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TIME-DEPENDENT DETERMINISTIC TRANSPORT ON PARALLEL
ARCHITECTURES USING PARTISN

Raymond E. Alcouffe (rea@lanl.gov) and Randal S. Baker (rsh@lanl.gov)
Transport Methods Group, MS D409
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

In addition to the ability to solve the static transport equation, we have also incorporated time dependence into our
parallel Sy code PARTISN. Using a semi-implicit scheme, PARTISN is capable of performing time-dependent cal-
culations for both fissioning and pure source driven problems. We have applied this to various types of problems
such as shielding and prompt fission experiments. This paper describes the form of the time-dependent equations
implemented, their solution strategies in PARTISN including iteration acceleration, and the strategies used for time-
step control. Results are presented for a iron-water shielding calculation and a criticality excursion in a uranium
solution configuration.

1. Introduction

The solution of the time-dependent transport equation has long thought to be out of the realm of practical compu-
tations especially in two and three dimensions. The main reason is not that solution techniques have been unknown,
but because their use implies an enormous amount of computer resources both in CPU time and memory. However,
with the dawn of new and practical parallel architectures, the necessary amount of resources is now available for
specialized applications and will soon be in general use throughout the nuclear engineering community. Thus it is
now useful to add the time dependent capability to general purpose transport codes. In this paper we describe such
an implementation which uses the traditional approach in time discretization and that takes advantage of the effi-
cient computational techniques used to solve the static transport equation. We have done this implementation in our
parallel code, PARTISN, formerly known as DANTSYS/MPII, which is a derivative of DANTSYSzalready re-
leased to the community. In the following we present the time discretization method and the alterations to the source
iteration technique that are needed for a successful solution. We also present some computational examples dem-
onstrating their usefulness and their impact upon computational efficiency.

2. Time Discretization of the Transport Operator

The time-dependent form of the source iteration equation is
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where the left hand side is simple the streaming and total collision operator and right-hand side stands for the scat-
tering operator, the fission source and any extraneous source that may be present. Time dependence is included in
the total cross section to reflect possible external changes to the cross sections. We choose to use a semi-implicit
scheme to handle the time derivative in Eq. (1), i.e.,
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where 7 is the time index. The semi-implicit scheme has the well-known advantage of being unconditionally stable
as the mesh is refined, but does require iteration in time. Using this scheme, the time-differenced form of Eq. (1)




then becomes

BeVy'(E D)+ [Z”T(?, E)+ 1%};/’(%, ED) = "0, E, Q) + v—i;q;"‘ 23 E, Q)

3
172 -
v 20,E, 8) = 2y (L E, D) -y 20, E, O)
where the superscript n refers to the value at time 7%, and
At = tn+1/2_tn—1/2 4)

The semi-implicit method is easily implemented in an existing static code. For each time step, simply modify the
total transport cross section appropriately and add a time source on the right-hand side, then solve the transport
equation as before. As the angular flux at time #* is calculated, calculate (and store) the extrapolated angular flux
for time 7*+/2, If the time-extrapolated flux from the second of equations (3) is negative, then we use a fixup strat-
egy where that negative flux is set to zero and the balance equation is rewritten to conserve particles. This is detailed
in the next section.

3. The Source Iteration Equations and Iteration Strategy

Equation (3) is rewritten as source iteration equation with the energy variable discretized in multigroup form to
show the iteration strategy and requirements along with a possible fixup in time:
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In equation (5), the left-hand side is the transport or streaming operator, the first term on the right-hand side is the
self scattering source with Legendre angular components to order L, the next is the time source, then the source due
to scattering into group g from all other T groups, and the last term is the source due to fissions. Also in writing this
equatlon, we have assumed \y (r,Q) = 2\;1 (r, Q) - \y; 2(;,Q) when \p“ Y2, 0) is ge 0, and
g (r Q) = 0 when \|1 172 (r, Q) 1s less than O. ThlS contingency sets the values of a and b in the above equa-
tion, i.e.. a(Q) = b(Q) = 2.0 if Vi 2,2)20, and a(@) = 0, k(@) = 1 if v} "%, 2)<0. This set-to-zero
fixup of a negative extrapolation of the time flux is important for the stability and accuracy of the method in some
cases because particle balance is preserved while nonphysical negative fluxes are prevented.

The inner iteration is performed on the first line of the above equation for each energy group to converge the self
scattering source terms (those which couple all the angles). The outer iteration is then done over all the groups to
converge the fission term and the upscatter term. Thus the outer and inner iterations are performed identically to the
static case, and multiple outers per time step are allowed although not required. When the outer and inner iterations




have converged, the time-step controller is called to calculate the next Az, and the calculation proceeds to the next
time step.

4. Diffusion Acceleration of the Source Iteration

In our static code we have found it to be extremely advantageous to employ an iteration acceleration technique
called diffusion synthetic acceleration (DSA). In brief, this method uses a specially crafted diffusion equation to
compute the scalar flux that goes into the evaluation of the scattering sources. This is slightly modified for the time
discretized equation to take the following form:
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where the transport derived quantities are defined as:
Yo, (1) = 4% I \y;(z, Q)dQ and J,(r) = 4%: _[ gw;’(r, Q)dQ ; <a(r)> and <b(r)> are the angular integrated values of
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aand b of the time discretized transport equgtlon.

The DSA equation (6) is solved for each energy group to accelerate the convergence of the inner iterations and also,
if necessary, as a multigroup equation to accelerate the convergence of the fission and upscattering sources. This of
course can involve considerable computational effort especially for 3D problems. What is postulated is that the cost
of this additional work is more than offset by the decrease in the number of transport iterations that need be per-
formed to attain convergence in each time step. This point is shown in the results of the problems described below.

5. Storage Considerations for Time Dependent Transport Problems

In time-dependent, three-dimensional calculations, storage requirements are dramatically increased from the static
case due to the need to store the angular fluxes. While the static case needs to store only the flux moments, i.e.,
(L+1)? x G words per cell, where L is the P; order and G is the number of energy groups, a time-dependent calcu-
lation must store the angular fluxes at times n+1/2 and n-1/2, as well as the flux moments at time », when perform-
ing calculations that require outer iterations. Thus, the time-dependent storage requirements are 2 x M x 8 x G +
(L+1)? x G words per cell, where M is the number of angles per octant. For a 12 group, S5 (M =9), P, calculation,
this requirement equals 1,836 words/cell, versus 108 for a static calculation. The core storage can be greatly reduced
by writing the time boundary fluxes (at t* /2 and t*+1/2) to disk. In this way only the current group’s time boundary
flux need be in core. This assumes that disk I/O is relatively cheap and that core memory is a scarce resource which
is certainly is true for machines such as the Cray/Y-MP. For parallel architectures this strategy assumes that parallel
1/0 is being efficiently done which may or may not be true. It is not true for the Cray T3D thus we keep the time
boundary angular fluxes in core when using that machine.

6. Implementation in PARTISN

The existing 3-D X-Y-Z sweepers in PARTISN have been modified to solve the time-dependent form of the trans-
port equation specified in Eq. (5). For static problems, the time absorption and source terms in Eq. (5) are simply




sef to zero. Additional storage has been allocated for storage of the angular fluxes at 4172 and 717 for time-de-
pendent calculations, but this additional storage is not allocated for static problems. Thus, we retain the ability to
solve both static and time-dependent problems in a single code. The solution in time is implemented as an additional
loop outside of the existing outer/inner iteration loops, and convergence checks within the outer/inner iterations
have been appropriately modified where necessary. The input module has been enhanced to allow for the specifi-
cation of linearly-varying in time fixed sources and cross sections.

The selection of time-step control criteria is a critical factor in the overall efficiency of the solution algorithm for
time-dependent problems. The time-step criteria must be tight enough to ensure accuracy, but loose enough that
they allow large time steps for smoothly varying solutions in time. Furthermore, they must be robust enough that
they do not “crash”, i.e., go to zero, for sudden changes in the source or cross sections. In PARTISN, time step con-
trol is currently performed by looking at both the maximum change in the pointwise total reaction rate and the point-
wise fission rate. If both the maximum change in the pointwise reaction rate and fission rate from the previous time
step are less than some error criteria (typically 10% for the reaction rate and 5% for the fission rate), then the time
step is increased by 20%. If the change in the reaction rate is greater than some error criteria (typically 50%), then
At is reduced by a factor of twice the relative change in the reaction rate.

7. Description of the Test Problems

7.1 Iron-Water Shield Problem

For the purposes of demonstrating some of the properties of our solution technique for the time dependent transport
equation, we describe two simple test problems. The first is an iron-water shield problem. This is a three-dimen-
sional, XYZ problem where the innermost region is 10x10x10 cm of water with a uniform source. This is surround-
ed by a 10 cm thick region of iron which is in turn surrounded by 30 cm of water. This is a type of shielding test
problem which, because of the large amount of water, is a difficulf transport calculation. The time dependence is
driven by the source which is assumed to be on forever prior to its being shut off at 0.1 sh (1 sh=1.0e-8 secs). We
then examine the total neutron population as a function of time as well as the net leakage for each of the energy
groups. This problem is solved with 3 energy groups which represent roughly the 14 Mev region, the peak fission
region, and the thermal region of energy space. We solve it using an S8/P0 (L=1 in equation (5)) approximation
with the adaptive weighted diamond difference (AWDD)* method for the spatial variables. The spatial mesh is uni-
form with 50x50x50 1 cm mesh size in each dimension. We used the Cray/T3D and 64 processors to do the calcu-
lation.

7.2 Critical Solution Problem

The second problem is a 3D fissioning problem with two regions. The first region is a solution of U-235 in water
with dimensions 12.87x12.87x6.5 cm with reflecting boundaries on the left, bottom and front surfaces. This is sur-
rounded by 15x15x6.5 cm of water. The system is initially critical when between time 0 to 10 ps the U-235 con-
centration is doubled. It remains thus until 250 ps when the U-235 concentration is gradually decreased to half its
original value by 5000 ps. The solution remains in this state until the problem is terminated at 12000 ps. This prob-
lem is designed to represent a criticality type of accident. We monitor the total neutron population as a function of
time as well as the total fission rate and leakage rate. The problem is solved with three energy groups which cover
the peak fission, epithermal, and thermal regions respectively. For discretization we use an S4/P1 angular approx-
imation with a 50x50x20 spatial mesh using diamond differencing with set-to-zero fixup. This was computed using
one processor of the Cray Y-MP.

8. Computational Results

In presenting the computational results, we present the solution time assuming differing time step error criteria and
the results of using or not using DSA acceleration of the iterations. We also present graphs of selected aspects of
the solution which demonstrates the impact on accuracy of the differing options.




8.1 Iron-Water Shield Problem

For this problem we ran 4 cases: (1) DSA is on and the time step error criterion is 10%, (2) no DSA with the same
error criterion as 1, (3) DSA is on with the time step error criterion at 30%, and (4) no DSA with the same error
criterion as 3. In Table I we present the number of time steps taken, the number of inners performed, the total wall
clock time as well as the time spent in the transport solver and the diffusion solver if applicable. Recall that these
computations were done with 64 processors on the Cray T3D.

Table 1: Selected Computational Results from the Iron-Water Shield Problem

Iteration Error Number of | Numberof | Total CPU | Transport Diffusion
accelerator | criterion time steps inners time (secs) | time (secs) | time (secs)
DSA 10% 186 2178 2690 2377 265
none 10% 184 6511 7057 6955 -
DSA 30% 104 1142 1460 1247 187
none 30% 104 4850 4412 4347 -

These results show that the use of DSA on the iterations (only inner iterations in this case) is advantageous in both
the reduction in the number of transport iterations and in the computation time. The effect is more pronounced for
the 30% time step error criterion case because as the time step is increased, the iterations become more important
to preserve the accuracy of the solution. To demonstrate the impact upon the DSA solution of the different error
criteria, we present in Fig 1a comparison based upon the total neutron population.
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Fig 1. Comparison of the solution and time step for two error criteria using DSA.

Also in this figure we show the time step (dt) selected as a function of time and thus the impact of the error criterion
on the size of the step at later times. The population decreases exponentially as a function of time as expected from
this type of problem. It is seen that the solution is essentially the same for the two time steps and thus from these




results it makes sense to use the larger time step as it significantly saves in computation time. The next figure shows
the solution with and without DSA on the case with the 30% error criterion.
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Fig 2. Comparison of solution and time step w/wo DSA for an error criterion of 30%.

There should be no difference in the solution with and without DSA which is nearly true from the results shown in
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Fig. 2. The time step chosen is also about the
same. The differences that do exist is due to
the weakness in iteration convergence for the
no DSA case. Finally in Fig 3, we show that
for the group dependent leakages even with
DSA, the time step error criteria does make a
difference. This is because the criterion is
based upon a group averaged absorption rate
which in this case is dominated by group 3.
Thus the time step control necessary to obtain
the correct solution for group 2 is not activat-
ed; we would need to generalize the criterion
to monitor the groups we were interested in.

Fig 3. Group dependent net leakage comparing the impact of different error criteria.




8.2 Critical Solution Problem

For this problem we ran 3 cases: (1) DSA is on with an error criterion of 10% and problem time of 5000 ps, (2)
DSA is not on but otherwise the same as 1, (3) the same as 1 except the problem time is 12000 ps, and (4) the same
as 3 with a 20% error criterion. The first two problems were run to show the computational impact of the DSA, and
the next two to show that the excursion could be followed to a reasonable end state. In Table 2 we present the com-
putational results in terms of the number of iterations and the computation time for each of the cases. The first col-
umn indicates the accelerator use and the problem time in ms. Recall that this was run on 1 processor of a Cray

Table 2: Selected Computational Results from the Critical Solution Problem.

Iteration Error No. of No. of No. of Total CPU | Transport | Diffusion
accelerator | criterion | time steps outers inners time (secs) | time (s) time (s)
DSA/5Sms | 10% 189 393 3267 4026 2042 1824
none/Sms | 10% 190 1062 37484 23902 22780 -
DSA/12ms | 10% 225 488 4413 5446 2780 2457
DSA/12ms | 20% 153 340 3013 3810 1889 1777

YMP.

These results show that the DSA has a tremendous impact upon the calculational efficiency of the criticality prob-
lem. The main reason is that outer itera-
tions are involved and the DSA method
is particularly effective in converging
them. Thus there is an overall savings of
s g more than an order of magnitude in the
XTI X 10° number of inners and a factor of 6 in

computation time. Even with the in-
10" ey creased computational cost, the compu-
! tation with no DSA is not as accurate as
with DSA. In Fig 5 we present the com-
parison of the two runs to 5 ms with and
without DSA. It is seen that indeed the
no DSA case does not match the DSA
case. Part of the reason for this is that,
for some time steps, the problem hit the
outer iteration limit which was set to the
default of 20. One could rerun this with
a higher limit and the comparison would
no doubt be better but we felt we could
not afford to repeat this calculation.
- '5001)0"’ These problems were run with a time
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Time (us) step error criterion of 10%.
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Fig 4. Comparison of DSA/noDSA Neutron Population and Time Step.

In Fig 5 we present the solution over the entire range to 12 ms (12000 ps) to illustrate the nature of the solution
which is as expected. Note that at about 3500 ps the time step goes to a value of about 200 ps and remains at that
value for the rest of the excursion. We also show a comparison with a solution computed using a 20% criterion.




WATER REFLECTED U-SOLUTION PROBLEM IN AN EXCURSION.
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Fig 5. Neutron Population and Time Step to 12 ms.

9. Concluding Remarks

We have outlined the methods we use to compute time dependent transport problems in multidimensions. Our time
difference method is a simple diamond with fixup approach imbedded in our previously static, parallel transport
code, PARTISN. For the problems selected our DSA method for the convergence of the iterations involved in the
solution is a crucial ingredient. This certainly is true for the fissioning system. We have demonstrated that time de-
pendent transport computations even in three dimensions are becoming practical especially in the world of parallel
computer architectures. The performance of the problems we show here will give an idea of the computational time
of more spatially complex problems in that as the number of spatial mesh intervals needed to describe the problem
increases, one need only add more processors and the time will be approximately the same as given here.
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