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ON MATRICES WITH LOW-RANK-PLUS-SHIFT STRUCTURE:
PARTIAL SVD AND LATENT SEMANTIC INDEXING
HONGYUAN ZHA* AND ZHENYUE ZHANGH?

Abstract. We present a detailed analysis of matrices satisfying the so-called low-rank-plus-shift
property in connection with the computation of their partial singular value decomposition. The
application we have in mind is Latent Semantic Indexing for information retrieval where the term-
document matrices generated from a text corpus approximately satisfy this property. The analysis
is motivated by developing more efficient methods for computing and updating partial SVD of large
term-document matrices and gaining deeper understanding of the behavior of the methods in the
presence of noise.

1. Introduction. In many applications such as compression of multiple-spectral
image cubes, regularization methods for ill-posed problems, latent semantic indexing
in information retrieval for large document collections, it is necessary to find a low
rank approximation of a given large and /or sparse matrix A € R™*" [11]. The theory
of singular value decomposition: (SVD) provides the following characterization of the
best low rank approximation of A in terms of Frobenius norm || - || [6].

THEOREM 1.1. Let the singular value decomposition of A € R™*" be A = PYQT
with ¥ = diag(o1, ..., Omin(m,n))s F1 > .- > Omin(m.n), and P and Q orthogonal.
Then for 1 < j < min(m,n),

min{m,n}
S of = min{ || B} | rank(B) < 7}.
i=j+1
And the minimum is achieved with A; = P; diag(oy, . ..,0;)Q7 , whére P; and Q; are

the matrices formed by the first j columns of P and Q), respectively.

It follows from Theorem 1.1 that once the SVD of A is available, the best rank-
J approximation of A is readily computed. We call 4; = P; diag(ay,... ,a,-)Q'jI-" a
partial SVD of A. The state-of-the-art methods for computing the partial SVD of
large and/or sparse matrices are based on variants of Lanczos algorithms and the
core computation at each iterative steps involves matrix-vector multiplications [9]. In
order to effectively deal with large-scale problems, one is required to exploit various
structures of the matrices. Despite its importance, the exploitation of structures so far
has been restricted to 1) using the sparsity of a sparse matrix, 2) using displacement-
rank structures such as Toeplitz or Hankel structure of the matrix, to accelerate the
matrix-vector multiplications used in the Lanczos process. In this paper, however,
we propose to explore an alternative structure that is based on the singular value
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spectrum of a matrix. Specifically, we investigate matrices p(;ssessing the so-called
low-rank-plus-shift structure, i.e., those matrices A (approximately) satisfying

(1.1) AT A = a low rank matrix + a multiple of the identity matrix.

The particular application we have in mind is Latent Semantic Indexing (LSI) for
information retrieval and we will show by way of examples that the term-document
matrices generated from text corpora approximately satisfy Equation (1.1). In large-
scale LSI applications such as the World Wide Web, the term-document matrix gen-
erated is usually very large and can not be kept in RAM or disk. In [15, 16] we have
shown that the low-rank-plus-shift structure of the term-document matrix A allows
us to compute its partial SVD in a block-wise fashion whereby partial SVD of sub-
matrices of A are computed separately and then merged to obtain a partial SVD of
A. The purpose of this paper is to further analyze the properties of matrices with
low-rank-plus-shift structure especially when Equation (1.1} is only approximately
satisfied. We hope our analysis will provide deeper insights into this special class of
matrices which will enable us to develop more efficient methods for computing their
partial SVD.

The rest of the paper is organized as follows: In Section 2, we provide a brief
background on LSI and review some of the results in [14, 15, 16] related to computing
the partial SVD of term-document matrices. In Section 3, we discuss some matrix
approximation problems associated with the low-rank-plus-shift structure, and show
by way of examples that the term-document matrices generated from text corpora ap-
proximately satisfy Equation (1.1). In Section 4 we prove a result on the partial SVD
of a block-column partitioned matrix with low-rank-plus-shift structure. This result
enables us to efficiently compute the partial SVD either with an incremental approach
or divide-and-conquer approach. We will also discuss the ramification of the result in
dealing with LSI updating problems. In Section 5 we provide a perturbation analysis
of the result when the low-rank-plus-shift property is only satisfied approximately. In
Section 6 we conclude the paper with some remarks on future research.

2. Latent Semantic Indexing. Latent semantic indexing is a concept-based
automatic indexing method that aims at overcoming the two fundamental problems
which plague traditional lexical-matching indexing schemes: synonymy and polysemy
[2, 5]. Synonymy refers to the problem that several different words can be used to
express a concept and the keywords in a user’s query may not match those in the
relevant documents while polysemy means that words can have multiple meanings
and user’s words may match those in irrelevant documents [8]. LSI is an extension of
the vector space model for information retrieval {7, 10]. In the vector space model, the
collection of text documents is represented by a term-document matrix A = [a;5] €
R™*™ where a;; is the number of times term i appears in document j, and m is the
number of terms and n is the number of documents in the collection. Consequently, a
document becomes a column vector, and a user’s query can also be represented as a
vector of the same dimension. The similarity between a query vector and a document
vector is usually measured by the cosine of the angle between them, and for each query
a list of documents ranked in decreasing order of similarity is returned to the user. LSI
extends this vector space model by modeling the term-document relationship using
the singular value decomposition (SVD) of the term-document matrix A. Specifically,
using the notation in Theorem 1.1, we substitute A by its best rank-k approximation
Ax = P %QT, where 5y, is the k-th leading principal submatrix of X. Corresponding
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to each of the % reduced dimensions is associated a latent concept which may not have
any explicit semantic content yet helps to discriminate documents [2, 5].

Large text corpora such as those generated from World Wide Web give rise to
very large term-document matrices, and the computation of their partial SVD poses
a very challenging problem. Fortunately the term-document matrices possess certain
useful properties besides sparsity that can be exploited for this matter. In [15, 16],
we developed a theoretical foundation for LSI using the concept of subspaces, and we
showed that the model we proposed imposes a so-called low-rank-plus-shift structure
that is approximately satisfied by the cross-product of the term-document matrices.!
Specifically, we showed that the term-document matrix A € R™*" satisfies

(2.2) - ATA/m~COWCT + 61,

where C' € R™** is the matrix whose columns represent latent concepts, W € R***
is a symmetric positive definite matrix, and o is the variance of the noise. In LSI
applications k < min{m,n}, justifying the use of the terminology low-rank-plus-shift
structure.

In [14], we considered the updating problems for LSI: Let A be the term-document
matrix for the original text collection and D represents a collection of new documents.
The goal is to compute the partial SVD of [A, D]. However, in LSI applications, only
Ay, for some chosen k is available and the matrix A has been discarded. Since updating
in this situation is based on a low-rank approximation of A, it has been argued in the
literature that one will not be able to get an accurate partial SVD of [4, D]. In Section
4, we show, however, that this is not the case since [4, D] has the low-rank-plus-shift
structure [14]. We will show that no retrieval accuracy degradation will occur if
updating is done with a proper implementation. In [15, 16], we also discussed how to
compute the partial SVD of a term-document matrix in a block-column partitioned
form A = [A;, A;] using a divide-and-conquer approach whereby the partial SVDs of
Aj; and A; are first computed and the results are then merged into a partial SVD of A. -
This approach is rich in coarse-grain parallelism and can be used to handle very large
term-document matrices. The justification for this divide-and-conquer approach will
be discussed in greater detail in Section 4, and perturbation analysis will be provided
to show that the approach is still valid even if the term-document matrix A only
approximately satisfies the low-rank-plus-shift structure.

3. A Matirix Approximation Problem. From the discussion in Section 2
we know that the term-document matrix A approximately satisfies the low-rank-
plus-shift property and therefore A should have flat trailing singular values. In this
section we use several example text collections to illustrate this issue. In order to
assess whether a given matrix has the low-rank-plus-shift property, we investigate the
following matrix approximation problem: Given a general rectangular matrix, what-
is the closest matrix that has the low-rank-plus-shift property. To proceed we first
define a matrix set for a given k > 0,

jk = {B [ ] Rmxn l O'I(B) 2 R .>_ Umin{m,n}(B)s ak+1(B) == Umin{m,n}(B)}'

With this notation, the matrix approximation problem reduces to finding the distance
between a general matrix A and the set J;. In the following we consider the cases
where distance is defined either by Frobenius norm || - || or spectral norm [} - |».

! The low-rank-plus-shift struciure was first discussed in the context of array signal processing
[12, 13, 17].
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THEOREM 3.1. Let the SVD of A be A =UXVT, & = diag(oy,..- » Omin{m,n})s
and U and V orthogonal. Then for k < min{m,n},

(33) arg min (|4 - Jllp = UeZe Vi + U3 (Vi)
. k
where Xy, = diag(oy,.-.,01), U = [Us, U] and V = [V, VL. Purthermore,

{ SR o/ (minm, n} — k), p=F
Tp =
(Uk+1 + amin{m.n})/27 p=2.

Proof. First define

. { lox —7lf, p=F
min, =
”a’k - TP“(XH p=2
where ay = [Og41,.-- »Omin{m,n}]- It is readily checked that min, is achieved by the
right-hand side of Equation (3.3). Therefore all we need to prove is ||A — J||, > min,
for p = 2, F and for any J € Jg.

To this end we use standard perturbation analysis of singular values which states
that [6]

loi(A) —o:(J)| < J|JA=Jll2, i=1,...,min{m,n},

and

min{m,n}

Z _(%(A) - Ui(J))_Z <jA- J“%“

i=1
It follows that
loi(A) —oi(N)| < max |oi(4) — ()] < A= T,

max
k+1<i<min{m,n} 1<i<min{m,n}

and
min{m,n} min{m,n}
D (o) =a(N)’ < D (o:(A) - ai(N)? < |A- TIF-
i=k+1 i=1
Notice that og41(J) = - = Omin{m,n}(J), it can be readily verified that the minima

of the left-hand sides of the above two inequalities, i.e., min,, p = 2, F', are achieved
by 72 and 7F, respectively. O

ExAMPLES. In the following we will apply the above theorem to two example text
collections and see how close the associated term-document matrices are to the set
of matrices with low-rank-plus-shift structure. Our first example is the MEDLINE
collection from the Cornell SMART system [3]. The term-document matrix is of size
3681 x 1033. The singular value distribution is plotted on the left of Figure 1. Our
second example is from a collection consisting of news articles from 20 newsgroups
[4]. The term-document matrix is of size 33583 x 1997. Its singular values are plotted
on the right of Figure 1. From Theorem 3.1, the best approximation from J to A is
given by

A® = U VT + U (VDT
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F1G. 1. Singular value distributions: 3681 x 1033 term-document matriz of MEDLINE Collection
(left) and 33583 x 1997 NEWSGROUP Collection (right)

For the MEDLINE collection we have [|4 — A(|z/||Allr = 0.2909 and for the
NEWSGROUP collection we have ||4 — A(1%9)||5/||A]|2 = 0.0491. Several other text
collections from the Cornell SMART system have also been tested and we observed
similar singular value distributions: initially the singular values decrease rapidly and
then the spectrum curve levels off, but the singular values are never close to zero.
(Unless the sparse term-document matrix is séructurally rank-deficient.) The last
point is very important: we usually should not treat those matrices simply as near
rank-deficient and it is more appropriate that the more general low-rank-plus-shift
structure with a nonzero ¢ be used (cf. Equation (2.2)).

4. The Low-Rank-Plus-shift Structure. We start with an examination of the
changes of the singular values of a matrix when its elements undergo certain type of -
modifications. If some of the elements of a general matrix is set to zero, generally it is
not possible to tell whether the singular values of the matrix will increase or decrease.
However, a result we will show below states that the singular values of a matrix
will always decrease if some submatrices of the matrix are replaced by its low-rank
approximations. To proceed we introduce some notation: for any matrix A € R™*",
we will use bestx(4) to denote its best rank-% approximation (cf. Theorem 1.1), and
its singular values are assumed to be arranged in nonincreasing order,

o1(A) > 092(A) > -+ > om(4).

As a convention when we compare the singular values of two matrices with the same
number of rows but different number of columns we will count the singular values
according to the number of rows. With the above preparation we present our first .
result. The proof is similar to that of a slightly special case presented in [14] and
therefore is omitted.

THEOREM 4.1. Let A € R™*™ and write A = [A4, As]. Then for any ky and ks,
we have

ox([best, (41), besty, (A2)]) < 0a([Ar, As), i=1,...,m.

REMARK. It is not true that replacing arbitrary submatrices of a matrix by
their low-rank approximations will result in the decrease of its singular values as is
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illustrated in the following example: Let

11 2 01
e[ 1) 512 8]

Notice that A is obtained from A by replacing its (1,1) and (2,2) elements by zero (a
best rank-zero approximation). Even though the largest singular value decreases, its
smallest singular value increases.

It is rather easy to find examples for which strict inequalities hold in Theorem 4.1.
In the following we show that this will not be the case if A has the low-rank-plus-shift
structure.

THEOREM 4.2. Let A = [A;1, A3] € R™*™ with m > n. Furthermore assume that

(4.4) ATA=X+0%I, o>0,

where X is symmetric and positive semi-definite with rank(X) = k. Then there are
integers k1 < k and ko < k with ky + k2 > k such that

(4.5) best ([bestx, (A1), bestr, (A2)]) = bestr([A1, A2)).

Proof. The general idea of the proof is to show that what is discarded when A;
is replaced by bestx(A;) and A, is replaced by besty(A2) will also be discarded when
besty([A1, A2]) is computed from [A;, A2]. To this end write

ATA, — oI AT A, ]

T 2r —
A A—O’ I'= Ag‘Al AgAz—(JjI

Since rank(X) = k, it follows that rank(AT A3 — 02y < k and rank(AT 4> — 02I) < k-
Let the eigendecompositions of

AT Ay — 0T = Vy, diag(F3,,0)V4,, AJ Ay —o®I =V, diag(3%,,0)V],,
where $4, € R®*%1 5, € R*¥2%k2 are nonsingular with k; < k,ky < k. We can
write the SVD of A; and A, as follows:

(4.6) Ay =Un, diag(Ea,,05, )V, = (UL, UD] diag(Ea,, 0L, )V, VT,

(4.7) Ay =U,, dia'g(f)A'z ol )V}; = [Ufilz)’ U1(4.22 ] dia'g(f‘-'Az ) O'Itz)[Vfg)’ ﬁz)]T’

where £4, = (£, +0%I,)"/? and £ 4, = (8%, +0°I,)"/2, and U € Rk U €
R™*k2 and t; = ng — k1, s = ny — ky, respectively, where n; is the column dimension
of A;,i =1,2. Now write V] AT A;Vy4, in a partitioned form as

Sy Si2

T AT —
(4'8) VA1A1 A2VA2 = [ So1 Sos

] , S € Rk1sz.

Since X = AT A — 0?1 is symmetric positive semi-definite and rank(X) = k, it follows
that S12 =0,82; = 0,85 =0 and k; + k2 > rank(X) =k. Using the SVD of 4; and
As in (4.6) and (4.7), Equation (4.8) becomes

S 0
[Ufill)EAx ) UUEBI)]T{U,(QZ EAza UU,(422)] = [ 011 0 ] )
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which leads to?
1 2 2 1 2 2
v Lvd, vP vy, vl Lud.

Let U be an orthonormal basis of ’R,([Ug), Ufllz)]), where R(-) to denote the column
space of a matrix. Then we can write

Vi) o
0 (VT
I
o W

[A1,42] = [0,UD), UD) diag(B, o L, , 0 I,)

where B € R¥*(k1+k2) with all its singular values greater than g, and k < E<ki+ks.
Therefore,

A (vihT 0 @ @ | VT 0
[Al,Ag] =UB l: AO (Vél))T + O'[UA1 aUAz] AO (ngz )T)

the first term in the right hand side of the above is easily seen to be the matrix
[bestg, (A1), bestg, (A2)], and the relation in Equation (4.5) therefore holds. O

REMARK. Generically we will have k; + k2 = k. In the following we give an
example that shows the possibility of the case k; + k2 > k. Given any two positive
numbers a and b, choose §; and 6, such that

cos(8; — 82) = /ab/(a + 02)(b + 52).

Construct two matrices Uy and U, as follbﬁvs,

&1
U1 =

O = OO
O == OO

C2
S1 - 82
0 v Ua= 0
0 0

where ¢; = cos(6;) and s; = sin(6;) for i = 1, 2. Now construct the matrix A = [A;, 4o]
with

Ay = U diag(va+0?,0), Ay =U,diag(vb+02,0)

we obtain that

a 0 +ab O

r, 2, | 0 0 0 0
Ad-T=1 /% 0 b ol

0 0 0 0

and therefore k = 1. However, we also have

a O

b oo
Ai"Al—azI:[o 0], A§A2~021=[0 0],

2 we use S L T to denote STT = 0.




Partial SVD and Latent Semantic Indexing 8

and thus k; = ks = 1. So we have the case ky + k2 > k.

REMARK. In essence the result in Theorem 4.2 states that if A has the low-rank-
plus-shift structure, then an optimal low-rank approximation of A can be computed
by merging the optimal low-rank approximations of its two submatrices 4; and A,.
The result can be generalized to the case where A is partitioned into several blocks
A=1[A,As,..., A,

REMARK. In general k; and k5 are not available: they exist in the analysis in the
proof of Theorem 4.2 but never explicitly computed. However, since k; < k,7i = 1,2,
the relation in Equation (4.5) still holds if we replace k;,7 = 1,2, by k, i.e.,

best; ([bestk (Al), best (A2 )D = best ([Al s Az])

Referring back to our discussion on LSI updating problem in Section 2, we see
that Theorem 4.2 justifies the replacement of A by its best rank-k approximation
because

besty [bestz(A), D]) = bestz([4, D),

assuming [A, D] has the low-rank-plus-shift structure. That is to say, we will obtain
the same best low-rank approximation even though A is replaced by besti(A). Nu-
merical results conducted on several text collections show that no retrieval accuracy
degradation occurs when updating is computed using a proper implementation [14].

On the other hand, Theorem 4.2 also leads to some novel approaches for com-
puting a low-rank approximation of a large matrix. There are at least two general
approaches to pursue ideas based on Theorem 4.2:

¢ AN INCREMENTAL METHOD. One is what we call incremental approach
whereby we can use certain sampling methods to divide the whole collection
of documents into several groups: Start with one group and compute its
rank-k approximation, and then add the second group using the updating
algorithm to produce a new rank-k approximation, and repeat the whole
process. This incremental process can be very useful when the data collection
is very large and the whole term-document matrix can not reside completely
in main memory. Some computational results of this approach can be found
in [14].

e A DIVIDE-AND-CONQUER METHOD. Another approach is what we call a
divide-and-conquer approach, we can again divide the whole collection of
documents into several groups, and compute the rank-k approximation for
each group and then combine the results together into a rank-k approximation
for the whole data collection. Recursively, the rank-k approximation for each
group can also be computed using this divide-and-conquer approach and so
on. The approach has the property that computation can be organized with
high degree of coarse-grain parallelism. A parallel implementation of this
method is currently under investigation.

5. Perturbation Analysis. In this section, we consider the case where A only
approximately satisfies the low-rank-plus-shift property. Our main goal is to see to
what extent the result in Theorem 4.2 still holds in the presence of perturbation. We
first present some lemmas which are of their own interests as well. In the sequel || - ||
denotes two-norm and || ||z denotes Frobenius norm. We will use MATLAB notation
for submatrices: A(i:j,k:1) denotes rows i to j and columns k to [ of A.
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LEMMA 5.1. Assume that the matriz X defined below is symmetric positive semi-
definite,

A BT
x=[4 %5

Then we have

1Bl < V(41 + [EDAICH + [ EID-

Proof. Without loss of generality we assume that the matrix B is diagonal. (The
result still holds even if B is rectangular.) Write

B = diag(oi,...,0n), 012> ..2> 0.

Let a;; and c11 be the (1,1) element of A and C, respectively. Then

a;y O _
[01 cll]—-X1+E1,

for some 2-by-2 symmetric positive semi-definite X; and E; with ||E;|| < ||E|]. Since
the smallest eigenvalue of X; + E) is no smaller than —|| £, ||, it follows that

o7 < ((e11 +en)/2+ [|E1])? — ((a11 — e11)/2)?
< (14l + eEndict + 1D,

thus completing the proof. O . N
LEMMA 5.2. Let the matriz X be partitioned as

A BT}

Xz[B c

Then [|X|| < max{{|A][l, CI]} + [|BI}-
Proof. The proof is straightforward and is therefore omitted. O
THEOREM 5.3. Let A = [A1, A2] € R™*™,m > n satisfy

ATA=X +o*I+E,

where X symmetric positive semi-definite with rank(X) = k. If

Ae(X) > S[LEN + 2V ENAIXT + 21 E1),
then for some ky <k, k2 <k, and k; + ko > k, we have ,
bestr([A:, A2]) = best([best, (A1), best, (A2)]) + A

with

Al < a(lEl + 4VIENIX ]+ 211 E1D))

and

a = V(X)) = [|Ell /A (X).
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Proof. The proof is divided into several parts.
1) We first write the eigendecomposition of the following matrices:

ATA - 6% = X + E = Vdiag(\1, -, An)V 7T,

AT A, — oI = X; + E; = Vidiag(W?, ..., \W7T, i=1,2,

ey Mg

where X and X; are symmetric positive semi-definite, and V' and V; are orthogonal
for ¢ = 1,2. The eigenvalues {\;} and {)\g)} are arranged in nonincreasing order. It
follows that, for ¢ = 1,2, there are orthogonal matrices U; such that

A; = U; diag(d, ..., dSHVT

= U; diag(Di, D)V,
where dg.i) = ,/Ag-i) + 02 and

Dy = diag(d?,...,d?),
Dy = diag(dii‘,)+1,...,d$f,.)),
where k; = rank(X;),? = 1, 2. The definition of best low-rank approximation leads to
besty, (A;) = U;DyV;, i=1,2.

2) Using the above decompositions we now write the matrix A in several different’
forms: A = [Ay, A2] = B[Wy,W2]T = [B1, Bo]WT, where

By = [U11D11,U21D21], Bz = [U12D12,Ua2 D22},
and
Wl=[‘gl v ] W2=[V62 " ]
It can be readily verified that
BiWT = [besty, (A1), bestz, (42)].
Now partition

T — 2 T
(5.9) BTB—a2I=[BlBl of BB ]

Bg'Bl B;Bz - 0’2.[
3) Let the eigendecomposition of Bf B; — ¢%I be
BY B, - o2 = Gdiag(ay, ..., a,)G7,

where d.1 > ... > as,5 = ki + ko. Now partition diag(GT, I)B” B diag(G,I) as

T
diag(GT, )BT Bdiag(G,[) = | & B |,
E, E
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where C = diag(ay, ..., ax), and the matrix E has the form

[ [0, diag(ars1, - as)] (GTBTBy)(k+1:m,:)
(5'10) [Els E2] - [ Bg‘BIG Bg‘B2 — 0.2[ .

Furthermore, let the eigendecomposition of

Cc ET ;

Now partition conformally,

_|Qu @ -
Q=& 2], A= gt )

with A; = diag(As,..., ). It can be verified that

(5.11) Qn = (B, Ea) [ on ] A7

It follows that we can find U orthogonal such that
B =[B1,By] = U(A + ¢*1)}2Q7 diag(GT, I),
which leads to
GTwT ]
0

’

BiWT =U(A + 021)2QT [

and hence

Ty T
beStk(-BIWlT) :U(:,itk)(Al +02I)1/2(Q(:?1:k))T [ G (I;V'l ] )

4) On the other hand, from

A=U(A+0°D)2QT [ c ]

wy
it follows that

GTwW{

bestk(A)=U(:,1:k)(A1+02I)1/2(Q(:,1:k))T[ W ]:bestk(BlwlT)+A,
2

where

A=U(:,1:X) (A + a2 D)V2QLWT

A< (AL +®DY2QL 1| < B, Balllv/ Ak + 02/ Ax,

where we have used Equation (5.11). Now we need to bound ||[E1, E2]||, and this will
be done in the following steps.
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5) Applying Lemma. 5.1 to the matrix

D%, - o DﬂUngzan
DLULU2Dyy D}, —a?I '

BIBy -’ = [
we obtain the bound
ID}1UL3U22 Daali® < (11D, — o211 + B (D3, — o1l + 1B < 4l B,
where we have used {|D2, — 62I|| < ||E||,i = 1,2. By Lemma 5.2 we obtain
|1BY B; - o”I|| < 3|| B
6) Now applying Lemma 5.1 to BTB — oI in Equation (5.9) we obtain
187 B> < 4l EN(1BY B. — oIl + [|El) < 4| EN(IX] + 21 EID,
where we have bounded
B B1 ~ o®1|| < |BTB — o> I|| < [|1X|| + | Bl

7) Using Equation (5.10) and the results in Part 5) and 6) we have

By, Bo]ll < max{losil, -, lawsa], BILEN} + 2V ENCIX] + 201 E]]).

8) Now we are ready to complete the proof of the theorem by showing that for
j>k,

. ‘ eyl < BN+ 2V EINAX N+ 21LET).
In fact, by definition, A; = A;(BT B — ¢2I), and therefore
|Aj — Aj(diag(B{ By — ¢*I, B} By — 0°I))| < ||B] Bul.
On the other hand, we have for 7 > k,
|Aj (BT By — 621)| < ||BY B, — oI} < 3|| .
The assumption of the theorem implies that
X > ||B3 Bull + 3||E]l,
and therefore for j < k,
\j(diag(Bf By — 021, Bf By — 6%1)) = M\;(BYB; — 0*I) = o;.

Now for any j > k, there is ¢; > k such that |a; — A;;| < [|BY By||, and thus

loi] < 1A, |+ I1BE Bull < 1EI| + 2/IEI(IX ]| + 211D,

completing the proof. O
REMARK. In many of our numerical experiments, we observed that ||Af} =
O(||E||) versus the bound ||A|| = O(J|E||*/?) given in the above theorem. Here we
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give an example for which we do have ||A|| = O(}| E||/2). Let ¢ be small, and define
t = v2¢. Denote

=1 +e+/(1+6€?2+4€)/2=1+2 -2+ O(%),
p2=1+e—/(1+€?2+4€)/2 = —c+ 22 + O(3),
a=(m —1)/t=t(1 - e+ O(e?)).

Then it can be readily verified that

“ z]z(l/(l-f-az)){i _alj[lf)l ;?2“,,-1; _al]
Now let

1 0]

x=um/a+an| g S5 03 1l
a 0 |
0 a |

E = (p2/(1+0%)) : [2 0o —01]
0 -1 ]

With & = rank(X) = 2 and ||Ef| = |u2| = €(1 — 2¢ + O(€?)), it is easy to see that
X+ E =V diag(ui, p1, 2, p2)V,

where
1 0 0 a
_ 9 0 a 1 0
a 0 0 -1

is orthogonal and symmetric. For a given o > 0, define
c1 = \/m y C2 = \/m .
Now construct matrix A as A = [4,, 4;], where
Ay =ler,es,e2,e4)DV (:,1:2), Ay = [ei,e3,e2,e4]DV (:,3:4)

with D = diag(ci,c1,c¢2,¢2), and Is = [eq, es, €3,€4] is the identity matrix. Then we
have ‘

bestr(A4) = (e1/V1+ a?)fes, e3]V (1:2,:).

Since a < 1, it can be verified that

C1 0 0 0
best (A1) = (1/v/T+a2) | o o |, besta(4) = (1/vI+a?) o :
Ca 0 0 0
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It follows that

aac 0 0 O
0 —
besty ([best1 (A1), best; (42)]) = (1/v/1 + a?) g : cclza g ’
ca 0 0 0

and therefore
A = besty(A) — bestr([besty (A1), best; (A2)])
= a/ v1+a? diag(cl’ C2,C1, 62)["64, €3,€2, el]

which leads to ||A]| = ac1/v/1 + a?. Then we see that

lim [JA[l/VIIE] = v2(1 + 0% + 26 + O(2)) /[(1+0(e*)) A e+ O(e")) = v2(1 + 0?).

6. Concluding Remarks. In this paper we present a detailed analysis of ma-
trices with low-rank-plus-shift structure. Our emphasis is placed on justifying some
novel methods for partial SVD computation and partial SVD updating problems aris-
ing from LSI in information retrieval. Our perturbation analysis demonstrates that
the results we have derived are still valid even the low-rank-plus-shift structure is
approximately satisfied. The results we have proved provide theoretical justifications
for the novel LSI updating algorithms and the incremental and divide-and-conquer
approaches proposed in [14, 16]. Our future research will concentrate on further de-
veloping the numerical algorithms and their parallel implementations. We will also
refine our perturbation analysis, especially we will try to find conditions on the ma-
trix A that will allow us to improve the perturbation bounds in.Theorem 5.3 from
O(IIEII*?) to O(||EN).
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