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DISCRETE ORDINATES TRANSPORT METHODS FOR PROBLEMS
WITH HIGHLY FORWARD-PEAKED SCATTERING

by

SHAWN DANIEL PAUTZ

ABSTRACT

* We examine the solutions of the discrete drdinates (Sn) method for problems with highly
forward-peaked scattering kernels. We derive conditions necessary to obtain reasonable
solutions in a certain forward-peaked limit, the Fokker-Planck (FP) limit. We also analyze
the acceleration of the iterative solution of such problems and offer improvements to it.

We extend the analytic Fokker-Planck limit analysis to the Sy equations. This analysis
shows that in this asymptotic limit the Sy solution satisfies a pseudospectral discretization
of the FP equation, provided that the scattering term is handled in a certain way (which we
describe) and that the analytic transport solution satisfies an analytic FP equation. Similar
analysgs of various spatially discretized Sy equations reveal that they too produce solutions
that satisfy discrete FP equations, given the same provisions. Numerical results agree with
these theoretical predictions.

We define a multidimensional angular multigrid (ANMG) method to accelerate
the iterative solution of highly forward-peaked problems. Our analyses show that a
straightforward application of thié scheme is subject to high-frequency instabilities. However,

by applying a diffusive filter to the ANMG corrections we are able to stabilize this




xvi

method. Fourier analyses of model problems show that the resulting method is effective
at accelerating the convergence rate when the scattering is forward-peaked. Our numerical

results demonstrate that these analyses are good predictors of the actual performance of the

ANMG method.




CHAPTER I

INTRODUCTION

Over the last several decades a variety of deterministic numerical schemes have been
developed to approximately solve the linear Boltzmann transport equation. These methods
have been developed primarily to solve neutron transport problems. Most neutron transport
problems of interest are characterized by isotropic or mildly anisotropic scattering. For
such problems numerical transport schemes have become increasingly accurate and robust;
many are applicable to multidimensional problems. Advances have also been made in the
development of acceleration methods that are effective at increasing the convergence rate of
the iterative solution of such problems.

The transport equation is not limited to the description of mildly anisotropic neutron
transport; it also is a valid description in most cases of the transport of neutrons in highly
anisotropically scattering media and for other types of particles such as electrons and photons.
'In many physical problems the scattering is highly “forward-peaked”, which means that the
average scattering angle is very small. Such problems include the transport of charged

3

particles such as ions and electrons,! high-energy x-rays and gamma rays,* visible

light in certain media, and very high-energy neutrons.’> These types of physical problems

are encountered in such situations as inertially and magnetically confined fusion, medical

8 9,10

physics,®® electron microscopy, shielding of electronic components in spacecraft,!! ion

implantation in electronics,’? atmospheric and interstellar transport of light,'*-!6 gamma-ray

7

well-logging,'” and accelerator-driven processes.

This dissertation follows the style and format of Nuclear Science and FEngineering.




The nature of these problems impacts the accuracy and efficiency of the deterministic
transport schemes that are used to model them. One generally needs to use higher-order
angular quadratures (i.e. finer angular resolution) and to calculate many more scattering
moments than are needed to obtain a sufficiently accurate solution in most neutron transport
problems. For charged-particle calculations the energy loss per scattering event can be small,
requiring a finer energy group structure. These requirements directly impact the amount of .
memory and CPU time needed, especially in niultidimensional calculations. Furthermore,
most acceleration methods developed for neutron transport problems lose their effectiveness
when the scattering is forward-peaked, which greatly increases the number of iterations
required to sufficiently converge the solution.

As a consequence of these computational demands the development, analysis, and
application of deterministic transport methods for forward-peaked scattering problems has
lagged behind advances in methods for isotropic and weakly anisotropic problems. Most
applications have been limited to one-dimensional transport.'®? However, the development
of much faster computers with more memory and of more efficient transport schemes has

made multidimensional calculations more feasible.26-28

One particular development, the
angular multigrid (ANMG) acceleration method of Morel and Manteuffel,?® greatly reduces
the number of iterations required to solve forward-peaked problems, although it has only been
developed for one-dimensional geometry. The prospect of a greater range of forward-peaked
scattering problems that can be feasibly modeled, especially in multidimensions, creates the

need for a better understanding of the accuracy of these methods and for more effective

acceleration methods.




The purpose of this work is twofold. First, we will study the accuracy of common
deterministic transport methods when they are applied to highly forward-peaked scattering
problems, both in one-dimensional and multidimensional geometries. Specifically, we
will extend the asymptotic Fokker-Planck analyses of Pomraning®® to discrete ordinates

(commonly called Sy) transport schemes.’!

These analyses will reveal the conditions
under which discrete ordinates methods produce reasonable solutions to forward-peaked
scattering problems. Second, we will analyze the convergence rate of transport iterations for
multidimensional forward-peaked scattering problems and make improvements by extending
the ANMG method to the multidimensional setting. Our analysis will show the stability
and effectiveness of the ANMG scheme. In situations where it is unstable we will propose,
analyze, and test modifications that stabilize this acceleration method without unduly
compromising its effectiveness.

This work contributes the following new results to the body of knowledge about
computational methods for forward-peaked transport problems:

1. We show that if the scattering source is calculated in a specific manner, then the
discrete ordinates solution limits to the solution of a discretized Fokker-Planck equation in
the same asymptotic limit in which the exact transport solution limits to an exact Fokker-
Planck solution. This is a highly desirable result that provides a measure of confidence in the
application of discrete ordinates methods to forward-peaked problems.

2. We show that if the scattering source is calculated in that same specific manner, then

several common methods for spatially discretizing the discrete ordinates equations produce

solutions that limit to the solutions of spatially and angularly discretized Fokker-Planck




equations. This again is a highly desirable result that increases confidence in the use of
discrete ordinates methods for forward-peaked problems.

3. We show that if the scattering source is calculated in the “standard” discrete ordinates
manner, then the discrete ordinates solution will in general be poor or will not exist in the
Fokker-Planck limit.

4. We analyze in two dimensions the ANgular MultiGrid (ANMG) methdd previously
developed and tested for 1D problems. We find that the scheme is unstable in 2D for
the discrete ordinates method with no spétial discretization and with fine-mesh spatial
discretization.

5. We devise a diffusive filter for the ANMG corrections and show that this successfully
stabilizes the method in 2D. We show that the filtered ANMG method is superior to the
diffusion synthetic acceleration (DSA) method that is commonly used in iterations for
forward-peaked problems.

The remainder of this work is organized as follows. In Chapter I we will review the
asymptotic Fokker-Planck analysis of Pomraning, as applied to analytic transport, and extend
it to the discrete ordinates transport method. We will obtain conditions under which the
discrete ordinates method produces reasonable solutions in this forward-peaked limit. In
Chapter IIT we will extend these Fokker-Planck analyses to spatially discretized Sy methods
in one and two dimensions and also obtain necessary and/or sufficient conditions under which
reasonable solutions are obtained. In Chapter IV we will review and analyze the effectiveness
of common acceleration methods for highly forward-peaked scattering problems. We will
extend the ANMG method to multidimensions and develop modifications necessary to ensure

its stability and effectiveness. In Chapter V we will extend the ANMG method to spatially




discrete problems and analyze its stability and effectiveness. In Chapter VI we will present
numerical results that support the results of the Fokker-Planck and ANMG analyses. Finally,

in Chapter VII we offer some concluding remarks and suggestions for future work.




CHAPTER 1T
FOKKER-PLANCK ANALYSIS OF THE SPATIALLY ANALYTIC

TRANSPORT EQUATION

Previous studies have examined the convergence properties of solutions to discrete
ordinates (Sy) discretizations of the transport equation.’”*” Numerous studies have also
examined the convergence and stability properties of spatially discretized Sy equations.3®-6
Generally speaking, given fixed cross sections and geometry the discrete solutions converge
to the exact solutions as the spatial and angular discretizations are made increasingly fine,
at least for “reasonable” discretization methods. The key feature of these studies is that
material properties (i.e. cross sections) are held constant while the discretizations are made
vanishingly small. Given sufficient refinement of the discretization, one can achieve an
arbitrarily small error in the discrete solution.

A related question is how the accuracy of a particular discrete transport method is
related to the cross sections, given fixed problem geometry and a fixed angular and spatial
discretization. A scaling parameter, ¢, is introduced into the cross section definitions such
that each cross section varies like ¢ to some power as ¢ — 0. For many “scalings”
of physical interest the analytic transport solution limits to the solution of some simpler
operator.3®37-% In this same limit various transport discretization methods may or may not
produce solutions that limit to discretized solutions of the simpler analytic operator. For
example, numerous spatial discretization schemes have been examined in the thick diffusion

limit.#850-52.63.67-84 These schemes are considered “good” in this limit if their solutions satisfy




valid discretizations of the diffusion equation; their accuracy is identical (in this limit) to the

accuracy of the discrete diffusion solution.

The object of the present study is to determine and assess the behavior of discrete
ordinate transport solutions in the limit of forward-peaked scattering, namely the Fokker-
Planck limit. A scaling parameter, 6, will be used to define a cross section scaling such that the
scattering becomes increasingly forward-peaked as § — 0. Experience in numerical methods

85-88 would suggest that the asymptotic form of the error of the discrete ordinates

analysis
method could be described by E = O (IV?6’), where N is the order of the angular quadrature
and ¢ and j are constants that are determined by the particular discretization method and
by the unscaled cross sections. The studies mentioned in the first paragraph indicate that ¢
will be negative for any reasonable type of quadrature. The question we wish to address is
what j is (presuming the form of the error given above is valid), given a particular transport
discretization and a cross section scaling parameter § that describes how forward-peaked the
scattering is.

Rather than addressing the above question directly, we wish to break this question into
two parts, as is done in the thick diffusion limit studies. For problems involving certain kinds
of very highly forward-peaked scattering the solution of the Fokker-Planck (FP) equation has
been found to be a good approximation to the analytic transport s<.)1ution.3°*61’89 The first part
of our accuracy question is to find the conditions under which discretizations of the transport
equation yield “reasonable” discretizations of the Fokker-Planck equation. In these cases
the two-part question of the accuracy of various transport discretizations is reduced to the

presumably simpler second part, the question of the accuracy of the corresponding Fokker-

Planck discretizations. Our study will not actually address this reduced problem.




This chapter examines the fully analytic transport equation and the spatially analytic
discrete ordinates equations in the limit of forward-peaked scattering (the Fokker-Planck
limit). We derive conditions under which the equations asymptotically yield solutions that

satisfy a (discretized) Fokker-Planck equation.

IIA. Analytic Transport

In this section we briefly review Pomraning’s asymptotic analysis*® of the fully analytic
transport equation in the Fokker-Planck limit, which we restrict to the monoenergetic case.

The analytic transport equation in general geometry is:

Q- Vi (r,Q) + (0, +050) ¥ (r, )

co my 9 1
= Z Z <n+ )Y;zm(ﬂ)%m(r)ffsn(r)+q(r,ﬂ), (1)
n=0 m=mp, Cnorm
where
1
Tom = / dptoPa (110) 05 (o), P (1) = / dY;, ()P (), @
-1 4

and where o () is the cross section for scattering through an angle whose cosine is 1. The
parameter Cporm i @ normalization factor that depends on n, m, and the normalization chosen
for the definition of Y;,,, (£2), and the parameters my, and my depend on the geometry. For
Cartesian geometries my, and my are given by

(0,0), 1D

(mLamH) = (0,7’1.) ’ 2D . (3)
(—n,n), 3D




Following Pomraning,’® we make the following definitions and scalings:

(g50) — {os1)

5 = 1-(w) = 22— (4a)
= <m> _ 4<0'30>_g§z:(1)§+2<0's2>’ (4b)
A@r) = 1:?(—1'2, B(r)=——————~(_:€°—)3(r), (40)
y = = ()
o) = 228 @) =6, (@0
04 (r) = 0a(r) + 050 (r) (1= (r)) = 60 (1) + G0 (r) A(r), (4)

where 7z is the average scattering cosine, &, and &, are O (1), § and +y are small, and ()
indicates a typical value. We require that A (r) and B (r) be O (1), i.e. that 1 — [ (r) and
m (r) scale with § and -, respectively. The idea is to examine what happens to the
solution as 6 approaches zero. Physically, this corresponds to a diminishing distance between
scatters but also a diminishing average scattering angle. These are balanced such that o4, is
O (1) and independent of 4.

We rewrite the integral for o, in terms of y and expand P, (u,) in a Taylor series about

po = 1:
2/5

7un @) = [ dy {Po(1) = P () y6 +0 () } 5 (5,3). ©
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By making use of the following identities for P,

Pm=1 Po="01 ©)
we can rewrite Eq. (5) as
2/6
omts) = [ayf1- "1 0 ()} o1 r,0). %
0

Rewriting Eq. (7) in terms of p, and performing the integration yields the following
asymptotic form for o,:

_n(n+1)

5 A6+ 0 (7). (3

Osn (r) = 04 (1)

Substitution of this expression into the transport equation leads (after some manipulation) to

the following intermediate result:
Q- VY (r, Q) + 6. (1) ¥ (r, Q)

+"3°( {¢(rﬂ i gﬁ (22;1) m () @pm ( )}

n=0 m=mp,

cnm‘m

_ _low r)—aa i % <2n+1> n+1) Yo () ¢, (1)

n=0 m=mp,

g (r, Q)+ 0 (%) , - ©)

Equation (9) is an equivalent form for the transport equation that is obtained when the
scattering cross section is asymptotically made forward-peaked. When the preceding analysis

was previously reported by Pomraning,*® he obtained the Fokker-Planck equation by noting
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that the term in braces in Eq. (9) is identically zero. In order to illuminate the discrete analyses
in subsequent sections, however, we wish to proceed by a slightly more formal route. Our
goal is to discern how the transport solution, ¢ (r, 2), behaves in the limit as § tends to zero.

Therefore we propose the asymptotic ansatz:

w _ ¢(o) + 5’(/)(1) + 62,¢(2) +-en, (10a)

o (0) + 8¢ (1) +§2 (2) A T (10b)

where we will be primarily interested in the leading-order term. We insert this ansatz into Eq.
(2) and consider terms of O (1) to find:
o0 @) = [V @90 ) = (Du®) an

nm
4

We insert the ansatz into Eq. (9) and consider terms of O (§7") to find:

WO =3 Y (QZ“)YWWWE<M@<°>>Q. az

n=0 m=mp

We have not included an O (vy) term in Eq. (12), since it is easily shown that v — 0 as § — 0,
i.e. that there are no O (1) components in y. Equations (11) and (12) define the transformation
from <p(0) to zp“’) and its inverse. While Eqs. (11) and (12) are rather obvious in the problem
we are now analyzing, we will see iater that their discretized counterparts play key roles in
the behavior of discrete solutions. In particular, we will find that for some discretizations the
D and M operators are not inverses, and hence the discrete versions of the two equations
might not both be satisfied (we will note exceptions later). Thus, in such cases we will have

a contradiction, implying that the asymptotic ansatz is not valid.




The O (§) terms in Eq. (2) yield

o0 = [z, @) . 0) = (Dy)

47

nm

The O (1) terms in Eq. (9) yield

Q- VO (r,Q) + 5. (r) 99 (r,Q)

+ao(r>{¢<” -3 Y (2)y, (ﬂ)so(”()}

n=0 m=myg,

i) :T; (22 nn+ 1) Yom () 22 )
+q (r, ﬂ)+0(%)- (14)

We have included the O (y/§) term in Eq. (14) as if it were O (1); this is not necessarily true
and will be discussed momentarily. Note that we have not directly obtained an expression
for ¢(1) and () that is analogous to Eq. (12). However, Eq. (13) and the fact that M =
D~1 require such an expression for consistency. Therefore the term in braces in Eq. (14)
disappears.

Now we can use the identity:

1 92

to rewrite the summation on the right hand side of Eq. (14), thereby obtaining a Fokker-

Planck equation with an extra O (y/§) term:
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Q- VO (r, Q) + 6, (r) O (1, Q)

_ Ou(r) ;é'a (r) [5% (1“1“2)5% " (1—1;1,2) 6%;} O (r, Q)

+q(r, Q)+ O (%) . (16)

The O (v/6) term in Eq. (16) is significant. It is a function only of the scattering kernel. The
FP equation is not an asymptotic limit of the transport equation unless the scattering kernel is

such that y — 0 more rapidly than § — 0, i.e., such that

(1= 1)") /(@ —R)) =0 - an

as iy — 1. The Henyey-Greenstein kernel,!* for example, does not have this limit. For more

discussion see references 30 and 61.

II.B. Discrete Ordinates

We now turn our attention to the discrete-ordinates discretization of the transport
equation. The standard discrete-ordinates version of the transport equation (1) is (with the

asymptotic form of o, inserted):

Q. - Vi, (r) + (00 + 750) P (T)

Cnorm

S (1) Yo (0) 0 () 25 1 - 2D 4 00 0.

n=0 m=mpg,

+q (r; Qk) 3 (18)
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where

B (r) = Zwk (%) ¥ (r). (19)

Here the wy and € are the quadrature weights and angles, respectively, of a quadrature
of order N. In standard quadratures K = N in 1D, K = N(N+2)/2 in 2D, and
K = N(N +2)in 3D. Note that the scattering order in Eq. (18) is truncated at N — 1.

Manipulation of Eq. (18) yields the discretized (in angle) version of Eq. (9):
Qk * V'lpk (I‘) + a'a (I‘) ¢k (r)

+"S° L {wk() Z 3 (ZZ:m)nm (%) P (r)}

i

n N-1 mpy
- BN S (B ) 1) Yo (900 (0
+a(r, ) +0 (). -

We insert the asymptotic ansatz of Egs. (10) into Eq. (19) and consider terms of O (1) to find:

0 (x) Zwk Qv () = (Dve®) . @1

nm

We insert the ansatz into Eq. (20) and consider terms of O (§~") to find:

N-1 myg
o= > (2"“) Yo () 9, (v) = (Mn @), 22)

n=0 m=mg

where there is no O (vy) term for the reasons discussed in the previous section. Equations (21)

and (22) are always satisfied if Dy and My are inverses of each other. Unlike in analytic
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transport, however, this may not be true. In one-dimensional slab and spherical geometry it
will be true only if the quadrature set exactly integrates polynomials of degree 2N — 1, as
is the case with the Gauss-Legendre (GL) set. In standard multidimensional quadrature sets
Dy and My are generally not one-to-one and onto operators, in which case they cannot be
inverses of each other. If Dy and M are not inverses of each other, then Egs. (21) and (22)
may not be consistent (with possible exceptions discussed below); if they are inconsistent
then the asymptotic ansatz of Eqs. (10) is not valid. In such a case there is no O (1) solution
to Egs. (18) and (19).

Assuming that Dy = Mgl, and thus that Eqgs. (21) and (22) are consistent, then the

O (6) terms in Eq. (19) yield:
B0, (¥) Z wY, O () = (Dwy®) . 23)
The O (1) terms in Eq. (20) yield:

Q- VYO (r) + 64 (r) ¥ (1)

tou (r){ PE-% Y (25) v @020 >}

n=0 m=mp

. (Utr hand N g (211 + 1) Ny Q ~(0)
— ; m—ZmL C.,wrm n (TL + ) nm ( k) (pnm ( )
+q(r, ) +0 (7). @4)

The scattering term on the left side of Eq. (24) will disappear only if

) = (), | (25)
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where

N-1 mpg
5 (1) = Z (2"“> (€2 70 (1). 26)

This is already satisfied by the (assumed) condition Dy = M ~ - Equations (15) and (24)

thus yield:

Q- VI (r) + 64 (1) 9 (r)

o (1) ; Ga (r) {L% (1-p?) (% + (1 —111«2) a%;] P (r,ﬂ)}

+q(r, ) +0 (%) : @27

Q=02

where we define {p(o) (r,Q) to be the (N — 1)-order polynomial interpolant through the
points {Qk, z,Z(O) (r, Qk)} in one-dimensional slab and spherical geometfy (the definition in
multidimensional geometry will be described below). Thus, assuming that O (y/§) — 0 as
6 — 0, Eq. (27) is a “pseudospectral® discretization®® of the angular variable in the exact
FP equation. (Pseudospectral methods use collocation to determine coefficients in a global
function expansion.)

The above discussion indicates that the transformation from discrete values to angular
moments and back to discrete values should be the identity. If Eqs. (19) and (26) define
the discrete-to-moments and moments-to-discrete transformations, then we will not have the
identity unless the quadrature set is Gauss-Legendre in one-dimensional slab or spherical
geometry. Given a different quadrature set and/or multidimensional geometry, then, the Sy
method may not limit to a discretization of the FP equation unless Eq. (19) and/or (26) is

replaced.
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Morel®! reached the same conclusion via a completely different analysis, and offered
suggestions for replacing the offending equation(s). The simplest suggestion in one-
dimensional slab and spherical geometry is to use for ¢, the exact moments of the (N — 1)-
order polynomial, ¥, that goes through the points {Qk,z} (r, Qk)} ; i.e. to solve Eq. (2)
exactly instead of using Eq. (19), thereby redefining Dy. Morel labeled this “Galerkin”
quadrature, since he derived it by means of a Galerkin weighting method. The use of the
exact moments causes Eq. (25) to be satisfied regardless of quadrature set, and Eq. (27) then
follows.

In multidimensional geometries the Galerkin quadrature has a more complex definition.
Recall that Dy and M}y are not one-to-one and onto in standard multi-dimensional quadrature
sets. For example, level symmetric quadrature sets of order N have N (N +2) /2 and
N (N + 2) quadrature points in two and three dimensions, respectively, whereas there
are N (N +1)/2 and N? spherical harmonics of order N — 1 or less in the respective
dimensions.”> In order to satisfy Eq. (25) in all circumstances we must first increase
the number of spherical harmonics in our flux e)_(pansion by using harmonics of higher
orders. Morel® and Reed®® proposed suitable spherical harmonic interpolation spaces for
multidimensional geometries. For two-dimensional geometries the following interpolatioh
space is suggested:

(28)

| v 0<m<n, if0<n<N-1
"™ 0 < modd <N, ifn=N '
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The interpolation space suggested for three dimensions is:

—n<m<n, if0<n<N-1,
—n<m<0 .. _
Yom : (and0<modd§N>’ ifn=N ) (29)

— (N +1) <meven <0, ifn=N+1

The Galerkin quadrature is then defined by adjusting the limits of the summations in Eq. (26)
in order to augment My and then redefining Dy = My'. As in the one-dimensional case
Eq. (25) will be satisfied regardless of the discrete angle set when the Galerkin treatment
is used, and Eq. (27) then follows, where {b(o) (r,Q2) is now defined as the spherical
harmonic interpolant (corresponding to the selected interpolation space) through the points
{nk, +° (x, Qk)}.

We note that the use of the Galerkin quadrature allows the selection of a greater variety of
-discrete angle sets in Eq. (18) since the corresponding quadrature weights (if they are defined)
are not actually used. For example, in problems involving normally incident beams one can
specify better boundary conditions with the Lobatto quadrature set, since this set includes
the point & = 1. In these same problems one can define sets that are highly biased toward
particular directions. Furthermore, it may be possible to implement adaptive quadratures
more easily.

More can be said about the effects of using a non-Gaussian or non-Galerkin quadrature
to evaluate Eq. (19). Let us define the scattering ratio matrix C by

1
C= G—DMZ, 0: = 0q + 030, 30)
t
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where D is the discrefe~to—moments matrix, M is the moments-to-discrete matrix, and X is a
diagonal matrix whose entries are the scattering coefficients {o, } in the order and frequency
corresponding to their respective moments in the other matrices. If exact integrals are used
then D = M™!, and C will be a diagonal matrix whose entries are the scattering ratios
{osn/o+}. In a non-multiplying medium each diagonal term (and hence each eigenvalue of
C) will be non-negative and will not exceed unity. If, however, inexact integrations are used,
not only will C differ from ¥ /0, but there is also the possibility of introducing one or more
eigenvalues whose absolute values exceed unity. This is physically equivalent to artificially
introducing multiplication into the medium. Depending on the amount of leakage present,
Egs. (18) and (19) then may not have a steady-state solution, certainly not in the limit as
d — 0. This inconsistency is clearly unacceptable when a steady state solution is known to
exist.

We remark that the condition D = M~! is certainly sufficient for obtaining the
correct FP limit, butvit is not strictly necessary. We need only to satisfy the condition that
(I - MD) ¥ = 0 in order to satisfy Eqs. (21), (22), and (25), i.e. that ¥ be in the null space
of I — MD. If MD $# I, then certain angular eigenmodes cannot be present in a stable
solution. It is entirely possible that the proper selection of boundary conditions and sources
could result in a solution that does not contain any of the unstable modes. Alternatively, one
could filter out the unstable mode components of the scattering source; this would stabilize
the solution, but this will yield a different solution than that obtained when exact integrations
are used. Our recommendation is to avoid these complications altogether by simply using the

exact inverse of M.
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In summary, the discrete ordinates discretization of the transport equation (1) yields a
pseudospectral discretization of the Fokker-Planck equation under the scaling defined in the
previous section, provided that the Fokker-Planck equation is the asymptotic limit in the
analytic case and that the scattering source is calculated carefully (in a nonstandard way,
in general). The “nonstandard” scattering source may be obtained by means of the Gauss-
Legendre quadrature set, by forming the interpolant of the angular flux and calculating its
exact moments, or perhaps by a number of other ways. A different, albeit stable, solution
may be obtained by suppressing the unstable eigenmodes of the scattering source (which
would limit to a discrete FP solution with a reduced angular function space), but we do not

recommend this alternative when inherently stable and less drastic approaches exist.
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CHAPTER III
FOKKER-PLANCK ANALYSIS OF THE SPATIALLY DISCRETIZED

DISCRETE ORDINATES EQUATIONS

In the previous chapter we analyzed the asymptotic behavior of the spatially analytic
transport and discrete ordinates equations in the Fokker-Planck limit. In this chapter we
extend our asymptotic analysis to include spatial discretizations. We will study the diamond
difference (DD), the linear discontinuous (LD) and the linear moments (LM) methods3*4°
as examples of spatial discretizations of the transport equation in one-dimensional slab
geometry. In two-dimensional Cartesian geometry we will examine several related finite
element methods on rectangles: the bilinear discontinuous (BLD), the lumped bilinear
discontinuous (LBLD) and the simple corner balance (SCB) methods.”7>% For the methods

analyzed we find that if a reasonable Fokker-Planck limit is obtained in the spatially analytic

case, then a reasonable limit is also obtained in the spatially discrete case.

IILA. Slab Geometry

II1.A.1. Diamond Difference

We begin with the DD-Sy discretization of Eq. (1), with the asymptotic cross sections
from Eq. (8):

H N &sOi
‘A?i (¢k,z‘+-§; - Z/Jk,i—%) + (Uai + T) Vi

= &0 n{n+1)
= > M Py 2“’ {1- 5 Ai5+0(7)}+qq;(uk), (31a)

n=0
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1
Y = 3 (wkw; ‘H/’kz——) : (31b)
wk,% 1/)k inc CL‘1 N 0
= ) (31c)
djk,]*’% k,inc $I+ M < 0
N
Bri = Y Dnmty, (31d)

k=1

where f; is the cell-average value of f:

$1+%
1
fi:Aazi /d:vf(:z:). (32)
Tk )

We remark that the spatial mesh stays fixed in our analysis, which means as § — 0, o4;Az;
increases and o4 ;Az; does not change.
We insert the asymptotic ansatz of Eqs. (10) into Egs. (31) and consider the terms of

O (1) in Eq. (31d) to find:
N
29 =" Dyt (33)
k=

We consider terms of O (6‘1) in Eq. (31a) to find:
0= Z My P - (34)
n=0

As we have already discussed in the previous chapter, if Dy # M;l then Egs. (33) and (34)

may be inconsistent, in which case there is no O (1) solution to Egs. (31).
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Assuming that Dy = My", then the O (6) terms in Eq. (31d) yield:
N
2% =3 Dyl (35)

The O (1) terms in the remaining Egs. (31) yield:

zp(O) T/)(O) N-1
kji+d ki3 N 0 A 1 71
A e e ]
—\Otri — Oqi
_ lomimtw) ¥ 2 =00 S A (4 ) 2 + s ) + O (3), o
n=0

( wk,inc (.’IJ%) ’ Ly > O) 1=0

¢(0) wk inc (x1+l) 3 Hy < O? i=1 (36b)
: = K .
k,z+% 211[)(()) (0) 0. i 0

~1 >0, 1>

| 290, - ¢(°) <0, i<I

kyi+3?
The term in braces in Eq. (36a) disappears because we have assumed that Dy = Mj'.

Equations (15) and (36a) thus yield:

(0) )]
/l/)k z+ 5 - ,(’bk i—1

Hy, Az; — |+ Gai g?

(Utri_&ai) [a ( 2 a "(0)]

e = (1= %) o + i (1) 5 €2))
2 au’ 6[1, K=l

assuming that /6 — 0 as 6 — 0. The boundary conditions are given by the leading order

terms in Eq. (31c¢):

ZD,ES); wk,inc (‘r—1-> ) M > 0

2

© - : (38)
wk,f‘i'i wk,inc ($I+—%) y M < 0
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Thus, given that Dy = M. ]\“,1 and that  has no O (§) components, the leading-order DD-Sy
solution satisfies a DD-pseudospectral discretization of the FP equation. (It is no surprise that
these conditions are required, since they were required even without spatial discretization.)
The asymptotic boundary conditions are identical to the ones specified for the unscaled

problem.

III.A.2. Linear Discontinuous

The scaled LD-Sy discretization of Eq. (1) consists of Eqgs. (31a), (31d), and the

following:
3 -~ O-S 7
uk (¢k i+l + Yy, i1 2¢ki) + (Um o > Vi
-z Us i |, nin+ 1 .
n=0
4
wk,inc (.’E%) ) Hi > 0,
wk,i+% = 1/)k,inc (xl+%) y Mg < 07
Ui + Vs pr >0,
L Vhir1 — ¢z,i+1a pr <0,

N
~ T
Pni = E Dy nitiss

k=1

where f7 is the first spatial moment of f in a cell:




25

By means of the same asymptotic analysis as before we find that Dy = My! is a sufficient
condition for there to be an O (1) solution. Given this condition, we obtain Egs. (35), (36a)

and the following:

o = Z Dy mith3®, (41a)
Vorry T ¥hry — 200 N1
3ty Az, + Gt + oo { o~ Z My jnig’ )}
? n=0
— {0 T (o T
= —(—t—z—“- > MicsnEOm (0 1)+ (i) + 0 (3). (41b)
n=0

( wk,inc (.’E%) y My > 0, 1 =0

ine VL1l |, <0, i=1
Visep = 9 P ( I+2) " - (41c)
DO >0, i>1

0 T .
\ zﬁIE:,i)«}-l - zpk,(iolp Ky < 07 i<

We obtain Eq. (37) and the following under the same conditions as in the DD analysis:

Q) (0) ©
3uk wk ity 1T ?’bk - 1/) + 64 z‘(o)
Axi Pk
(Utri _6—ai) a 2 a ~z(0)
ATt Tt | 2 (1= p?) —; + 7 () - (42)

M=)

The leading-order terms in Eq. (39b) yield the leading-order boundary conditions of Eq. (38).
Therefore the leading-order LD-Sy solution satisfies an LD-pseudospectral discretization
of the FP equation, given the previously stated constraints on the cross section and the

quadrature; the asymptotic boundary conditions are equal to the ones in the unscaled problem.




III.A.3. Linear Moments

The scaled LM-Sy discretization of Eq. (1) consists of Egs. (31a), (31d), (39a), (39¢),

and the following:

¢k exiti ’l/)k incie"(Tak¢+‘rski/6)
N-1 o _
0 50 n{n+1) i
+oug; ;-MN,kn 5 -1 - 5 A8 +0 (7)- &
N-1 o _
050i n(n+1) )
o My 1- A6+ 0O z
:Bkz ; Nk 5 - 7 + (’Y)- 7°
+origi () = Bradf (i) s 1 2 0, (43a)
[1 — e‘(Taki+rsk,-/6)]
SR ! 43
(873 Tgi + 030,-/5 (43b)
5 [1 + e~ (Taki+7ski/8) _ m [1 _ e—(—r,,k,-+rski/5)}] .
F o Y ’ C
k Oai + 0'30.;/(5
Vhyineyi Vrix L
wk,ea:it,i wk,i:&:%
'@bk,% ¢k,inc (.’II%) , > 0
) ’ (43e)
¢k,[+% d)k,inc ($I+%) s M < 0

where T4 = Gai Az; /|1y and Top = Fs0:A%; /|| . The asymptotic analysis of Egs. (31a),
(31d), (39a), and (39c) that we performed previously yields Egs. (35), (36a), (41a), and (41D),
provided that Dy = M5". The asymptotic analysis of Eq. (43) is more complicated. We
recognize that the exponential terms are of higher order than any power of §; we also note

that a denominator term such as &4; + 640:/8 is O (67). Therefore the O (1) terms in Eq.
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(43a) yield

esits = Z My (22 £ 57) +0(3), me 20 “4)

n=0

We may rewrite Eq. (44) with the help of Eq. (34) and the leading order term of Eq. (39¢):

oeie = V2 2957 +0 (), m 2 0. @45)

Equation (41c) is obtained by combining Eq. (45) with the leading order terms of Eqgs. (43d)
and (43e). If vy hasno O (6) terrﬂs we obtain Egs. (37) and (42). The leading-order boundary
conditions are again given by Eq. (38). Therefore the leading-order LM-Sy solution is
identical to the leading-order LD-Sy solution: it satisfies an LD-pseudospectral discretization
of the FP equation. Once again, the constraints on the cross section and the quadrature apply.

There is a similarity between the results of the FP asymptotic analysis of the LM method
and the results of diffusion limit analyses of characteristics methods (CMs),”® of which the
LM method is an example. The diffusion limit analyses show that in this limit the solution
to a CM discretization satisfies a discontinuous finite element (DFEM) discretization of the
diffusion equation. In particular, the LM solution limits to an LD-diffusion solution. In a
similar fashion, our FP analysis shows that the LM solution limits to an LD-FP solution in
the FP limit. Although we have not analyzed other CM discretizations in the FP limit it

seems reasonable to expect that they too will produce solutions that satisfy some DFEM-FP

discretization.
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4T 3T
AP 4 ’ 3 ¢ P3R
Ay
ILh ot 2 « b 2R
1B 2B
Ax

Fig. 1. Typical 2-D FEM element.

HI.B. X-Y Geometry

We now will study some related discontinuous finite element (FEM) schemes in fwo-
dimensional Cartesian geometry: the bilinear discontinuous (BLD), the lumped bilinear
discontinuous (LBLD) and the simple corner balance (SCB) methods. Our study will be
restricted to rectangular grids; a typical element is shown in Figure 1. Various points in the
element are labeled. The numbers refer to the corner in which the point is }Qcated, and the
letters refer to the side (L for left side, B for bottom, etc.). The points are the locations (real
or conceptual) where unknown flux quantities are defined. The FEM discretizations are all

defined by the following equations:
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Prm,2,i.j
(pnm,3,i,j

Prm,4,i,j

L
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L
d)k147i;j

R
¢k,2,i,j

- - 5 -
wil,i’j T‘bk,l,i,j
wR i,j n z/’1?2 i,
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Viaig | | Vrag
Yk,
F L+ ds 4 &so’ij}M) Vr2
* (AxiK " Ay; »+ 7es 6 V3,0
Vi
0 50,ij n+1
Z MNknmg%Qﬂ (1 - 2(—2—‘~)-Aij6 + 0 (’)’)) M
n,m ;
q1,i,j
27‘).
M| B
q3,i,j
q94,i,5
k15
Vr,2,i
Z DN,nm,k b
p Uk 3,45
Yk aij
( f}él,j? pp >0, i=1 ‘
S Yroio1p x>0, 2541, 1S5 J
o , <3 <]
[ Yrar M <0, 1<
( f]f:z;,j; /'l‘k > 07 =1 -
8 Yrsic1g Me>0, 259, 1<5<J
bl ] 2. < . < I
\ Yrai M <0, 1<
Yroipy M >0, 1<i<T
Vi1 M <0, 1<i<TI—1, 1<j<J
flfz,j) ll’k:<01 i=1

Prm,1,i,j
Prm,2,ij

nm,3,14,j

Prmd,ij
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(46a)

(46b)

(46¢)

(46d)

(46¢)
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( wk,S,z‘,j) >0, 1<i<T

Yrai; = S Yrairyp M<0, 1<i<TI-1, 1<j<J (46f)
\ f]§3,j7 p‘k<0: 1=1
( P >0, 7=1

¢kB,1,i,j = S Yraij-1» M>0, 2<5<J, 1<i<1T (46g)
( Yr1ip M <0, 1S5 J
( f£2,i7 >0, j=1

Yeaii = S Yraijer M>0, 2<5<J, 1<i<T (46h)
{ wk,2,z’,ja M < 07 1 SJ < J
( Veaiin Mm>0, 1<5<J

Ylaii = { Vraiger M <0, 1<5<JI-1, 1<i<T (461)
\ flz:.?:,ﬂ Nk < 07 ]: J
( Yraip >0, 15T

Viai; = 8 Yrnigen <0, 1<j<J-1, 1<i<T, (467)

\ f]Z:zi,i; nk<07 ]=J
where f is the boundary incident flux, the limits on (7, m) are determined by the quadrature

used, and the matrices U, N, K, L, and M are given by

( -2 00 -1
021 0
' 0 19 o |+ BLD,LBLD
U | -1 00 =2 (46k
*T T 100 0] ’ )
1] 0 100
2| 0 01 0 |’ SCB
[ [ 0 00 —1]
([ =2 =1 0 0]
-1 200
1 L o o 21| BLDLBLD
0 0 1 2
N = L . , 461
< -1 0 00 (46D)
o —100
21 0 0 1 0]’ SCB
L [0 0 01




Eq. (46b) to find:

\

2

F

|
|
i

-2

[y L]

|

1
4

COOH O

k
|

~ (0
905112.,,1,1-,,-
~(0)
Prm,2,i,5
~ (0
¢£w‘?z,3,i,j
~(0)

SOnm,4,i,j i

2 1 1 ]

-2 -1 -1

1 _9 o , BLD,LBLD
1 2 2

1 0 0 ]
-1 0 O

0o -1 -1l SCB
0 1 1

1 1 2

2 2 1

S0 9 , BLD,LBLD
-1 -1 =2

0 0 1

‘1T 1 0

121 0 | SCB
0 0 -1

1 2

2 1

L2l BLD

2 4

00

00

10 ., LBLD,SCB
01

OO MO o

- Z DN,nm,k:

[ ,/,(0)
k1,45

(0)
k,2,i,3
,¢(0)
k’s,i\j
0)
- k741i’j

-

31

(46m)

(46n)

(460)

We insert the asymptotic ansatz of Eq. (10) into Eq. (46) and consider terms of O (1) in

(47)
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We consider terms of O (§7') in Eq. (46a) to find:

[ (0 ] [ - (0) .
k1.5 Prm,1,i,j
(0) ~(0)
k,2,i,5 M Prm,2,i,5
(0) = N,k,nm ~ (0) ) (48)
k,3,4,7 n,m Qonm,.'i,z,J
(0) ~(0)
| Yrdig | Prmdig

where we have noted that M can be eliminated since it is invertible. As before, if Dy = M;,l,
then Eqgs. (47) and (48) will be consistent. We shall assume that this is the case; then the O (6)

terms in Eq. (46b) yield:

e 7 BERC B
‘wazz,u,j ¢k,1,i,j
o0 @
ot | =5 D | V529 | @
Prm,3,,5 k zpk,?»,i,j
e 1
i 9051727,,4,1',3' ] "pl(c,‘)l,ia i
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Egs. (50b)-(50i) express the leading-order boundary conditions, which are simply the

conditions applied to the unscaled problem. By our assumption of Dy = My", the term

in braces in Eq. (50a) disappears. Equations (15) and (50a) thus yield:
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assuming that v/§ — 0 as § — 0. Thus, given that Dy = Mj' and that v has
no O (§) components, the leading-order FEM-Sy solution satisfies a FEM-pseudospectral
discretization of the FP equation.

In summary, the last two chapters have shown that some transport problems with
forward-peaked scaling are described by the Fokker-Planck equation, while others are not;
this is a function strictly of the scattering kernel. If the analytic problem does limit to the
FP equation, then the discrete ordinates equations limit to a pseudospectral discretization
of the FP equation, provided that the scattering source is treated carefully. If the discrete
ordinates equations limit to a pseudospectral discretization of the FP equation, then (at least
for the cases studied) reasonable spatial discretizations of the discrete ordinates equations
limit to related spatial discretizations of the pseudospectral-FP equation. We have noted some
similarities between the FP and diffusion limit analyses‘ of characteristics methods. Finally,

the leading order boundary conditions in the FP limit are identical to the boundary conditions

for the unscaled problem.
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CHAPTER IV
ANGULAR MULTIGRID ACCELERATION OF THE SPATIALLY

ANALYTIC DISCRETE ORDINATES EQUATIONS

In the previous two chapters we analyzed discrete ordinates transport methods in the limit
of highly forward-peaked scattering (the Fokker-Planck limit). We noted that in that limit the
exact transport solution satisfies, to leading order, the Fokker-Planck equation, provided that
the scattering kernel satisfies a certain condition. We then identified conditions under which
certain discretized transport solutions satisfy, to leading order, reasonable discretizations of
the Fokker-Planck equation. Assuming that these FP discretizations have the desired accuracy
for problems of interest, we therefore have identified conditions under which certain transport
methods produce reliable results for certain forward-peaked problems.

We now turn our attention to defining efficient methods for obtaining solutions to these
transport discretizations. In most realistic problems it is necessary to use iterative solution
methods. However, the convergence rates of iterative methods can be arbitrarily slow. It is
therefore necessary to create computational acceleration schemes that improve the iterative
convergence rate. The effectiveness of a given acceleration scheme may depend on the
underlying physical problem and the discretization scheme.

In this chapter we consider the acceleration of the spatially analytic, multidimensional
discrete ordinates method in the FP limit. We extend the angular multigrid method,?*%
previously defined for slab geometry, to the multidimensional setting. Our analysis shows
that the basic angular multigrid scheme is unstable in multidimensional calculations, but we

introduce modifications that make it stable and effective.
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IVA. Development of the Angular Multigrid Acceleration Method for Discrete Ordinates
Calculations

IV A.L. Acceleration of General Iterative Methods

We begin by examining a general linear iterative method in order to construct the

framework and terminology that will organize our development of iterative methods for

transport calculations. This general presentation is a modification of one given by Morel.*

Let the following be a linear system that we wish to solve:
Hf =q, (52)

where H is a “high-order” operator and g is a “source”. In many linear systems of interest
it is very difficult to directly invert H. It often is possible, however, to “split” H into two

operators, at least one of which is “easily” inverted:
H=A-B. | (53)
We then can define the following iterative method:
AfPY = BfO 4 ¢, (54)

where [ is the iteration number and f© is an arbitrary initial iterate. Multiplication by A~?

yields

fUD = 70 4 A7, (55)
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where Z = A~! B is the “iteration operator.” Examination of the eigenvalues of Z reveals the
effectiveness of the iterative method. If the spectral radius p of Z (defined as the maximum of
the absolute values of the eigenvalues) is greater than unity, the iteration can diverge, and the
iterative method is not practically useful. If p < 1, the iterative method will converge rapidly.
If p < 1, the iterative method will converge, albeit slowly. This last case is common among
iterative methods. Modifications of these methods are required to decrease the spectral radii
and thus to increase the convergence rates.

In order to develop an approach to increase the iterative convergence rate, let us examine

the error at each iteration. The error in an iterative approximation to the solution is given by
el = f— fO. (56)

Manipulation of Egs. (52)-(56) yields an exact expression for the error:
HelHY) = g+ (57)

where r+1) = f0+D _ £0) is the “residual”. Given the exact error e+, we could use Eq.
(56) to obtain the exact discrete solution after a single iteration. Unfortunately, Eq. (57) is
just as difficult to solve as the original problem, Eq. (52), since we must invert A in both .
cases. However, if we could solve Eq. (57) approximately in an efficient manner, we could
add the resulting error estimate to the current iterate and therefore obtain a better iterative

approximation. We do so by replacing Eq. (57) with the following approximation:

Le®*V = Bri+D), (58)
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where L is a “low-order” approximation to H and is “easily” inverted. This suggests the

following iterative scheme:

F3) = Zf0 LAy (59a)
g+i) = [-1pp(+d), (59b)
Forn = p(3) 4 (), ) (59¢)

This can be written in the equivalent form:
f(l+1) _ (I . L—IH) Zf(l) + (I+ L—IB) A—lq, (60)

with the new iteration operator 2’ = (I — L7*H) Z. Clearly, if L ~ H then the spectral
radius of Z’ will be small and the iterative method will converge rapidly. The modification
to the basic iteration in Eq. (55) is called an “acceleration method”, and L is often called a
“preconditioner”, since its application changes the eigenvalues and thus the condition number
of the iteration operator.

There are several criteria that L needs to meet for it to define a good acceleration
method. First, L must produce a good estimate of those error modes that have the slowest
convergence rate in the original iterative method. In other words, if we decompose the error
into the eigenvectors of Z, we must produce a good estimate for those érror eigenmodes
corresponding to the eigenvalues of greatest absolute magnitude. In such a case L will be
“effective”. Second, L must be “stable”: it must not greatly overestimate any error modes, or

those modes will diverge in the new iterative method. Finally, L must be “easily” inverted. We
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must be able to invert L directly or iteratively at a reasonable computational cost, otherwise
there will be no advantage in using the new iterative method.

How does one find an acceleration method that meets the above criteria? Potential
candidates are those operators that are asymptotic limits of the high-order operator, assuming
that the high-order operator is reasonably close to the corresponding limit. These asymptotic
operators are generally simpler, and thus easier to invert, than the high-order operator, yet
they may behave similarly. This is the approach of diffusion synthetic acceleration (DSA),
which we shall encounter later in this chapter. Alternatively, one may use an operator that
results from a cruder discretization of the original problem, since it will presumably share
many of the important properties of the high-order operator but will be easier to invert. This
is the approach taken by the various multigrid schemes. Whatever the candidate acceleration
method is, it must be carefully analyzed to determine its stability and effectiveness for the

class of problems of interest.

IV.A.2. Source Iteration

The integro-differential transport operator is very difficult to directly invert for all but the
simplest problems. In most cases an appropriate discretization of the monoenergetic equation
can be solved by means of source iteration. The source iteration method for the discrete

ordinates (Sy) discretization is given in operator notation by

[V +04]y € = MySyDyPY + q, (61)
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where the IV subscript indicates the quadrature order for which the operators are defined. The
term “source” iteration is derived from the fact that we iterate on the right side of Eq. (61),
which is the scattering source.

In order to determine rigorously the effectiveness of source iteration we would need to
examine all of the eigenvalues of the source iteration operator. This is usually done by means
of a Fourier analysis, which we shall describe and use in the next section. However, we can
place a lower bound on the spectral radius of the source iteration operator in a ilomogeneous
infinite medium by restricting our attention to “flat” modes, i.e. those error modes that vary

slowly spatially. For such modes the gradient operator 2 - V becomes negligible compared

to the removal operator o, yielding the following simpler iteration:
oo n T = MyEy DB +q, (62)

which, assuming that Dy = My", can be rewritten as

2D = 0y + ——Dyq, (©3)
O,N
where Cy = Xn/ oy n. We will assume throughout the following chapters that Dy = 1;1,

for reasons described in the previous chapters. Therefore the eigenvalues corresponding to
these flat modes are {os, /o:}. We define ¢ = o4 /o as the scattering ratio; as ¢ — 1
the source iteration method converges arbitrarily slowly. A full Fourier analysis of an
infinite-medium problem would reveal that the flat mode corresponding to c is indeed the

slowest converging mode. Therefore, although the source iteration method is stable for non-
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multiplying media, it can have arbitrarily slow convergence. Methods must be found to

accelerate these slowly converging flat modes.

IV.A.3. Diffusion Synthetic Acceleration

Some transport problems are diffusive, meaning that the transport operator is “close”

to the asymptotic diffusion limit.%’

Such problems are characterized by large, nearly
isotropic scattering cross sections, small absorption cross sections and optically thick media.
Consequently the scattering ratio is close to unity and the source iteration method has a slow
convergence rate.

Since the diffusion equation is a good approximation to these problems (and for a wider
class of problems it is a good approximation for flat, slowly converging médes), it is a good
candidate as an acceleration method for source iteration. Over the last 30 years the diffusion
synthetic acceleration (DSA) method has been developed extensively.48-50:5273.74.76,81,54,96-115-

The basic DSA scheme uses a diffusion equation to estimate and correct the errors in the

zeroth flux moment:

[V +0,], T2 = MySye®, (64a)
a(+3) = pywl+i) (64b)

1 ® +3) _ o
—V'gf—t'v-l-tfa f = 0Os0 | ¥g — %o | (64¢)

(+3) | s
+ 10, n=0
NI , (64d)

+1
go,(n—n{bz), n>0
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where we have omitted a fixed source term since it does not affect the iteration operator and
we are only interested in the iterative convergence properties. We shall continue to omit the
fixed source in future analyses, in which case ¥ and ® may be interpreted as the iterative

errors rather than the actual solution estimates.
Let us examine the effect of DSA on the iterative convergence rate of flat error modes,

as we did for source iteration. For flat modes Eq. (64) may be rewritten as

O‘t,N@(l+%) = EN@(O, (658.)
1
oof® = o4 (QOSHZ) - SO(()l)) y (65b)
(=+3) | 0
+ fY, n=0
o = 7 " ! : (65¢)
gof(w:: 5), n>0

Rearrangement of Eq. (65) leads to the following relation for the iteration errors:

(1) 0, n=>_0
Onm = ; (66)
" Cn,N (pg'f)n’ n>0

where we have defined a general scattering ratio ¢, y = 0sn N /0, . Our emphasis upon the
order of the quadrature set by including NV in the cross section subscripts will be important
in our later multigrid development. If the scattering is isotropic, then Eq. (66) predicts that
DSA will coﬁverge the flat component of the solution in a single iteration. An analysis of all
the iteration modes (not just the flat ones) in a homogeneous infinite-medium model problem
reveals that the overall spectral radius of DSA for analytic transport is less than 0.23 in slab
geometry!® and 0.5 in multidimensions'!? when scattering is isotropic, so for problems with

isotropic scattering DSA is both stable and effective.
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In spatially discretized problems the situation is more complex. Alcouffe!®® and
Larsen!® found that to guarantee the stability of DSA in spatially discretized problems the
discretization of the diffusion operatof must be consistent with or nearly consistent with the
discretization of the transport operator. Furthermore, for DSA to be useful the diffusion
operator must be easily inverted. Some of the discrete diffusion operators developed for
DSA methods are symmetric and hence relatively easy to invert by the conjugate gradient
method!!'® or by other means, whereas other proposed diffusion operators are more difficult
to invert. In many cases attempts to alter the diffusion operator in order to invert it more
easily cause DSA to lose its effectiveness. The development of effective and efficient DSA

schemes remains an active field of research.

IV.A.4. Current-Accelerating DSA

The standard DSA method is stable and effective for diffusive problems with isotropic
scattering. However, DSA loses its effectiveness as the scattering becomes increasingly
anisotropic. Equation (66) shows that max {c, x} for n > 0 is a lower bound on the spectral
radius of source iteration with DSA. When the scattering becomes sufficiently anisotropic we
must also accelerate higher moments than the zeroth flux moment in order to have an effective
scheme.

Morel®¢ proposed a variant of DSA in which the “currents” (i.e. the first flux moments)
as well as the scalar flux are accelerated. Like DSA, it may be derived as an approximation

to transport theory (the P; approximation). The modified scheme is given by

Q- V40, T3 = Mynyd®, (672)
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a(+3) — pyw(+i) (67b)
1 i+ s 1
{_v ot aa} 1O = oy (wé ) soé”) -2y (2048 - 20) | (670)
RO = — w04 By, (20+9) -20) . (67d)
30'tr T n=1 .
1
A 4 g0, p=o
is
N B P 8
1
go,(f:;z), n>1

where M and Jy, are matrices that convert the first flux moments to currents and back,

respectively. For flat modes this method reduces to

o n®(1) = T80, | (68a)
aaf(l) = Os0 ((ng-E) _ (pél)) , (68b)
ho = Zday, (@(“%) - «I)U)) , (68¢)
Ttr n=1

AT 0

U gog:;%) +(wh®) , n=1 - (63d)
1
(p,(:,:z), n>1

Combining Egs. (68) yields the following convergence properties for flat error modes:

- 0, n=20,1
oD — o . (69)

Cn, NPnm, n>1

Therefore the convergence rate for flat modes is governed by max {c, v} for n > 2 rather

than n > 1. Since most physical forward-peaked scattering kernels produce co vy > c1,nv =
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_-++ > cr,N, where L is the order of the scattering, this extended DSA scheme has improved
convergence rates over the standard DSA for flat modes without a greatly increased cost.
One significant drawback to this modified DSA method that a full analysis reveals is that
for multidimensional calculations one of its eigenvalues has a magnitude of 7z5c /(1 — Trgc),
so for anisotropic scattering with Zigc > 0.5 (when standard DSA loses its effectiveness)
the modified DSA is unstable and thus cannot be used.!!? Additional modifications or other

anisotropic acceleration methods must then be implemented.

IV.A.5. Many-Moment Acceleration Methods and Angular Multigrid

In the preceding analyses we have seen that a lower bound on the spectral radius of source
iteration is given by max {c, v} for all n corresponding to “unaccelerated” méments. As the
scattering becomes highly forward-peaked (¢, y — 1) it becomes necessary to accelerate
more flux moments than just the zeroth and first ones. Thus we need to define acceleration
methods of higher order than diffusion.

Earlier we stated that the asymptotic limits of the transport operator may be goodl
candidates for acceleration methods. In the current study we are interested in problems that
are near the FP limit, so the FP equation would seem to be an ideal acceleration operator.
Certainly we could expect an analysis to reveal that such an acceleration method would be
effective. However, a good acceleration operator must be easily invertible, and experience has
also shown that the discretization of the acceleration operator generally must be consistent
with the discretization of the transport operator. Pseudospectral discretizations of the FP
equation are similar structurally to the Sy transport operator, so inversion methods like

source iteration would have the same convergence difficulties. Instead of attempting to find
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an inexpensive method of inverting the FP operator, we shall look at other candidates for
acceleration methods.
The Py equations (another anisotropic asymptotic limit*®) have been investigated

as potential acceleration methods in slab geometry,101:106,117-119

For both isotropic and
anisotropic problems the Py acceleration method has been found to be more effective than
DSA for odd values of N. However, because of the increasingly high cost of solving the
coupled Py equations for increasing values of N the most cost-effective acceleratioﬁ method
was determined to be the P; scheme (equivalent to Morel’s DSA method®). Khattab and
Larsen!!? defined an easily invertible Px-like method in which they solve the Py equations
approximately by decoupling them, but this method’s effectiveness slowly degrades as the
degree of anisotropy increases. The Py equations are even more difficult to solve in
multidimensions, so this approach is not very promising. |

A second approach that may be taken in the search for good acceleration methods is
to use a more coarsely discretized version of the high-order operator. This approach has
been used in situations in which the geometry or the spatial discretization scheme makes it
very difficult to construct a consistent and easily invertible DSA operator. Early attempts
used S equations to accelerate the zeroth and sometimes the first flux moments.'?*-12* More
recently the transport synthetic acceleration (TSA) method has been developed; it uses a
lower-order transport operator (not necessarily S2) and modified cross sections to accelerate
the zeroth flux moment.?*123-127 The cross section in the TSA operator has been restricted to

isotropic scattering in order to produce a symmetric operator, which is easier to invert than

the asymmetric operators that result from anisotropic scattering.
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In order to deal effectively with highly anisotropic scattering we propose to modify the
above approach by using lower-order discrete ordinates operators with anisotropic scattering
to define an acceleration method. Specifically, we will extend the angular multigrid method
of Morel and Manteuffel?® to multidimensional transport. Before we describe their method
and our extensions in detail, let us first examine the effectiveness of using a single low-
order discrete ordinates operator with anisotropic cross sections to accelerate a high-order Sy

calculation. The basic method is the following two-grid scheme:

Q- V40, ) = Myzyd®, (70a)
a(+3) = pyw(+i) ‘ (70b)

-V 40y, TO = MypSy®9 + My Py_nSy (cp(“%) —<1>(l>), (70¢)
0 = DpT'O, (70d)

¢+ = (+3) 4 py_ @O, (70e)

where N’ < N. For compactness of notation we have defined the restriction operator Py_n-

and prolongation operator Py, ny:

(PNqN’@>(n’m) = Pnm (Tl, m) € QN': (713')

(Pv—N®) . m

{ Prms (na m) € QN’ (71b)

0; (n7 m) ¢ QN’ ,

where Q- is the set of spherical harmonics orders (n, m) that form the interpolatory basis

for the quadrature of order N’. Note that Eqs. (70) imply that we actually invert the Sy~
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equations; we shall return to this operation later. As in previous analyses we restrict our

attention to flat error modes, which reduces our acceleration scheme to the following:

oen®) = Tye0, (72a)
o @0 = Ty@O+ Py_yTx (@) - a0), (72b)
¢+ = (+:) 4 py_ @0 C(20)

Combining Eqs. (72) yields the following iteration equation for flat error modes:

(+1) _

<pnm -

{ 0, (n,m) € Qn
(73)

Cn P, (n,m) & Qne
Thus the spectral radius for flat modes is max {c, n} over only the n corresponding to
unaccelerated moments. Since the only constraint that we have placed on N’ is that it be less
than N, many more moments than the zeroth and first moments may be accelerated, causing
the spectral radius to be governed by higher-order scattering ratios than in DSA.

The effectiveness of the above two-grid scheme apparently relies on completely inverting
the lower-order discrete ordinates operator. This inversion is, of course, difficult to perform.
Source iteration on the Sy+ operator will converge as slowly as it does for the Sy operator
(assuming for now that ¢, xv = cp ). Therefore we need to apply an acceleration method to
more rapidly invert the Sn+ operator. We also recognize that we may not need to completely
invert the Sy» operator; a partial inversion may be sufficient to provide good acceleration

at less cost than a full inversion. We reintroduce the DSA acceleration method and assume

that a single Sy sweep accelerated by DSA will be effective at accelerating the Sy iteration.
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Since the scattering is forward-peaked in many problems of interest and we are interested
in multidimensional calculations, we shall use the standard DSA operator rather than the

unstable current-accelerating DSA. The modified two-grid scheme is:

Q- V40, T3 = MyZyd®, (74a)
(+3) = pyw(+i) (74b)
-V 40, 9 = MyPy.nwEy (@(”%) - q><‘>) , (74c)
0 = DyEO, (74d)
1 ® )
-V 30’t - Vv + Tq f = PNJ_,()ENJ@ y (746)

@(H’l) = Q)(H'%) + Py (Ql(l) + Po—-»N’f(l)) ’ (741)

where Ppi_, is the restriction to and Py, 5+ the prolongation from the zeroth flux moment.
After restricting our attention to flat error modes and manipulating the resulting equations we

obtain the following equation for the iteration errors:

0, n=20
WD = § e, neanplh, (n,m) € Qnr, n#0 . (75)
Cn,N‘pg%% (n’ m) ¢ QN’

A comparison of Eqs. (73) and (75) shows that failure to completely invert the Sy operator
may degrade the effectiveness of the two-grid scheme, depending on the values of ¢, y and
cn,nv. However, this scheme is more effective than accelerating the Sy calculation with DSA

alone, since |cp,nCn N7| < |cn,n|. Nevertheless, the convergence may still be arbitrarily slow
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if cp N7 = cu v = 1 for some value of n. What is needed is a method by which we may reduce
the magnitudes of {c, x+}.

For this we turn to the extended transport correction. The extended transport correction
was originally defined to improve the numerical accuracy of calculations with anisotropic
scattering by including the effects of scattering moments of higher order than the cross section
expansion used.!?-13 This “correction” consists of subtracting a constant from all of the

cross section moments, thereby defining “corrected” cross sections o7;;:
O-* = Un - O'ay,-—,-, n S L. (76)

The effect of the traﬂsport correction is to make the scattering less highly forward-peaked
by approximately subtracting a delta function in the forward direction in the differential
scattering cross section (which has no effect on the corresponding analytic angular flux
solution). If a Galerkin quadrature is not used or if the scattering order is not equal to the
maximum order of the spherical harmonics associated with the Galerkin quadrature (i.e. if a
full scattering matrix is not used) the discrete ordinates solution is not invariant with respect
to the value of ... Standard values for the correction are 0 corr = O OF Oeorr = Op+1; it has
been found through numerical experience that the solution is improved when the extended
transport correction is used.!?%13® The solution is invariant, however, if the discrete-to-
moments and moments-to-discrete operators are inverses of each other and a full scattering
matrix is used. To see that this is true, examine the following transport corrected discrete

ordinates equation:

[Q-V-I—(O‘t—dcom-)]N‘I’:MN [ZN—O'CWT-I]DN‘I’. amn
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Rearrangement of Eq. (77) gives
[Q'V+Ut]N‘I’“Ucorr‘I’ = MNENDN‘I’ —O'WTMNDN‘I’. (78)

Dy =M 1\",1 then the terms containing o cancel and we are left with the uncorrected
Sn calculation. Although the solution may be invariant, the iterative convergence properties

have been altered, since the corrected scattering ratios are given by

Ot,N — Ocorr
c;kz,N = ’ (79)

OnN — O corr

and o, may be chosen to minimize these ratios, i.e. to make the scattering less anisotropic.
In particular, for the DSA-accelerated two-grid scheme we may choose o such that
|C;, N,| < |en,n|. This is a crucial step in making this scheme as efficient as possible.

The above concepts were all incorporated by Morel and Manteuffel into their angular
multigrid (ANMG) acceleration method, which they developed, analyzed, and tested for slab
geometry.?? Their scheme has the additional feature, inherent in multigrid schemes,!31:132 of
a hierarchy of several low-order discrete ordinates operators, with each low-order operator
accelerated by an operator of even lower order. (Multigrid schemes had been defined

in the past for transport problems,!3*134

but their low-order operators used coarsened
spatial discretizations rather than coarsened angular discretizations.) Morel and Manteuffel
explicitly described the particular application to an Sy calculation, which in their scheme is
accelerated by an Sg sweep, which in turn is accelerated by an S4 sweep, which in turn is

accelerated by a current-accelerating DSA calculation. A transport correction is applied to

each Sy operator (or “level”), including the topmost one, in order to optimize the “smoothing”
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or conVergence rate of those moments not accelerated by lower levels. Their analysis reveals
that by using a series of successively lower order Sy operators, each half the order of the
previous operator in the series, an upper bound on the spectral radius of 0.6 is obtained with
the ANMG scheme. (The angular multigrid method was originally referred to by the acronym
AMG, but in order to avoid confusion with the more widely known algebraic multigrid
method!* we will use the acronym ANMG to refer to the angular multigrid method from
now on.)

The objective of the remainder of our work is to extend the angular multigrid scheme to
multidimensional calculations. Initially we will examine the basic scheme, as expressed by
Egs. (74), with the inclusion of an arbitrary number of additional discrete ordinates levels.
Instead of using the unstable current-accelerating DSA we shall substitute an S; sweep
accelerated by standard DSA as the lowest level. Modifications to the basic scheme will be
defined to improve the stability and effectiveness as indicated by full analyses of the multigrid

scheme.

IV.B. Fourier Analysis of the Angular Multigrid Acceleration Method

In the previous section we examined the effects of various acceleration schemes on “flat”
or slowly spatially varying error modes as a quick and simple indicator of their effectiveness.
These analyses show that a lower bound on the iterative spectral radii of common acceleration
schemes becomes arbitrarily close to unity as the scattering becomes highly forward-peaked.
These same analyses show that a many-moment acceleration method such as the ANMG
method can be quite effective at attenuating these flat error modes. This is a necessary

property for the ANMG scheme to be a good acceleration method.
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In order to completely determine the effectiveness and stability of any acceleration
operator, however, we must examine all of its eigenvalues. A key step in this process is to
identify small eigenspaces of the solution space that have finite dimension (and therefore a
finite number of eigenvalues). Identification of these subspaces generally permits the use of
numerical analysis techniques to determine the eigenvalues associated with each subspace.
Assuming that all subspaces of the solution space are identified and analyzed, the behavior of
the iterative method is completely determined.

In the particular case of linear transport methods, a Fourier analysis is usually applied in
order to determine the iterative eigenvalues.!%® The errors are decomposed into Fourier modes
(defined below), which are eigenfunctions of the transport operator and most acceleration
operators. Subsequent analysis of each Fourier mode determines the effectiveness and
stability of the iterative operator with respect to that mode. Not only does this determine
the overall stability and effectiveness of the iterative method, but it also reveals details of the
iterative behavior, which can suggest further improvements.

We will employ Fourier analyses to determine the stability and effectiveness of the
ANMG scheme. First we will demonstrate a Fourier analysis (and the need for additional
acceleration in forward-peaked problems) by applying it to the DSA-accelerated Sy method

(Sn-DSA) as expressed in Egs. (64). We introduce the following Fourier ansatz:

1 )
'gb,EH.z) = olage™T, (80a)
= W Apme?T, (80b)

oD = 1B et (80c)
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fO = WCpgae™™. (80d)

Equation (80) states that we can express the errors in terms of complex exponential functions
with associated spatial frequencies A, where in two-dimensional problems A = (A;, Ay). The
total error is a linear combination of the error modes characterized by different A’s. Close
examination of Eqs. (64) shows that complex exponentials are indéed eigenfunctions of the
Sn-DSA operator, so we may analyze each of them independently.

We introduce Egs. (80) into Egs. (64) and constrain the equations to an infinite
homogeneous medium. Past experience with Fourier analyses has shown that infinite
homogeneous medium results are generally in excellent agreement with computational results
for the most difficult finite and/or héterogeneous problems, which are analytically intractable.

Equations (64a) and (64b) then yield
A = DyL7'MyTyB = SyB, (81)
where Ly = diag {o¢n + €% - A}. Equation (64¢c) yields
Cpsa = LyssPv—oZn (A — B) = Spsa (A — B), (82)
where Lpgs = [O"a, N+ AP / 30+n]. Equation (64d) yields
wB — A = P ,nCpsa- (83)

Finally, we combine Egs. (81)-(83) to obtain

wB = [P0—>NSDSA (SN - IN) + SN} B. (84)
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Equation (84) is a matrix eigenvalue problem; the dimension of the matrix is equal to the
number of quadrature directions. The largest of these eigenvalues in absolute value for a given
A we will call the “modal spectral radius” associated with error modes of this frequency; the
spectral radius is the largest modal spectral radius for all A.

We first analyze Eq. (84) for the S4 equations in x-y geometry with isotropic scattering,
no absorption and the standard level-symmetric quadrature set. The results of this analysis are
shown in Figure 2. The modal spectral radius is plotted as a function of the modal frequency,
where we have converted the frequencies from Cartesian to polar coordinates. (In this and all
succeeding analyses || is measured in units of transport mean free paths.) As discussed in the
previous section this iteration is stable and effective. As |A] — 0 (i.e. as the modes become
flat) the modal spectral radii approach zero, a direct result of the DSA vdevelopment. At higher
frequencies the modal spectral radius is greater than zero yet much less than unity, which
shows that DSA produces an imperfect but nevertheless reasonable error estimate at non-
zero frequencies. Note also that at certain angles there are somewhat larger modal spectral
radii at high frequencies; these angles correspond with quadrature directions. Although the
modal spectral radii along these rays are higher than at other angles, the iteration is still quite
effective.

Before we examine the effects of a forward-peaked kernel on the modal spectral radii,
let us look more closely at the Fokker-Planck kernel and its effect on flat modes. In Chapter
IT we derived the asymptotic FP scattering kernel, Eq. (8). If we apply the standard transport
correction to this kernel, we obtain the standard form of the FP kernel:

Oty — Oqg

s L (L +1) —n(n+1)]. (85)

Osn =
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Fig. 2. Fourier analysis of S4-DSA iteration, isotropic scattering.

In Table I we list values for o, and the associated scattering ratios |c,| for a P4 expansion
(L = 4) with 04, = 1 and 6, = 0. The scattering ratios associated with unaccelerated
moments form lower bounds on the overall iterative spectral radius. For an S4;-DSA
calculation that uses the standard FP kernel, Table I shows that the spectral radius will be
at least 0.9. However, we can make some improvements by applying an optimized transport
correction. In the S4-DSA case we subtract the value (o4 + 1)/ 2 from all of the scattering
moments, resulting in the optimized values of o, and |c,| listed in Table I. With this transport
correction the modal spectral radius is reduced to 0.82.
We now apply a Fourier analysis to the S;-DSA iteration with the optimized FP kernel
_derived above and no absorption. Solution of Eq. (84) for the modal spectral radii yields the

results displayed in Figure 3. The high frequency results are very similar to the isotropic case:
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TABLE I

Standard and Optimized P4 FP Cross Sections and Scattering Ratios

n | Osy (standard) | |c,| (standard) | o, (optimized) | |c,| (optimized)
0 10 1.0 55 1.0

1 9 0.9 4.5 0.82

2 7 0.7 2.5 0.46

3 4 0.4 -0.5 0.09

4 0 0.0 -4.5 0.82

despite some narrow regions of increased modal spectral radii the iteration scheme is fairly
effective. However, at low frequencies the spectral radius is close to unity. The modal spectral
radius for |A| = 0 is indeed 0.82, as derived above, although for intermediate frequencies it
is as high as 0.90, the overall iterative spectral radius. This demonstrates the ineffectiveness

of DSA for highly anisotropic scattering and the need to accelerate additional moments.

In Figures 4 and 5 we plot the modal spectrai radius for Sg-DSA and Sg-DSA iterations,
respectively, with optimized FP kernels. Because of the increased quadrature orders we need
to use FP expansions of higher order, so the scattering anisotropy is more extreme. In the Sg
case the flat modal spectral radius with an optimized FP kernel is 0.91 (reduced from 0.95
with the standard FP expaﬁsion). The overall Sg-DSA spectral radius is 0.95. In the Sg case
the flat modal spectral radius is 0.95 (reduced from 0.97 with the standard FP expansion). The
overall Sg-DSA spectral radius is 0.97. Not only does DSA become even more ineffective
as higher order FP expansions are used, but the optimized transport correction also loses
effectiveness. The high frequency behavior is similar to that seen iﬁ the S4-DSA results.
Note that as we increase the FP expansion order in these analyses we keep o = 1, which
means that o; increases. This may explain why the qualitative trends in Figures 3-5 seem

to scale to progressively higher frequencies as we increase the quadrature and scattering
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Fig. 3. Fourier analysis of S4-DSA iteration, optimized FP scattering.
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Fig. 4. Fourier analysis of Sg-DSA iteration, optimized FP scattering.
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Fig. 5. Fourier analysis of Ss-DSA iteration, optimized FP scattering.

order. One final aspect that these analyses reveal about DSA-accelerated Sy schemes with
forward-peaked scattering is that the eigenvalues of greatest absolute value occur in complex
conjugate pairs; in contrast, in relatively isotropic problems the dominant eigenvalues are
almost always real.!3 This difference will become important when we attempt to confirm
our Fourier analyses numerically.

Now that we have demonstrated the Fourier analysis method and have shown in greater
detail the ineffectiveness of DSA when applied to forward-peaked problems, we will Fourier
analyze several specific examples of the ANMG acceleration method. Our first example is

the DSA-accelerated two-grid scheme presented in Eqs. (74). We augment the Fourier ansatz




61

of Egs. (80) with the following:

B = wie, (862)
O = o AT, | (86b)

We substitute the Fourier ansatz into Eqs. (74). Equations (74a) and (74b) yield Eq. (81).

Equations (74c) and (74d) yield

C' = Dy LMy Py—.yEn (A — B) = Sy—n (A — B). (87

Equation (74e) yields
Cpsa = LpgaPn—oZnC = SpsaC'. (88)

Equation (74f) yields
wB — A =Py N [C'+ PonCpsal - (89)

Finally, combining Egs. (81) and (87)-(89) yields

(.UB = [PN’—->N (P0—>N'SDSA + INI) SN—)N' (SN - IN) + SN] B (90)

We solve the above eigenvalue problem for the S4-S2-DSA scheme (N = 4, N’ = 2)
with FP scattering and an optimized transport correction on each level (“optimized” will
always mean that at each level the absolute values of the scattering ratios corresponding

to moments that are unaccelerated at lower levels are minimized). The flat modes of this
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scheme will have a modal spectral radius of 0.54. The Fourier analysis results are shown
in Figure 6. The multigrid scheme does indeed accelerate low-frequency modes well, as
predicted. However, this scheme also excites high-frequency errors that correspond to one of
the quadrature directions; the resulting spectral radius is 2.37 (in the figure all modal spectral
radii greater than 2.0 are plotted as 2.0). Therefore this specific application of the ANMG
method is unstable and cannot be used without modification.

Before we address the question of whether we can stabilize the S4-So-DSA iteration let
us first analyze some other ANMG schemes to determine whether high-frequency instabilities
are common for plane waves along quadrature directions for this class of acceleration

methods. We extend Eqgs. (74 ) to allow for an additional discrete ordinates level. This three-
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Fig. 6. Fourier analysis of S4-S2-DSA iteration, optimized FP scattering.
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grid scheme consists of Eqs. (74a)-(74d) and the following:

[Q . V + Ut]NII W,/(l)

@//(l)
1 0
-Vv. V+o.|f
30t N
U+

= My Py S @O, (91a)
— DB, (91b)
= PN”—»OEN”é’I(l)) (910)

3+2) + Py n®® + Pyu_y®"O + Py fO. 91d)

The extension of these equations to even more grids is obvious. We again augment the Fourier

ansatz to include the additional level:

Q,b',;(l) = wicfe?T, (92a)
w;;ﬁff = W'C! ePT. (92b)

We substitute the Fourier ansatz into Egs. (74a)-(74d) and (91). We obtain Egs. (81) and (87)

as before. Equations (91a)-(91b) yield

C’ = DN//L;,},MN"PNr.,NHENIC’ = Sy C'. 93)

Equation (91c) yields

Cpsa = LpgsPrr—oEn»C" = SpsaC". _ (%94)
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Equation (91d) yields
wB — A = Pni.n [C' + Pynon (C" + PoonwCpsa)] - 95)
Finally, combining Eqgs. (81), (87), and (93)-(95) yields

wB = [Pyr—on { Pyt (PomnwSpsa + Inv) Snionr + In} Sn—n (S — In) + Sy B.
(96)

Equation (96) describes the eigenvalues of a general three-grid iteration.
We now examine the particular schemes Sg-S4-S2-DSA and Sg—S4-S2-DSA with
optimized FP scattering. Our selection of the number of grids and their quadrature orders
is identical to that of Morel and Manteuffel (with the addition of the S» operator), in which

N’ = Half (N), where

N N
5 5 even

Half (N) = . 97
alf (N) {%H, X odd ‘ oD

Our analysis of flat modes with optimized transport corrections gives a modal spectral radius
of 0.40 for the S5-S4-S2-DSA iteration and 0.57 for the Sg-S4-So-DSA iteration. The Fourier
analyses of these schemes are shown in Figures 7 and 8. We observe the same qualitative
behavior seen in the S;-S2-DSA iteration. Low-frequency modes are well accelerated by the
ANMG method. However, high-frequency instabilities plague this acceleration scheme. The
spectral radius for the Sg-S4-S2-DSA iteration is 1.62; that of the Sg-S4-S2-DSA iteration is
2.44. Additional analyses confirm that these instabilities are not the result solely of the S,
or DSA operators; accelerating fhe high-order operator by inverting any of the lower-order

discrete ordinates operators creates high-frequency instabilities. It seems reasonable to expect
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Fig. 7. Fourier analysis of S¢-S4-S2-DSA iteration, optimized FP scattering.

lambda (angle)

: L
200.0 300.0 400.0
lambda (magnitude)

0.0 0.5 1.0 15 2.0

modal spectral radius

Fig. 8. Fourier analysis of S5-S3-S2-DSA iteration, optimized FP scattering.
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that higher-order ANMG methods will also exhibit this general behavior: low-frequency
modes will be well accelerated, but the overall iteration will be destabilized by certain high-
frequency modes. If we wish to use this type of acceleration method we need to find a way
to stabilize the high-frequency corrections without significantly degrading the acceleration of
low-frequency modes.

Two observations will guide our development of a stable ANMG acceleration method.
First, low-frequency modes are stable and well accelerated by the basic ANMG scheme. If
possible, we do not want to define any modifications that alter the low-frequency corrections.
Second, the Fourier analyses of ordinary source iteration (with or without DSA acceleration)
show that the high-frequency modes are stable and well attenuated by that iteration; it is the
ANMBG corrections that destabilize these modes. Therefore we desire a modification to the
ANMG scheme that produces little or no correction at higil frequencies. In summary, we seek
an operator that we can apply to the ANMG corrections that is the identity for low-frequency
modes and is the zero operator for high-frequency modes. This is a classic description of a
low-pass filter; it also may be used as a working definition of an elliptic operator. Desirable
properties for such an operator in our situation are that it is easily invertible and easily
implemented.

Such an elliptic operator is already in use in the acceleration schemes we have examined
so far: it is the diffusion operator for DSA. At high frequencies the V* term becomes very
large, so its inversion results in a vanishingly small correction. On the other hand, at low
frequencies the V? term becomes negligible compared to a non-zero absorption term; if

o, = 04 then we have the identity. We therefore propose to modify the ANMG acceleration
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method by repiacing the equation for the corrections with the following:

£fO = &Y 4 Pyu_ni®" O 4 Pyo_®"0 ... (982)
(83
[—V~j;V+af fostonm = Ot orrnmy (1,m) € Qv (98b)

@(l"'l) — @(H-.li) + PN’—-PN [fc’(()l‘r?'l‘ + PO-—»N’fl()lA)S'A} ) (98C)

where for now we shall let o = oy v.

Note several things about the above modifications. First, we do not propose to filter
the DSA corrections; these corrections are small at high frequencies and have already been
observed to be stable. Second, the filter contaiﬁs a tuning parameter o; we may édjust this
parameter to define the boundary between “low” frequehcies and “high” frequencies. Third,
at low and high frequencies the filter will in fact limit to the identity and the zero operator,
respectively, as desired. Last, the filter is applied to each angular moment independently. One
of the ramifications of this is that the filter is easily parallelizable and hence may result in
little additional computational cost. It also means that for a given spatial error mode the filter
is simply a multiplicative constant for all of the angular moments of that mode. Therefore
it does not matter whether we calculate the ANMG corrections and then filter them or if we
apply the filter to the residual that drives the ANMG method; the final ANMG corrections are
the same. (This reordering of operators would result in the filtering of the DSA corrections,

however.)
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A Fourier analysis of the filtered ANMG method yields the following eigenvalue

problem (written here for the three-grid scheme):

wB = [Pyni—n { Pomn'SpsaSN N + FrugSeorr } SNont (Sv — In) + Sn] B, (99)
‘where

Fuy = diag {1+ as|A]*/30%}, (1002)

Seorr = Prvnnr S + Iy, (100b)

We solve Eq. (99), or its generalization to ANMG methods of an arbitrary number of
levels, for the S4-So-DSA-filter, Sg-54-So-DSA-filter, and Sg-S4-So-DSA-filter iterations with
optimized FP scattering and ay = 1. The results are shown in Figures 9-11. These figures
show that the spatially analytic ANMG acceleration method is stable and effective for Sy
discretizations of order 4, 6, and 8 when the ANMG corrections are diffusively filtered. The
spectral radii for the filtered schemes are 0.65, 0.63, and 0.85 for the Sy, Ss, and S5 schemes,
| respectively. It is not surprising that the spectral radii are larger than the modal spectral
radii for flat modes; this is seen in DSA-accelerated schemes. The spectral radius for the Sg-
ANMG iteration is noticeably higher than for the other iterations; a comparison of Figures
8 and 11 shows that in this particular case the filter may be tuned to too high a frequency
“cutoff””, which we shall define as the frequeﬁcy of the modes that are reduced in magnitude

by a factor of 2 by the filter.
Let us look at the effect of adjusting the filter tuning parameter, cy. Figure 12 shows the

effect of reducing o to 0.1 on the Sg ANMG iteration, which should allow higher frequency
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Fig. 9. Fourier analysis of S4-S2-DSA-filter iteration, optimized FP scattering
(af =1,05 = 014).
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Fig. 10. Fourier analysis of Sg-S4-S2-DSA-filter iteration, optimized FP scattering

(af =1,07 = 046).
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Fig. 11. Fourier analysis of Sg-S4-So-DSA-filter iteration, optimized FP scattering
(af =1,05 = O18).
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Fig. 12. Fourier analysis of Ss-S4-So-DSA-filter iteration, optimized FP scattering
(af = 01, of = O't,g).
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Fig. 13. Fourier analysis of Ss-S4-Sp-DSA-filter iteration, optimized FP scattering
(af = 10,05 = 0¢3).

corrections to pass through unchanged. The tuning parameter is too low in this case; the
high-frequency instabilities are clearly present. Figure 13 shows the effect of increasing
ay to 10 on the S3 ANMG iteration. Although the marginally stable region in Figure 11
has now been effectively filtered, the modal spectral radii of some other modes of the same
frequency magnitude have increased, resulting in an overall spectral radius of 0.72. These
results show that the selection of an optimal value for oy is not trivial. If o is too low then
the ANMG method is destabilized by high-frequency corrections; if oy is too high then the
ANMG method loses some of its effectiveness.

In practice, it is desirable to use a constant value of o that yields an unconditionally
stable and effective ANMG acceleration scheme for any Sy order. The appearance of a

frequency region of increased modal spectral radii in the filtered Ss-ANMG iteration that was
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TABLE I
Spectral Radii of Filtered Sy-ANMG lIterations (ay = 1, 05 = 04 n)

N a I/\slow‘

4 {065 ~0
6 1063 =0
8 | 085 214

10 {095 | 193
12§ 1.04 | 20.7
14 1132 | 254

not present in the Sy or Sg schemes suggests that we should examine the ANMG acceleration
of some higher-order problems to determine if this is an indicator of an undesirable trend.
In Table II we record the spectral radii and the frequencies of the slowest-converging modes
of a sequence of filtered Sy-ANMG iterations with ay = 1 and 05 = oy n. As N increases
the spectral radius increases rapidly; in fact, the Si2 and Sy4 iterations are unstable. The
parametric study of the previous paragraph leads us to believe that a sufficiently large value
of ay would stabilize these iterations, but this does not guarantee that a constant value of oy
would stabilize Sx-ANMG iterations of an arbitrary order.

In order to determine whether we can define a filter which yields an unconditionally
stable ANMG scheme, we first note that the instabilities recorded in Table II occur at
approximately the same frequency. Thus we desire a filter that has the same frequency cutoff
regardless of Sy order. The filter we have defined in Eq. (98b) does not have a constant cutoff

frequency when oy = o n. The cutoff frequency in this case is

X = ooy = (101)
Oy
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TABLE III
Spectral Radii of Filtered Sy-ANMG Iterations (o = 1, 05 = 0y,)

N g !/\slmul
4 1070 32
6 | 0.81 4.1
8 | 0.86 6.7
10 | 0.90 73
12 | 0.92 8.2
14 | 0.94 9.3

As the quadrature and scattering orders increase the FP cross section expansion yields an
increasing value of o i, which increases the cutoff frequency. However, oy, is constant with
respect to the cross section expansion order. Therefore, if we let o = o4, we can expect the

filter to scale to higher quadrature orders without any changes to its frequency properties; its

A= 0ty /3 (102)
af

In Table I we record the spectral radii and corresponding slowest-converging

cutoff frequency is

frequencies for a sequence of filtered Sy-ANMG iterations with oy = 1 and o4 = o4 All of
the iterations examined are stable, although the spectral radii are gradually increasing. Note
that the frequencies of the slowest-converging modes are greater than the cutoff frequency,
which is about 1.7. Therefore their modal spectral radii are close in value to the corresponding
modal spectral radii of simple source iteration, which is stable. We thus expect the ANMG
scheme to remain stable for increasingly higher Sy orders when oy = 1 and of = 0y,; the
trend in Table III suggests, however, that the scheme may become increasingly ineffective.

Nevertheless, since low-frequency modes are better accelerated by the ANMG scheme
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than by DSA alone the ANMG scheme should remain more effective than simple DSA-
acceleration.

In summary, the analyses of this chapter have shown that common acceleration schemes
for discrete ordinates problems with source iteration are ineffective when scattering is highly
forward-peaked; numerous flux moments need to be accelerated. The basic (unfiltered)
spatially analytic ANMG method is an effective acceleration method for low-frequency
modes in these problems, but it generally is subject to high-frequency instabilities. These
instabilities can be eliminated by filtering the corrections with an elliptic operator; the
diffusion equation is preferred for practical reasons since it is already used for DSA. The
filter may be tuned to define the boundary between low and high frequencies; the selection
of the tuning parameter affects the stability and effectiveness of the ANMG method. Since
all of these resulits are obtained from analyses of the spatially analytic equations, we need
to perform additional analyses to determine whether these properties remain when we apply

spatial discretizations to these methods.
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CHAPTER V
ANMG ACCELERATION OF THE SPATIALLY DISCRETIZED

DISCRETE ORDINATES EQUATIONS

In the previous chapter we extended the angular multigrid scheme to the spatially
analytic discrete ordinates equations in x-y geometry. Our analysis showed that the basic
ANMG scheme is subject to high-frequency instabilities, but that the method is stable and
effective when the ANMG corrections are diffusively filtered. Although we did not examine
the method in three dimensions, experience has shown that the qualitative behavior of .
transport methods in x-y-z geometry is close to that seen in x-y geometry. Therefore we will
assume that the spatially analytic ANMG method is stable and effective in x-y-z geometry,
unless subsequent numerical tests show otherwise.

We now focus on the application of the ANMG method to the spatially discretized Sy
equations in x-y geometry. Conceptually this is simple, since we will be using the same type
of operators that we used in the spatially analytic case. The discrete ordinates equations that
we choose to examine are the class of finite element methods presented in Eq. (46). As DSA
and filter operators we will consider the methods presented in Appendix A. These are the
modified 4-step operator!® and the DSA operator of Wareing, Larsen, and Adams’™ (WLA),
as modified by Wareing.!3’

As in the last chapter we will employ Fourier analyses to determine the stability and
effectiveness of the various iterative methods. Specifically, we want to determine whether
the spatially discretized ANMG method is effective at accelerating flat modes and whether

it is subject to high-frequency instabilities. If instabilities are present, we need to determine
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whether the candidate filter operators are “discrete elliptic”, that is, whether they eliminate
high-frequency modes while having little or no effect on flat modes. Assuming that the filters
are effective and stable, we want to determine the spectral radii for a variety of ANMG-

accelerated discrete ordinates calculations.

V.A. Development of Fourier Analysis Equations

We begin by introducing a Fourier ansatz that is applicable to the FEM framework. We
include all of the variables that will be used in the final ANMG method; not all will be used

in the methods that precede it in our analyses. Our discrete Fourier ansatz is

1
Pt = wlageent), (103a)

(+1)

iy = W Apm "R ), (103b)
(PS#C)M — it Bome ¢iOamithy;) | (103¢)
P = wld eiemtho), (103d)
Py = W gy e Pemithoba), (103e)
¢Z(i)z] ch eiPemitiuys), (1031)
i = W Cy €T, (103g)
FO meii = W Ceorrmm,ce =), (103h)
P mis = W' Cloppmm € O H8), (103i)
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f(z) = W Opga eiPeitrvn) - (103j)
DSA,c,ij 4 )

where the subscript ¢ € {1, 2, 3, 4} indicates the cell corner in which each variable is defined.
Note that we have assigned the same phase (A;z; + A,y;) to all the variables in a given cell,
regardless of their actual location. This is an arbitrary choice, since the selection of a different
phase only introduces a multiplicative complex constant into the above ansatz. This constant
(and all other multiplicative constants in the Fourier ansatz) will be algebraically eliminated
as long as we are consistent in our analysis. The above phase selection has been chosen for
its convenience in the following analyses.

In Chapter IV we introduced the Fourier ansatz into the iterative equations to find the
transformations between the iterative variables for a- given Fourier mode; the combination of
these equations yielded an eigenvalue problem. We will do the same thing in the discrete
setting, except that we will concentrate more heavily on the transformations defined by
each individual operator. The combination of these operators will yield the various iterative
equations and corresponding eigenvalue problems.

The first operators we will examine are those defined in the FEM equations in Eq. (46),
where we define the left side of Eq. (46a) as the sweep operator, Ly. We substitute the

Fourier ansatz of Eq. (103) into Ly and the definitions of Egs. (46¢)-(46)), yielding
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(0,1) (e™%0) 0 0
A
0 0 (e7=42,0) (0,1) (1 >0, <0)
(0,1) 0 0 (e7™,0)
—iAy A
+—Z£yN g (0’(:52\;;) “ (1!: 01;’ ? 8
(0, e?viv) 0 0 (1,0) (n1>0,m;,<0)
K+ gﬁyL + oM. (104

Here we have introduced the notation (-, -); if the left side of the matrix subscripts (i.e. y;, > 0
or 7;, > 0) is true then (L, R) is evaluated as L, and if the right side is tfue then (L, R) is
evaluated as R.

Next we define the right side of Eq. (46a) as the scattering source operator, Qxn (we

ignore the fixed source as usual). Substitution of the Fourier ansatz yields
Qn = My XN sMsp, (105)

where the B subscript indicates that we have defined block matrices. If the original matrix
is 4 x 4 (e.g. M), then the corresponding block matrix is a diagonal block matrix with each
block equal to the original matrix. If the original matrix has a dimension equal to the number
of quadrature directions (e.g. M), then block ¢, j of the corresponding block matrix is a4 x 4
diagonal block with each diagonal element equal to element ¢, j of the original matrix. The

dimension of any of these block matrices is four times the number of quadrature directions.
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We can combine the above operators into the following discrete ordinates operators:

Sy = DnpLysQn, (106a)
Sn—n' = DnpLy: pQnon, (106b)

where
QNonN = My Pn_n XN BMB (107)

This completes our description of the operators in Eq. (46).

Now we will analyze the diffusion operators that we will use for DSA and for filtering
the ANMG corrections. The first operator we will examine is the modified 4-step (M4S)
operator of Eq. (A.1la). The left side of this equation is the M4S DSA loss operator, Lys4s.
Substitution of the Fourier ansatz into Lys4s and the definitions of Egs. (A.1b)-(A.11) yields

the following form for Ljs4s:

|

%G[Ja:l J:c2 Jz3 Jm4]

Lss 5

+%H[Jy1 T2 Jys Ty |+ 0AzAyM, (1082)

D D _—idAz
a+ 2Azx 2A:z:e
D D )eiAzAz

Jml — Y.V (O‘E 2Dz (108b)

0

- __.D_ _ _ DY —idAx
2Az (a 2Az) € N
D D _idzAz
A+ 55 — F—e"
Jzz — 2lzx 02A:v ’ (IOSC)

0
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Joa = Wi DD s | (1084)
2Az 2Aa:e
D _ DN _—ixAx
|~ — (@ —5m5) e
i 0
0
Jeo = | _p _(ao byt | (108e)
206% & —3az) €
D__ D _—id;Azx
O+ 557 T 3A5
- D _ D __ipAy
a+ 2Ay 2Aye Y
0
Jyl = 0 ) (108f)
__D _ — D) siraAy
L 2Ay (a 2Ay)e Y .
- 0 -
LD D -idAy
3 At 58y T g€ Y 08
¥ T | D (oD )einay |’ (108g)
3Ay 22y
L 0 J
_ 0 .
D ( D ) —idyAy
— e o — —— e Y
Jys = 28y W8y ) , (108h)
» a4+ D _ D girAy
2Ay 2Ay
L 0 J
r __D _ D\ —irAy ]
24y (a 2Ay) e
0 .
Ju = : (1081)
0
D _ D ixdy
L ot oay T3 Y i

Similarly, the right side of Eq. (A.la) is the DSA source operator, Qr45. The Fourier form

of this operator is simply

Qras = AzAyM (109)




81

Finally, recognizing that q in Eq. (A.1a) is the product of o4 and the zeroth moment of the

residual, we may define the overall DSA operator, Syr4s:

Swmas = Lyjys@masPrn—o,BEN,B, (110)

where we assume that we are applying DSA to a discrete ordinates calculation of order V.
If we are using the modified 4-step method as a filter, a Fourier analysis yields a filter
operator, F)s4g, that is similar to Lys4s. The only differences are that all cross sections
are replaced by o (including the ones defining the diffusion coefficients) and the diffusion
coefficients are multiplied by .
We now examine the modified WLA method, as expressed in Egs. (A.4) and (A.9). We
define the left side of Eq. (A.4) as the continuous DSA loss operator, Lsp. The Fourier form

of this operator is

—iAg Az Az AT —tAy A
Bij + Bic1,€7 " 4 Big1,;€7°°7 + By j1 €70
LCD —_ +/8i,j+le7)‘yAy + ﬂi_l,j_le—z()\zAz-i-z\yAy) + ﬁi_1,j+1ez(—)\zAx+/\yAy) ) (111)

+16i+1 j_lei(/\mAm—AyAy) + 6i+1 j+lei()\zAx+/\yAy)

The right side of Eq. (A.4) is the continuous DSA source operator, Q)¢ p. Its Fourier form is

. ) ] T
]\4’1’1 + M1,2 (e—u\mAz + e—’l)\yAy) 4+ Ml,Se—z(AzAa:+AyAy)

YAy ¥ (1 + e—i(z\mAw+)\yAy)) + My ge~ivBy
‘}\41 1e—i()\zAa:+/\yAy) + M12 (e—i/\zAa: + e—-i)‘yAy) + M1,3
Ml,le-—z')\yAy + ‘[\41’2 (1 4+ e—i(AxA:c+)\yAy)) + Ml,ge‘i"“’A‘”

Qop = AzAy (112)

The left side of Eq. (A.9) we define as the discontinuous DSA loss operator, Lpp; its Fourier

form is

Lpp = aAyG + aAzH + o, AzAyM.
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The right side of Eq. (A.9) is the discontinuous DSA source operator, @ pp. Its Fourier form

is
Qop =a | #28¥M Qpps |, (114)

where

[ AyGi + AyGhe™2Y + AzHy j + AzHy g0 -
AyGa 26?27 4 AyGy 56iP=0138Y) 4 AzH, 1 + AgHy pei=07
Qpps = AyGi 26785 1 Ay 5eiabatryiy) . 15)
+AzHj ge'P=A2+ 28 4 Az Hy jeirvly

| AYGag + AyGae™vAY + Az Hy 3083+ 1 ApHy 4etvdY |

Finally, we may combine these operators into the WLA DSA loss operator, Ly 4:

-1 -1 1y
Lyrra = LppQop Ll Ocp | (116)
CcD

The definitions of Qwra, Swra, and Fy 4 are analogous to those for the modified 4-step

method. Qw4 is equal to Qpras. Swra is defined as

Swia = Ly QwraPn—08ZnN B (117)

Fwra is equal to Lwrs4 when all cross sections are replaced by o and the diffusion
coefficients are multiplied by ay.

We now combine the operators we have just defined and analyzed into iterative equations
and eigenvalue problems. The DSA-accelerated DFEM-Sy equations are analogous to Eq.
(64), except that we substitute the spatially discrete operators for the corresponding analytic

ones. By the same combination of the Fourier-analyzed operators and equations we obtain an
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eigenvalue problem analogous to Eq. (84):
wB = [Po_n,BSMas (Sv — InB) + Sn] B. (118)

If the modified WLA DSA method is used rather than the modified 4-step method, we replace
Snas with Syr4 in Eq. (118). The spatially discrete eigenvalue problem for the unfiltered

two-grid scheme is analogous to Eq. (90):
wB = [Pyr_n,B (Po—n»,BSmas + InB) Sn—n' (Sv — Ing) + SN B. (119)

The spatially discrete eigenvalue problem for the unfiltered three-grid scheme is analogous to
Eq. (96):

Pnin,g {Pnv—nt B (Pomsnv,BSMmas + Inng) Sni—nv + Int g} X

wB =
[ SN—nt (Sv — Inpg) + SN

} B. (120)

Finally, the spatially discrete eigenvalue problem for the filtered ANMG scheme is analogous

to Eq. (99):

wB = [Pyr—n,8 { Poosn,BSmasSnr—n7 + F5' Seorr } Sv—nt (Sv — Ins) + Sy B,
| (121)

where Fg is either Fius 5 of Fiypa g and Scorr is analogous to Eq. (100b):

Scorr = PN”—*N',BSN'—*N" + IN',B‘
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V.B. Fourier Results

In the previous section we derived the Fourier eigenvalue problems for a variety of
DFEM discrete ordinates iterations. In this section we solve these eigenvalue problems in
order to determine the stability and effectiveness of these iterative schemes. As a baseline
case we will use the BLD S, equations. We will vary the DFEM method, the quadrature order,
and other parameters in order to understand the stability and effectiveness of these iterative
methods.

Before we report the results of these studies, we note some differences between spatially
discrete and spatially analytic Fourier analyses. In the spatially analytic case we vary only A
for a given iterative scheme; in the discrete case we also can vary Az and Ay. Therefore for
every Fourier analysis we might perform in the spatially analytic case there corresponds any
number of Fourier analyses in the discrete case. We will select a representative sample of cell
dimensions that will reveal the characteristics of the iterative methods for different types of
meshes. In addition, a given spatial mesh only supports a limited range of frequencies A. Any
AzAz x Ay Ay that lies outside of the range (0, 7) x (0, 7) is, as far as the discrete problem
is concerned, identical to some lower frequency that is within this range. Therefore we may
limit our search for the iterative spectral radii to the above range of frequencies, whereas in
the analytic case we must theoretically examine X of any magnitude.

The search process is conducted by defining a grid of points within the frequency range
described above. This grid is defined for the magnitudes and angles of the frequencies rather
than their Cartesian components A; and A,; a 25x50 grid is nominally used. The modal
spectral radius for each frequency is calculated and the maximum modal spectral radius (and

corresponding frequency) is recorded. A new grid centered on this frequency with a finer grid
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spacing and smaller range is defined and the process is repeated. This search on successively
finer grids is terminated when two conditions are met: the maximum modal spectral radius
found on the most recent grid is within 10~* of the one found on the previous coarser grid
and the largest five modal spectral radii found on the most recent grid are within 5x10™* of
each other. This process should identify the frequency regions which contain local maxima
and then narrow in on the global maximum in most cases.

We begin our Fourier analyses by examining the DSA-accelerated S, iteration with
BLD spatial discretization, the modified 4-step method, optimized Fokker-Planck scattering,
and no absorption. The spectral radii are reported in Table IV. Here we measure the cell
thicknesses in units of transport mean free paths, o+ Az and o, Ay. We apply an optimized
transport correction to the scattering kernel in order to demonstrate the best spectraI radii that
can be obtained with DSA-acceleration alone. Table IV shows that a spectral radius of 0.90
is obtained regardless of cell dimensions, which is the same value we obtain in the spatially
analytic case. This is not surprising, since our spatially analytic results showed that our
spectral radius was determined by the flat modes. Not only are the flat modes supported by
all mesh sizes, but the vanishingly slow spatial variation of these modes tends to negate the
effects of spatial discretization. We also note that the modified 4-step method does not lose
its effectiveness as the cell sizes or aspect ratios are varied.

We note in Appendix A that the modified 4-step DSA equations are generally difficult to
solve. However, the modified WLA method is relatively easy to solve, albeit at the expense
of effectiveness in some situations. In Table V we report the spectral radii for an S4-DSA

calculation that uses the modified WLA method for the DSA operator. Here we can see that

this DSA method is ineffective when the mesh cells have a large aspect ratio (where we define
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TABLE IV
Fourier Analysis Results, BLD S;-DSA (M4S) Iteration, Optimized FP Scattering
O't.,-Ay
Oir AL .001 .01 1 1 10 100 1000
001 0.90
01 0.90 0.90
1 0.90 0.90 0.90
1 0.90 0.90 0.90 0.90
10 0.90 0.90 0.90 0.90 0.90
100 0.90 0.90 0.90 0.90 0.90 0.90
1000 0.90 0.90 0.90 0.90 0.90 0.90 0.90

TABLE V
Fourier Analysis Results, BLD $3;-DSA (WLA) Iteration, Optimized FP Scattering
O AY
O AT 001 01 1 1 10 100 1000
.001 0.90
.01 0.90 0.90
1 0.90 0.90 0.90
1 0.90 0.90 0.90 0.90
10 0.97 0.97 0.96 0.90 0.90
100 0.998 0.998 0.997 0.99 0.90 091
. 1000 | 0.9998 | 0.9998 0.9997 | 0.999 0.99 095 091
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TABLE VI
Fourier Analysis Results, BLD Sg-DSA (WLA) Iteration, Optimized FP Scattering

Ut'rAy
o AT .01 1 100
.01 0.95
1 0.95 0.95
100 0.999 0.99 0.95

the aspect ratio as the ratio of the longer cell side and the shorter cell side). It also appears .
that some effectiveness is lost as the cells become optically thick. Nevertheless, for most of

the cell dimensions studied the modified WLA DSA operator is as effective as the modified 4-

step operator. Of course the ANMG method has been developed with the intent of improving

on these spectral radii, which are still quite high (and which increase as N increases).

Before we study the stability and effectiveness of the spatially discrete ANMG scheme,
let us examine the effectiveness of DSA for higher-order quadratures. In most of the studies to
follow we will use the modified WLA method since in actual computations we will implement
the scheme that we can easily solve. In Tables VI and VII we report the spectral radii of the
Se-DSA (WLA) and Sg-DSA (WLA) iterations, respectively, with optimized Fokker-Planck

scattering (we have reduced the number of studies because of increasing computational cost).

TABLE VII
Fourier Analysis Results, BLD Sg-DSA (WLA) Iteration, Optimized FP Scattering
oAy
oA .01 1 100
.01 0.98
1 0.98 0.98
100 0.9995 | 0.997 0.98
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TABLE VIII
Fourier Analysis Results, BLD S4-52-DSA (M43S) Iteration, Optimized FP Scattering
oAy
oDz | .001 .01 1 1 10 100 1000
001 2.34
01 2.16 2.11
1 1.03 1.03 0.80
1 0.65 0.65 0.65 0.65
10 0.65 0.65 0.65 0.65 0.65
100 0.65 0.65 0.65 0.65 0.65 0.65
1000 0.65 0.65 0.65 0.65 0.65 0.65 0.65

For cells with high aspect ratios we again have lost DSA effectiveness, but we otherwise
obtain nearly the same spectral radii as in the spatially analytic cases.

Now we examine the stability and effectiveness of the unfiltered ANMG scheme. In
Table VIII we report the spectral radii of the S4-S2-DSA iteration with the modified 4-step
DSA and BLD spatial differencing. For very thin cells the iteration is unstable, with spectral
radii approaching that of the spatially analytic case (2.37). However, for cells with at least one
side longer than about one transport mean free path the iteration is stable and effective. These
observations are a direct result of the fact that the ANMG instabilities we have encountered
previously occur in high-frequency mbdes. As we discussed earlier a spatial mesh places
an upper limit on the magnitude of the frequencies that can be supported. When the cells
become sufficiently thick only stable, low-frequency modes will be observed. Depending
on the physical problem and the mesh used, one may not even need to filter or otherwise
alter the ANMG corrections for the iteration to be stable and effective, which would save
implementation' and computational costs.

Now let us look at other ANMG schemes that use the modified WLA method. In Tables

IX-XI we report the spectral radii for the S4-S2-DSA, the Sg-S4-S3-DSA, and the Sg-S4-S»-
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TABLE IX
Fourier Analysis Results, BLD S4-S2-DSA (WLA) Iteration, Optimized FP Scattering

o AY
oAz .001 .01 1 1 10 160 1000
.001 2.34
.01 2.16 2.11
A 1.03 1.03 0.80
1 0.65 0.65 0.65 0.65
10 0.91 0.91 0.90 0.78 0.65
100 0.99 0.99 0.99 0.98 0.89 0.71
1000 0.999 0.999 0.999 0.998 0.99 0.95 0.74

DSA iterations, respectively, with BLD spatial differencing. A comparison of Tables IX and
VIII shows that for thin cells the unfiltered ANMG scheme that uses the modified WLA
DSA has the same spectral radii as the scheme that uses the modified 4-step DSA. As before,
though, the method is ineffective (although stable) for high aspect ratio cells. We also see
some degraded effectiveness for very thick cells. In the Sg and Sg cases we observe the same
general properties: high-frequency instabilities that appear in meshes consisting of optically
thin cells, stability but ineffectiveness when the cells have high aspect ratios, and reasonable
effectiveness for other cell dimensions.

In many problems of practical interest the physical medium is optically thick, and the
cells that are created by applying a spatial mesh to the problem may be at least several

transport mean free paths thick. In these problems the standard ANMG method will be stable

TABLE X
Fourier Analysis Results, BLD S5-S4-S3-DSA (WLA) Iteration, Optimized FP Scattering
UtrAy
oo AT .01 1 100
.01 1.21
1 0.63 0.63
100 0.99 0.98 0.71
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TABLE XI
Fourier Analysis Results, BLD S3-54-S2-DSA (WLA) Iteration, Optimized FP Scattering
oAy
oAz .01 1 100
.01 1.53
1 0.64 0.64
100 0.99 0.98 0.71

and effective, as Tables IX-XI indicate. However, there may be situations in which many
or all of the cells are optically thin, in which case we must guard against high-frequency
instabilities. We have already proposed using a diffusion operator such as the modified 4-step
method or the modified WLA method as a low-pass filter to stabilize the ANMG scheme.
Earlier in this chapter we stated that their performance depends on whether they are “discrete
elliptic”, which we defined as eliminating high-frequency modes while leaving low-frequency
modes unchanged. Before we apply these filters to the ANMG method to determine their
effectiveness in that specific application, let us first examine these operators directly in order
to gain insight into their properties.

The first spatially discrete diffusion operator we will examine is the modified 4-step
method. It is defined by Eq. (A.1); the Fourier analysis Qf its operators is given by Eqgs.
(108)-(110). Recall that if this method is used as a filter we replace all cross sections with g ¢,
including the ones embedded in q, and multiply the diffusion coefficients by as. If the cells
are optically thick (o Az Ay is large) then the last term in Eq. (108a) and the source term of
Eqg. (109) dominate; since these terms are equal we obtain the identity in the limit of thick
cells, regardless of frequency. Therefore this filter will not alter any ANMG corrections for

optically thick cells, which is desirable since there are no instabilities in this situation.
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If the cells are optically thin, the behavior of the modified 4-step filter is more complex.
Although the individual components of the currents (J;, etc.) are much larger than the other
terms, these terms will cancel each other in the limit of A — 0. For flat modes we once again
obtain the identity, which we desire. On the other hand, the cﬁrrents will not identically cancel
for high-frequency modes, and since these terms become arbitrarily larger than the source
term as the frequency is increased and the optical thickness is decreased, we obtain the zero
operator in the limit of A\ — oo. This also is a desirable property, since these modes produce
the ANMG instabilities. Therefore the modified 4-step operator has the basic properties (in
certain limits) that we desire for an ANMG filter.

The filtering properties of the modified WLA method are similar to those of the modified
4-step method, with some slight differences. The modified WLA method is specified by Egs.
(A.4) and (A.9); the Fourier forms of its operators are given in Eqs. (111)-(116). (When
the modified WLA method is used as a filter we incorporate o and o as described in the
previous section.) For spatially thick cells we see that the last term in Eq. (113) and the left
portion of the matrix in Eq. (114) dominate, regardless of frequency. These terms are equal,
so we obtain the identity in the thick cell limit, as we did with the modified 4-step method.
For thin cells we observe that the updated fluxes are set equal to the continuous solution;
this is more easily seen in Eq. (A.9). As A — 0 the diffusion terms in the § coefficients
of the continuous equation cancel, and the continuous solution is equal to the average of the
associated corner sources. Thus as o;Azx, o0fAy, and A — 0 we obtain the “continuous”
identity, with all discontinuities eliminated. Since in this limit we expect discontinuities to be
vanishingly small anyway, the filter effectively does nothing to modify these modes. On the

other hand, as A — oo the diffusion terms dominate, and since they are much larger than the




92

TABLE XII

Fourier Analysis Results, BLD §;4-S;-DSA-filter (M4S) Iteration,
Optimized FP Scattering (o = 1,05 = 04,4)

UtrAy
oAz | .001 .01 1 1 10 100 1000
.001 0.65
.01 0.65 -0.65
.1 0.65 0.65 0.65
1 0.65 0.65 0.65 0.65
10 0.65 0.65 0.65 0.65 0.65
100 0.65 0.65 0.65 0.65 0.65 0.65
1000 0.65 0.65 0.65 0.65 0.65 0.65 0.65

source term we obtain the zero operator. Therefore the modified WLA method should be an
effective filter for ANMG corrections.

Now that we have theoretical reasons to believe that the modified 4-step and modified
WLA methods will be good filters for the ANMG corrections, we will examine their actual
performance. In Table XII we report the spectral radii of the S4-S2-DSA-filter iteration,
where the spatial discretization is BLD, the diffusion operator for both DSA and the filter
is the modified 4-step method, the scattering is optimized Fokker-Planck without absorption,
af = 1, and 05 = oy n. We see that the ANMG method works very well when a good DSA
and filter operator is used; the spectral radius is 0.65 regardless of cell size. This supports our
predictions of the filtering properties of the modified 4-step method.

The performance of the modified WLA method as an ANMG filter is shown in Tables
XHI-XV for the §4-So-DSA-filter, S¢-S4-So-DSA-filter, and Ss-S4-So-DSA-filter iterations,
respectively, with the same parameters as in the previous case. We see that the instabilities
recorded in Tables IX-XI have disgppeared in the filtered scheme; the new spectral radii are
equal to the ones obtained for the inherently stable, thicker cells. There is some degradation

in performance for the inherently stable cells with high aspect ratios when the filter is applied.




TABLE XIII

Fourier Analysis Results, BLD S4-So-DSA-filter (WLA) Iteration,
Optimized FP Scattering (ay = 1,05 = 04.4)

UtrAy
oAz .001 .01 1 1 10 100 1000
.001 0.65
.01 0.65 0.65
1 0.65 0.65 0.65
1 0.75 0.72 0.65 0.65
10 0.98 0.97 0.94 0.80 0.65
100 0.998 0998 | 0.995 0.98 0.89 0.71
1000 | 0.9998 | 0.9998 | 0.9995 | 0.998 0.99 0.95 0.74

TABLE XIV

Fourier Analysis Results, BLD S5-S4-So-DSA-filter (WLA) Iteration,
Optimized FP Scattering (ay = 1,05 = 016)

O'trAy
ot AT .01 1 100
01 0.63
1 0.83 0.63
100 0.998 0.98 0.71

TABLE XV

Fourier Analysis Results, BLD Sg-S4-So-DSA-filter (WLA) Iteration,
Optimized FP Scattering (af = 1,05 = 0¢3)

UtrAy
o EWAY .01 1 100
.01 0.90
1 0.83 0.64
100 0.998 0.98 0.71
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TABLE XVI

Fourier Analysis Results, LBLD S;-S3-DSA-filter (WLA) Iteration,
Optimized FP Scattering (ay = 1,0¢ = 044)

UtrAy
ow Az .001 .01 1 1 10 100 1000
.001 0.65
.01 0.65 0.65
.1 0.65 0.65 0.65
1 0.86 0.81 0.65 0.65
10 0.98 0.98 095 0.84 0.65
100 0.998 0998 | 0.995 0.98 0.90 0.72
1000 | 0.9998 { 0.9998 | 0.9995 | 0.998 0.99 0.95 0.74

This is not too surprising, since the modified WLA method breaks down in these situations. It
does indicate, however, that we want to avoid filtering unless we either must do so to stabilize
the iteration or if we have no knowledge of the cell sizes to be used in a given calculation.

As a final analysis of the filtered ANMG scheme we examine other DFEM methods.
In Tables XVI and XVII we report the spectral radii for the S4-S2-DSA-filter scheme with
the modified WLA method and with LBLD and SCB spatial differencing, respectively. The
characteristics of these schemes are similar to those seen with BLD differencing. There are
no instabilities, but the properties of the modified WLA operator cause the iteration to be
ineffective for high aspect ratio cells. Performance is somewhat better for the SCB scheme
than for the other DFEM methods for thick cells; the SCB method is already known to behave
more physically in this limit.

We remark that in fhe filtered schemes examined in this section we use oy = oy n.
In the previous chapter our spatially analytic studies revealed that oy = oy, yields a filter
that has better properties as higher quadrature orders are used. Since we have observed that
the Fourier analyses of the spatially discretized schemes share important properties with the

spatially analytic schemes when oy = o, we are confident that we will observe the same
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TABLE XVII

Fourier Analysis Results, SCB S4-S3-DSA-filter (WLA) Iteration,
Optimized FP Scattering (o = 1,05 = 04 4)

Tty Ay
oAz .001 .01 A 1 10 100 1000
.001 0.65
.01 0.65 0.65
1 0.65 0.65 0.65
1 0.87 0.85 0.72 0.65
10 0.98 0.98 0.96 0.86 0.65
160 0.998 0.998 0.995 0.98 0.90 0.65
1000 | 0.9998 | 0.9998 | 0.9995 | 0.998 0.99 0.90 0.65

behavior for filters that use & ¢ = 04 in spatially discretized schemes as seen with spatially
analytic schemes.

In summary, the analyses of this chapter have shown that the ANMG scheme applied to
x-y DFEM Sy calculations shares many of the characteristics of the spatially analytic method.
The standard spatially discrete ANMG method is subject to high-frequency instabilities for
thin cells. These instabilities disappear when the cells are of intermediate or large thickness;
this desirable property obviously cannot be seen in the spatially analytic case. The spatially
discrete scheme can be made unconditionally stable by applying a diffusive filter to the
corrections. The effectiveness of the entire scheme is limited by the quality of the discrete
diffusion operator, since it is necessary to accelerate the zeroth flux moment in order for the

ANMG corrections to be effective.




CHAPTER VI

NUMERICAL RESULTS

In Chapters II and IIT we showed that under certain conditions the spatially analytic and
spatially discretized Sy equations limit to discrete versions of the Fokker-Planck equation
when the scattering is highly forward-peaked. In Chapters IV and V we developed an angular
multigrid (ANMG) iteration method that is stable and effective for multidimensional Sy
calculations with highly forward-peaked scattering. In this chapter we present numerical

results that confirm the predictions of these analyses.

VIA. Fokker-Planck Asymptotic Limit

In this section we will present numerical results that support our Fokker-Planck
asymptotic analyses. We will restrict our attention to one-dimensional slab geometry. These
results will demonstrate the asymptotic form of the cross section, the asymptotic limit of
spatially analytic Sn equations, and the asymptotic limit of several spatial discretizations of
the Sy equations.

The specific analytic problem we will examine is defined by Egs. (1), (2), and

YO, = §(1-p), 0<p<l, (1232)

os(tg) = C(6)exp (— 1- “0> ) (123¢)
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where the value of C (§) is such that 0. = 0.1. This problem was examined by Borgers and

Larsen.%% For this cross section v is given by
y=8(1—-e 2P 2 (4672 + 4671 +2)] . (124)

As § — 0, v — 26% so the O (/6) term in Eq. (16) vanishes in the FP limit. Thus the
problem above is asymptotically described by the FP equation as § — 0.

In Figure 14 we plot the scattering ratios derived from the asymptotic form of the
scattering cross section moments in Eq. (8) for A (r) = 1, v = 0, and various values of §. We
also plot the corresponding scattering ratios of the cross section given in Eq. (123c). As§ — 0
we see that the actual scattering ratios approach the asymptotic values. This demonstrates the
validity of Eq. (8). Figure 14 also shows us when we might expect our transport solution to be
close to the asymptotic Fokker-Planck limit. For example, a P;5 cross section expansion for
6 = 0.001 is very close to the asymptotic expansion, so the corresponding discrete ordinates

solution should be close to a pseudospectral Fokker-Planck solution of the same order.

Next we examine Sy solutions to Eq. (123) near the Fokker-Planck limit. For these
studies we use L = 20 and 6 = 0.001. As boundary conditions we kuse a quasi-Mark
approximation to Egs. (123a) and (123b) in which all incoming fluxes 'are set to zero except
at the quadrature direction p ., closest to g = 1; we set ¢ (0, pip,. ) = w;l;x, where Wax
is the corresponding (non-Galerkin) quadrature weight. This boundary condition has the

effect of preserving the contribution to the boundary scalar flux from the beam in Eq. (123a).

(We do not report the results of other calculations that use different boundary conditions,

such as conditions which preserve the incident current.) Figure 15 shows the scalar flux




98

1.25
asymptotic, delta = 0.0001 actual, delta = 0.0001
I e asymptotic, delta = 0.001 M actual, delta = 0.001
""" asymptotic, delta = 0.01 O actual, delta = 0.01
“““ asymptotic, delta = 0.1 [0 actual, delta = 0.1
1.00 \ B‘Q\- a2 | Iy
) n\ .y . M
1% Q. L,
o \‘ 0\ l. -
D 1 ‘e 8 .
\ e @
© 0.75 o o '
& b .
\ \ O . " m
o ' \ . "
S y ! %0 o "
- 1 \ n
Q \ ) LI
0 \a \ o .. .,
- 1 \ .
3 0.50 \ Vo, .,
4 A}
8 ! s o
0 4 ) N
“ o \ [
] ‘\ ]
0.25 \ | °
[ - Y ]
1 . (]
1] “ [
p i a \ °
] \‘ [} °
‘ " 0 K o0, S ag
1 0o Al 8 s s o
0.00 T i 7 T 7 :
0 10 20 30 40

Cross section moment order

Fig. 14. Scattering ratios vs. cross section moment order, exponential cross section.

Fokker-Planck
Lobatto-Galerkin
Gaussian (flux preserving BCs)

Scalar flux

i ' {
0 5 10 15

X

20

Fig. 15. Sg scalar fluxes, 6 = 0.001.




99

throughout the slab as calculated by the LM-Sg method using both the Lobatto-Galerkin
and Gaussian quadratures. For these calculations we have used a very fine spatial mesh
(200 cells, oAz = 0.01) to minimize the effects of spatial discretization so that we may
conceﬁtrate on the effects of the angular differencing. These Sy results compare favorably
with a pseudospectral Fokker-Planck solution of order 32. The Lobatto-Galerkin results are
especially good; the Lobatto set includes the point 4 = 1, so its boundary condition is
expected to be better than that used with the Gaussian set. We remark that a stable solution
could not be obtained with the Lobatto set without the Galerkin quadrature treatment. These
results demonstrate the need to use discrete-to-moments and moments-to-discrete operators
that are inverses of each other, as well as the fact that Sy solutions limit to Fokker-Planck
solutions under proper conditions.

We now examine the effects of spatial discretization on the Sy solutions. In Figures
16-18 we show DD-, LD-, and LM-Sg so.lutions, respectively, as 6 — 0. We also plot the
corresponding DD- and LD-pseudospectral Fokker-Planck solutions as well as the highly
refined FP solution that we showed in Figure 15. These figures show that as § — 0, the
spatially discrete Sg solutions approach the spatially discrete FP solutions that we predicted
in Chapter III. We note that these discrete FP solutions are fairly accurate, especially the LD
results. In Figures 19-21 we show similar results for S;¢ calculations; these solutions also
have the expected behavior in the FP limit.

We have not performed any similar computational tests in multidimensional settings,
other than to demonstrate that a stable Sy solution can be obtained when the Gélerkin
treatment is used. However, the excellent agreement with analysis in slab geometry gives

us confidence that our FP analyses are accurate.
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Fig. 16. DD-Sg scalar fluxes.
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VI.B. ANMG Results

In this section we present numerical results that support our ANMG analyses. At first we
report results from problems using meshes and quadratures that directly correspond to those
used in the Fourier analyses of Chapter V. We also implement the ANMG scheme in more
complicated problems that are not amenable to Fourier analysis in order to demonstrate the
performance of the ANMG method in realistic situations.

Our numerical results are obtained by means of the PERICLES transport code.
PERICLES is an unstructured mesh discrete ordinates code under development at Los Alamos

National Laboratory.!*’

It can perform calculations on arbitrary generalized hexahedral
meshes in one, two, or three dimensions. It uses the family of linear discontinuous methods

(LD, BLD, etc.) with or without mass matrix lumping. The modified WLA operator is used

for DSA. The Galerkin treatment may be used with the quadrature sets.

VLB.1. Acceleration of Model Problems

For comparisons with our Fourier analyses we nominally use a 25x25 rectangular mesh
with reflective boundary conditions on two adjacent sides and vacuum boundary conditions
on the other two sides; since we also use level symmetric quadrature sets this effectively
gives us a 50x50 mesh with only vacuum boundaries. We initially perform a source iteration
calculation without acceleration for each problem and mesh spacing in order to determine
the effect of leakage, since we are trying to confirm infinite-media analysis results. If
the resulting spectral radius is less than 0.99 (the spectral radius in infinite media without

absorption is unity), the number of elements is doubled in the thinner direction until either the

source iteration spectral radius is greater than 0.99 or the mesh size makes it computationally
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TABLE XVIII
Mesh Sizes for Numerical Spectral Radii Tests
a trAy
oAz | 001 .01 1 1 10 100 1000
001 -
.01 - 200x200
1 - 50x400 | 50x50
1 - 25x400 | 25x50 | 25x25
10 - 25x400 | 25x50 | 25x25 | 25x25
100 - 25x400 | 25x50 | 25x25 | 25x25 | 25x25
1000 - - 25x50 | 25x25 | 25x25 | 25x25 | 25x25

infeasible to further increase the number of elements. The meshes used for each cell size
are reported in Table XVIII. Only a few of the meshes with the thinnest cells yield source
iteration spectral radii that are somewhat less than 0.99, so results from spectral radius tests
with these meshes are expected to be close to the infinite media results. Meshes have not been
created for cells widths oAz < 0.01 or 04, Ay < 0.01 because leakage would be so great
that the spectral radius results would not be expected to compare well with infinite-medium
analyses.

In our tests we use a uniform, isotropic fixed source and an initially random flux
distribution. We nominally perform 300 iterations in order to eliminate all but the slowest
converging error mode so that a good spectral radius estimate may be obtained, although
in some cases it is necessary to use more iterations. The computational spectral radius is
estimated by means of the techniques described in Appendix B.

Qur first set of tests are the S4-DSA, Sg-DSA, and Sg-DSA iterations with BLD
differencing and optimized FP scattering on a variety of rectangular meshes. We report the
results in Tables XIX-XXI. These numerical results correspond to the Fourier analysis results

reported in Tables V-VII. Except for some slight differences with the most optically thin




TABLE XIX
Numerical Spectral Radii, BLD S;-DSA (WLA) Iteration, Optimized FP Scattering

O'trAy .
oz | 001 .01 d 1 10 100 1000
.001 -
.01 - 0.87
1 - 0.90 0.90
1 - 0.90 0.90 0.90
10 - 0.96 0.95 0.90 0.90
100 - 0.99 0.99 0.99 0.90 090 ,
1000 - - 0.99 0.997 0.99 0.95 0.90

meshes, which we attribute to leakage effects, the spectral radii are generally within 0.01 of
the Fourier results for all meshes. Thus we have computationally conﬁrmed these Fourier
analyses as well as the need for better acceleration.

Our next set of tests are the S4-S2-DSA, Sg-S4-So-DSA, and Sg-S4-S2-DSA iterations, also
with BLD differencing and optimized FP scattering. The resulting computational spectral
radii are reported in Tables XXII-XXIV. These tables correspond to Tables IX-XI. The
numerical results are generally within 0.01 of the Fourier analyses. This confirms that the
ANMG method is unstable without filtering for optically thin cells but stable when thicker
cells are used.

Next we examine the S;4-Sq-DSA-filter, S5-5S4-S2-DSA-filter, and Sg-S4-So-DSA-filter

iterations with BLD differencing and optimized FP scattering. The results are reported in

TABLE XX
Numerical Spectral Radii, BLD Sg-DSA (WLA) Iteration, Optimized FP Scattering
UtrAy
o AL .01 1 100
.01 0.94
1 0.95 0.95
100 0.99 0.99 0.95
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TABLE XXI
Numerical Spectral Radii, BLD Sg-DSA (WLA) Iteration, Optimized FP Scattering
T Ay
gAY, / .01 1 100
.01 0.97
1 0.97 0.97
100 0.997 0.99 0.97

TABLE XX1I
Numerical Spectral Radii, BLD S4-S2-DSA (WLA) Iteration, Optimized FP Scattering
O'trAy
oAz .001 .01 Ad 1 10 100 1000
.001 -
.01 - 1.86
! - 0.98 0.77
1 - 0.64 0.64 0.65
10 - 0.88 0.88 0.78 0.65
100 - 0.96 0.97 0.98 0.89 0.70
1000 - - 0.98 0.995 0.99 0.95 0.73
TABLE XXIII
Numerical Spectral Radii, BLD Sg-54-S2-DSA (WLA) Iteration, Optimized FP Scattering
O'trAy
O AT .01 1 100
.01 1.15
1 0.61 0.63
100 0.96 0.98 0.71

TABLE XXIV
Numerical Spectral Radii, BLD S5-S4-S2-DSA (WLA) Iteration, Optimized FP Scattering
oAy
oAz .01 1 100
.01 1.48
1 0.62 0.64
100 0.97 0.98 0.71
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TABLE XXV
Numerical Spectral Radii, BLD S4-S3-DSA-filter (WLA) Iteration, Optimized FP Scattering
1% t'rAy
o AT 001 .01 A 1 10 100 1000
.001 -
.01 - 0.58
1 - 0.63 0.63
1 - 0.71 0.64 0.65
10 - 0.96 0.93 0.79 0.65
100 - 0.99 0.98 0.98 0.89 0.70
1000 - - 0.99 0.996 0.99 0.95 0.73
TABLE XXVI

Numerical Spectral Radii, BLD S5-S4-S2-DSA-filter (WLA) Iteration, Optimized FP Scattering

Ter Ay
O AT .01 1 100
01 0.55
1 0.82 0.63
100 0.99 0.98 0.71

TABLE XXVII
Numerical Spectral Radii, BLD Sg-S4-S2-DSA-filter (WLA) Iteration, Optimized FP Scattering
g trAy
oAz .01 1 100
01 0.74
1 0.83 0.64
100 0.99 0.98 0.71
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TABLE XXVIII
Numerical Spectral Radii, LBLD S;-So-DSA-filter (WLA) Iteration, Optimized FP Scattering
oAy
oAz .001 .01 A 1 10 100 1000
001 -
01 - 058 |
1 - 0.63 0.63
1 - 0.81 0.64 0.65
10 - 0.97 0.94 0.83 0.65
100 - 0.99 0.99 0.98 0.90 0.72
1000 - - 0.996 0.997 0.99 0.95 0.74

Tables XXV-XXVII, which correspond to Tables XIII-XV. We again see that the numerical
spectral radii are close to the Fourier results. These results confirm that the filtered ANMG
method is unconditionally stable and generally effective. The ineffectiveness for large aspect-
ratio cells we attribute to the ineffectiveness of the DSA operator and not the ANMG scheme
itself.

The final Fourier analysis that we will confirm is the S;-S2-DSA-filter iteration with
LBLD differencing and optimized FP scattering. The numerical results are reported in Table
XXVIII, which corresponds to the Fourier results of Table XVI. The numerical results again
are close to the Fourier results, which demonstrates the effectiveness of the filtered ANMG
method with LBLD differencing.

The spectral radius tests that we have reported in this section thus far have directly
corresponded to problems that we Fourier analyzed in Chapter V. The only difference has
been that the numerical tests were performed on finite grids, whereas our Fourier analyses
were derived for grids that are infinite in extent. We now will perform spectral radius tests

of the ANMG method for some problems that are still “simple”, but which are less amenable
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TABLE XXIX

Numerical Spectral Radii, Accelerated TLD S Iteration, Optimized FP Scattering

ow Az | DSA spectral radius | ANMG spectral radius
1 0.93 0.80
10 0.94 0.80
100 0.94 0.80
1000 0.94 0.80

to Fourier analysis, in order to demonstrate the applicability of our Fourier results to other
situations.

In Chapter IV we stated that we would perform Fourier analyses only for two-
dimensional problems; the effectiveness of the ANMG method in three dimensions would
be confirmed by numerical testing. We report one such test here. We examine a problem
with optimized Fokker-Planck scattering and no absorption on a 25x25x25 grid of cubic
elements (Az = Ay = Az) with reflective boundary conditions on three adjacent faces.
We use trilinear discontinuous (TLD) spatial differencing and S, level-symmetric angular
differencing. Table XXIX records the numerical Spectral radii for this problem with DSA and
ANMBG acceleration for several cell optical thicknesses. The ANMG method is clearly more
effective than DSA for these cases. Although we suspect that there will be high-frequency
instabilities for much thinner cells and that these instabilities can be eliminated by means of
a diffusive filter, numerical tests in three dimensions would require a prohibitive number of
elements so that leakage would not dominate the problem.

Next we examine a multimaterial problem in 2D. Figure 22 depicts the physical problem.
A central squére region of one material is surrounded by a region of a second material. Both
materials have FP scattering kernels without absorption. However, oy, in the first material

may be different from that in the second material.
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Fig. 22. Multimaterial test problem.

‘We model this problem with a uniform 50x50 mesh, BLD spatial differencin;g, and an Sy
quadrature. In Table XXX we report numerical spectral radius results from PERICLES for
the case in which the central region is optically thick and the outer region is made increasingly
optically thin. In Table XXXI we report similar results for an optically thick outer region and
an increasingly thin central region. In all cases ANMG acceleration is at least as effective as
DSA acceleration. However, as the differences in the material properties become extreme the
effectiveness of both acceleration methods can degrade. The effectiveness of DSA does not
degrade unless and until the ANMG spectral radius has become equal to that of DSA. Further

increases in material differences may continue to degrade both methods, but their spectral

radii are equal to each other then.




TABLE XXX

Numerical Spectral Radii, Multimaterial Test Problem, Optically Thick Inner Region

Otr 1 AT | o420z | DSA spectral radius | ANMG spectral radius | ANMG (filtered) spectral radius
1000 1000 0.90 0.73 0.73
1000 100 0.90 0.73 -0.73
1000 10 0.90 0.73 0.73
1000 1 0.90 0.73 0.73
1000 0.1 0.90 0.81 0.81
1000 0.01 0.90 0.82 0.82
1000 0.001 0.90 0.82 0.82
1000 0.0001 0.90 0.82 0.82

TABLE XXXI
Numerical Spectral Radii, Multimaterial Test Problem, Optically Thick Outer Region

Otr 1AT | o2z | DSA spectral radius | ANMG spectral radius | ANMG (filtered) spectral radius
1000 1000 0.90 0.73 0.73
100 1000 0.90 0.73 0.73
10 1000 0.90 0.73 0.73
1 1000 0.90 0.74 0.73
101 1000 0.90 0.36 0.86
102 1000 0.90 0.90 0.90
1073 1000 0.90 0.91 091
10~ 1000 0.92 0.92 0.92
10—3 1000 0.93 093 0.93
10—¢ 1000 0.93 0.93 0.93




112

These results lead to several observations. Although there are optically thin regions in
some of these cases, the unfiltered ANMG scheme remains stable. In fact, diffusive filtering
of the ANMG corrections does not improve the spectral radius at all. If there are localized
amplifications of error in the thin regions, then the thick regions may be stabilizing the
problem. If a multimaterial problem were constructed that led to ANMG instabilities it is
not known how effective a diffusive filter would be at stabilizing the iteration.

It has been observed in other situations that DSA effectiveness can degrade when
extreme differences in material properties exist in a problem.!?® We observe here that the
ANMG scheme also loses some effectiveness. However, the ANMG method relies on DSA
as its lowest-order operator, so the multigrid scheme itself may not be the source of the
spectral radius degradation. An effective multigrid method coupled with an increasingly
ineffective DSA operator is consistent with our results. If the multigrid scheme is effective
at accelerating all but the zeroth moment but the DSA operator is increasingly ineffective
at accelerating the zeroth moment when material differences become extreme, then the
spectral radius would increase. This behavior is consistent with the ANMG results of Table
XXXI. On the other hand, if only DSA acceleration is used in a forward-peaked scattering
problem, its inability to accelerate higher moments would control the spectral radius until
the multimaterial degradation becomes so severe that the lack of effective zeroth moment
acceleration dominates. This behavior is also consistent with the DSA results in Table
XXXI1. Although we have not proven that there are no multimaterial effects on the angular
multigrid method’s ability to accelerate higher flux moments, it appears that problems with
the DSA operator are the main cause of degradation in ANMG effectiveness for multimaterial

problems.




VIB.2. Acceleration of Electron-Photon Transport Problems

We have analyzed and numerically tested the ANMG method in a variety of model
problems. Now we will apply the ANMG method to fhe solution of a real transport problem.
We choose to solve a coupled electron-photon problem. The transport of electrons involves
highly forward-peaked scattering, as does photon transport when high-energy Compton
scattering predominates. This type of problem is well suited to demonstrate the ANMG
method.

Before we describe the particular electron-photon problem to be solved, we will discuss
certain features of this class of problems. In the transport of charged particles, including
electrons, the energy loss due to Coulomb interactions is nearl}; continuous. One may separate
out this energy loss term from the discrete scattering losses by introducing a dv¢/ OF term
in the energy-dependent transport equation. This term is called the continuous slowing-
down (CSD) operator. Whereas the discrete energy loss terms are usually modeled by the
multigroup method, the CSD operator must be discretized separately to obtain an accurate
solution.

Another aspect of electron-photon transport problems is the coupling between the two
particle types. Physically, electron interactions with a material may produce photons, and
photon interactions may produce electrons. However, if the photon energy is not too high the
electrons that it produces are relatively low in energy. These electrons have a short range and
their energy is deposited in a small region. For such problems one may assume with little

error that all of the electron energy is deposited locally, and therefore one does not need to

consider the transport of photon-produced electrons. This decouples the problem; electrons
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Fig. 23. Electron-photon transport test problem.

produce photons but photons effectively do not produce electrons. Such decoupling aids the
solution process.

The physical problem we wish to solve is depicted in Figure 23. An isotropic,
monoenergetic source of electrons is incident upon one face of a 2D aluminum shield that
is 30 ml thick and 60 ml tall. The energy of the incident electrons is in the range 1-4 MeV.
This problem was previously reported by Seltzer!! and by Datta et al.?8

In our modeling we mostly duplicate the work of Datta et al. They divided the shield into
a20x40 mesh of square elements, to which they applied step characteristic differencing. They
used an S12 quadrature with the Galerkin treatment. The electron calculation was decoupled

from the photon calculation by assuming that all photon-produced electrons deposit their




TABLE XXXII

Calculated Doses Behind Aluminum Shield in Test Problem

Incident Energy [MeV] | Dose, Datta et al. [MeV/g] | Dose, PERICLES [MeV/g]
1 1.754 2.070
2 2.572 2.168
3 _ 2.931 2.219
4 2.453 2.230

energy locally. The CSD operator was discretized by the diamond difference method and
the other energy loss terms were handled by the multigroup method. There were 40 electron
groups and 40 photon groups of uniform width with a cutoff energy of 50 keV. Cross sections

139 Tn our tests we use all of the

were obtained from the CEPXS cross section generation code.
same discretizations and physical data except that BLD spatial differencing is used instead of
step characteristics.

A dose profile in the shield as calculated by PERICLES for 1 MeV incident electrons is
depicted in Figure 24. Although we do not have outside results to which we may compare
this figure, the dose profile appears to be physically realistic. The cell average dose for one
of the two cells in the center of the right side of the shield is reported in Table XXXII for step
characteristics calculations®® and our PERICLES calculations. The two sets of results differ
somewhat. However, we are interested primarily in acceleration results rather than accuracy,
so we will not attempt to refine the solutions or to determine the main sources of error. Since
this calculation is typical our acceleration results for this problem will be practically r.elevant.

In Table XXXIII we report the number of within-group (inner) iterations and CPU
times required by PERICLES to converge the solution to within 10~ relative error with

both DSA and ANMG acceleration. The iteration count produced by ANMG acceleration is

approximately half that produced by DSA acceleration, as is the CPU time required for the
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Fig. 24. Dose in aluminum shield, 1 MeV incident electrons.
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TABLE XXXIII
ANMG and DSA Performance, Electron-Photon Test Problem, DD-CSD Operator

Incident Iterations, | Iterations, Inner Inner Total Total
Energy [MeV] ANMG DSA CPU [s], | CPU [s], | CPU {s}], | CPU [s],
ANMG DSA ANMG DSA

1 337 837 2656 5339 23409 26407
2 443 928 3568 5960 23486 26024
3 459 928 3721 6044 25095 26491
4 465 912 3776 5751 24280 25332

within-group calculations. However, in these problems the total CPU time is dominated by
the calculation of downscattering sources; this time increases by the square of the number
of energy groups. Since we are using a total of 80 groups, the time necessary for this
calculation is significant, Nevertheless, ANMG acceleration does decrease the required total
CPU time slightly from that required with DSA acceleration. We note that the performance
of the ANMG method relative to DSA may be somewhat understated since we did not guard
against false convergence, which would affect the DSA-accelerated calculation more than the
ANMG-accelerated one.

There is an option in PERICLES and CEPXS to apply a linear discontinuous
discretization to the CSD operator instead of diamond differencing. The linear discontinuous
differencing is more accurate, so one may use a coarser group structure to obtain results
of similar accuracy. Since a coarser group structure would increase the amount of within-
group scattering and reduce the downscattering term, one would expect a greater need for
acceleration than with a fine group structure. Therefore we will examine some calculations of
the above problem in which we use a linear discontinuous discretization of the CSD operator
with a coarser group structure. We use 20 electron groups and 20 photon groups. The

results are shown in Table XXXIV. Although the downscattering calculations still require a
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TABLE XXXIV
ANMG and DSA Performance, Electron-Photon Test Problem, LD-CSD Operator

Incident Iterations, | Iterations, Inner Inner Total Total
Energy [MeV] ANMG DSA CPU [s], { CPU [s], | CPU [s], | CPU [s],
ANMG DSA ANMG DSA

1 211 710 5403 14138 19517 27703
2 215 665 5501 13278 19569 26900
3 207 614 5226 . 12284 19094 25910
4 207 579 5238 11636 19124 25235

substantial portion of the CPU time, the time required for the within-group calculations when
DSA is applied is significant, whereas when the ANMG method is applied the within-group
CPU time is a small fraction of the total CPU time.

The results of this chapter confirm that one may obtain Sy results that are equivalent to
discrete Fokker-Planck solutions in the limit of forward-peaked scattering, provided that the
scattering source is calculated correctly and that the scattering kernel itself is Fokker-Planck
in nature. This chapter also has confirmed that the ANMG method is a stable and effective
acceleration method when the ANMG corrections are diffusively filtered and the scattering is

highly forward-peaked.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

VILA. Conclusions

In this work we analyzed the solutions of certain transport discretizations in the Fokker-
Planck (FP) limit. We compared the properties of these solutions to those of the analytic
solutions, discovering the conditions under which a reasonable discrete solution will be
obtained. We examined the acceleration of the iterative solution of these transport schemes
in the FP limit and extended a previouély developed angular multigrid scheme to tﬁe
multidimensional setting. Our analyses show that this acceleration method is effective at
reducing the computational cost for the solution of such problems.

The analyses of the spatially analytic discrete ordinates (Sy) equations revealed that if
the analytic transport solution does not satisfy a Fokker-Planck equation in the FP limit (a
condition determined solely by the scattering kernel) then the discrete solution will not satisfy
a discretized Fokker-Planck equation. However, if the analytic solution does satisfy a FP
equation and if the moments-to-discrete and discrete-to-moments operators of the Sy method
are inverses of each other, then the Sy solution will satisfy a pseudospectral discretization of
the Fokker-Planck equation. If the moments-to-discrete and discrete-to-moments operators
are not inverses of each other, then the Sy method will fail in the FP limit. Since this is
true in most Sy implementations, these methods will fail to produce reasonable results for
forward-peaked scattering problems unless their scattering treatments are modified. These
results were extended to spatially discretized Sy equations. If the spatially analytic Sy

solution satisfies a pseudospectral FP equation, then the solutions to several spatially discrete
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Sy schemes will satisfy spatially discretized pseudospectral FP equations. The spatially
discrete Sy methods that were examined are, in one-dimensional slab geometry, the diamond
difference, linear discontinuous, and linear moments methods, and in two dimensions the
bilinear discontinuous, lumped bilinear discontinuous, and simple corner balance methods.
In order to accelerate the iterative solution of Sy methods when the scattering is
highly forward-peaked, we extended the angular multigrid (ANMG) acceleration method to
multidimensional calculations. Our analyses revealed that a straightforward application of
this method is subject to high-frequency instabilities. These instabilities are always present
in spatially analytic problems and in spatially discrete problems whose cells are optically
thin. We developed a diffusion filter for the multigrid corrections that eliminates these
instabilities. The resulting scheme is far more effective than DSA alone for highly forward-

peaked scattering problems.

VII.B. Recommendations for Future Work

During the course of this work we identified some areas of research that warrant further
attention. In this section we summarize these research topics.

1. Non-FP limit analysis. The analysis of transport solutions in the Fokker-Planck limit
revealed that for some scattering kernels the analytic solution does not satisfy a Fokker-Planck
equation. This forward-peaked limit analysis should be extended to determine if Sy solutions
to these problems satisfy a discrete version of the corresponding non-FP limit.

2. Accuracy of discrete FP equations. We have found that if the analytic transport
solution satisfies a FP equation, then the solution to an Sy scheme that handles the scattering
term carefully will satisfy a pseudospectrai FP equation. The discretization errors of these

FP equations are not entirely known. For example, if the analytic solution contains a delta
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function, then the discrete solution cannot strongly converge to the exact solution. However,
the weak convergence properties are unknown. Even if the discrete solution is highly
inaccurate for pointwise angular flux values, integrated quantities such as scalar fluxes may
be more accurate.

3. Better DSA and filter operators. The DSA and associated filter operators that Were
used in most of the analyses and all of the numerical tests become ineffective when the cells
have large aspect ratios. This is a general problem; it is not limited to transport problems that
have highly forward-peaked scattering. The search for unconditionally effective and easily
solved diffusion operators should continue.

4. Combined angular and spatial multigrid. The angular multigrid instabilities occur in
modes that are attenuated somewhat by source iteration alone; it is not absolutely necessary
to accelerate these modes. In order to stabilize the ANMG scheme we actually eliminate the
high-frequency corrections anyway. An alternative would be to define a combined angular
and spatial multigrid method. Such a method would not produce corrections for those
modes that are unstable in the ANMG scheme, assuming that the spatial grid is sufficiently
coarsened. It would, however, produce approximately the same corrections for low-frequency
modes, since such modes are not greatly affected by spatial discretization. Because of the
coarsened spatial mesh this scheme could be more rapidly solved than the ANMG scheme;

since no filter would be necessary there would be additional computational savings.
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APPENDIX A
DIFFUSION AND FILTER OPERATORS FOR DFEM

DISCRETIZATIONS IN X-Y GEOMETRY

In Chapter V we performed Fourier analyses of the ANMG method as applied to DFEM
discretizations in x-y Cartesian geometry. These transport iterations use diffusion operators
for DSA and for the ﬁltering} of ANMG corrections. We examined two specific diffusion
operators in our analyses: the modified 4-step method!? and the modified WLA method.'?’
We present these operators here.

The first method, the modified 4-step method, is a simplification of the well-known 4-
step method!® fér deriving DSA operators. A detailed derivation of this method for the
general class of DFEM discretizations is presented in reference 109. We will not present the
derivation here; we will simply present the resulting equations. Furthermore we will restrict
our attention to a uniform, infinite rectangular mesh with constant material properties. The

modified 4-step method for the DFEM discretizations presented in Chapter III is given by
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where o = 0.25 (the exact value depends on the quadrature set), D = 1 /30, is the diffusion

coefficient, M is defined in Eq. (460), and G and H are defined as
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Here J2 (z;) is the modified 4-step approximation to the net current in the x-direction in
the bottom half of the cell, and J2 (xi_l /2) is the net current in the x-direction along the
bottom half of the left boundary of the cell. The other J variables have analogous physical
interpretations. The exact definition of g depends on how the diffusion operator is applied. In
DSA it is the residqal scattering source. The above method may also be used as an ANMG
filter by replacing o, with o, and by defining g to be the product of o; and one of the moments
of the ANMG correction term.

The modified 4-step method has been shown to be an unconditionally stable and
effective DSA operator for many different DFEM discretizations. In Chapter V we
demonstrated its effectiveness as an ANMG filter for a few DFEM discretizations. However,
in multidimensional calculations the modified 4-step equations are generally difficult to solve.
Wareing!®’ has developeq an approximation to these equations that is less effective but easier
to solve. It consists of a continuous FEM diffusion equation (which is easier to solve); the
continuous solution is used to construct an approximate discontinuous solution. To derive
this method we begin with Eq. (A.1), but we ignore the definitions of the boundary currents

in Egs. (A.1f)-(A.11), yielding the following intermediate set of equations:
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We now derive a continuous FEM diffusion equation from Eq. (A.2). We first assume

that all four flux values located at the same vertex are equal:

Prij = P2,i~1,5 = P3i-1,j-1 = Paij-1 = Pi-L ;-1 (A.3)

Next we add the individual equations from Eq. (A.2) that are associated with the same node,
i.e. the first row of Eq. (A.2) as defined in cell ¢, 7, the second row as defined in cell ¢ — 1, 7,
etc. Given the definition of G and H in Eq. (A.1), the edge current terms all cancel, yielding

a single equation in terms of the nodal fluxes:
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Q2 = (q2 + q4)ij + (a1 + Q3)i—1,j + (g2 + q4)i—1,j—1 + (g1 + Q3)i,j_1 , (Adg)
Q3 = @3 + Qa1+ Qi-1,j-1 + G261 (A.4h)

In defining Eq. (A.4) we have made use of the symmetries of M, G, and H. Equation (A.4) is
a symmetric nine-point operator (five-point for SCB), which may be solved easily by a variety
of methods. Although we derived it differently here, this equation is actually an asymptotic
diffusion limit of the DFEM schemes we are studying.”> Therefore we can expect it to give
reasonable acceleration of diffusive error modes.

Since the discretizations we are examining are discontinuous, we need to somehow map
the continuous solution onto the discontinuous variables. One simple way is to use the

assumption of Eq. (A.3), i.e. to let the “discontinuous” solution be in fact continuous. An
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alternative approach is to cénsider all the variables in a given cell as unknowns but to use the
continuous solution in adjacent cells to construct an incoming partial current; this decouples
all of the cells, each of which can be easily inverted directly. To construct the discontinuous
update equations with this approach we first express the net currents at the boundaries as the

difference between the incoming and outgoing partial currents:
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Next we recognize that in the continuous diffusion solution the sum of these partial currents

is related to the corresponding nodal fluxes:
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By combining Eqs. (A.5)-(A.7) we obtain alternative expressions for the net edge currents

that contain unknown values from only a single cell:
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We substitute Eqs. (A.8) into Eq. (A.la), which eliminates the currents.

discontinuous update equation is:
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(A.8g)

(A.8h)

The resulting

(A.9)

The DSA method of Wareing is unconditionally stable and easily solved, but it loses

effectiveness as the cells become highly elongated. The analyses of Chapter V show that this

method is stable when used as an ANMG filter and effective when cell aspect ratios are not

too large.
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APPENDIX B

NUMERICAL ESTIMATION OF COMPLEX EIGENVALUES

In Chapter VI we performed numerical tests of the ANMG method by means of the
transport code PERICLES. Our main objective was to determine the iterative spectral radii in
order to confirm our Fourier analyses. Although the numerical estimation of a spectral radius
is relatively simple when the dominant eigenvalue is real, a good estimate is more difficult to
obtain when a complex conjugate‘pair of eigenvalues is dominant. Since our Fourier analyses
reveal that most of our iterations with forward-peaked scattering have dominant eigenvalues
that are complex, this is an important subject to consider. We describe here a method for
obtaining a numerical estimate of the spectral radius in such a situation.

We begin by examining the.case when the dominant eigenvalue is real. Let A be a real
linear iteration matrix for a system of equations with solution ®, and let $© be an initial

guess at the solution. We may rewrite & in terms of & and the error e(®:

20 =3+ 0 (B.1)
Let {vy,---,vi} be the eigenvectors of A. We may rewrite the error in terms of these
eigenvectors:
!
e® =3 "cvi. (B.2)
i=1

The following expression for the error at an arbitrary iteration is well known:

l l
e™ — Ane(O) — Z A", = Zciw?via (B.3)
i=1

i=1
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where w; is the eigenvalue associated with eigenvector v;. Therefore the approximate solution
at any iteration is given by

l
M =+ =8+ Z Wi V. (B.4)

i=1

Now we assume that the dominant eigenvalue, wy.,, is real and distinct, i.e. that
lwmax| = Wmax = o. For n sufficiently large all other components of the error become
negligible compared to the dominant component, yielding the following asymptotic form for

the approximate solution:

B = ® + Cox0” Vinax. (B.5)
The usual method for estimating o during an iterative calculation is to take the ratio of the
norms of successive residuals:

[ x| B @+ — 30| _ emax| (6™ = 0™) | Vimax|]

O o gt lomad (77 = ™0) [V

(B.6)

Equation (B.6) is exact when the error is composed of only the dominant eigenvector. It will
be inexact when there are other error modes present, but its accuracy will increase as the
iterations continue and the non-dominant modes are effectively eliminated.

Now let us assume instead that A has a pair of complex conjugate eigenvalues that are
dominant. We will further assume that there are no other eigenvalues of equal magnitude.

The dominant component of the initial error then is given by

e© = (ag, ibo) Vimax + (@0, —ib0) Viars B.7)
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where v} . is the complex conjugate of vy,.,. Therefore after n iterations the dominant

component of the error is

e™ = w?nax (ao, ibo) Vmax + w:’ax (aD, "ibO) V:;xa.x‘ (B.8)

Let wmax be given in complex polar coordinates by (o, ¢) and let vyax be given in complex
Cartesian coordinates by (f,ig). Substitution of these values into Eq. (B.8) yields, in

Cartesian coordinates,

e™ = (¢" {F cos (n¢) + Gsin (n¢)},0), (B.9)

where
F = 2(aof — bog), (B.10a)
G = —2(bof + aog) . (B.10b)

Since both the error and the solution are real, we will suppress the complex notation in the
rest of the analysis. If we combine Egs. (B.4) and (B.9) and assume that a sufficient number
of iterations has been completed to effectively eliminate the non-dominant error modes, we

obtain the following expressions for the iterative solution and residual:
™ = &+ 0" [Fcos(ng) + Gsin (ng)], (B.11a)
r™ = F[o"cos (ng) — 0" cos((n—1)¢)]

+G [o"sin (ng) — o™ 'sin((n — 1) ¢)] . (B.11b)
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Note how the residual differs from that of Eq. (B.6), where the dominant eigenvalue is real.
If we attempt to use Eq. (B.6) to estimate the spectral radius when the dominant eigenvalues
are complex conjugates, our estimate could be very inaccurate. For example, if G = 0 then

the real spectral radius estimate is given by

g ocos ((n + 1) ¢) — cos (ne)
Test = 7| 5 cos (ng) —cos((n—1)¢) | ®.12)

Depending on the value of n and ¢, the estimate can cycle through a wide (even infinite)
range of values. Clearly we need an estimate that takes into account the potentially complex
nature of the eigenvalues.

If we examine Eq. (B.11b) we see that the unknown quantities are F, G, o, and ¢; we
obtain r™ from our computations at each iteration. We are most interested in ¢ and perhaps
¢. We can obtain expressions for F' and G in terms of the other parameters by using two
successive residuals:

(n) [yn+1 o3 —_ ol
r - _1_{ '™ o™ sin ((n + 1) ¢) — 0" sin (ng)] }, B.133)

—yintl) [0-" sin (n¢) — o™ lsin ((TL - 1) d))]

o - 1 { r(1) [™ cos (ng) — 0™t cos ((n — 1) §)] } ’ (B.13b)

—1( [o™* cos ((n + 1) ¢) — o™ cos (ng)]

where

det = 0% [cos(ng) — o™  cos((n — 1) @)] [osin ((n + 1) ¢) — sin (ng)]

—~a*™ o cos ({(n+ 1) ) — cos (ng)] [sin (n¢) — o™ sin((n — 1) ¢)] . (B.14)
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We need the next two residuals to obtain independent equations for ¢ and ¢:

r™) = F 6" cos((n+2)$) — 0™ cos ((n +1) ¢)]
+G [0"?sin((n+2) ¢) — o™ sin((n + 1) ¢)], (B.15a)
) — [0"+3 cos ((n + 3) ¢) — ™2 cos ((n + 2) )]

+G [0"sin((n +3) ¢) — 0™ sin ((n + 2) ¢)] . (B.15b)

If we substitute Egs. (B.13) into Eqs. (B.15) we obtain two nonlinear vector equatipns with
the two unknowns o and ¢. There are actually only two independent scalar equations; the
equations from any non-zero element of the residuals are equivalent to those obtained from
any other component. Therefore in practice we may simply choose an arbitrary algebraically
non-zero component of the residuals in order to determine ¢ and ¢.

The two nonlinear equations derived above require a nonlinear solution method. For
our computational experiments we use a method similar to the one we used to determine the
theoretical spectral radii in the Fourier analyses of Chapters IV and V. We define a grid of
points in (o, ¢) space and substitute each set of values into the right sides of Egs. (B.15) to
obtain two estimated residuals. We add the absolute values of the differences between these
estimates and the actual residuals to define an error. The (o, ¢) pair that has the lowest error is
used as the center for a finer set of grid points and the process is repeated. Successively finer
sets of test points are used until the error is smaller than some tolerance. We note that because
of the sinusoidal terms in Egs. (B.15) there may be multiple roots; we have not developed a

solution strategy to avoid false roots. In practice this has not been a serious problem.




147

Note some qualitative differences between this spectral radius estimate and the simpler
one, which is valid only for real eigenvalues. In the real case we only calculate a ratio,
whereas in the nonlinear case we must find the roots of two nonlinear equations. This requires
the implementation of a good nonlinear root solver. In practice this has not been difficult, nor
has it appreciably increased the computational time. In the real case we take a norm of the
residual, whereas in the complex case we only examine the values of a single component
of the residual; applying a norm to these residuals would greatly complicate the equations
and probably make their solution impractical. Finally, in the real case the iteration count n
is effectively eliminated from Eq. (B.6); in the complex case it cannot easily be eliminated.
However, since e© is arbitrary, we may define any iteration as the initial iteration in order to
reduce n and simplify our equations.

The complex eigenvalue estimate is, like the real estimate, subject to the constraint that
all but the dominant error modes have been eliminated; during the transient phase the complex
estimate will not be exact. The estimate also may be in error if there are other eigenvalues of
the same magnitude as the “dominant” eigenvalue pair but with different phases; our analysis
has not included this case.

As a demonstration of the behavior of these two methods we perform an S;-DSA
calculation in PERICLES with BLD differencing and optimized FP scattering. Our first
test is on a mesh with o, Az = o4, Ay = 1. From Table XIX we see that the theoretical
spectral radius is 0.90; the dominant eigenvalue is complex. We report the spectral radius
estimates for certain iterations in Table XXXV. The estimate obtained by assuming that
the dominant eigenvalue is real varies greatly and never approaches a single value. The

complex estimate, however, fluctuates between good and poor estimates during the early
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TABLE XXXV
Numerical Spectral Radius Estimates, Complex Dominant Eigenvalue
n | o: Eq. (B.6) | o: Egs. (B.15) | ¢: Egs. (B.15)
10 0.3603 0.9299 0.4159
20 14071 1.3849 0.0628
30 0.7053 0.6899 -0.0628
40 8.1874 0.9031 0.4407
50 0.9405 0.9038 0.4422
60 0.2722 0.9035 0.4412
70 1.3046 1.2899 -0.0628
80 0.6684 0.6549 -0.0628
90 4.7604 0.9035 0.4412
100 0.9058 0.8949 -0.0628
110 0.1886 0.9037 0.4412
120 1.2304 1.2199 0.0628
130 0.6329 0.6199 -0.0628
140 3.0688 0.9038 0.4413
150 0.8751 0.8649 -0.0628
160 0.1509 0.9038 0.4412
170 1.1720 1.1649 -0.0628
180 0.5966 0.5849 -0.0628
190 2.3844 0.9039 04412
200 0.8462 0.9038 0.4412
225 4.1773 0.9039 0.4412
250 0.8183 0.9038 0.4411
275 4.8405 0.9040 0.4412
300 0.7906 0.9038 0.4411
325 3.5989 0.9040 0.4412
350 0.7626 0.9038 0.4411
375 2.7451 0.9040 0.4412
400 0.7342 0.9038 0.4411
425 2.2545 0.9041 04411
450 0.7050 0.7049 -0.0628
475 1.9480 0.9041 0.4411
500 0.6747 0.9042 0.4411

iterations and eventually settles on a single good estimate. It is not surprising that there are
fluctuations during the initial iterates, since even if the dominant error mode is larger than
the other modes, its complex nature occasionally causes it to assume a low real value, and
the corresponding residual is more greatly affected by the other modes. Eventually, however,

these other modes become so small compared to the dominant eigenmode that poor estimates

are rarely obtained.
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TABLE XXXVI
Numerical Spectral Radius Estimates, Real Dominant Eigenvalue
n | o: Eq. (B.6) | 0: Eq. (B.15) | ¢: Eq. (B.15)
10 0.3606 0.8955 0.4436
20 1.4046 1.3949 -0.0628
30 0.7024 0.6899 -0.0628
40 8.9839 0.9031 0.4430
50 0.9344 0.9199 -0.0628
60 0.2520 0.9023 0.4411
70 1.2849 1.2649 -0.0628
80 0.6587 0.6399 -0.0628
90 3.2789 0.8946 0.4425
100 0.8987 0.8949 -0.0628
110 0.7182 0.9480 0.4662
120 1.0483 0.7689 0.5520
130 0.9587 0.8786 0.2815
140 0.9895 1.2950 0.1634
150 0.9871 0.9999 0.0000
160 0.9883 0.9200 0.0116
170 0.9890 0.9648 0.0428
180 0.9898 0.9946 0.0000
190 0.9906 0.9932 0.0000
200 0.9914 0.9861 0.0112
225 0.9931 0.9953 0.0000
250 0.9944 0.9956 0.0000
275 0.9952 0.9957 0.0000
300 0.9957 0.9959 0.0000
325 0.9961 0.9960 0.0000
350 0.9962 0.9960 0.0000
375 0.9964 0.9961 0.0000
400 0.9964 0.9961 0.0000
425 0.9965 0.9962 0.0000
450 0.9965 0.9962 0.0000
475 0.9966 0.9962 0.0000
500 0.9966 0.9962 0.0000
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To demonstrate the behavior of the spectral radius estimates when the actual dominant
eigenvalue is real, we perform the same computation on a mesh in which oAz is increased
to 1000. The results are reported in Table XXXVI. During the early transient period the
real estimate fluctuates greatly, whereas the complex estimate gives more reasonable values.
Sometimes the complex estimate has a value close to the spectral radius of the previous case
(0.90); this particular eigenvalue must still be present, even if it is not the dominant one now.
After sufficient iterations have occurred both the real and the complex estimates approach
a value close to unity, and the estimated phase is zero. This is close to the spectral radius
predicted by the Fourier analysis in Table XIX. Since a real eigenvalue is a special case of a
complex eigenvalue, the complex estimate works well in this situation. Therefore we observe
that the spectral radius estimation method that takes into account the potentially complex
nature of the dominant eigenvalue is more robust than the one that assumes that the eigenvalue
is real.

Finally, we note that a somewhat better real estimate may be obtained by calculating a
geometric mean over several iterations. In the special case when a complex conjuga&e pair of

eigenvalues are dominant and G = 0, we have the estimate

1
k

g™ cos (n+ k) ¢) — o™+ cos (n+ k — 1) §)
o™ cos (ng) — o1 cos ((n — 1) @)

Oest =

1
k

5 ocos((n+k)p) —cos((n+k—1)¢)
o cos (ng) — cos ((n — 1) @)

, (B.16)

where k is the number of iterations over which the geometric mean is taken. A similar but
more complicated relation is obtained if G # 0. Although the absolute value term in Eq.

(B.16) will fluctuate as much as the absolute value term in Eq. (B.12), taking its kth root
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makes it closer to unity. For k sufficiently large the estimate becomes o.s; =~ o. In practice,
however, £ needs to be quite large for the estimate to be decent, and in the cases studied the

complex estimate has always had greater precision.




