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2. THE VAPOR CYCLE AND SOLAR ENERGY 

Fig .  1. Basic  Vapor Compression Cycle 

The b a s i c  vapor compression c y c l e  i s  p ic tu red  on 
t h e  pressure-enthalpy diagram of Fig .  1. I n  t h e  

. . h e a t i n g  mode, t h e  u s e f u l  energy der ived pe r  u n i t  
mass of t h e  working f l u i d  is hZs- h f o r  an I d e a l  
Vapor Cycle. The i d e a l  work i n p u t  s y  t h e  compras- 
s o r  is  hpS -- ,h l ,  and t h e  COP is: 

h, - h? 
COP = $ 

h2s - hl 

The a c t u a l  work inpu t  is  h2 - h l ,  a l a r g e r  va lue ,  
due t o  i r r e v e r s i b i l i t i e s  i n  t h e  compression process  
( i n d i c a t e d  by t h e  compressor i s e n t r o p i c  e f f i -  
c iency)  ; and t h e r e  a r e  a number of o t h e r  sources  
of e f f i c i e n c y  l o s s  i n  t h e  a c t u a l  vapor c y c l e  which 
f u r t h e r ' l o w e r  t h e  COY from i d e a l  - i nc lud ing  pres-  
s u r e  drops ,  h e a t  l o s s e s ,  prime mover e f f i c i e n c y  
and those  due t o  p r a c t i c a l  measures necessary t o  
produce a v i a b l e  device .  I n  e i t h e r  case ,  t h e  
amount of work inpu t  r equ i red  f o r  t h e  compression 
process  depends on t h e  d i f f e r e n c e  between t h e  con- 
densing temperature ,  Tg, and t h e  evaporat ing tem- 
p e r a t u r e ,  TI, s i n c e  t h e  compressor must produce a 
p r e s s u r e  r a t i o  equa l  (approximately) t o  t h e  r a t i o  
of t h e  corresponding s a t u r a t i o n  p ressu res .  For a 
given condensing temperature  r equ i red  f o r  hea t ing ,  
an i n c r e a s e  i n  evaporator  temperature  causes a 
dec rease  i n  compressor work requ i red  pe r  pound of 
working f l u i d  ( r e f r i g e r a n t )  and a corresponding 
i n c r e a s e  i n  CGP. The l i m i t i n g  maximum COP obtain-  ' 

a b l e  between temperatures ,  T3 and TI, i s  t h e  
Camot  c y c l e  C3P given by: 

evaporat ing temperature,  and, moreover, t h e  s lope  
i n c r e a s e s  wi th  inc reas ing  temperature.  Herein l i e s  
t h e  mot iva t ion  t o  in t roduce  s o l a r  energy i n t o  a 
hea t  pump cyc le  a s  t h e  hea t  source ,  s i n c e  i t  can 
provide temperatures we l l  in excess of those  a v a i l -  
a b l e  from ambient a i r  dur ing a hea t ing  season and 
concomitant ins tantaneous and seasona l  COP'S which 
a r e  g r e a t l y  increased.  
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Fig.  2. Heat Pump COP v s  Evaporator Temperature 

D i r e c t  s o l a r  hea t  inpu t  makes use  of a n a t u r a l  
renewable resource  a s  an extension of t h e  t r a d i -  
t i o n a l  sea rch  by hea t  pump a p p l i c a t i o n s  engineers  
f o r  a s u i t a b l e  s i t e - s p e c i f i c  e a r t h  o r  water  source/  
s i n k ;  bu t  h e r e i n  t h e  p o t e n t i a l  COP gains  a r e  much 
g r e a t e r  and t h e  source  i s  u n i v e r s a l .  As i n  any 
o t h e r  s o l a r  system, t h e  s o l a r  h e a t  inpu t  is  no t  
" f r ee"  because a system t o  c o l l e c t  i t  must be paid  
f o r ;  b u t  because t h e  inpu t  temperature range of 
importance, 277 t o  311°K (40 t o  100°F) i s  low f o r  
s o l a r ,  t h e  use of c o l l e c t o r s  o r  c o l l e c t o r - l i k e  
dev ices  which a r e  s i g n i f i c a n t l y  l e s s  c o s t l y  per  
square  f o o t  than d i r e c t  hea t ing  c o l l e c t o r s  is  
allowed. 

'3 1 
=-a- 

COPmax., hea t ing  T3 - T1 1 - T1 
Given t h e  t h e o r e t i c a l  i n c e n t i v e ,  applying t h i s  

- approach r e q u i r e s  u t i l i z i n g  a vapor c y c l e  machine 

3 
t h a t  w i l l  fo l low t h e  monotonically inc reas ing  COP 
t rends  of t h e  Carnot and I d e a l  Vapor W c l e  a t  t h e  

where t h e  temperatures  a r e  i n  a b s o l u t e  u n i t s .  The 
Carnot COP i s  p l o t t e d  a g n i n s t  evapornt ing tempern- 
t u r e  f o r  a cons tan t  condensing temperature  of 32Z°K 
(120°F) i n  Fig .  2 .  Also p l o t t e d  is  t h e  COP f o r  
t h e  I d e a l  Vapor Cycle, 1-2s-3-4 i n  Fig. 1, f o r  
r e f r i g e r a n t s  R-12 and R-22 ( they a r e  ve ry  c l o s e  i n  
t h e  I d e a l  Cycle) .  The l a t t e r  curve i s  below t h a t  
of Carnot p r imar i ly  because t h e  expansion process  
i s  a t  cons tan t  en tha lpy ,  r a t h e r  than being t h e  
i s e n t r o p i c  one of t h e  Carnot Cycle. It i s  c l e a r  
t h a t  both  COP curves Inc rease  s i g n i f i c a n t l y  wi th  

lower l e v e l  0-£ p r a c t i c a l  hardware; Twb a s p e c t s  
of a t t a i n i n g  t h i s  p o t e n t i a l  must be t reated- those  
producing good, energy e f f i c i e n t  component per- 
formance f o r  any r e f r i g e r a t o r / h e a t  pump and those  
which s p e c i f i c a l l y  provide extension of t h i s  per- 
formance t o  high evaporator  temperatures  of s o l a r  
i n p u t ,  a s  w i l l  be d i scussed  l a t e r .  I n  Fig .  2 t h e  
p o t e n t i a l  performance which can b e  obta ined by 
meeting t h e s e  a spec t s  s a t i s f a c t o r i l y  i s  g i ~ e n  by 
t h e  shaded band. It was developed by examining 
opera t ing  d a t a  f o r  cu r ren t  e f f i c i e n t  hea t  pumps 



and compressors i n  t h e  evapora to r  temperature  range 
up t o  783'R (50°F) and performing c a l c u l a t i o n s .  t o  
o b t a i n  component e f f i c i e n c i e s  which were extrapo- 
l a t e d  t o  p r o j e c t  performance i n t o  t h e  range above 
283OR. Heat exchangers l a r g e  enough t o  accommo- 
d a t e  t h e  h e a t  l oads  a t  a l l  temperatures  were 
assumed, and a nominal e l e c t r i c  motor e f f i c i e n c y  
of .85 was used. 

The second p r i n c i p a l  a p p l i c a t i o n  of s o l a r  energy 
t o  a vapor  c y c l e  i s  t h e  u s e  of a so l a r -d r iven  h e a t  
engine  t o  produce t h e  compression work f o r  a vapor 
compression coo l ing  system, and i t  i s  one of t h e  
r e l a t i v e l y  few v i a b l e  techniques  which can produce 
coo l ing  from s o l a r  i n p u t .  T h i s  method would no t  
be  used t o  p r i n c i p a l l y  d r i v e  t h e  h e a t i n g  mode s i n c e  
i t  is obviously  more e f f e c t i v e  t o  u t i l i z e  thermal  
i n p u t  d i r e c t l y ,  and t h e  h e a t  engine  s u f f e r s  from 
n a t u r e ' s  t r a i t  t h a t  makes i t  e a s i e r  t o  conver t  
work t o  h e a t  than h e a t  t o  work. Once p r e s r n t  f o r  
t h e  coo l ing  t a s k ,  however, t h e  h e a t  engine/VC sys- 
tem can a l s o  be a p p l i e d  t o  space  h e a t i n g ,  i .e . ,  
be a h e a t  pump, i n  o rde r  t o  improve p o t e n t i a l  f o r  
c o s t  e f f e c t i v e n e s s ;  and i n  t h e  h e a t i n g  mode, t h e  
evapora to r  of t h e  VC loop can u s e  some of t h e .  
c o l l e c t e d  s o l a r  energy t o  lrmprove COP. 

The s o l a r  i n p u t  t o  d r i v e  a h e a t  engine  r e q u i r e s  , 

c o l l e c t i o n  a t  temperatures  which a r e  high by s o l a r  
s t a n d a r d s ,  s i n c e  Carnot l i m i t a t i o n s  demand a s  h igh  
a c y c l e  temperature  a s  p o s s i b l e  f o r  r easonab le  
power loop e f f i c i e n c y .  The Carnot l i m i t i n g  e f f i -  
c iency f o r  a h e a t  eng ine  ope ra t ing  between a tem- 
p e r a t u r e ,  Th, and a lower one, Tc, i s :  

where Tc is  t h e  r e j e c t i o n  temperature  which must 
be  above ambient i n  a p r a c t i c a l  device .  Thus, 
h igh g rade  c o l l e c t o r s  which can produce tempera- 
t u r e s  f a r  above ambient and s t i l l  a t t a i n  good 
e f f i c i e n c y  a r e  r equ i red ;  b u t  t h e  f a c t  t h a t  h ighe r  
c o l l e c t i o n  temperatures  produce lower c o l l e c t o r  
e f f i c i e n c i e s  can cause  a t rade-off  t o  be made wi th  
c y c l e  e f f i c i e n c y .  The most important  f a c t o r  i n  a 
system of t h i s  type ,  though, is  t o  r a i s e  c y c l e  
e f f i c i e n c y  i n  o r d e r  t o  reduce c o l l e c t o r  a r e a ,  
s i n c e  c o l l e c t o r s  a r e  by f a r  t h e  most c o s t l y  system 
element.  Th i s  b a s i c a l l y  impl i e s  h ighe r  c y c l e  
temperatures .  

Current  and nea r - fu tu re  c o l l e c t o r s  can r each  4 2 Z ° K  
(300°F), a t  most, w i t h  any r easonab le  e f f i c i e n c y ,  
and a t  t h i s  temperature  limit t h e  Rankine c y c l e  
typc  of  h e a t  engine ,  which i n c o r p o r a t e s  a l i q u i d  
t o  vapor phase  change, has  r ece ived  t h e  major 
development a t t e n t i o n  r a t h e r  than gas, cyc le s  which 
need h i g h e r  temperatures  t o  be  e f f e c t i v e .  Develop- 
ment of concen t ra t ing  c o l l e c t o r s  which g i v e  tem- 
p e r a t u r e s  i n  t h e  533'K (500°F) range could permit  
a broader  cho ice  of s o l a r  h e a t  engines .  

A technique t o  i n c r e a s e  Rankine c y c l e  e f f i c i e n c y  
s u b s t a n t i a l l y  i s  t h e  u s e  of a f o s s i l - f u e l  f i r e d  
supe rhea t  of  a working f l u i d  t h a t  has  been vapor- 
i z e d  by s o l a r  i n p u t  a t  250-300°F. Th i s  " topping 

cycle"  can be used t o  meet t he  des ign  coo l ing  load 
bu t  r e q u i r e s  only  a r e l a t i v e l y  sma l l  f u e l  i n p u t  
over  t h e  cour se  of a s eason ,  compared t o  t h e  s o l a r  
i n p u t  t o  t h e  l a t e n t  h e a t .  I f  wa te r  is  used a s  t h e  
working f l u i d ,  a superheat  temperature of 1000°F 
can be  used ,  doubling the  Rankine e f f i c i e n c y  and 
ha lv ing  t h e  r equ i red  c o l l e c t o r  a r e a .  

3. SOLAR ASSISTED HEAT PUMPS 

Even a t  this e a r l y  s t a g e  of s o l a r  u t i l i z a t i o n ,  
t h e r e  has  been cons ide rab le  i n t e r e s t  i n  combining 
s o l a r  energy wi th  h e a t  pumps. A number of ad hoc 
i n s t a l l a t i o n s ,  broad surveys  a s s e s s i n g  p o t e n t i a l ,  
and computer s imula t ions  have occurred.  Most 
i n s t a l l a t i o n s  t o  d a t e  have employed s o l a r  in par- 
a l l e l  w i t h  t h e  h e a t  pump, i . e . ,  t h e  h e a t  pump is  
an  a u x i l i a r y ,  and t h e  i n t r i n s i c  p r o p e r t i e s  of t he  
vapor  c y c l e  a r e  n o t  t h e r e i n  exp lo i t ed .  The r e l a -  
t i v e  few which have used s o l a r  a s  d i r e c t  s e r i e s  
i n p u t  t o  t h e  h e a t  pump have p e r f o r c e  used c u r r e n t  
h e a t  pumps, which a r e  n o t  des igned t o  accept  and 
e f f i c i e n t l y  u t i l i z e  t h e  e l e v a t e d  evapora to r  tem- 
p e r a t u r e s  of so l a r - supp l i ed  i n p u t .  That is. they 
e i t h e r  may n p t  run a t  i n p u t  temperatures  above 
283OK (50°F) o r  can be fo rced  t o  run only by energy 
i n e f f i c i e n t  techniques .  Consequently they do n o t  
a t  all r e a l i z e  the  l a r g e  COP i n c r e a s e  a v a i l a b l e .  
Likewise,  t h e  surveys  and computer s t u d i e s  have 
considered h e a t  pumps having c u r r e n t  performance 
c h a r a c t e r i s t i c s ,  i . e . ,  max. COP'S of 3 t o  3.5, and 
n o t  t h e  p o t e n t i a l  of machines designed f o r  t h e  
s o l a r  t a s k ,  no r  have they s e r i o u s l y  considered t h e  
oppor tun i ty  t o  u t i l i z e  inexpensive  c o l l e c t o r s  o r  
s t o r a g e  advantages  (such a s  ground-coupling) t h a t  
e x i s t  f o r  t h e  s e r i e s  conf igu ra t ion .  Reference 
1 d i s c u s s e s  t h e s e  s i t u a t i o n s  i n  d e t a i l .  

EXCHANGER 

OPTlONAL --------- ---- A 

Fig .  3.  Schematic of So la r  Ass i s t ed  Heat Pump 
System. 

A b a s i c  S o l a r  Ass i s t ed  Heat Pump (SAHP) conf igura-  
t i o n  i s  shown i n  Fig .  3.  S o l a r  c o l l e c t o r s  supply  
thermal  s t o r a g e ,  t y p i c a l l y  a l a r g e  wa te r  t ank ,  
which is  t h e  h e a t  sou rce  f o r  t h e  h e a t  pump. A 
mode f o r  bypassing t h e  h e a t  pump f o r  d i r e c t  s o l a r  
h e a t i n g  can be  included f o r  those  p e r i o d s  when t h e  
solar-suppliec! temperature  is  high enough. The 
c o l l e c t o r s  may be  e i t h e r  l i q u i d  o r  a i r -cooled and 
can have a r e l a t i v e l y  high l o s s  c o e f f i c i e n t ,  s i n c e  
t h e  co l l ec to r - t empera tu res  w i l l  no t  be  g r e a t l y  
above ambient. Air-cooled c o l l e c t o r s  probably 



have t h e  g r e a t e r  p o t e n t i a l  f o r  low c o s t ,  and e.g., 
could  be used wi th  an a i r / w a t e r  h e a t  exchanger n e a r  
t h e n ,  and indoors ,  t o  a l low hydronic  p ip ing  t o  
s t o r a g e .  

Such a SAHP could provide  h e a t i n g  and coo l ing  f o r  
s i n g l e  f ami ly  r e s i d e n t i a l ,  mul t i - family ,  and com- 
m e r c i a l  b u i l d i n g s  up t o  loads  of  approximately  25 
t o n s ,  It thus  can s e r v e  t h e  same a p p l i c a t i o n s  a s  
c u r r e n t  a i r - to -a i r  h e a t  pumps, b u t  w i th  substan- 
t i a l l y  h ighe r  COP'S, and expanded geographic  range. 
Moreover, s i n c e  t h e  source  temperature  can always 
be kep t  s u f f i c i e n t l y  above f r e e z i n g  (and would 
probably  be  l i q u i d  i n  most sys tems) ,  t h e r e  i s  no 
need f o r  a d e f r o s t  cyc le ,  a necessa ry  f e a t u r e  i n  
c u r r e n t  a i r - source  h e a t  pumps which has  t r a d i t i o n -  
a l l y  been a source  of energy i n e f f i c i e n c y  and 
r e l i a b i l i t y  problems due t o  c y c l i n g  and e x t r a  load 
on t h e  compressor. The l i q u i d  s o u r c e  would provide  
good h e a t  exchange ( sma l l  AT'S) i n  t h e  evapora to r ,  
and t h e  wa te r  loop could be r e v e r ~ c d  i n  the  coo l ing  
season t o  a l low h e a t  r e j e c t i o n  t o  t h e  s t o r a g e  t ank ,  
which can be  cooled a t  n i g h t  t o  p rov ide  a lower 
temperature  s i n k  than ambient.  I n  c e r t a i n  a r e a s  
t h e  c o l l e c t o r s  can a s s i s t  i n  t h i s  process .  Thus, 
a l t h o ~ ~ g h  s o l a r  does n o t  a s s i s t  i n  t h e  coo l ing  mode, 
t h e  s o l a r  system components can. The indoor  hea t  
exchanger could  a l s o  be  of t h e  l i q u i d  type  f o r  
low AT, hydronic  p ip ing  t o  c o i l s ,  and t h e  op t ion  
t o  r e - rou te  wa te r  f low i n s t e a d  of r e f r i g e r a n t  flow. 

The s t r o n g  p o t e n t i a l  of t h e  SAHP can be  r e a l i z e d  - only i f  s u i t a b l e  h e a t  pump hardware is  developed. 
C e r t a i n . s i g n i f i c a n t  changes must be  made, n o t  
s imply s m a l l  adjus tments ,  b u t  t h e s e  a r e  w e l l  w i t h i n  
t h e  technology and c a p a b i l i t y  of c u r r e n t  manu- 
f a c t u r e r s  - given t h e  market i n c e n t i v e  t o  apply  
them. These changes may impera t ive ly  produce a 
h ighe r  f i r s t  c o s t  of t h e  machine, b u t  t h e  energy 
and l i f e - c y c l e  c o s t  s av ings  they can provide  can 
j u s t i f y  t h i s  t o  buyers.  

The key t o  t h e  development problem is  making t h e  
h e a t  pump ope ra t e  e f f i c i e n t l y  and r e l i a b l y  ove r  
t h e  i n p u t  temperature  range,  277 t o  311°K (40 t o  
100°F) wherein t h e  a t t e n d a n t  s u c t i o n  vapor den- 
s i t i e s  and system mass f lows a r e  ve ry  high compared 
t o  p r e s e n t  o p e r a t i n g  cond i t ions .  The p o s i t i v e  
d isplacement  r e c i p r o c a t i n g  compressors used i n  t h e  
s i z e  h e a t  pumps of i n t e r e s t  h e r e  have a c o n s t a n t  
d isplacement  volume (bore  x s t r o k e  x no. of  
c y l i n d e r s )  and,  t h e r e f o r e ,  a t  a g iven ( cons tan t )  
speed,  f o r c e  a mass f low r a t e  approximately  pro- 
p o r t i o n a l  t o  t h e  s u c t i o n  d e n s i t y  through t h e  sys- 
tem. The vapor  d e n s i t y  i n c r e a s e s  r a p i d l y  wi th  
suc:ion temperature  because  of  t h e  a t t e n d a n t  s a tu -  
r a t i o n  p r e s s u r e  inc rease .  The e f f e c t s  of this 
s i t u a t i o n  on a h e a t  pump (no t  s p e c i f i c a l l y  des igned 
t o  accommodate them) a r e  many and complicated and 
can n o t  be  d e a l t  w i th  i n  any d e t a i l  here .  I n  b r i e f ,  
unduly h igh  p r e s s u r e s  and temperatures  can develop 
a t  t h e  compressor o u t l e t ,  t h e  condensor can become 
aver loaded and choked up, t h e  expansion va lve  may 
n o t . p a s s  the  f low and thus  s t a r v e  t h e  evaporator-- 
g iv ing  excess ive  supe rhea t ,  t h e  ba lance  between 
l i q u i d  and vapor  phase may be  i n c o r r e c t ,  and t h e  
r e f r i g e r a n t  may j u s t  "run around and hide" i n  
v a r i o u s  p l a c e s  s i n c e  t h e r e  is  such a r e l a t i v e l y  

l a r g e  amount t f y i n g  t o  c i r c u l a t e .  Of s p e c i a l  
importance i s  p o t e n t i a l  damage t o  the  compressor,  
p a r t i c u l a r l y  the  v a l v e s ,  by t h e  high p res su re  and 
temperature .  And, of cour se ,  performance is  n o t  
e f f i c i e n t .  

Changes t o  accommodate t h e  s o l a r  i npu t  must b e  
energy e f f i c i e n t ,  e .g . ,  no t  of t h e  hot  gas  by-pass 
type,  in o r d e r  t o  r e a l i z e  COP and capac i ty  advan- 
tages .  An important  f i r s t  s t e p  is t h e  use  of 
s u i t a b l y  l a r g e  and e f f e c t i v e  h e a t  exchangers t o  
a l low t h e  h igh  h e a t  l o a d s  t o  be  handled a t  reason- 
a b l e  temperature  s p l i t s .  Th i s  s t e p  is. v i t a l  t o  
e f f e c t i v e  use  of  t h e  d l a r  i npu t .  Add i t iona l ly ,  
s u f f i c i e n t l y  l a r g e  expansion v a l v e s  should be used. 
E x t e r n a l l y  equa l i zed  t h e r m o s t a t i c  expansion v a l v e s  
appear  t o  o f f e r  t h e  b e s t  pressure-drop-mass f low 
c h a r a c t e r i s t i c s ,  and t h e  bulb  cha rge  s e l e c t i o n  
o f f e r s  f l e x i b i l i t y ,  i nc lud ing  t h e  p o s s i b i l i t y  of 
newly developed charges  i f  necessary .  MultS.ple 
v a l v e s  o r  an a u x i l i a r y  by-pass might b e  employed. 
Most impor t an t ly ,  however, is  t h e  compressor and 
i t s  a b i l i t y  t o  modulate t h e  system. Some form of 
capac i ty  c o n t r o l  appears  tantamount t o  success .  
A s a l i e n t  f i r s t  cho ice  i s  v a r i a b l e  speed, n o t  a 
new technique a t  a l l .  But p r i m a r i l y  i t  has  been 
used t o  a l low ope ra t ion  over  a wide range of 
s u c t i o n  temperatures  toward t h e  low s i d e .  I n  a 
SAHP i t  can b e  used t o  extend t h e  range of e f f i -  
c i e n t  s u c t i o n  temperatures  toward t h e  high s i d e ,  
w i th  t h e  low speed used f o r  t h e  cool ing mode and 
t h e  low end of  t h e  h e a t i n g  mode. A cont inuously  
v a r i a b l e  speed would be  d e s i r a b l e  from a t h e o r e t i -  
c a l  p o i n t  of view, b u t  i n  p r a c t i c e  a 214 p o l e  o r  
4 / 8  p o l e  motor producing a d i s c r e t e  s t e p  in 
c a p a c i t y  would probably b e  s a t i s f a c t o r y ,  w i th  t h e  
lower speeds  p re fe r r ed .  A l t e r n a t i v e l y  compressor 
c a p a c i t y  modulation could be provided by c y l i n d e r  
unloading o r  t h e  u s e  of d u a l  compressors. These 
methods, t oo ,  have p rev ious ly  been employed i n  VC 
machinery,  and l i k e  t h e  two-speed motor produce 
a s t e p  i n  capac i ty .  The s u c t i o n  temperature  a t  
which t h e  s t e p  occurs  must be optimized a s  a func- 
t i o n  of c l i m a t e ,  c o l l e c t o r  s i z e ,  e t c .  

I n  o r d e r  f o r  SAHP performance t o  l i e  w i t h i n  t h e  
p r o j e c t e d  band of Fig .  2 ,  t h e  i s e n t r o p i c  e f f i -  
c i ency  must remain h igh  a s  s u c t i o n  temperature  
i n c r e a s e s ,  which is  c o n t r a r y  t o  t h e  u s u a l  t rend.  
The u s e  of slow compressor speeds ,  h igh  b o r e l s t r o k e  
r a t i o  c y l i n d e r s ,  and e f f i c i e n t  v a l v e  des igns  can 
s e r v e  t o  accomplish t h i s .  These t h r e e  f a c t o r s  
a l s o  promote high vo lumet r i c  e f f i c i e n c i e s ,  which 
tend t o  i n c r e a s e  wi th  s u c t i o n  temperature  anyway, 
b u t  can peak a t  h igh  vapor d e n s i t i e s .  Thus, t h e  
v a r i a b l e  speed method of c a p a c i t y  modulation a l s o  
has  t h e s e  o t h e r  important  advantages.  

It is  important  t o  n o t e  t h a t  a s  COP i n c r e a s e s  t o  
h igh  v a l u e s  and compressor work diminishes  t h a t  
che p a r a s i t i c  powet requirements  have a g r e a t e r  
e f f e c t  on COP and an  e f f o r t  t o  keep them down i s  
important .  

Re la t ive  t o  t h e  i n c e n t i v e  of. t h e  p o t e n t i a l  high 
COP'S a v a i l a b l e  a t  high temperatures  a s  d i c t a t e d  
by theory ,  which has  e x i s t e d  f o r  many y e a r s ,  i s  
t h e  ques t ion  of how f a r  up t h e  COP curve i t  is  



t r u l y  p r a c t i c a l  t o  a t tempt  t o  climb. Th i s  depends, 
i n t e r  a l i a ,  on t h e  amount of t ime s o l a r  s u p p l i e d  
s t o r a g e  is a c t u a l l y  a t  t h e  h i g h e s t  l e v e l s  f o r  a 
g iven c o l l e c t o r  type  and a r e a ,  s t o r a g e  volume, 
and c l i m a t e .  Indeed, t h e  system must b e  optimized 
as a whole. There a r e  many t r ade -o f f s  of c o s t  v s .  
performance t o  be  addressed when inc remen ta l ly  
c l imbing t h e  COP curve ,  which i n c l u d e  ensur ing 
t h a t  performance i n  t h e  medium high range,  s a y  
283 t o  30VK (50 t o  8vF)  is n o t  s a c r i f i c e d  by 
extending t h e ,  range t o  t h e  l i m i t .  

To implement t h e  development of e f f e c t i v e  S o l a r  
Ass i s t ed  Beat  Pumps, t h e  S o l a r  RbD Branch f o r .  
Heat ing and Cooling o f  t h e  Department of  Energy's 
S o l a r  D iv i s ion  is  suppor t ing  t h r e e  two-year devel- 
opment programs which w i l l  r e s u l t  i n  p ro to type  
hardware.  The c o n t r a c t s ,  awarded t o  s u c c e s s f u l  
respondents  t o  an RFP, a r e  wi th  Lennox, Northrup, 
and General  E l e c t r i c  (Schenectady, NY) and c o n o i s t  
of  t h r e e  phases:  (1) concep tua l  des ign  and com- 
m e r c i a l i z a t i o n  p l an  (2)  d e t a i l e d  des ign  and per- 
formance a n a l y s i s  and (3) f a b r i c a t i o n  and labora-  
t o r y  t e s t i n g .  Lennox is address ing  3-ton res iden-  
t i a l  and 7% t o  10  ton mul t i - f ami ly / l igh t  com- 
m e r c i a l  a p p l i c a t i o n s  u s i n g  a two-speed compressor 
wi th  s e v e r a l  d i f f e r e n t  sys tem conf igu ra t ions .  
General  E l e c t r i c  i s  s tudy ing  a range of s i z e s ,  
a p p l i c a t i o n s ,  and types  of systems and i s  develop- 
i n g  a contFnuously v a r i a b l e  speed compressor d r i v e .  
Northrup, Inc . ,  which u n l i k e  t h e  o t h e r s  does  n o t  
manufacture  i t s  own compressors,  is working w i t h  
s e v e r a l  compressor m a n u f a c r ~ r e r s  on a v a r i e t y  of 
systems. Dunham-Bush w i l l  supply  them w i t h  RCD 
v e r s i o n s  of a 25-ton r o t a r y  screw compressor,  
adapted t o  e f f i c i e n t l y  u t i l i z e  s o l a r  i n p u t ,  and 
an innova t ive  3-ton r e c i p r o c a t i n g  compressor which 
is  t h e  analog of a m u l t i p l e  (4 ) - s l ide  r o t a r y  com- 
p r e s s o r  i n  i t s  a b i l i t y  t o  accep t  m u l t i p l e  l e v e l  
i n p u t s  and o u t p u t s  and match compression r a t i o  t o  
o p e r a t i n g  cond i t ions .  Th i s  machine is two-speed, 
u t i l i z e s  a "stepped" expansion, e f f e c t i v e  u s e  of 
sub-cooling, and has  p r o j e c t e d  performance which 
c l o s e l y  t r a c k s  t h e  COP curves  i n  Fig .  2. Northrup 
w i l l  a l s o  develop a 7%-10 ton  machine us ing  modi- 
f i e d  compressors from o t h e r  s u p p l i e r s .  The 
o b j e c t i v e  of a l l  t h r e e  c o n t r a c t s  i s  t o  produce a 
marketable  h e a t  pump which t a k e s  advantage of t h e  
h igh COP'S a v a i l a b l e  from s o l a r  energy i n  t h e  
283-K (50°F) and up r ange ,  and which w i l l  repre-  
s e n t  t h e  f i r s t  g e n e r a t i o n  of  s p e c i f i c a l l y  s o l a r -  
a s s i s t e d  h e a t  pumps. I n  con junc t ion  wi th  t h e  
hardware programs, S inge r  is ca r ry ing  ou t  a com- 
p rehens ive  s tudy  f o r  DOE t o  i d e n t i f y  t h e  most 
c o s t  e f f e c t i v e  and marketable  SAHP systems a s  a 
f u n c t i o n  of geographic  a r e a  and economic c l ima te .  

Brookhaven Na t iona l  Laboratory  p rov ides  suppor t  
t o  DOE a s  t e c h n i c a l  monitor of  t h e s e  s o l a r  h e a t  
pump p r o j e c t s  and a d d i t i o n a l l y  is  c a r r y i n g  ou t  an  
in-house program t o  develop SAHP technology. 
Th i s  work i n c l u d e s  t h e  c o n s t r u c t i o n  and o p e r a t i o n  
of a SAHP s i m u l a t o r  and l a b o r a t o r y  model h e a t  
pump t o  conduct l a b o r a t o r y  t e s t s  of SAIIP perfor-  
mance, i nc lud ing  e v a l u a t i o n  of t h e  hardware devel- 
oped by the  c o n t r a c t o r s .  A c u r r e n t  s e r i e s  of 
t e s t s  is  i n v e s t i g a t i n g  a t t a d n a b l e  COP'S a s  a 
f u n c t i o n  of evapora to r  and condenser temperature ,  
compressor c a p a c i t y  c o n t r o l  technique-particu- 

l a r l y  v a r i a b l e  speed,  r e f r i g e r a n t ,  h e a t  exchanger 
s i z e ,  and expansion va lve  conf igu ra t ion  f o r  both 
s t e a d y  s t a t e  and t r a n s i e n t  ope ra t ion .  In  a d d i t i o n  
t o  parametr ic  type of t e s t i n g ,  t h e  s imula to r  w i l l  
be a b l e  t o  c a r r y  ou t  computer c o n t r o l l e d  simula- 
t i o n s  of complete s o l a r  system ope ra t ion  f o r  appro- 
p r i a t e  weather and load  s c e n a r i o s .  

4. RANKINEIVAPOR COMPRESSION SYSTEMS 

These systems a r e  c h a r a c t e r i z e d  by t h e  h igh  c o s t ,  
p r i n c i p a l l y  t h e  c o l l e c t o r s ,  of t h e  Rankine power 
p o r t i o n  b u t  o f f e r  promise i n  coo l ing  COP performance 
i f  h igh  c y c l e  temperatures  and e f f e c t i v e  condenser 
h e a t  r e j e c t i o n  can be  u t i l i z e d .  Because of t he  
t r e n d s  i n  cost ' / ton and s o p h i s t i c a t i o n  of hardware. 
t hey  appear t o  be only  s u i t e d  f o r  s i z e s  15 to  20 
t o n s  and up i n  t h e  nea r  term and n o t  f o r  s i n g l e  fam- 
i l y  r e s i d e n t i a l  use.' I nco rpora t ing  a hea t ing  mode 
can improve c o s t  e f f e c t i v e n e s s .  ' L f .  [ 2 ]  g ives  a 
review of s o l a r  Rankine technology and Ref.  [3 ]  
t r e a t s  c o s t s .  

The VC p o r t i o n  of the  system is thermodynamically 
conven t iona l ,  but  i n  one gene r i c  ve r s ion  u t i l i z e s  
a c e n t r i f u g a l  compressor, d r iven  on a common s h a f t  
by a high speed tu rb ine ,  and a low d e n s i t y ,  h igh 
performance r e f r i g e r a n t ,  such a s  R - 1 1  o r  R-113. 
UTRC is  developing an 18 ton turbocompressor h e a t  
pump of t h i s  type  us ing R-11 i n  bo th  loops  and a 
power loop max. temperature  of 4 1 7 ' ~  (290 '~) .  Car- 
r i e r  i s  developing a 25-ton c h i l l e r  w i t h i h e  same 
max. temperature  and i n t e g r a t e d  e l e c t r i c  motor. GE, 
Ai re sea rch ,  and Honeywell have been develoging tu;- 
bocompresoor u n i t s  of v a r i o ~ ~ s  s i z e s  a t  367 K (200 F) 
i n p u t  under t h e  "404" Program. 

Another type  of So la r  Rankine system u s e s  t h e  f o s s i l -  
f i r e d  supe rhea t  of steam vapor ized by s o l a r  t o  g i v e  
power c y c l e  temperatures  t o  8 1 1 ' ~  (lOOO°F). These 
systems r e q u i r e  sma l l ,  e f f i c i e n t  steam t u r b i n e s  
which have good o f f -des ign  performance so  t h a t  
so l a r - supp l i ed  superheat  can a l s o  be used i n  t h e  
f u t u r e .  Energy Technology, Inc .  and Univ. of Penn- 
s y l v a n i a  a r e  developing 20-ton systems of t h i s  type .  

A l l  of t hese  p r o j e c t s  a r e  DOE supported and BNL is  
t e c h n i c a l  monitor f o r  a l l  b u t  t h e  "404" Program. 

5. SUMMARY 

The So la r  Ass i s t ed  Heat Pump o f f e r s  s i g n i f i c a n t  per- 
formance and economic p o t e n t i a l  and should r e c e i v e  
s e r i o u s  development a t t e n t i o n  t o  i n v e s t i g a t e  whether 
i t  can b e  r e a l i z e d .  Th i s  work has  begun under a 
s t r u c t u r e d  plan of DOE suppor ted RCD. So la r  Rank- 
ine/VC systems can have v i a b l e  a p p l i c a t i o n  in t h e  
f u t u r e  i n  s p e c i f i c  t a s k s  i f  development i s  t a i l o r e d  
p rope r ly .  
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