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INTRODUCTION

The discovery [1] that the use of very large numbers of wires enables high x-ray power to be
generated from wire-array z-pinches represents a breakthrough in load design for large pulsed
power generators, and has permitted high temperatures to be generated in radiation cavities [2-5]
on Saturn [6] and Z [7]. In this paper, changes in x-ray emission characteristics as a function of
wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to
these breakthrough hohlraum results, are discussed and compared with a few related emission
characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement
comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code
simulations in the x-y [8] and r-z [9] planes provide confidence in the ability of the models and

codes to predict future x-ray performance with very-large-number wire arrays.

RESULTS AND DISCUSSION

Wire Number Variation: In the first set of Saturn aluminum wire-number experiments [1],
the array mass was fixed and the wire number was varied by more than an order of magnitude
from 10 to almost 200 by simultaneously changing the interwire gap and the wire size. This
procedure was carried out for a 0.62-mg and a 0.84-mg array having an initial radius of 8.6 mm
and 12 mm, respectively. The variation permitted interwire gaps to be explored from 6 mm down
to 0.4 mm for both the small- and large-radius arrays. Decreasing the interwire gab resulted in
monotonic decreases in the rise-time and width of the x-ray pulse and simultaneous increases in
radiated power and energy, in the same way for both array radii (Figure 1). Over @he 6 to 0.4 mm

gap reduction explored, the total radiated power increased by a factor of 20 (Figure 1A) and the

total radiated energy by a factor of 2 (Figure 1C).
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Figure 1. (A) Peak total radiated power (solid line) and pulsewidth (estimated
using XRD filtered by 1-um kimfol [dashed line]), (B) Radial
convergence, (C) Total radiated energy normalized by calculated kinetic
energy assuming a 10:1 convergence, (D) Ion number density (K-shell
region), and (E) Electron temperature (K-shell region) versus gap.
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Figure 2. Normalized pulseshape in three energy channels for two gaps.

In addition, for gaps smaller than 2 + 0.6 mm, the character of the x-ray emission qualitatively
changed, transitioning from a broad, single, irregular radiation pulse at large gaps, to a strong,
narrow, evenly-shaped radiation pulse, that was followed by a much weaker pulse at small gaps
(Figure 2). The weaker pulse is consistent with a second radial implosion [10]. For gaps greater
than ~2 mm, time-integrated images of the pinch exhibit the presence of a kink (m=>1) as well as a
sausage (m=0) instability; time-dependent images show significant precursor plasma stagnating
on axis, generating soft x-ray emission tens of nanoseconds prior to the main implosion, in
agreement with earlier [11] and current [12] experiments. For gaps less than ~2 mm, on the other
hand, no kink instability is observed, with only a minimal precursor plasma forming. Moreover,
the change in the temporal shape of the x-ray pulse (Figure 2) and spatial quality of the pinch
occurred with corresponding quantitative transitions in the rates of change as a function of gap of
(1) the emitted total x-ray power (FigurelA), (2) the average size of the K-shell emission region
(Figure 1B), (3) the emitted total x-ray energy (Figure 1C), (4) the average K-shell emitting ion
density (Figure 1D), and (5) electron temperature (Figure 1E). The emitting ion densities and
electron temperatures were inferred from x-ray size data together with the K-shell power and K-
series spectrum data. Not enough data were taken at wide gap spacings, however, to ascertain

how rapidly this transition in x-ray behavior took place. For this reason, we represent it

experimentally as a transition between two power laws as illustrated in Figure 1, with the power




indicated by the dependence on gap (G) shown in Figure 1. The Heuristic Model developed by
Haines [13] also shows a sharp change of behavior at this critical gap, representing whether
merger of the exploding single wires occurs early on or during the implosion. In the latter case,
inward jetting of plasma and the accumulation on axis of a plasma column can change the
phenomenology.

Measurement of the slope of the optically-thin, free-to-bound, x-ray emission (Figure 1E)
determines the electron temperature of the hot core of the pinch [10]. It exhibits no variation with
gap (dashed lines) and is only a function of the implosion kinematics. For large gaps, where the
measured ion density at stagnation is low, the temperature extracted from K-shell line ratios [14]
(solid lines) agrees with that extracted from the free-to-bound emission. At these low densities,
the ion-electron equipartition rate could be the dominating process, giving a slower rate of rise of
x-ray emission [20]. As the gap decreases and the emitting ion density increases (Figure 1D),
however, the optical depth of the K-shell emission becomes significant, and the line ratio begins
to reflect the temperature of the outside surface of the emitting region, rather than an average over
the region. This transition from a thin to a thick plasma, as indicated by the data of Figure 1E,
approximately coincides with the transition in the rate of change of density with gap (Figure 1D)
and with the transition at ~2 mm.

The difference between the core and surface temperature is indicative of a substantial
temperature gradient within the emitting plasma. The enhanced plasma density at small gaps
increases the temperature and density gradients and opacity effects, but in such a way as to
approximately maintain the average amount of mass participating in the K-shell emission at
~11%, independent of gap [15]. Comparisons of the measured K-shell emission radii with that
simulated by the Eulerian-RMHC (E-RMHC) [9] indicate that the actual mass averaged radius is
about double that extracted from the emission images [16]. This gradient structure is illustrated
by a detailed analysis [17] of the x-ray image, spectral, and K-shell power data, for an aluminum-
array shot taken on Z, having an interwire gap of 0.5 mm, a total mass of 4.1 mg, and an array
radius of 20 mm. The density and temperature profiles obtained from a best fit of an aluminum-

plasma collisional-radiative-equilibrium model to these measured quantities is shown in Figure 3.



In the model, the radiative transfer is carried out for all optically-thick K-shell lines and two K-

shell continual temperatures.
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Figure 3. Calculated ion density and electron temperature for aluminum Z shot.

Interpretation of Number Variation: In general, variations in peak total power track the
inverse of the measured pulsewidths (Figure 1A), as would be expected if the total energy
radiated during stagnation is slowly varying. The greater rate of dependence with gap of the
pulsewidth relative to the peak power, for gaps greater than ~ 2 mm reflects the greater
disorganization of the implosion as seen by the lost double-pulse nature of the stagnation (Figure
2). The accelerated rate of decrease in power for large gaps relative to that for small gapS is
consistent with the decrease in total radiated energy (Figures 1A, 1C, and 4). This change in
energy is approximately consistent with the change in the calculated kinetic energy (dotted lines

in Figure 1C calculated from the experimental radial convergence (Fig. 1B)), and by inference, the

radiated energy. Importantly, the trends in ion density (Figure 1D) and electron temperature




(Figure 1E) demonstrate that the increase in power is the result of systematically greater plasma

compression and not the result of an increase in temperature.

The apparent transition in implosion quality near 2 mm has been interpreted using an
RMHC in x-y geometry [1, 8]. Calculations performed with this code show (in correspondence
with the experimental data) that a change in the implosion topology occurs with increasing wire
number. The implosion is seen to make a transition from one composed of non-merging, self-
pinching, individual wire plasmas to one characterized by the early formation and subsequent
implosion of a quasi-plasma-shell, as also found in the Heuristic Model. The shell had density and
current variations distributed azimuthally that were correlated with the initial wire location and
which decreased in amplitude with decreasing gap. The calculated transition region was sensitive to
(1) the magnitude of the prepulse that accompanies the main current pulse, (2) the current flowing
per wire, (3) the wire size, (4) the interwire gap, and (5) the resistivity model used. For the
particular resistivity model used and for the measured prepulse and wire sizes used, this transition
was found to occur between wire numbers 20 to 80 (or between interwire gaps of about 3 to 1
mm, respectively) for the small radius load [1]. This calculated transition was also seen to be
consistent with observations made with 1.3-mm gap loads in the transition region. There,
individual wires were observed to neck-off in the form of bright spots (similar to Beg et al. [18])
20 ns prior to peak radiated power (where the array had only imploded a fraction of a mm
radially). Ten nanoseconds later, after the array had imploded an additional 1.5 mm, the observed
plasma emission became a continuous distribution, with no evidence of individual wire structure.
Here, we refer to the small wire-number region where g>2 mm as the “wire-plasma” regime, and
the large wire-number region where g<2 mm as the “plasma-shell” regime.

The x-y simulations [8] together with analytic modeling [19] show that the wire-plasmas
(in contrast to the plasma of a shell) accrue azimuthal velocity components during the implosion
owing to (1) deviations in the locations of the individual wires from those of a perfect annulus, or
(2) to wire-to-wire current nonuniformities, or (3) to the presence of the limited number of current

return posts surrounding the array [19], which could seed higher number instabilities. These



velocity components produce density asymmetries at stagnation that can contribute to the reduction
in both the compressibility of the stagnating plasma and the resulting radiated energy, both in
qualitative agreement with the discontinuity observed in the radial convergence measurements
(Figure 1B) and in the energy channel (Figure 1C). The x-y simulations show, however, that these
variations cannot account for the change in measured pulse shape for any wire number greater than
10. The finite electron-ion-energy equipartition time is probably dominant here [20]. In contrast,
E-RMHC [9] simulations in the r-z plane, which assume an azimuthally symmetric plasma shell
with a random density distribution in the r-z direction, suggest that the shape of the primary power
pulse and the general change in peak power with gap are related to the evolution of the thickness of
the plasma sheath due to r-z motions and the growth of Rayleigh-Taylor (RT) instabilities. This
thickness is calculated to scale linearly with the pulsewidth [15]. The measured rise-time of the
total radiation pulse and the “effective” pulsewidth (defined as the total energy divided by the peak
power) scale as the gap, over the entire gap range explored, showing no discontinuity near 2 mm
(Figure 4). This data, together with the simulations, thus suggest a direct relation between the
initial interwire gap and the resulting thickness of the imploding sheath. This relation is in
agreement with the Heuristic Model, since the expansion velocity of each wire is almost invariant
[18, 20].

Other experimental data [18], however, show the evolution of inward plasma jetting from
each wire plasma, decreasing with wire number [21], that leads to a prepinch plasma on axis and
thus to a softer final pinch when stagnation of the entire array occurs. In addition, as is included in
the Heuristic Model, the larger final radius of the pinch leads to a slower equipartition of energy
from ions to electrons and to a slower development of the x-ray power. These many processes thus

suggest that the simple scaling with gap discussed here is likely masking several complex

processes.
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Wire-Array Modeling: Though the RMHC computations can reproduce many features
of the radiation dependence on gap, they do so by imposing an arbitrary initial density-perturbation
amplitude on a fixed-thickness annular plasma. This amplitude is varied empirically for each
interwire gap to best fit the experimental radiation characteristics. However, the physical
mechanisms for the dependence of radiation performance on gap remain unresolved. X-Y
simulations, particularly with appropriate atomic physics included [20], can model aspects of the
merging, jetting, axial accretion, equipartition times, and the experimental azimutal asymmetries.
But since it appears that the final radius is strongly influenced by RT instabilities in the r-z plane, it

seems important that 3-D codes are implemented.
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Recently, a fundamentally 3-D analytic model (KART) of the implosion has been developed
by Desjarlais and Marder [22] that takes into account an amplification of the RT instability
arising from a kink instability, which deforms the individual wire plasmas. This deformation is in
phase with that generated by the RT instability, which is assumed to arise from a global sausage
instability acting on the entire array. The agreement of their estimated pulsewidth (as illustrated
in Fig. 5) with the measured pulsewidths of Fig. 1A, as well as with that measured for other
tungsten experiments on Saturn [23] and Z [7, 24], with only one perturbation parameter that
scales with the wire size, suggests that the wires retain enough of their individual identity for a
sufficient time to allow amplification of the RT instability from the kink instability to
participate. Doubling the number of tungsten wires on Z from 120 to 240, for example, reduced

the measured pulsewidth by (29 + 9)% [24], in agreement with a calculated 25% reduction.

For the plasma-shell regime, a number of intrinsically three-dimensional mechanisms have

been proposed that consider how expansion dynamics of the individual wire-plasmas and their




subsequent merging into plasma annuli create perturbations that disrupt the plasma during
implosion. The Heuristic Model for perturbations in the plasma annulus produced by the merging
of arrays of fine wires is based on the development of MHD sausage modes during the expansion
phase of individual wires observed in Imperial College experiments and modeled in 2-D [18, 25].
The model is based, in part, on the following assumptions. Sausage modes in individual wires
grow until the plasmas of adjacent wires merge, after which current flow in a continuous plasma
annulus stops their growth. Wire-to-wire sausage perturbations are uncorrelated. At the merging
time, the mean radius of the individual wire plasma is half of the inter-wire gap, so that the
thickness of the annulus at merging is given by the gap. A statistical average in perturbed line
density over all the wires in the array is then used to determine the initial annular perturbation.
Analytic estimates are then made of its effect on the development of RT instabilities during
implosion of the annulus and subsequent x-radiation characteristics. The dependence of implosion
quality on gap enters (1) in the thickness of the initial annulus and a reduced average perturbation
amplitude for larger wire numbers, (2) in the degree of radial plasma jetting, and (3) in an effect
estimated for long equipartition times. The dominant wavelength of the RT is found at stagnation.

A second model for the plasma-shell regime is also based in part the above assumptions for
wire-expansion dynamics, but makes different assumptions for the wavelength of the perturbations
in the annulus formed by the merged wires [26]. Recent observations of the development of short-
axial-wavelength plasma flares around the expanding wire-plasma cores [27] have been combined
with the Imperial College observations and analyses [18, 25] to supplement the above picture. The
sausage perturbations growing on the expanding wire plasmas are nonlinear and large-amplitude
even at very-early times in their development. The shapes of the perturbation is self-similar in the
radial scale, that is, they “look” the same independent of radius. The observed bifurcations in
expanding single-wire plasmas [18, 25] follow directly from the self-similar assumption. Thus,
the fundamental (Jongest) wavelength in the perturbation spectrum grows as the wire plasma
expands, so that at the merging time, both the thickness of the annulus and the dominant

perturbation wavelength are comparable to the interwire gap. For this self-similar model, the

10



amplitude of the initial perturbation is always large, while its wavelength scales with gap. The gap
dependence of implosion quality and radiated pulse width then derives from larger gaps (smaller
wire numbers) producing longer-wavelength perturbations that are more disruptive during

implosion of the annulus.

Though this process is intrinsically 3-D in nature, 2-D E-RMHC [9] simulations can help to
determine if the gap dependence of initial annular thickness and perturbation wavelength
established by the self-similar model can reproduce the observed dependence of radiation
characteristics without resorting to an arbitrarily-chosen perturbation amplitude. However, the
model does provide for RT saturation and healing for sufficiently-short wavelength (small
gap/large wire number). Also, the E-RMHC simulations show that tripling the scale of 10% and
15% initial perturbations is equivalent to perturbations of 45% and 75% at the shorter-scale,
demonstrating that perturbation wavelength is a powerful determining factor for implosion

quality and radiation pulse width.

Mass and Radius Variation: Two sets of additional Saturn aluminum-wire experiments
were conducted in the calculated high-wire-number, quasi-plasma-shell regime [16]. These
experiments show two important trends. First, when the mass of the 12-mm-diameter arrays
(which used 192 wires) is reduced from above 1.9 to below 1.3 mg, a factor of two decrease in
pulsewidth (Figure 6A), with an associated doubling of the peak total radiated power, (Figure
6B) occurs [28]. Second, when the array radius is increased from 8.6 to 20 mm, for a mass of 0.6
mg in 136 wires, the total radiated pulsewidth (Figure 7A) increases from only ~4 to ~7 ns and
the associated peak total radiated power (Figure 7B) remains relatively unchanged with radius

[29].

Interpretation of Mass and Radius Variation: The E-RMHC [9] simulations were used to
understand the underlying pinch dynamics of these variations [20, 21]. Over the mass range of
0.42 to 3.4 mg and radius range 8.6 to 20 mm measured, which spanned an implosion time of 40

to 90 ns, the implosion time of the simulated pulse agrees with that measured within a shot-to-

11




shot variation of only 2 ns. This agreement suggests that (100 £ 7)% of the initial mass is being
accelerated during the implosion. For these simulations, the electron-photon coupling was set to
either its nominal value (indicated by N) or a reduced value (indicated by R), such that the
calculated peak total radiated power agreed with that measured at ~0.6 mg (Fig. 6B). Within the
uncertainty of this emissivity approximation, the measured pulsewidth (Figures 6 and 7) and
trends in total radiated peak power agree with that simulated, using only a single value of a

density perturbation seed. KART calculations are also shown in Figures 6A and 7A.

For all cases, the E-RMHC simulations show a two-stage development of the instability with
initial bubble burst when a wavelength of the order (Sf the shell thickness is reached, followed
immediately by current flow in the low-density material between the spikes. The plasma shell
self heals and continues to accelerate with only a small amount of bubble material being thrown
ahead of the main body of plasma. The instability growth continues, evolving to longer
wavelengths, until one of the order of the new shell thickness is reached. When the shell bursts
the second time (at longer wavelengths), a significant amount of material is accelerated to the axis,
and the radiation pulse begins. These simulations show that the decrease in pulsewidth and
associated doubling of the peak total power, as mass is reduced, is due to the faster implosion
velocity of the plasma shell relative to the growth of the shell thickness. The relative increase in
peak power for the higher-energy x-rays is due to an increase in ion temperature, arising from an
increase in kinetic energy per incident ion at stagnation. The simulations also show that the
increase in pulsewidth with radius is due to the faster growth of the shell thickness relative to the
increase in shell velocity. These results suggest that the improved uniformity provided by the
large number of wires in the initial array reduces the disruptive effects of instabilities observed in

small-wire-number imploding loads.
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The simulations generate total radiation pulse shapes in agreement with the primary pulse
measured, as illustrated in Figure 8, for a 0.84-mg, 12-mm radius, 192-wire-number load. The
simulations indicate that the energy deposited in the plasma arises primarily from the Lorentz
(IxB) force and goes primarily into accelerating the plasma, increasing its kinetic energy. At
early times when instabilities have not become important and there has been little plasma heating,
the simulated energy deposited by the Lorentz force and the plasma radial kinetic energies are
nearly equal. At later times, the instability destroys the plasma shell, accelerating plasma to the
axis where it stagnates, and the kinetic energy diverges from the work generated by the Lorentz
force. The plasma that has not stagnated continues to be accelerated by the Lorentz force.
Because the radiation rate is higher than the rate at which energy is being supplied, the total
kinetic energy decreases, even though some plasma continues to be accelerated. As the pressure
rises, some of the (JxB) energy is transferred to internal energy by pdV work, rather than as a

kinetic-energy increase. Due to the extended radial nature of the plasma as stagnation begins, the
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Figure 8. E-RMHC simulated energy partition
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net result on fhe energy flow is that part of the plasma on axis releases energy as radiation, while
regions away from the axis continue to absorb energy, which may then be radiated later in the
pulse. The result is a total radiated energy that is higher than the instantaneous peak in the kinetic
energy at the time stagnation begins. The calculations show only a small contribution from Joule
heating.

The variation with mass on Z using tungsten wires in the high-wire-number regime shows
similar trends to those ébsewed on Saturn for the aluminum wires [7, 24]. On Z, the pulsewidth
decreased by a factor of two and the total radiated power doubled when the mass decreased from
6 to 4 mg, for loads having a 20-mm radius, with 120-wire-number. Moreover, these high-wire-
number implosions, with interwire gap of 0.5 mm, produced high-quality implosions that had

pulsewidths of only ~7 ns near peak power.

CONCLUSION

Implosions that develop narrow pulsewidths with high peak powers can be generated from
both small- and large-radius annular wire arrays by keeping the interwire gap to spacings on the
order of 0.5 mm or less. Reducing the implosion time, while still providing good current coupling
to the load at stagnation, reduces the growth of the radial instabilities relative to the implosion
velocity and permits the highest powers to be developed. The E-RMHC simulations [9], the
Heuristic Model [13], and the KART model [22] agree with aspects of the data and provide
insight into the underlying dynamics. A new self-similar model [26] for the initial E-RMHC
perturbation dependence on gap provides additional insight and may improve that codes

predictive capability for future large-wire-number experiments on Z.
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