAWY, expressed in miles, beyond which this overlap is impossible. The value of FARAWY has been set in the main program to 100 miles. If a "FALSE" condition is returned to the main program, then overlap of the cell and polygon is considered possible and succeeding subroutines will be called.

Subroutine CELCOR computes the vertex coordinates of polar grid cells. These are returned to the main program.

Subroutine IUCALC (Edwards and Coleman, 1976) computes coordinates of vertices of the intersection polygons. These intersection polygons consist of area common to both polygons and polar cells.

Logical function SENSE (Edwards and Coleman, 1976) computes the area of a polygon and its sense of closure. This function is called by the main program and by subroutine IUCALC.

For the test case described in this report, the APORI code required 56K of core and 3 seconds in the GO step on an IBM system 360/91 computer. The SUBSET data set operation code discussed in Chap. 2 required 168K of core and ran in 2 minutes, while the APOPLT plotting code described in Chap. 6 required 154K and 2 seconds on the same computer system. In these runs and in the Appendices, the APORI and APOPLT programs were dimensioned to work with up to 50 polygons, each having as many as 25 vertices.

3. PREPARATION OF CODE INPUT

The APORT procedure works equally well with any polygon set. The application here considers county data. Polygon (county) vertex coordinates are taken from a data base written in DIME (Dual Independent Map Encoding) format using the POLYVRT program (Dutton, 1974). The DIME data base is available from the distributors of POLYVRT or in reformed form from its original compiler.* County DIME files for the United States are stored on one reel of tape, and counties of interest are selected by specifying state and county FIPS codes.

Data set preparation is summarized in Fig. 2. Program SUBSET, included in Appendix C, uses POLYVRT to select a subset of the DIME data base. The APORT user should refer to POLYVRT documentation for instructions for modifying SUBSET. The code in Appendix C writes onto temporary disc storage (file T.DEF16829. POLY) the vertex coordinates that constitute most of the APORT input data set. The reader may choose to punch this file onto cards or, as was done by the authors, transfer it to a PDP-10 computer system for editing and future use.

Vertex coordinates are printed in SYMAP format, using the SYMAP output option of POLYVRT. The suboption of using a nonzero value in the fourth numeric field of the "G-OUTPUT SYMAP" card ensures that the X value will be put before the Y value (contrary to standard SYMAP format) and that the Y scaling is identical to the X scaling (Christmon, 1978). This suboption is not discussed in POLYVRT documentation.

*Magnetic tapes of county and metropolitan DIME files may be obtained from the User Service Staff, Bureau of the Census, Washington, DC.

The APOR T input data set structure is given in Table 1. This data set, used also with the APOPLT code (Chap. 6), includes vertex coordinates in SYMAP format, specifications of latitude and longitude of the origin in SYMAP system, and latitude and longitude of the origin of the polar system. The latter is usually the pollutant source position. Also specified in the input data set is the scale factor, the ratio of ground truth inches to one SYMAP inch, that was specified before in the SUBSET code. This factor is also printed in the SUBSET line printer output. Finally, the input data set holds a unique numeric code for each polygon (the FIPS code for each county) and the value of the extensive variable (e.g., number of beef cattle) for each polygon. Appendix D consists of a sample data set for use with the APOR T and APOPLT codes.

4. INTERPRETATION OF OUTPUT

Appendix E contains APOR T output corresponding to the input data set of Appendix D. Output variables are defined in Table 2. The first two lines of output contain information entered on the first two cards of input which specify geographical coordinates of the origin of the two grid systems (rectangular SYMAP and polar) and the scale factor of the former. Following are the numeric (FIPS) codes and values of extensive variables for the polygons (counties) of interest. If the number of polygons referenced here exceeds the number for which the code was dimensioned, the message "NUMBER OF POLYGONS SPECIFIED EXCEEDS LIMIT OF 50" will be printed. This maximum dimension may be changed by altering the space allocated to vectors VARP and NFIPS in the main program.

The quantities XOFSET and YOFSET next printed are computed in the APORI main program and represent the X and Y offsets, in miles, of the origin of the polygon (county) coordinate system with respect to the origin of the polar grid used for plotting. The quantity ALAT printed here is the average latitude (expressed in radians) of the two origins.

The next section of output details computation of the "intersection polygons" from the overlap of counties and cells of the polar grid and the determination of the value of the extensive variable for each cell.

The name of the contribution of a polygon to a cell is VARCEL. The message "ERROR; NORC" will be printed if the IUCALC subroutine has attempted to use more scratch storage than available in array WORK. This array has been dimensioned 100 in the main program (Edwards and Coleman, 1976). If this message is printed, the dimension of WORK and the value of parameter WRKMAX should be increased in the main program to greater than 100. These values should be identical. The message "PREMATURE END OF COORD DATA IN SUB PLYCOR" will be printed either if the number of polygons described in the input data exceeds the number NPOLY specified on card 1 of the input data set or if the data set is not properly terminated with the final card having "9999" in the first four columns. Upon proper data input, this section of output is terminated by the message "END OF POLYGON COORD SPECIFICATION".

A summary of results is printed last. The summary is titled "SUMMARY OF EXTENSIVE VARIABLE MAGNITUDES; CELL RADIUS (COLUMN) BY CELL SECTOR (ROW)." These values are the sums for each polar cell of the VARCEL values printed previously.

5. APPLICATION OF THE APORT CODE TO DATA FOR THE OYSTER CREEK, NEW JERSEY, NUCLEAR REACTOR SITE

The environmental impact of the Oyster Creek, New Jersey, Nuclear reactor has been considered recently (Etnier, 1978a). Much of the needed data had been compiled on a per-county basis, and it was necessary to recompile the data on a polar basis to make it compatible with air-transport simulation models. This recompilation was done manually for the relevant extensive variables, including beef cattle and calves, milk cows, vegetable crops, and human population (Etnier, 1978a). County-based variable magnitudes were apportioned to cells on a polar grid based on the areal overlap between county and cells. The grid used was defined by 16 sectors, with the center of the first to the north with sector numbers increasing counterclockwise, and by 5 annuli bounded by circles of radii 10 through 50 miles in integral multiples of 10 miles. As a test case, we have used the APORT code to compute the number of beef cattle per (polar) cell for the same 50-mile-radius region about the reactor site as was used above. Thus, these cells correspond to the interstices of the grid defined above.

Table 3 lists the number of beef cattle per county and the corresponding county FIPS code for the counties intersecting the study region. These data comprise a portion of the sample input data set in Appendix D.

Table 4 compares APORT results with those obtained by manual methods (Etnier, 1978a) for cells of all 16 sectors. Both methods apportion county data based on areal overlap; that is, if a fraction, F , of the

area of a county overlaps a particular cell, then the fraction of the variable of magnitude Y for that county lying in the cell is F times Y .

The correlation between the first APOR estimates of beef cattle in a cell and the manual estimates was 0.97. Although a paired t-test indicated no significant difference ($p > .05$), close inspection of Table 4 indicated that the first APOR estimate was somewhat lower than the manual estimate for most cells.

Visual inspection and comparison of the manual map (Etnier, 1978a) with an APOPLT output map and overlay suggested reasons for this small discrepancy. The origin of the concurrent circles as located by the manual method appeared to be some distance further inland than the APOPLT output origin. The westernmost arc of the 50-mile radius as drawn manually seemed to be about 4 miles too far west when compared to an APOPLT map. The combination of different origin locations and manual limitations of drawn radii could probably account for a higher estimate of cattle populations in each cell by the manual method.

As an easy assessment of the impact created by incorrectly locating the radii origin, we arbitrarily moved the input location of the radii center 2 miles to the west. The second group of APOR estimates (Table 4) achieved roughly the same coefficient of correlation (0.973) of beef cattle populations for each cell with the manual method. The correlation coefficient between the two APOR runs was 0.990. Thus, even with an intentional 2-mile displacement, the two APOR-generated sets of results differed little. Some minor mathematical errors were detected in the intermediate computations used in the manual method (Etnier, 1978b). Also, there were small differences between the maps used for the manual

computation and the polygon-structured data base used in the APOR^T approach; these were particularly noticeable near the land-ocean boundary.

It is also generally accepted (Christmon, 1978) that the county polygon data set contains systematic errors that accrue, to as much as 5% in area in moving from the southwest to the northeast of the United States. We would expect, then, that APOR^T results would be most accurate in the southwest United States. Finally, it was assumed in the manual method that no cattle were quartered within 5 miles of the polar origin (source site). This assumption is probably responsible for most of the remaining discrepancy.

We conclude that, whereas both the computer and the manual approaches yield acceptable results, the APOR^T method is preferable when reproducibility and convenience are desired.

6. USE OF APOPLT PLOTTING CODE

Code APOPLT may be used to plot the polygons specified in the APOR^T data set. Figure 3 is plotted output from code APOPLT corresponding to the polygons considered in this report. Such a plot is useful to ensure that data have been entered properly and to develop a geographic perspective of the area being studied. Superimposed over the polygons is a set of concentric circles of radii which define cells of the polar system which are specified in the main program to be integral multiples of 10 miles, up to 50 miles. The same data set is used for APOPLT and for APOR^T. A legend showing the map distances corresponding to 20 miles is also shown.

The source listing of code APOPLT included in Appendix G contains the APORI main program and subroutine PLT1; the main program also calls several subroutines that are part of the DISSPLA* package. This software must be resident on the user's system if APOPLT is to execute properly. The reader may refer to DISSPLA documentation (Hirschsohn, 1971 a,b).

7. SUMMARY

The APORI computer code generates a polar-grid population pattern based on fractional overlap between polygon-structured civil districts and cells of the polar grid. Centering the origin of the polar system at a pollutant source site yields results that are very useful for assessing and interpreting the effects of airborne pollutant dissemination. The APORI/APOPLT methodology is useful for any type of data that is filed by geographical region.

The APOPLT graphics code, which uses the same data set as APORI, provides a convenient visual display of the polygon structure and the extent of the polar grid.

Application of the APORI/APOPLT methodology to county summaries of cattle populations as described herein has verified the validity of the approach. This computer method compares favorably to manual computations in both speed and accuracy.

REFERENCES

Christmon, N., 1978, Laboratory for Computer Graphics and Spatial Analysis, Graduate School of Design, Harvard University, private communication.

Corley, J. P., et al., 1977, "An Improved Method for the Calculation of Population Doses from Nuclear Complexes over Large Geographical Areas," presented at the annual meeting of the Health Physics Society, Atlanta, Georgia.

Culkowski, W. M. and M. R. Patterson, 1976, *A Comprehensive Atmosphere Transport and Diffusion Model*, Oak Ridge National Laboratory Report, ORNL/NSF/EATC-17.

Dougenik, J. A. and D. E. Sheehan, 1975, *SYMAP User's Reference Manual*, Laboratory for Computer Graphics and Spatial Analysis, Graduate School of Design, Harvard University.

Dutton, Geoffrey, et al., 1976, *POLYVRT - A Program to Convert Geographic Base Files, Version 1.1*, Laboratory for Computer Graphics and Spatial Analysis, Graduate School of Design, Harvard University.

Edwards, R. G. and P. R. Coleman, 1976, *IUCALC - A FORTRAN Subroutine for Calculating Polygon-Line Intersections, and Polygon-Polygon Intersections, Unions, and Relative Differences*, Oak Ridge National Laboratory Report, ORNL/CSD/TM-12.

Etnier, E. L., 1978a, *An Application of the CUEX Methodology to the Combined Radiological Effect of Aquatic and Atmospheric Releases from a Nuclear Facility*, ORNL Report in preparation.

Etnier, E. L., 1978b, private communication.

Hirschsohn, I., 1970a, *Display Integrated Software System and Plotting Language I*, Integrated Software Systems Corporation.

Hirschsohn, I., 1970b, *Display Integrated Software System and Plotting Language II*, Integrated Software Systems Corporation.

Moore, R. E., 1975, *AIRDOS — A Computer Code for Estimating Population and Individual Doses Resulting from Atmospheric Releases of Radionuclides from Nuclear Facilities*, Oak Ridge National Laboratory Report, ORNL/TM-4687.

Moore, R. E., 1977, *The AIRDOS — II Computer Code for Estimating Radiation Dose to Man from Airborne Radionuclides in Areas Surrounding Nuclear Facilities*, Oak Ridge National Laboratory Report, ORNL-5245.

Rohwer, P. S. and E. G. Struxness, 1972, "Environmental Indices for Radioactivity Releases," pp. 249-55 in *Indicators of Environmental Quality*, ed. by W. A. Thomas, Plenum Press, New York.

Zemansky, M. W., 1957, *Heat and Thermodynamics*, McGraw-Hill, New York.

ORNL-DWG 78-18088

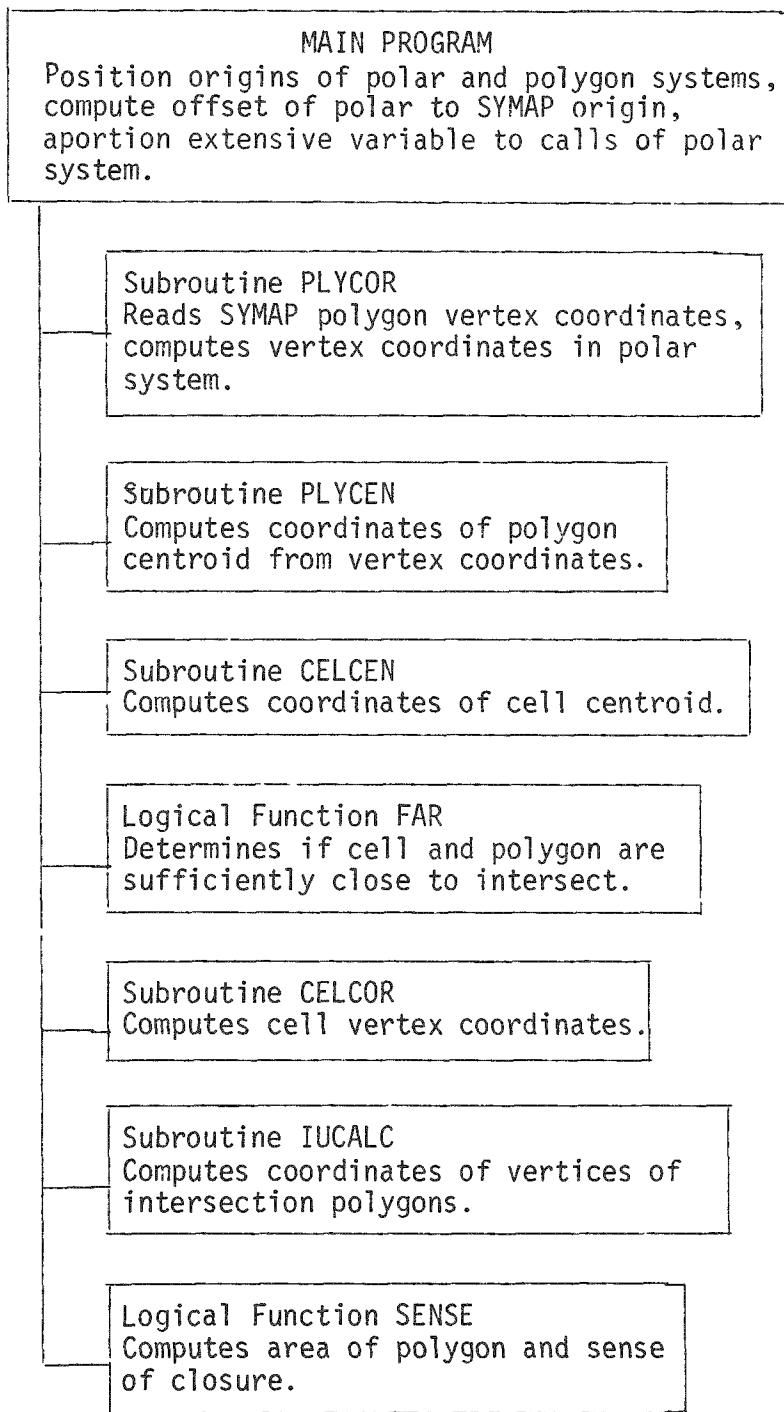


Fig. 1. Subprogram structure of code APOR.

ORNL-DWG 78-18089

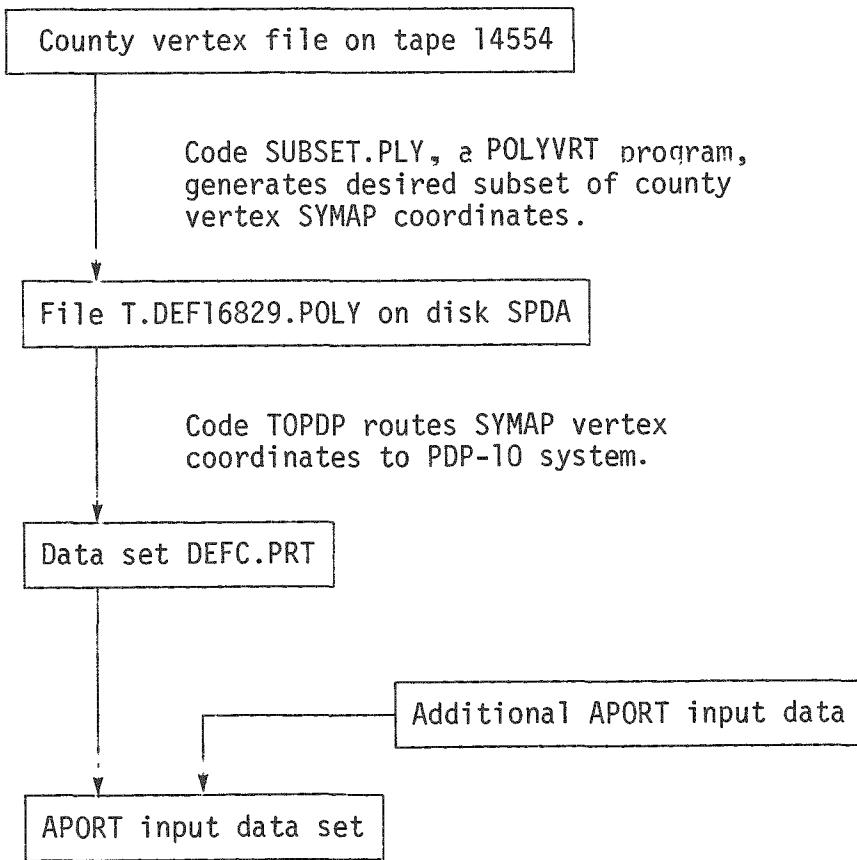


Fig. 2. Preparation of county-base APORT data set.

ORNL-DWG. 78-14917

APOINT POLYGON STRUCTURE

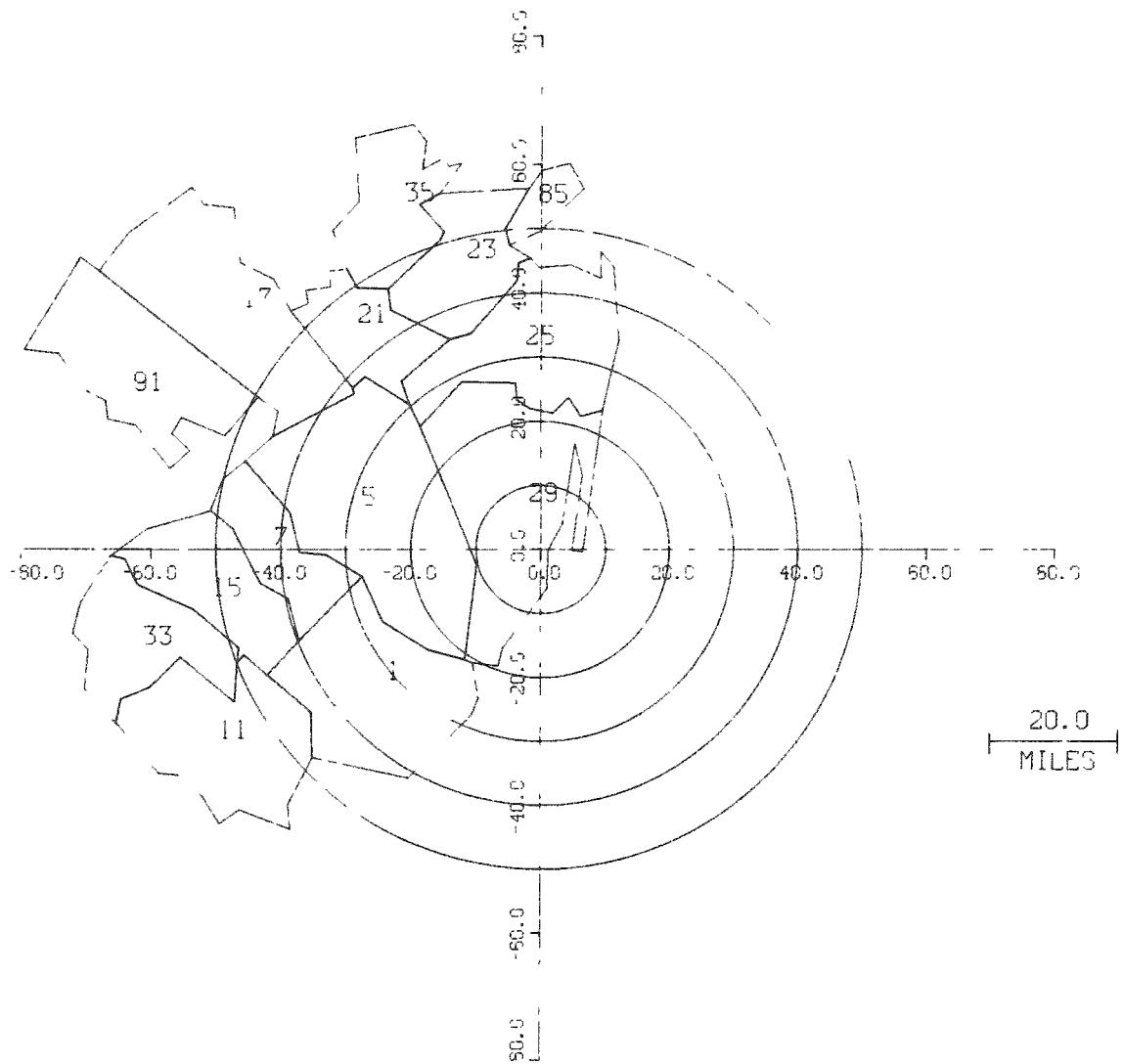


Fig. 3. County polygons plotted using APOINT code. Polygons shown here are counties, and the numerical identifiers are FIPS codes. The right boundary of the polygon group is the Atlantic Ocean.

Table 1. Structure of input data set

Card number	Columns	Format, variable name and definition, comments
1		(1X, 3F10.2, I5)
	2 - 11	XORPLY This card specifies the SYMAP system.
	12 - 21	YORPLY Longitude of SYMAP origin.
	22 - 31	SCALE Latitude of SYMAP origin
		Number of ground-truth inches per SYMAP system unit (inch). This must be the same as that specified in the SUBSET code (included as Appendix C) labeled FRACTION in the E-MANIPULATE package (Dutton 1974).
	32 - 36	NPOLY Number of (county) polygons.
2		(1X, 2F10.4)
		This card specifies the polar coordinate system.
	2 - 11	XORCEL Longitude of polar origin.
	12 - 21	YORCEL Latitude of polar origin.
3		(I3, I5)
		Specifies first polygon nongeographic data.
	2 - 3	NFIPS(1) Two digit polygon code for first polygon. Here this is the county FIPS code.
	4 - 8	VARP(1) Magnitude of extensive variable for first polygon.
4 through NPOLY+2		Include same type of information as card 3.
NPOLY+2		(I3, I5) Specifies last polygon non-geographic data. The number of polygons must be less than or equal to 50.
1 - 3	NFIPS (NPOLY)	Two-digit polygon code for last polygon.

Table 1. Structure of input data set (cont.)

Card number	Columns	Format, variable name and definition, comments	
NPOLY+3		(I4, 4X, A1, 2F10.4, 40X, I7, I3)	
1 - 4	IEND	Value equals zero or blank for all cards except last card. For last card, value equals 9999, with subsequent numeric fields blank.	
9	START	Value equals A for first card of the set of XPV, YPV coordinate pairs for each polygon, or value equals another character for other cards.	
10 - 19	XPV	X value, in SYMAP units, of first vertex of first polygon.	
20 - 29	YPV	Y value, in SYMAP units, of first vertex of first polygon.	
70 - 76	IF	Five-digit polygon identifier code. The first two digits are normally the state FIPS code and the last three are the county code.	
77 - 79	NP	Vertex number, equals 1 for first card of each polygon set.	
Final		(I4, 4X, A1, 2F10.4, 40X, I7, I3)	
1 - 4	IEND	Value equals 9999.	

Table 2. Output variables describing each intersection polygon

Variable	Definition and comments
J	Number of intersection polygons found in each polygon-cell overlap. This number will rarely be greater than one. Separate overlap information is printed for each intersection polygon.
IPOL	Ordinal number of county polygon in input data set.
NFIPS	FIPS (Federal Information Processing Standard) code for county polygon.
SECTOR	Sector number of polar grid. Sixteen sectors exist, numbered counterclockwise from the north.
RADIUS	Annulus number of polar grid. The first annulus goes from 0 to 10 miles, the second from 10 to 20 miles, etc.
AREAL OVERLAP	Area of overlap (area of intersection polygon square miles).
AREAP	Area of county polygon (square miles).
AREACL	Area of cell of polar grid (square miles).
VARCEL	Contribution of extensive variable from county polygon to cell. Expressed in same units as used for the extensive variable in input data deck (Chap. 3).

Table 3. Number of beef cattle in counties intersecting region of interest from 1967 Agricultural Census

County	State	County FIPS code	Number of cattle
Atlantic	NJ	1	131
Burlington	NJ	5	13,078
Camden	NJ	7	125
Cumberland	NJ	11	3,760
Gloucester	NJ	15	3,816
Mercer	NJ	21	3,754
Middlesex	NJ	23	2,753
Monmouth	NJ	25	4,028
Ocean	NJ	29	349
Salem	NJ	33	17,125
Somerset	NJ	35	7,198
Richmond	NY	85	0
Bucks	PA	17	18,834
Montgomery	PA	91	15,122

Table 4. Number of beef cattle in cell sectors by manual^a and computer methods

Sector	Annulus radius (miles)	Manual method ^b	APORT code	APORT code: polar center displaced 2 miles west
1 (N)	0 - 10	9	10	10
	10 - 20	38	30	30
	20 - 30	735	641	577
	30 - 40	1318	1090	1096
	40 - 50	1195	1202	1495
2 (NNW)	0 - 10	9	10	10
	10 - 20	38	30	30
	20 - 30	473	304	364
	30 - 40	1509	1257	1382
	40 - 50	2707	1807	2155
3 (NW)	0 - 10	9	10	10
	10 - 20	87	72	213
	20 - 30	872	909	1179
	30 - 40	2935	2222	2447
	40 - 50	3901	3710	3928
4 (WNW)	0 - 10	9	10	16
	10 - 20	664	637	830
	20 - 30	1569	1520	1520
	30 - 40	2657	2165	2209
	40 - 50	3453	2501	2218
5 (W)	0 - 10	7	12	92
	10 - 20	915	879	912
	20 - 30	1574	1466	1396
	30 - 40	1092	1131	880
	40 - 50	959	821	1029
6 (WSW)	0 - 10	7	18	118
	10 - 20	1046	907	925
	20 - 30	922	969	707
	30 - 40	423	78	255
	40 - 50	1462	2222	2046

Table 4. Number of beef cattle in cell sectors by manual^a and computer methods (continued)

Sector	Annulus radius (miles)	Manual method ^a	APORT code	APORT code: polar center displaced 2 miles west
7 (SW)	0 - 10	9	10	26
	10 - 20	916	591	830
	20 - 30	279	568	364
	30 - 40	34	45	31
	40 - 50	527	319	477
8 (SSW)	0 - 10	9	10	10
	10 - 20	286	31	141
	20 - 30	7	33	49
	30 - 40	16	13	17
	40 - 50	29	3	3
9 (S)	0 - 10	9	9	10
	10 - 20	5	2	7
	20 - 30	0	0	0
	30 - 40	0	0	0
	40 - 50	0	0	0
10 (SSE)	0 - 10	5	3	7
	10 - 20	0	0	0
	20 - 30	0	0	0
	30 - 40	0	0	0
	40 - 50	0	0	0
11 (SE)	0 - 10	0	1	3
	10 - 20	0	0	0
	20 - 30	0	0	0
	30 - 40	0	0	0
	40 - 50	0	0	0
12 (ESE)	0 - 10	0	1	2
	10 - 20	0	0	0
	20 - 30	0	0	0
	30 - 40	0	0	0
	40 - 50	0	0	0

Table 4. Number of beef cattle in cell sectors by manual^a and computer methods (continued)

Sector	Annulus radius (miles)	Manual method ^b	APORT code	APORT code: polar center displaced 2 miles west
13 (E)	0 - 10	0	3	5
	10 - 20	0	0	0
	20 - 30	0	0	0
	30 - 40	0	0	0
	40 - 50	0	0	0
14 (ENE)	0 - 10	0	5	6
	10 - 20	0	0	3
	20 - 30	0	0	0
	30 - 40	0	0	0
	40 - 50	0	0	0
15 (NE)	0 - 10	3	6	9
	10 - 20	0	6	11
	20 - 30	0	0	0
	30 - 40	0	0	0
	40 - 50	0	0	0
16 (NNE)	0 - 10	7	10	10
	10 - 20	21	25	30
	20 - 30	329	388	484
	30 - 40	443	494	659
	40 - 50	28	293	390

^aEtnier, 1978a.^bManual method assumed no cattle in the 0-5 miles annuli.

APPENDIX AJOB CONTROL LANGUAGE FOR EXECUTION OF APOR T CODE
ON IBM SYSTEM 360/91 COMPUTER

The use of "=" in this appendix may indicate the insertion of the following data set or subroutine; for example, "= APOR T" indicates that the file denoted by APOR T is to be inserted here.

```
//DEFAPOR JOB (00000), 'XCSD-FIELDS-R212', MSGLEVEL=1
///*CLASS CPU91=25S,IO=2
/*ROUTE PRINT LOCAL
/*ROUTE PUNCH LOCAL
// EXEC FORTHCLG,
// PARM.FORT='OPT=2,XREF',REGION.FORT=270K,
// PARM.GO='EU=-1,DUMP=1',REGION.GO=80K
//FORT.SYSIN DD *
=DEFS.PCH
//LKED.DEF DD DSN=ONLINEA.RGEHE744.IUCALCHX,
// DISP=SHR
//LKED.SYSIN DD *
INCLUDE DEF
//GO.SYSPRINT DD SYSOUT=A
//GO.FT05F001 DD *
=APORT.DAT
//
```

APPENDIX B

FORTRAN IV SOURCE LISTING OF APORT CODE.

```

C      MAIN PROGRAM APORT
C
C      AUTOMATED REGIONAL METHODOLOGY CODE
C      APPORTIONS EXTENSIVE VARIABLE TO CELLS OF POLAR GRID SYSTEM
C      D.E.FIELDS AND C.A.LITTLE
C
C      DIMENSION RADIUS(5),XCL(4),YCL(4),XP(25),YP(25),WORK(100),
C      1RCX(60),RCY(60),X(8),Y(8),INORC(2,10),NFIPS(50)
C      DIMENSION VARSUM(5,16)
C      COMMON AREA
C      INTEGER WRKMAX,VARP(50)
C      LOGICAL FAR
C      DATA WRKMAX/100/,FARAWY/100./,START/999./,ASTART/'A'/
C      DATA NP/100/,VARSUM/80*0.0/
C      READ(5,8000)XORPLY,YORPLY,SCALE,NPOLY
C      READ(5,8001)XORCEL,YORCEL
C      8000 FORMAT(1X,2F10.4,F10.2,I5)
C      WRITE(6,8000)XORPLY,YORPLY,SCALE,NPOLY
C      SCALE=SCALE/5280./12.
C      IF(NPOLY.GT.50)WRITE(6,8005)
C      8005 FORMAT(2X,'NUMBER OF POLYGONS SPECIFIED EXCEEDS LIMIT OF 50')
C      READ(5,8010)XORCEL,YORCEL
C      8010 FORMAT(1X,2F10.4)
C      WRITE(6,8010)XORCEL,YORCEL
C      READ(5,8015)(NFIPS(I),VAPP(I),I=1,NPOLY)
C      8015 FORMAT(13,I5)
C      WRITE(6,8020)(NFIPS(I),VAPP(I),I=1,NPOLY)
C      8020 FORMAT(1X,13,I5)
C      COMPUTE OFFSET, IN MILES, OF POLYGON IN POLAR SYSTEM
C      ALAT=(YORPLY+YORCEL)/360.*3.141593
C      XOFFSET=(-XORPLY+XORCEL)*60.*1.1516*COS(ALAT)
C      YOFFSET=(YORPLY-YORCEL)*60.*1.1516
C      WRITE(6,8025)XOFFSET,YOFFSET,ALAT
C      8025 FORMAT(2X,'XOFFSET,YOFFSET,ALAT=',3F15.6)
C      POLYGON LOOP
C      RADIAL DISTANCES IN MILES
C      DO 100 I=1,5
C      100 RADIUS(I)=10.*FLOAT(I)
C      DO 120 IPOL=1,NPOLY
C      DETERMINE POLYGON COORDINATES AND NUMBER OF VERTICES
C      CALL PLVCOR(XP,YP,NP,SCALE,XPV,YPV,ASTART,START,XOFFSET,YOFFSET)
C      DETERMINE POLYGON CENTROID AND POLYGON EXTENSIVE VARIABLE
C      CALL PLVGEN(XP,YP,XPCEN,YPCEN,NP)
C      DELETE REPEATED REFERENCES TO FIRST POLYGON VERTEX
C      NP=NP-1
C
C      BEGIN SEARCH AND INTERSECTION PROCEDURE
C
C      SECTOR LOOP
C      DO 115 ICLSEC=1,16
C      RADIUS LOOP
C      DO 115 ICLRA=1,5
C      COMPUTE CELL CENTROID
C      CALL CELCEN(ICLSEC,ICLRA,RADIUS,XCLCEN,YCLCEN)
C      ARE CELL AND POLYGON FAR APART?
C      IF(FAR(XPCEN,YPCEN,XCLCEN,YCLCEN,FARAWY))GOTO115
C
C      MAIN 1
C      MAIN 2
C      MAIN 3
C      MAIN 4
C      MAIN 5
C      MAIN 6
C      MAIN 7
C      MAIN 8
C      MAIN 9
C      MAIN 10
C      MAIN 11
C      MAIN 12
C      MAIN 13
C      MAIN 14
C      MAIN 15
C      MAIN 16
C      MAIN 17
C      MAIN 18
C      MAIN 19
C      MAIN 20
C      MAIN 21
C      MAIN 22
C      MAIN 23
C      MAIN 24
C      MAIN 25
C      MAIN 26
C      MAIN 27
C      MAIN 28
C      MAIN 29
C      MAIN 30
C      MAIN 31
C      MAIN 32
C      MAIN 33
C      MAIN 34
C      MAIN 35
C      MAIN 36
C      MAIN 37
C      MAIN 38
C      MAIN 39
C      MAIN 40
C      MAIN 41
C      MAIN 42
C      MAIN 43
C      MAIN 44
C      MAIN 45
C      MAIN 46
C      MAIN 47
C      MAIN 48
C      MAIN 49
C      MAIN 50
C      MAIN 51
C      MAIN 52
C      MAIN 53
C      MAIN 54
C      MAIN 55
C      MAIN 56
C      MAIN 57
C      MAIN 58
C      MAIN 59
C      MAIN 60
C      MAIN 61
C      MAIN 62
C      MAIN 63

```

```

C
C      POLYGON AND CELL MAY OVERLAP
C
C      DETERMINE CELL COORDINATES
C      CALL CELCOR(ICLSEC, ICLRA, RADIUS, XCL, YCL, NCL)          MAIN 64
C      DETERMINE INTERSECTION OF POLYGON AND CELL; COMPUTE AREAS    MAIN 65
C      CALL IUCALC(XP, YP, NP, XCL, YCL, NCL, 2, WORK, WRKMAX, NORC, INOPC, RCX, RCY) MAIN 66
C      CHECK FOR SMALL DIMENSION OF ARRAY WORK                      MAIN 67
C      IF(NORC.LT.0)WRITE(6,8030)NORC                                MAIN 68
C      8030 FORMAT(2X, 'ERROR; NORC =', I6)                           MAIN 69
C      IF(NORC.LE.0)GOTO115                                         MAIN 70
C      OVRLAP=0.0
C      DETERMINE POLYGON AND CELL AREAS
C      CALL SENSE(XP, YP, NP)
C      AREAP=AREA
C      CALL SENSE(XCL, YCL, NCL)
C      AREACL=AREA
C      DO110 J=1, NORC
C      WRITE(6,8035)J, IPOL, NFIPS(IPOL)
C      8035 FORMAT(2X, 'POLYGON INTERSECTION, J=', I5, ' AND IPOL =', I5
C      1': NFIPS = ', I3)
C      KLIMIT=INOPC(2,J)
C      DO105 K=1, KLIMIT
C      X(K)=RCX(K+INOPC(1,J))
C      Y(K)=RCY(K+INOPC(1,J))
C      105 CONTINUE
C      WRITE(6,50)(X(K), Y(K), K=1, KLIMIT)
C      8040 FORMAT(2X, 2F12.5)
C      DETERMINE AREA OF INTERSECTION POLYGONS
C      CALL SENSE(X, Y, KLIMIT)
C      COMPUTE TOTAL OVERLAP AREA
C      OVRLAP=OVRLAP+AREA
C      110 CONTINUE
C      VARCEL=VARP(IPOL)*OVRLAP/AREAP
C      WRITE(6,8045)
C      8045 FORMAT(T5, 'SECTOR', T15, 'RADIUS', T25, 'AREAL OVERLAP',
C      140, ' AREAP ', T50, ' AREACL ', T60, ' VARCEL ')
C      WRITE(6,8050)ICLSEC, ICLRA, OVRLAP, AREAP, AREACL, VARCEL
C      8050 FORMAT(T5, T5, T13, T5, T23, F10.2, T38, 3F10.2)
C      VARSUM(ICLRA, ICLSEC)=VARSUM(ICLRA, ICLSEC)+VARCEL
C      115 CONTINUE
C      120 CONTINUE
C      WRITE(6,8055)
C      8055 FORMAT(2X, 'SUMMARY OF EXTENSIVE VARIABLE: ',
C      1CELL RADIUS(COLUMN) BY ',
C      2ELL SECTOR (ROW) '
C      DO 125 ICLSEC=1,16
C      WRITE(6,8060)(VARSUM(ICLRA, ICLSEC), ICLRA=1,5 )
C      8060 FORMAT(2X, 5F10.1)
C      125 CONTINUE
C      WRITE(6,8065)
C      8065 FORMAT(2X, 'END APORT EXECUTION')
C      STOP
C      END

C      SUBROUTINE CELCOR(ICLSEC, ICLRA, RADIUS, XCL, YCL, NCL)
C      DETERMINES COORDINATES OF CELL BOUNDARIES
C
C      AUTOMATED REGIONAL METHODOLOGY CODE
C      CALLED BY MAIN PROGRAM APORT
C
C      D.E.FIELDS AND C.A.LITTLE
C      OCTOBER, 1977
C
C
C      CELC  1
C      CELC  2
C      CELC  3
C      CELC  4
C      CELC  5
C      CELC  6
C      CELC  7

```

```

C
      DIMENSION RADIUS(1),XCL(1),YCL(1)
      THETA1=1.374468+FLOAT(ICLSEC-1)*.3926991
      THETA2=1.767146+FLOAT(ICLSEC-1)*.3926991
      IF(ICLRA.NE.1)GOTO100
      NCL=3
      XCL(1)=0.0
      YCL(1)=0.0
      R=RADIUS(1)
      XCL(2)=R*COS(THETA1)
      YCL(2)=R*SIN(THETA1)
      XCL(3)=R*COS(THETA2)
      YCL(3)=R*SIN(THETA2)
      GOTO105
100  CONTINUE
      NCL=4
      R1=RADIUS(ICLRA-1)
      R2=RADIUS(ICLRA)
      XCL(1)=R1*COS(THETA1)
      XCL(2)=R2*COS(THETA1)
      XCL(3)=R2*COS(THETA2)
      XCL(4)=R1*COS(THETA2)
      YCL(1)=R1*SIN(THETA1)
      YCL(2)=R2*SIN(THETA1)
      YCL(3)=R2*SIN(THETA2)
      YCL(4)=R1*SIN(THETA2)
105  RETURN
      END

      SUBROUTINE CELCEN(ICLSEC,ICLRA,RADIUS,XCLCEN,YCLCEN)
      DETERMINES COORDINATES OF CENTROID OF CELL IN POLAR SYSTEM
      AUTOMATED REGIONAL METHODOLOGY CODE
      CALLED BY MAIN PROGRAM APORT
      D.E.FIELDS AND C.A.LITTLE
      OCTOBER, 1977

      DIMENSION RADIUS(1)
      THETA=1.5708+FLOAT(ICLSFC-1)*.3926991
      R=RADIUS(1)/2.
      IF(ICLRA.NE.1)R=(RADIUS(ICLRA)+RADIUS(ICLRA-1))/2.
      YCLCEN=R*SIN(THETA)
      XCLCEN=R*COS(THETA)
      RETURN
      END

      SUBROUTINE PLYCOR(XP,YP,IV,SCALE,XPV,YPV,ASTART,
1TART,XOFSET,YOFSET)
      AUTOMATED REGIONAL METHODOLOGY CODE
      CALLED BY MAIN PROGRAM APORT
      PROVIDES POLYGON COORDINATES AND NUMBER OF VERTICES
      D.E.FIELDS AND C.A.LITTLE

      DIMENSION XP(1),YP(1)
      IF(START.NE.ASTART)GOTO100
      XP(1)=XOFSET+XPV*SCALE
      YP(1)=YOFSET+YPV*SCALE
      READ POLYGON COORDINATES
100  READ(5,8000,END=110)IEND,START,XPV,YPV,IF,NP
      8000 FORMAT(I4,4X,A1,2F10.4,40X,I7,I3)
      IF(IEND.NE.9999)GOTO105
      WRITE(6,8005)
      8005 FORMAT(2X,'END OF POLYGON COORD SPECIFICATIONS')

```

CELC	9
CELC	10
CELC	11
CFLC	12
CELC	13
CELC	14
CELC	15
CELC	16
CELC	17
CFLC	18
CELC	19
CELC	20
CFLC	21
CFLC	22
CFLC	23
CELC	24
CELC	25
CELC	26
CELC	27
CELC	28
CELC	29
CFLC	30
CELC	31
CELC	32
CFLC	33
CELC	34
CFLC	35
CELC	36
CFLC	1
CELC	2
CELC	3
CELC	4
CFLC	5
CELC	6
CELC	7
CFLC	8
CELC	9
CELC	10
CELC	11
CFLC	12
CELC	13
CELC	14
CELC	15
CFLC	16
CELC	17
CELC	18
SPLYC	1
PLYC	2
PLYC	3
PLYC	4
PLYC	5
PLYC	6
PLYC	7
PLYC	8
PLYC	9
PLYC	10
PLYC	11
PLYC	12
PLYC	13
PLYC	14
PLYC	15
PLYC	16
PLYC	17

```

      GOTO115
105  CONTINUE
C      WRITE(6,30)START,XPV,YPV,IF,NP
 8010 FORMAT(9X,A1,2F10.4,40X,I7,I3)
      IF(START.EQ.ASTART.AND.IV.NF.100)RETURN
C      CONVERT POLYGON COORD TO MILES
      XP(NP)=XOFFSET+XPV*SCALE
      YP(NP)=YOFFSET+YPV*SCALE
      IV=NP
      GOTO100
110  WRITE(6,8015)
 8015 FORMAT(2X,'PREMATURE END OF COORD DATA IN SUB. PLYC0R')
115  RETURN
      END

      SUBROUTINE PLYCEN(XP,YP,XPCEN,YPCEN,NP)
C      DETERMINES COORDINATES OF CENTROID OF POLYGON VERTICES
C
C      AUTOMATED REGIONAL METHODOLOGY CODE
C      CALLED BY MAIN PROGRAM AP0RT
C
C      D.E.FIELDS AND C.A.LITTLE
C      OCTOBER, 1977
C
C      DIMENSION XP(1),YP(1)
      XPCEN=0.0
      YPCEN=0.0
      D0100 I=1,NP
      XPCEN=XPCEN+XP(I)
100   YPCEN=YPCEN+YP(I)
      XPCEN=XPCEN/FLOAT(NP)
      YPCEN=YPCEN/FLOAT(NP)
      RETURN
      END

      LOGICAL FUNCTION SENSE(X,Y,N)
COMMON AREA
C      SEE IUCALC DOCUMENTATION
C      MODIFIED TO PROVIDE AREAS OF INTERSECTION POLYGONS
C
C      AUTOMATED REGIONAL METHODOLOGY CODE
C      CALLED BY MAIN PROGRAM AP0RT
C
C      D.E.FIELDS AND C.A.LITTLE
C      OCTOBER, 1977
C
C      INTEGER N
      REAL X(N),Y(N)
      DOUBLE PRECISION TSUM
      IF(N.LT.3)RETURN
      TSUM=0.0D0
      AY=Y(2)-Y(1)
      AX=X(2)-X(1)
      D0100 J=3,N
      BY=Y(J)-Y(1)
      BX=X(J)-X(1)
      TSUM=TSUM+BY*AX-AY*BX
      AX=BX
100   AY=BY
      SENSE=.FALSE.
      IF(TSUM.LT.0.0D0)SENSE=.TRUE.
      AREA=DABS(TSUM)/2.
      WRITE(6,4)AREA
 8000 FORMAT(2X,'IN FNCT. SENSE, AREA =',F12.5)

```

	PLYC	18
	PLYC	19
	PLYC	20
	PLYC	21
	PLYC	22
	PLYC	23
	PLYC	24
	PLYC	25
	PLYC	26
	PLYC	27
	PLYC	28
	PLYC	29
	PLYC	30
	PLYC	31
	PLYC	1
	PLYC	2
	PLYC	3
	PLYC	4
	PLYC	5
	PLYC	6
	PLYC	7
	PLYC	8
	PLYC	9
	PLYC	10
	PLYC	11
	PLYC	12
	PLYC	13
	PLYC	14
	PLYC	15
	PLYC	16
	PLYC	17
	PLYC	18
	PLYC	19
	SENS	2
	SENS	3
	SFNS	4
	SENS	5
	SENS	6
	SENS	7
	SENS	8
	SENS	9
	SENS	10
	SENS	11
	SENS	12
	SENS	13
	SENS	14
	SENS	15
	SENS	16
	SENS	17
	SENS	18
	SENS	19
	SENS	20
	SENS	21
	SENS	22
	SENS	23
	SENS	24
	SENS	25
	SENS	26
	SENS	27
	SENS	28
	SENS	29
	SENS	30

RETURN	SENS	31
END	SENS	32
LOGICAL FUNCTION FAR(XPCEN, YPCEN, XCLCEN, YCLCEN, FARAWY)		
DETERMINES WHETHER POLYGON AND CELL ARE SUFFICIENTLY		
CLOSE TO JUSTIFY FINDING UNION, ETC.		
AUTOMATED REGIONAL METHODOLOGY CODE		
CALLED BY MAIN PROGRAM APORT		
D.E.FIELDS AND C.A.LITTLE		
OCTOBER, 1977		
FAR=.FALSE.		
XD=XPCEN-XCLCEN		
YD=YPCEN-YCLCEN		
DETERMINE DISTANCE BETWEEN CENTROIDS		
DIST=SQRT(XD*XD+YD*YD)		
IF(DIST.GT.FARAWY) FAR=.TRUE.		
RETURN		
END		
FAR		2
FAR		3
FAR		4
FAR		5
FAR		6
FAR		7
FAR		8
FAR		9
FAR		10
FAR		11
FAR		12
FAR		13
FAR		14
FAR		15
FAR		16
FAR		17
FAR		18
FAR		19

APPENDIX CLISTING OF CODE SUBSET

Code SUBSET is used in the preparation of the APOR data set (Chap. 3). It invokes the POLYVRT data manipulation package (Dutton 1974), assumed resident on the user's system. Thanks are due C. J. Emerson for his assistance in using the POLYVRT package.

```
///*NOSEQCARD
//DEFSUBS JOB (00000), 'XCSD-FIELDS-B212'
/*ROUTE PRINT LOCAL
//**CLASS CPU91=4M, SPECIAL=TAPE, IO=6
/*
//STP1 EXEC SPDASCR
//SYSIN DD *
  T.DEF16829.POLY
/*
//** EXECUTE POLYVRT
//POLYVRT EXEC PG M=POLYVRT, REGION=270K
//STEPLIB DD DSN=ENVSCI.RJX12891.PVRTLGO, DISP=SHR,
  UNIT=3330, VOL=SER=DISKAA
//GO.DUMP DD SYSOUT=A, DCB=(RECFM=FA, BLKSIZE=133)
//GO.FT53F001 DD DSN=ENVSCI.RJX12891.PVRTLGO(POLYVRT),
  DISP=(OLD, PASS), LABEL=(.,,IN), DCB=(RECFM=U, BLKSIZE=256)
//GO.FT06F001 DD SYSOUT=A, DCB=(RECFM=FB, LRECL=137, BLKSIZE=2035)
//GO.FT07F001 DD SYSOUT=B
//** SCRATCH FILES FOR TEMP. STORAGE OF POINTS
//GO.FT19F001 DD DSN=&&SCR1, UNIT=SYSDA, SPACE=(TRK,(90,10)),
  DCB=(RECFM=VSB, LRECL=1344, BLKSIZE=4036), DISP=(NEW,DELETE)
//GO.FT20F001 DD DSN=&&SCR2, UNIT=SYSDA, SPACE=(TRK,(90,10)),
  DCB=*.FT19F001, SEP=FT19F001, DISP=(NEW,DELETE)
//** INPUT POLYVRT GEOGRAPHIC BASE FILE, DISK OR TAPE
//GO.FT35F001 DD UNIT=TAPE9, VOL=SER=X14554,
```

```

// LABEL=(3,NL),DISP=(OLD,KEEP),
// DCB=(RECFM=FB,LRECL=54,BLKSIZE=8100)
//*      OUTPUT FILE (CARD IMAGES)
//GO. FT37F001 DD DSN=T. DEF16829.POLY,DISP=(NEW,CATLG),
// UNIT=SPDA,SPACE=(TRK,(20,5),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//*      CALCOMP PLOT TAPE
//GO. PLOTTAPE DD DUMMY
//GO. FT05F001 DD *
A-INPUT  DIMECO
B-SFLECT INCLUDE
IF      STATE    EQ      34 AND COUNTY    EQ      1
OR      STATE    EQ      34 AND COUNTY    EQ      5
OR      STATE    EQ      34 AND COUNTY    EQ      7
OR      STATE    EQ      34 AND COUNTY    EQ      11
OR      STATE    EQ      34 AND COUNTY    EQ      15
IF      STATE    EQ      34 AND COUNTY    EQ      21
OR      STATE    EQ      34 AND COUNTY    EQ      23
OR      STATE    EQ      34 AND COUNTY    EQ      25
OR      STATE    EQ      34 AND COUNTY    EQ      29
IF      STATE    EQ      34 AND COUNTY    EQ      33
OR      STATE    EQ      34 AND COUNTY    EQ      35
OR      STATE    EQ      36 AND COUNTY    EQ      85
OR      STATE    EQ      42 AND COUNTY    EQ      17
OR      STATE    EQ      42 AND COUNTY    EQ      91
END
C-READ
END
E-MANIPULATE
PROJECT  C-LAMBERT
MERIDEAN -75.
PARALLELS 39.          41.
FRACTION 600000.
ORIGIN   39.8100      -74.21000
END
F-GENERAL      10.
G-OUTPUT  SYMAP      1.          0.          1.
END
Z-FINISH
/*
//
```

APPENDIX DSAMPLE APORT INPUT DATA SET

The construction of this sample data set is described in Chap. 3. When used as input to the APORT code, the output given in Appendix E is produced. The same data set may be used as input to code APOPLT, described in Chap. 6. The corresponding APOPLT graphical output, also described in Chap. 6, is shown in Fig. 3.

74.205167	39.8145	600000.	14	
74.187500	39.8			
1	131			
513078				
7	125			
11	3760			
15	3816			
21	3754			
23	2753			
25	4028			
29	349			
33	17125			
35	7198			
85	0			
1718834				
9115122				
0	A	-2.7985	-0.5542	34001 1
0		-3.8290	-1.6182	34001 2
0		-4.3379	-2.1787	34001 3
0		-3.6244	-2.7925	34001 4
0		-3.6068	-3.5491	34001 5
0		-2.0532	-3.8828	34001 6
0		-1.0247	-2.8359	34001 7
0		-0.9075	-2.5552	34001 8
0		-1.0050	-1.9749	34001 9
0		-1.1342	-1.9211	34001 10
0		-1.7215	-1.7661	34001 11
0		-2.4679	-1.2971	34001 12
0		-2.7985	-0.5542	34001 13
0	A	-2.0408	2.2827	34005 1
0		-2.7614	2.7439	34005 2
0		-2.9588	2.5508	34005 3
0		-2.9393	2.4465	34005 4
0		-4.2553	1.7544	34005 5
0		-4.7004	1.3494	34005 6
0		-3.9695	0.4924	34005 7
0		-3.8148	-0.1553	34005 8
0		-3.3844	-0.1921	34005 9
0		-2.7985	-0.5542	34005 10
0		-2.4679	-1.2971	34005 11
0		-1.7215	-1.7661	34005 12
0		-1.1342	-1.9211	34005 13

0	-0.9419	-0.3567	34005	14
0	-1.8662	1.9241	34005	15
0	-2.0408	2.2827	34005	16
0	A -2.7985	-0.5542	34007	1
0	-3.3844	-0.1921	34007	2
0	-3.8148	-0.1553	34007	3
0	-3.9695	0.4924	34007	4
0	-4.7004	1.3494	34007	5
0	-5.0626	1.0527	34007	6
0	-5.2621	0.5347	34007	7
0	-4.9064	0.2332	34007	8
0	-4.4538	-0.6699	34007	9
0	-4.0004	-0.9246	34007	10
0	-3.8290	-1.6182	34007	11
0	-2.7985	-0.5542	34007	12
0	A -4.8310	-1.9736	34011	1
0	-4.8737	-2.6174	34011	2
0	-5.7591	-1.8843	34011	3
0	-6.2669	-2.3887	34011	4
0	-6.7357	-2.5789	34011	5
0	-6.8084	-2.9670	34011	6
0	-6.1169	-3.8020	34011	7
0	-5.7967	-3.8279	34011	8
0	-5.3963	-4.1968	34011	9
0	-5.1249	-4.6321	34011	10
0	-4.8039	-4.4065	34011	11
0	-3.9681	-4.7283	34011	12
0	-4.0040	-4.3147	34011	13
0	-3.6068	-3.5491	34011	14
0	-3.6244	-2.7925	34011	15
0	-4.3379	-2.1787	34011	16
0	-4.7151	-1.8440	34011	17
0	-4.8310	-1.9736	34011	18
0	A -3.8290	-1.6182	34015	1
0	-4.3379	-2.1787	34015	2
0	-4.7151	-1.8440	34015	3
0	-4.8310	-1.9736	34015	4
0	-4.8019	-1.7271	34015	5
0	-5.5545	-1.0906	34015	6
0	-6.4569	-0.6868	34015	7
0	-6.6608	-0.2634	34015	8
0	-6.8917	-0.2000	34015	9
0	-6.3087	0.2324	34015	10
0	-5.2621	0.5347	34015	11
0	-4.9064	0.2332	34015	12
0	-4.4538	-0.6699	34015	13
0	-4.0004	-0.9246	34015	14
0	-3.8290	-1.6182	34015	15
0	A -3.0504	4.4983	34021	1
0	-3.3240	4.4727	34021	2
0	-3.3265	4.2092	34021	3
0	-3.7214	4.1543	34021	4
0	-3.6859	3.9370	34021	5
0	-3.9661	3.8154	34021	6
0	-2.9588	2.5508	34021	7
0	-2.7614	2.7439	34021	8
0	-2.0408	2.2827	34021	9
0	-2.1673	2.6709	34021	10
0	-1.3921	3.3562	34021	11
0	-2.3476	3.8403	34021	12
0	-2.3842	4.1831	34021	13
0	-2.8905	4.1980	34021	14
0	-3.0504	4.4983	34021	15

0	A	-0.4255	4.9058	34023	1
0		-0.4944	5.1726	34023	2
0		-0.1092	5.8279	34023	3
0		-1.5559	5.7507	34023	4
0		-1.8786	5.5688	34023	5
0		-1.4823	5.1196	34023	6
0		-1.5545	4.9814	34023	7
0		-2.3842	4.1831	34023	8
0		-2.3476	3.8403	34023	9
0		-1.3921	3.3562	34023	10
0		-1.0451	3.4507	34023	11
0		-0.2997	4.3215	34023	12
0		-0.2799	4.6101	34023	13
0		-0.0771	4.6912	34023	14
0		-0.4255	4.9058	34023	15
0	A	-1.3921	3.3562	34025	1
0		-2.1673	2.6709	34025	2
0		-2.0408	2.2827	34025	3
0		-1.8662	1.9241	34025	4
0		-1.1929	2.6597	34025	5
0		-0.3210	2.6367	34025	6
0		-0.2994	2.3528	34025	7
0		-0.0775	2.2083	34025	8
0		0.2905	2.1404	34025	9
0		0.5471	2.3938	34025	10
0		0.7325	2.0906	34025	11
0		1.0958	2.1907	34025	12
0		1.3668	3.3474	34025	13
0		1.2796	4.5544	34025	14
0		1.0636	4.7944	34025	15
0		1.0684	4.3599	34025	16
0		0.5921	4.5764	34025	17
0		0.0706	4.5337	34025	18
0		-0.0771	4.6912	34025	19
0		-0.2799	4.6101	34025	20
0		-0.2997	4.3215	34025	21
0		-1.0451	3.4507	34025	22
0		-1.3921	3.3562	34025	23
0	A	-1.1342	-1.9211	34029	1
0		-0.9419	-0.3567	34029	2
0		-1.8662	1.9241	34029	3
0		-1.1929	2.6597	34029	4
0		-0.3210	2.6367	34029	5
0		-0.2994	2.3528	34029	6
0		-0.0775	2.2083	34029	7
0		0.2905	2.1404	34029	8
0		0.5471	2.3938	34029	9
0		0.7325	2.0906	34029	10
0		1.0958	2.1907	34029	11
0		0.7781	-0.1411	34029	12
0		0.6109	-0.1179	34029	13
0		0.7714	1.1169	34029	14
0		0.6475	1.6340	34029	15
0		0.4523	0.3071	34029	16
0		0.2125	-0.1299	34029	17
0		0.2024	-0.7571	34029	18
0		-0.5264	-1.7288	34029	19
0		-0.5918	-2.0220	34029	20
0		-1.0050	-1.9749	34029	21
0		-1.1342	-1.9211	34029	22
0	A	-4.8310	-1.9736	34033	1
0		-4.8737	-2.6174	34033	2
0		-5.7591	-1.8843	34033	3

0	-6.2669	-2.3887	34033	4
0	-6.7357	-2.5789	34033	5
0	-6.8084	-2.9670	34033	6
0	-7.3220	-2.4084	34033	7
0	-7.2601	-1.7527	34033	8
0	-7.5132	-1.4878	34033	9
0	-7.3846	-0.9663	34033	10
0	-6.8917	-0.2000	34033	11
0	-6.6608	-0.2634	34033	12
0	-6.4569	-0.6868	34033	13
0	-5.5545	-1.0906	34033	14
0	-4.8019	-1.7271	34033	15
0	-4.8310	-1.9736	34033	16
A	-1.5559	5.7507	34035	1
0	-1.2035	6.2461	34035	2
0	-1.4127	6.1943	34035	3
0	-1.4831	6.3359	34035	4
0	-1.8341	6.1460	34035	5
0	-1.7764	6.6104	34035	6
0	-1.9834	6.8767	34035	7
0	-2.9235	6.6599	34035	8
0	-2.8600	5.6150	34035	9
0	-3.2907	5.1333	34035	10
0	-3.0504	4.4983	34035	11
0	-2.8905	4.1980	34035	12
0	-2.3842	4.1831	34035	13
0	-1.5545	4.9814	34035	14
0	-1.4823	5.1196	34035	15
0	-1.8786	5.5688	34035	16
0	-1.5559	5.7507	34035	17
A	-0.4255	4.9058	36085	1
0	0.0779	5.1316	36085	2
0	0.7857	5.8323	36085	3
0	0.5658	6.2439	36085	4
0	0.1166	6.1309	36085	5
0	-0.1092	5.8279	36085	6
0	-0.4944	5.1726	36085	7
0	-0.4255	4.9058	36085	8
A	-4.2553	1.7544	42017	1
0	-4.1756	2.1726	42017	2
0	-4.4953	2.3938	42017	3
0	-7.0914	4.4788	42017	4
0	-6.6113	5.0991	42017	5
0	-5.5800	5.8523	42017	6
0	-5.3902	5.5632	42017	7
0	-4.8916	5.5083	42017	8
0	-4.7811	4.6052	42017	9
0	-4.2468	4.3379	42017	10
0	-3.9661	3.8154	42017	11
0	-2.9588	2.5508	42017	12
0	-2.9393	2.4465	42017	13
0	-4.2553	1.7544	42017	14
A	-4.4953	2.3938	42091	1
0	-5.0297	1.7717	42091	2
0	-5.7456	2.0657	42091	3
0	-5.9028	1.8027	42091	4
0	-5.6124	1.5176	42091	5
0	-5.9302	1.2261	42091	6
0	-6.4941	1.9470	42091	7
0	-6.9511	2.0452	42091	8
0	-6.9846	2.3462	42091	9
0	-7.3541	2.5366	42091	10
0	-7.7465	3.1243	42091	11

0	-8.2980	3.1907	42091 12
0	-7.3957	4.6978	42091 13
0	-7.0914	4.4788	42091 14
0	-4.4953	2.3938	42091 15
9999	0.0	0.0	0 0

APPENDIX EAPORT OUTPUT CORRESPONDING TO APPENDIX D

74.2052 39.8145 600000.00 14
 74.1875 39.8000

1 131
 513078
 7 125
 11 3760
 15 3816
 21 3754
 23 2753
 25 4028
 29 349
 3317125
 35 7108
 85 0
 1718834
 9115122
 XOFFSET,YOF SET,ALAT= -0.937092 1.002659 0.694707
 POLYGON INTERSECTION. J= 1 AND IPOL = 1; NFIPS = 1
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 5 3 1.18 563.47 95.67 0.27
 POLYGON INTERSECTION. J= 1 AND IPOL = 1; NFIPS = 1
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 3 34.49 563.47 95.67 8.02
 POLYGON INTERSECTION. J= 1 AND IPOL = 1; NFIPS = 1
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 4 100.25 563.47 133.93 23.31
 POLYGON INTERSECTION. J= 1 AND IPOL = 1; NFIPS = 1
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 5 45.92 563.47 172.20 10.63
 POLYGON INTERSECTION. J= 1 AND IPOL = 1; NFIPS = 1
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 7 3 71.14 563.47 95.67 10.54
 POLYGON INTERSECTION. J= 1 AND IPOL = 1; NFIPS = 1
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 7 4 133.93 563.47 133.93 31.14
 POLYGON INTERSECTION. J= 1 AND IPOL = 1; NFIPS = 1
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 7 5 90.17 563.47 172.20 20.90
 POLYGON INTERSECTION. J= 1 AND IPOL = 1; NFIPS = 1
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 8 3 39.11 563.47 95.67 8.80
 POLYGON INTERSECTION. J= 1 AND IPOL = 1; NFIPS = 1
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 8 4 42.34 563.47 133.93 9.84
 POLYGON INTERSECTION. J= 1 AND IPOL = 1; NFIPS = 1
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 8 5 5.92 563.47 172.20 1.38
 POLYGON INTERSECTION. J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 3 2 1.39 822.92 57.40 22.11
 POLYGON INTERSECTION. J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 3 3 42.55 822.92 95.67 076.18
 POLYGON INTERSECTION. J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 3 4 66.28 822.92 133.93 1053.29
 POLYGON INTERSECTION. J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 4 2 35.57 822.92 57.40 565.29
 POLYGON INTERSECTION. J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 4 3 95.67 822.92 95.67 1520.33
 POLYGON INTERSECTION. J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 4 4 133.82 822.92 133.93 2120.03
 POLYGON INTERSECTION. J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 4 5 69.85 822.92 172.20 1110.08
 POLYGON INTERSECTION. J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 5 2 53.10 822.92 57.40 843.85
 POLYGON INTERSECTION. J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 5 3 91.35 822.92 95.67 1451.72
 POLYGON INTERSECTION. J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 5 4 68.32 822.92 133.93 1085.78
 POLYGON INTERSECTION. J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 5 5 0.88 822.92 172.20 14.03

POLYGON INTERSECTION, J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 2 52.52 822.92 57.40 334.04
 POLYGON INTERSECTION, J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 3 61.09 822.92 95.67 970.83
 POLYGON INTERSECTION, J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 7 2 26.28 822.92 57.40 417.00
 POLYGON INTERSECTION, J= 1 AND IPOL = 2; NFIPS = 5
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 7 3 24.22 822.92 95.67 334.87
 POLYGON INTERSECTION, J= 1 AND IPOL = 3; NFIPS = 7
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 4 5 21.63 238.55 172.20 11.34
 POLYGON INTERSECTION, J= 1 AND IPOL = 3; NFIPS = 7
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 5 3 3.14 238.55 95.67 1.04
 POLYGON INTERSECTION, J= 1 AND IPOL = 3; NFIPS = 7
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 5 4 65.56 238.55 133.93 34.33
 POLYGON INTERSECTION, J= 1 AND IPOL = 3; NFIPS = 7
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 5 5 108.34 238.55 172.20 50.77
 POLYGON INTERSECTION, J= 1 AND IPOL = 3; NFIPS = 7
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 3 0.09 238.55 95.67 0.00
 POLYGON INTERSECTION, J= 1 AND IPOL = 3; NFIPS = 7
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 4 33.13 238.55 133.93 17.30
 POLYGON INTERSECTION, J= 1 AND IPOL = 3; NFIPS = 7
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 5 1.16 238.55 172.20 0.01
 POLYGON INTERSECTION, J= 1 AND IPOL = 4; NFIPS = 11
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 5 38.96 509.63 172.20 287.45
 POLYGON INTERSECTION, J= 1 AND IPOL = 4; NFIPS = 11
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 7 5 32.49 509.63 172.20 239.07
 POLYGON INTERSECTION, J= 1 AND IPOL = 5; NFIPS = 15
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 3 4 0.05 338.44 133.93 0.59
 POLYGON INTERSECTION, J= 1 AND IPOL = 5; NFIPS = 15
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 5 5 62.98 338.44 172.20 710.13
 POLYGON INTERSECTION, J= 1 AND IPOL = 5; NFIPS = 15
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 4 0.56 338.44 133.93 0.25
 POLYGON INTERSECTION, J= 1 AND IPOL = 5; NFIPS = 15
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 5 97.64 338.44 172.20 1100.95
 POLYGON INTERSECTION, J= 1 AND IPOL = 5; NFIPS = 15
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 7 3 36.12 488.34 95.67 282.20
 POLYGON INTERSECTION, J= 1 AND IPOL = 5; NFIPS = 15
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 7 4 5.20 488.34 133.93 40.05
 POLYGON INTERSECTION, J= 1 AND IPOL = 6; NFIPS = 21
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 2 4 26.24 239.53 133.93 411.31
 POLYGON INTERSECTION, J= 1 AND IPOL = 6; NFIPS = 21
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 2 5 21.58 239.53 172.20 338.20
 POLYGON INTERSECTION, J= 1 AND IPOL = 6; NFIPS = 21
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 3 4 45.02 239.53 133.93 705.62
 POLYGON INTERSECTION, J= 1 AND IPOL = 6; NFIPS = 21
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 3 5 105.37 239.53 172.20 1651.38
 POLYGON INTERSECTION, J= 1 AND IPOL = 7; NFIPS = 23
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 1 4 1.41 309.96 133.93 12.48
 POLYGON INTERSECTION, J= 1 AND IPOL = 7; NFIPS = 23
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 1 5 45.83 309.96 172.20 407.09
 POLYGON INTERSECTION, J= 1 AND IPOL = 7; NFIPS = 23
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 2 4 31.20 309.96 133.93 277.13
 POLYGON INTERSECTION, J= 1 AND IPOL = 7; NFIPS = 23
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 2 5 136.50 309.96 172.20 1212.50

POLYGON INTERSECTION. J= 1 AND IPOL = 8: NFIPS = 25
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 1 3 84.74 497.17 95.67 680.53

POLYGON INTERSECTION. J= 1 AND IPOL = 8: NFIPS = 25
 POLYGON INTERSECTION. J= 2 AND IPOL = 8: NFIPS = 25
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 1 4 82.82 336.40 133.93 991.72

POLYGON INTERSECTION. J= 1 AND IPOL = 8: NFIPS = 25
 POLYGON INTERSECTION. J= 2 AND IPOL = 8: NFIPS = 25
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 1 5 61.91 336.40 172.20 741.27

POLYGON INTERSECTION. J= 1 AND IPOL = 8: NFIPS = 25
 POLYGON INTERSECTION. J= 2 AND IPOL = 8: NFIPS = 25
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 2 3 18.30 336.40 95.67 219.16

POLYGON INTERSECTION. J= 1 AND IPOL = 8: NFIPS = 25
 POLYGON INTERSECTION. J= 2 AND IPOL = 8: NFIPS = 25
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 2 4 16.19 336.40 133.93 193.89

POLYGON INTERSECTION. J= 1 AND IPOL = 8: NFIPS = 25
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 3 3 12.00 336.40 95.67 143.71

POLYGON INTERSECTION. J= 1 AND IPOL = 8: NFIPS = 25
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 3 4 13.54 336.40 133.93 102.11

POLYGON INTERSECTION. J= 1 AND IPOL = 8: NFIPS = 25
 POLYGON INTERSECTION. J= 2 AND IPOL = 8: NFIPS = 25
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 15 4 841.14 336.40 133.93 10071.70

POLYGON INTERSECTION. J= 1 AND IPOL = 8: NFIPS = 25
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 16 3 55.68 584.19 95.67 383.90

POLYGON INTERSECTION. J= 1 AND IPOL = 8: NFIPS = 25
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 16 4 128.29 584.19 133.93 854.96

POLYGON INTERSECTION. J= 1 AND IPOL = 8: NFIPS = 25
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 16 5 106.44 584.19 172.20 733.88

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 1 1 19.13 677.00 19.13 9.80

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 1 2 57.40 677.00 57.40 29.59

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 1 3 25.92 677.00 95.67 13.36

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 2 1 19.13 437.24 19.13 15.27

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 2 2 57.40 437.24 57.40 45.82

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 2 3 74.98 437.24 95.67 59.85

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 3 1 19.13 437.24 19.13 15.27

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 3 2 56.01 437.24 57.40 44.71

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 3 3 41.12 437.24 95.67 32.82

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 4 1 19.13 437.24 19.13 15.27

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 4 2 21.83 437.24 57.40 17.42

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 5 1 19.13 437.24 19.13 15.27

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 5 2 4.30 437.24 57.40 3.43

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 1 15.15 437.24 19.13 12.09

POLYGON INTERSECTION. J= 1 AND IPOL = 9: NFIPS = 29
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 6 2 0.11 437.24 57.40 0.08

POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
7	1	9.51	437.24 19.13	7.59
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
8	1	8.58	437.24 19.13	6.83
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
8	2	121.92	437.24 57.40	97.31
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
8	3	114.30	196.15 95.67	203.36
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
9	1	262.54	67.05 19.13	1366.58
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
9	2	206.23	271.04 57.40	266.55
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
10	1	1.76	333.89 19.13	1.83
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
11	1	0.42	333.89 19.13	0.44
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
12	1	0.24	333.89 19.13	0.25
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
13	1	0.20	333.89 19.13	0.21
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
14	1	0.24	333.89 19.13	0.25
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
15	1	0.42	333.89 19.13	0.44
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
15	3	504.80	333.89 95.67	327.65
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
16	1	726.16	186.27 19.13	1360.56
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
16	2	30.86	725.48 57.40	14.85
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
16	3	81.31	725.48 95.67	39.11
POLYGON INTERSECTION. J=	1 AND IPOL	=	9: NFIPS = 29	
POLYGON INTERSECTION. J=	2 AND IPOL	=	9: NFIPS = 29	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
16	4	1.91	725.48 133.93	0.92
POLYGON INTERSECTION. J=	1 AND IPOL	=	10: NFIPS = 33	
POLYGON INTERSECTION. J=	2 AND IPOL	=	10: NFIPS = 33	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
6	5	0.15	340.72 172.20	7.73
POLYGON INTERSECTION. J=	1 AND IPOL	=	11: NFIPS = 35	
POLYGON INTERSECTION. J=	2 AND IPOL	=	11: NFIPS = 35	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
2	5	14.12	294.63 172.20	344.93
POLYGON INTERSECTION. J=	1 AND IPOL	=	11: NFIPS = 35	
POLYGON INTERSECTION. J=	2 AND IPOL	=	11: NFIPS = 35	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
3	5	0.55	294.63 172.20	13.35
POLYGON INTERSECTION. J=	1 AND IPOL	=	12: NFIPS = 85	
POLYGON INTERSECTION. J=	2 AND IPOL	=	12: NFIPS = 85	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
1	5	3.11	73.74 172.20	0.0
POLYGON INTERSECTION. J=	1 AND IPOL	=	13: NFIPS = 17	
POLYGON INTERSECTION. J=	2 AND IPOL	=	13: NFIPS = 17	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
3	4	5.78	616.82 133.93	176.43
POLYGON INTERSECTION. J=	1 AND IPOL	=	13: NFIPS = 17	
POLYGON INTERSECTION. J=	2 AND IPOL	=	13: NFIPS = 17	
SECTOR	RADIUS	AREAL OVERLAP	AREAP AREACL	VARCEL
3	5	66.28	616.82 172.20	2023.93

POLYGON INTERSECTION, J= 1 AND IPOL = 13; NFIIPS = 17
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 4 4 0.12 616.82 133.93 3.54
 POLYGON INTERSECTION, J= 1 AND IPOL = 13; NFIIPS = 17
 SECTOR RADIUS AREAL OVERLAP AREAP AREACL VARCEL
 4 5 46.14 616.82 172.20 1408.80
 END OF POLYGON COORD SPECIFICATIONS
 SUMMARY OF EXTENSIVE VARIABLE: CELL RADIUS(COLUMN) BY CELL SECTOR (ROW)
 9.9 29.6 699.9 1004.2 1148.4
 15.3 45.8 279.0 882.3 1895.5
 15.3 66.8 852.7 2097.4 3688.7
 15.3 582.7 1520.3 2130.2 2530.2
 15.3 847.3 1453.6 1120.7 780.9
 12.1 834.7 978.9 46.9 1407.4
 7.6 417.7 683.7 71.8 260.6
 6.8 97.3 212.2 9.8 1.4
 1366.6 265.6 0.0 0.0 0.0
 1.8 0.0 0.0 0.0 0.0
 0.4 0.0 0.0 0.0 0.0
 0.2 0.0 0.0 0.0 0.0
 0.2 0.0 0.0 0.0 0.0
 0.2 0.0 0.0 0.0 0.0
 0.4 0.0 527.7 10071.7 0.0
 1360.6 14.8 423.0 885.4 733.9
 END APORT EXECUTION

IHC002I STOP 0

APPENDIX FJOB CONTROL LANGUAGE FOR APOPLT PLOTTER CODE

Note links to the DISSPLA* package referenced in Chap. 6. DISSPLA is assumed resident on the user's computer system.

```
//DEFAPOP JOB ( 00000 ),'XCSD-FIELDS-B212',MSGLEVEL=(2,0)
/*ROUTE PRINT LOCAL
/*ROUTE PUNCH LOCAL
//CLASS CPU91=20S,IO=2,R=270,INES=5,CARDS=0
// EXEC FORTHCLG,PARM.FORT='XREF',PARM.GD='EU=-1,DUMP=I',
// REGION.GD=250K
//FORT.SYSIN DD *
=APOLT
/*
//LKED.SYSLIB DD
// DD
// DD
// DD DSN=SYS2.DISSPLA,DISP=SHR
//LKED.PLOTSUBS DD DSN=JGSPLOTH,DISP=SHR
//LKED.SYSIN DD *          HEX DECK FOLLOWS
INCLUDE PLOTSUBS
/*
//GD.FT49F001 DD UNIT=IN2OU2,DISP=(NEW,KEEP),
// SPACE=(3208,99,RLSE),
// DCB=(RECFM=VS,LRECL=3204,BLKSIZE=3208),
// DSN=PLT00.DEFQ
//GD.SYSUDMP DD SYSOUT=A
//GD.FT05F001 DD *
=APORT.DAT

/*
//
```

APPENDIX GFORTRAN IV SOURCE LISTING OF APOPLT PLOTTER CODE

```

MAIN 1
MAIN 2
MAIN 3
MAIN 4
MAIN 5
MAIN 6
MAIN 7
MAIN 8
MAIN 9
MAIN 10
MAIN 11
MAIN 12
MAIN 13
MAIN 14
MAIN 15
MAIN 16
MAIN 17
MAIN 18
MAIN 19
MAIN 20
MAIN 21
MAIN 22
MAIN 23
MAIN 24
MAIN 25
MAIN 26
MAIN 27
MAIN 28
MAIN 29
MAIN 30
MAIN 31
MAIN 32
MAIN 33
MAIN 34
MAIN 35
MAIN 36
MAIN 37
MAIN 38
MAIN 39
MAIN 40
MAIN 41
MAIN 42
MAIN 43
MAIN 44
MAIN 45
MAIN 46
MAIN 47
MAIN 48
MAIN 49
MAIN 50
MAIN 51
MAIN 52
MAIN 53
MAIN 54
MAIN 55
MAIN 56
MAIN 57
MAIN 58

MAIN PROGRAM APOPLT
AUTOMATED REGIONAL METHODOLOGY CODE

PLOTS CONCENTRIC GRID AND POLYGONS USED BY APORT CODE

REQUIRES DATA SET APORT.DAT

D.E.FIELDS AND C.A.LITTLE
FEB. 1978

DIMENSION RADIUS(5),NFIPS(50),XP(361),YP(361),VARP(50),IM(2)
DATA START/999./,ASTART/"A"/,NP/100/
READ ORIGIN OF SYMAP COORDINATE SYSTEM
IN DEGREES LON AND LAT
READ SCALE FACTOR, INCHES TO INCHES: SCALE
READ(5,8000)XORPLY,YORPLY,SCALE,NPOLY
8000 FORMAT(1X,3F10.2,15)
WRITE(6,8000)XORPLY,YORPLY,SCALE,NPOLY
SCALE=SCALE/5280./12.
IF(NPOLY.GT.50)WRITE(6,8005)
8005 FORMAT(2X,'NUMBER OF POLYGONS SPECIFIED EXCEEDS LIMIT OF 50')
READ ORIGIN OF POLAR COORDINATE SYSTEM
IN DEGREES LON AND LAT
READ(5,8010)XORCEL,YORCEL
8010 FORMAT(1X,2F10.4)
READ VALUE OF EXTENSIVE VARIABLE FOR EACH POLYGON
READ(5,8015)(NFIPS(I),VARP(I),I=1,NPOLY)
8015 FORMAT(1X,I2,15)
WRITE(6,5)(NFIPS(I),VARP(I),I=1,NPOLY)
COMPUTE OFFSET, IN MILES, OF POLYGON IN POLAR SYSTEM
ALAT=(YORPLY+YORCEL)/360.*3.141593
XOFSET=(-XORPLY-XORCEL)*60.*1.1516*COS(ALAT)
YOFSET=(YORPLY-YORCEL)*60.*1.1516
TEMPORARY*****
WRITE(6,8020)XOFSET,YOFSET,ALAT
8020 FORMAT(2X,'XOFSET,YOFSET,ALAT=',3F15.6)
RADIAL DISTANCES IN MILES
DO 100 I=1,5
100 RADIUS(I)=10.*FLOAT(I)

BEGIN PLOT OF POLYGONS
CALL TKTRN(120)
CALL CALCMR
CALL BGNPL(1)
CALL PAGE(11.0,11.0)
CALL HEADING('OYSTER CREEK',100,1.,2)

1 PLOTTER INCH = 20 MILES
FACT = 20.
ORI=-4.*FACT
CALL CROSS
CALL TITLE(23HAPORT POLYGON STRUCTURE,23,' ',1,' ',1,8.,8.)
CALL GRAPH(ORI,FACT,ORI,FACT)
BEGIN POLYGON LOOP
*****TEMPORARY
DO 110 IPLY=1,NPOLY
CALL PLT1(XP,YP,NP,SCALE,XPV,YPV,ASTART,START,XOFSET,YOFSET)

```

```

NPM1=NPM1
CALL CURVE(XP,YP,NP,0)                                MAIN  59
C      COMPUTE CENTROID                                MAIN  60
XC=0.0                                                    MAIN  61
YC=0.0                                                    MAIN  62
DO 105 I=1,NPM1                                         MAIN  63
XC=XC+XP(I)                                              MAIN  64
YC=YC+YP(I)                                              MAIN  65
105 CONTINUE                                              MAIN  66
PN=FLOAT(NPM1)                                           MAIN  67
XC=(XC/PN)                                               MAIN  68
YC=(YC/PN)                                               MAIN  69
MAIN 70
C      IDENTIFY POLYGONS BY COUNTY FIPS CODE           MAIN 71
CALL RLINT(NFIPS(IPLY),XC,YC)                           MAIN 72
110 CONTINUE                                              MAIN 73
C      END POLYGON LOOP                                MAIN 74
MAIN 75
C      BEGIN POLAR GRID PLOT                           MAIN 76
PI180=3.14159/180.                                       MAIN 77
MAIN 78
C      DO 120 IR=1,5                                     MAIN 79
R=RADIUS(IR)                                            MAIN 80
XP(1)=R                                                 MAIN 81
YP(1)=0.                                                 MAIN 82
MAIN 83
DO115 I=1,360                                           MAIN 84
ANG=FLOAT(I)*PI180                                     MAIN 85
XP(I+1)=R*COS(ANG)                                    MAIN 86
YP(I+1)=R*SIN(ANG)                                    MAIN 87
115 CONTINUE                                              MAIN 88
CALL CURVE(XP,YP,361,0)                                MAIN 89
120 CONTINUE                                              MAIN 90
C      CONSTRUCT SCALE BARS                           MAIN 91
CALL STRPT(7.5,2.6)                                    MAIN 92
CALL CONNPT(7.5,2.4)                                    MAIN 93
CALL STRPT(7.5,2.5)                                    MAIN 94
CALL CONNPT(8.5,2.5)                                    MAIN 95
CALL STRPT(8.5,2.6)                                    MAIN 96
CALL CONNPT(8.5,2.4)                                    MAIN 97
CALL REALNO(FACT,1,7.7,2.6)                            MAIN 98
CALL LINES('MILES$',IM,1)                             MAIN 99
CALL STORY(IM,1,7.75,2.28)                            MAIN 100
CALL ENDPL(1)                                           MAIN 101
CALL DONEPL
STOP
END
SUBROUTINE PLT1(XP,YP,IV,SCALE,XPV,YPV,ASTART,
1TART,XOFSET,YOFSET)                                  SPLT1 1
C      AUTOMATED REGIONAL METHODOLOGY CODE           PLT1 2
C      CALLED BY MAIN PROGRAM APOPLT                 PLT1 3
C      PROVIDES POLYGON COORDINATES AND NUMBER OF VERTICES
C      D.E.FIELDS AND C.A.LITTLE                      PLT1 4
C
DIMENSION XP(1),YP(1)                                PLT1 5
IF(START.NE.ASTART)GOTO100                           PLT1 6
XP(1)=(XOFSET+XPV*SCALE)                            PLT1 7
YP(1)=(YOFSET+YPV*SCALE)                            PLT1 8
C      READ POLYGON COORDINATES                      PLT1 9
100 READ(5,8000,END=110)IEND,START,XPV,YPV,IF,NP
8000 FORMAT(I4,4X,A1,2F10.4,40X,I7,I3)             PLT1 10
IF(IEND.NE.9999)GOTO105
WRITE(6,8005)
8005 FORMAT(2X,'END OF POLYGON COORD IN SUB PLT1')
PLT1 11
PLT1 12
PLT1 13
PLT1 14
PLT1 15
PLT1 16
PLT1 17

```

GOTO115	PLT1	18
105 CONTINUE	PLT1	19
C27 WRITE(6,301START,XPV,YPV,IF,NP	PLT1	20
8010 FORMAT(9X,A1,2F10.4,4OX,I7,I3)	PLT1	21
C CONVERT POLYGON COORD TO MILES	PLT1	22
IF(START.EQ.ASTART.AND.IV.NE.100)RETURN	PLT1	23
IV=NP	PLT1	24
XP(IV)=(XOFFSET+XPV*SCALE)	PLT1	25
YP(IV)=(YOFFSET+YPV*SCALE)	PLT1	26
GOTO100	PLT1	27
110 WRITE(6,8015)	PLT1	28
8015 FORMAT(2X,'PREMATURE END OF COORD DATA IN SUB. PLT1')	PLT1	29
115 RETURN	PLT1	30
END	PLT1	31

ORNL/TM-6418
Distribution
Category UC-11, UC-41

INTERNAL DISTRIBUTION

1.	A. A. Brooks	47.	H. R. Meyer
2.	H. P. Carter	48.	C. W. Miller
3.	R. O. Chester	49.	R. E. Moore
4.	P. R. Coleman	50.	B. D. Murphy
5.	S. J. Cotter	51.	F. R. O'Donnell
6.	J. S. Crowell	52.	R. J. Olson
7.	R. M. Davis	53-56.	D. C. Parzyck
8.	H. W. Dickson	57.	J. K. Poggenburg
9.	D. E. Dunning, Jr.	58.	H. Postma
10.	R. C. Durfee	59.	R. J. Raridon
11.	R. G. Edwards	60.	M. L. Randolph
12.	C. J. Emerson	61.	C. R. Richmond
13.	E. L. Etnier	62-65.	P. S. Rohwer
14-23.	D. E. Fields	66.	E. M. Rupp
24.	R. G. Funderlic	67.	D. L. Shaeffer
25.	W. R. Garrett	68.	R. W. Shor
26.	F. F. Haywood	69.	C. C. Travis
27.	R. F. Hibbs	70.	P. J. Walsh
28.	G. S. Hill	71.	A. P. Watson
29.	R. B. Honea	72-75.	J. P. Witherspoon
30.	F. O. Hoffman	76.	H. A. Wright
31.	S. V. Kaye	77.	M. G. Yalcintas
32.	G. G. Killough	78.	Central Research Lib.
33.	D. C. Kocher	79.	ORNL Y-12 Library, Document Ref. Section
34-43.	C. A. Little	80-81.	Laboratory Rec. Dept.
44.	A. Loebel	82.	Laboratory Records, ORNL-RC
45.	E. C. Long		
46.	L. M. McDowell-Boyer	83.	ORNL Patent Office

EXTERNAL DISTRIBUTION

84.	Director, Research and Technical Support Division, DOE-ORO.
85.	J. P. Corley, Battelle Northwest Laboratory, P. O. Box 999, Richland, WA 99352.
86.	J. N. Rogers, Division 8324, Sandia Laboratories, Livermore, CA 94550.
87.	Chief, Mathematics and Geoscience Branch, Department of Energy, Washington, D. C. 20545.
88.	J. K. Soldat, Battelle Northwest Laboratory, P. O. Box 999, Richland, WA 99352.
89.	F. G. Goff, 1357 S. Dam Rd., West Branch, Michigan 48661.
90-406.	Given distribution as shown in TID-4500 under Distribution Category UC-11 and UC-41.