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APSTRACT 

F i n i t e - l o n - L a r m o r - r a d i u s (FLR) e f f e c t s p r o v i d e a hand of a d d i t i o n a l 

s t a b i l i t y f o r v a l u e s of P ( H p lasn ia p r e s s u r e / m a g n e t i c p r e s s u r e ) e x c e e d i n g t . i e 

l i m i t p r e d i c t e d f o r i d e a l magnetohyd r o d y n a m i c (MHD) b a l l o o n i n g m o d e s . W< 

examine t h e e f f e c t of p a r t i c l e c o l l i s i o n s on t h e s t a b l e modes of t h e FL! 
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INTRODUCTION 

The t h e o r y o f h i g h - n i d e a l MHD b a l l o o n i n g modes i n a n a x i s y m m e t r i c t o r u s 

p r e d i c t s t h a t , f o r g i v e n p r e s s u r e and c u r r e n t p r o f i l e s , t h e r e w i l l be a 

c r i t i c a l v a l u e o f 0 , i . e . , S M H D , t h a t w i l l c a u s e i n s t a b i l i t y [ 1 , 2 , 3 ] . When 
c 

P > P there will be discrete modes with frequencies 

" H H D ^ A ^ c " " " - 1 ^ 2 . (O 

w h e r e U A i s t h e A l f v e n f r e q u e n c y V A / L c w i t h V A t h e A l f v e n s p e e d and L . t h e 

c o n n e c t i o n l e n g t h . Below t h i s v a l u e of p l i e s a c o n t i n u n n o f s t a b l e o d e s 
o 

w i t h <ii > 0 . Li t h e s i m p l e s t model [ 4 , 5 1 t h e e f f e c t of f i n i t e i o n U mcr 
MHD 

2 
r a d i u s i s t o c a u s e t h e s u b s t i t u t i o n w * u(oi - a ) f o r t h e i e a l 

* i 
2 

e i g e n v a l u e u of I d e a l MHD, where to. = k a V / r i s t h e i o n d i a m a e n e t l c *i 1 i Tl n 

drift frequency. Here k is the wave number perpendicular to the magnetic 

field, â  Is the Ion Larmor radius, V Tj Is the thermal speed of species j 

and r is the density scale length. Equivalently, 
n 

2 2 
co ~ / b 8 u , L / r w h e r e b , = k. a . . Thus i t i s c l e a r t h a t u i s now g i v e n by *1 i A c n 1 1 1 ° J 

- r * («£i/4 + « 2

m / n > (2) 

and t h i s c o r r e s p o n d s t o an i n c r e a s e i n t h e c r i t i c a l p f o r i n s t a b i l i t y t o 

CR = 0 1 + f e • (3) 
where E = r /L is the inverse aspect ratio, p = E and ̂  is approximately n c c 
given by 
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. ! £ ± I U A ( ( ! * C " * -!,!/* . (A) 
FLR When p > p there is one stable and one unstable mode which connect to two c 

discrete stable modes when P < £ • As B is further reduced to P > the 
c c 

real parts of the frequencies of these modes approach zero and toA, 

respectively- Finally, when 3 <" 3 , these disc re to stable modes are 

2 
replaced by a stabLe continuum, si nee then w (w ~ w*, ) > 0 (cf. WMHD ^ ^ * n 

the ideal case f1] • 

Now in the absence of FLR effects it is known that unstable high n 

resistive ballooning modes are present for 3 < 8 [6]. It Is the purpose 
c 

of t h i s n o t e t o examine t h e e f f e c t of r e s i s t i v i t y and p e r p e n d i c u l a r i o n 

v i s c o s i t y on t h e s t a b l e d i s c r e t e modes p r e s e n t i n t h e r a n g e 

g M H D < p < B F L R . c c 

In Sec. II we derive the required eigenvalue equation from a kinetic 

description of ions and electrons in the appropriate collisional regime. For 

the electrons we solve the kinetic equation In the weakly collisional fluid 

limit v > u). but mv ~ k, V , where v. is the collision frequency, V„ the e * e II le J -J 

thermal velocity of species j and k„ Is the wave number parallel to the 

magnetic field. For the ions we consider k. sufficiently large so 

that a) - o)^ > k V and, to Include ion viscosity, OJ ~ v, b, . Substitution of 

the electron and ion responses in the quasi-neutrality and Maxwell's equations 

provides an eigenvalue equation. Solutions of this equation (both qualitative 

and numerical) for a large aspect-ratio equilibrium with circular surfaces are 

discussed in Sec. III. 
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II. THE EQUATIONS FOR RESISTIVE MODES 

In this section we introduce the equilibrium, the ballooning 

representation, the gyro-klnetlc equation, from which we derive useful moment 

equations, and Maxwell's equations. 

A. Equilibrium. 

We adopt the axisymmetrlc orthogonal flux coordinates^, C> X "itli 

Jacobian J, where 4* is the pololdal flux within a magnetic surface, C the 

toroidal angle, and x a poloidal angle variable. In these coordinates the 

magnetic field is expressible as [1] 

B = -H * VC + I(4>) VC , (5) 

where I(c|>) I s the prescr ibed t o r o i d a l f i e l d funct ion, and the g rad i en t 

o p e r a t o r may be w r i t t e n as 

V = e. KB | ~ + e- =- %=- + e Yjr ~ (6) 
X 

with P being the major r a d i u s . The sa fe ty f ac to r then becomes 

q = 2tt ^ V d X ( 7 ) 

2 
with v = IJ/R . 

B. Ballooning Represen ta t ion . 

Perturbed q u a n t i t i e s a re represented In t he form [2] 
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K * , C , X » ) = I •("t'.C.X - 2itp) ( 8 ) 
p=-<o 

which I s au tomat ica l ly pe r iod i c in x- Therefore , for high-n p e r t u r b a t i o n s , 

one can use an e ikonal form to represen t modes with shor t wavelength 

perpendicu la r to the magnetic f i e ld but long wavelength along i t , without a 

c o n f l i c t with p e r i o d i c i t y i n the presence of shea r . Thus we w r i t e 

• = •W'.X) exp (InS) (9) 

with 

S = C - Jvdx + JkOlOdiK (10) 

so that n«VS = 0 where n = B/B . $ is a slowly varying function of ij, 

and x which satisfies the same equation as $ but is no longer a periodic 

function of x a n c ' must be suitably well behaved as |x | * " • He shall 

frequently use the notation k = nvS. TTius k,= k e + k, n * e with 
~1 ~ ~1 (|j sp b ~ -s|) 

and 

k = nB/RB . (12) 
b X 

C. Cyrokinetic Equation. 

As a result of the small ratio of their Larmor radii to mascroscopic 

scales the plasma ions and electrons of a Maxwelllan plasma have perturbed 

distribution functions of the form [5] 
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f = ̂ $-F M + M E , | 1 , X ) exp(lL) , (13) 

where 41 Is the electrostatic potential, F is a Maxwelllan, 

*M-«oW2*«=T) • ( 1 4 ) 

2 2 
E = V /2 Is the energy and u = V /2B Is the magnetic moment per unit mass, r\ 

i s the gyro-phase angle so that V = V n + V c o s ne, + sinn Jixa ) , 

d 3v = Bdu de dn/|V 

L = (V /a) (k sinn - k COSTI) (15^ 
1 (\> b 

with 2 being the gyrofrequency• 

The function h Is a solution of the gyro-kinetic equation [ 5,/" 

V n«7h - ih(u-u) ) - <e 1 L C ( h e i L ) > (16) 

- iS.FH(,o-»J)[Jo(a) ( J - f v + J l ( a ) * 6BB] , 

where C is the usual Fokker-Hanck coll is lonal operator, < > represents a 

gyrophase average, ^nd 

U D = - T - U B + : r - M

K < 1 7 > 
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with OJB = (T/nfiB) _nxVB-k. and u = (T/nGB) ,nx(n» Vn)»Jc. . J Q and Jj are Bessel 

functions of argument a = k V /Q , u>* = u * [ l + x i ( m e / T - 3 / 2 ) ] with 

OJA = (ncT/e)d(In n )/d((> and T| = d(InT)/d(ln n Q ) . Â  and 6B are the 

components of the vector potential and the perturbed magnetic field along the 

equlllbriun f ield. Here we use the Coulomb gauge div A = 0. 

We emphasize that this equation contains secular terms in x through 

u and a ar is ing from shear and that we seek non-periodic solutions defined on 

the interval - <= < x < ™ which are suitably well behaved at in f in i ty . In this 

work we shal l consider the long wavelengths limit b << 1 where b = k T/DQ^ SO 

that in th is equation the col l is ion term and Bessel functions can be expanded 

in L and a . 

D. Electron So lution. 

Using the symbol k = n • Vip/<J>, we solve the electron gyro-kinetic 

equation in the limit w/k V - k » V T ^v < ( * ' b < v 1 - T o s i m P l l f v notation, 

we now suppress electron species suffices. 

Thus, in leading order (and writing $ for $ , e t c . ) , we have 

(18) 

which implies a Maxwellian solution 

i M o 

whare n" Is the non-adiabatic density perturbation. For simplicity, we shall 

ignore equilibrium temperature gradients and the resulting temperature 

perturbations. 
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In n e x t o r d e r , we h a v e 

C ( h ) = V n - V h - i(a,-a) ) ( - J i ) V A 
1 ll**- ^ O " l C II II 

(20) 

a n d , f i n a l l y , 

e F M V 
C ( h 2 ) = V ( n . V h 1 - i ( u ) - u D ) h o + i ( u - u 4 ) - ^ (* + " ^ 6 B , | > • <-21~> 

The p a r a l l e l c u r r e n t a r i s e s from t h e s o l u t i o n o f Eq. ( 2 0 ) f o r h j , u s i n g 

Eq . ( 1 9 ) f o r h 0 - T h i s r e s e m b l e s t h e p r o b l e m s o l v e d by S p i t z e r [ 8 ] and we f i n d 

T 
j = o f - 5 - n . V n ' + i ( u - u . ) 31 ] , ( 2 2 ) 
Jll <• en ~ ~ e *e c 

where o is the Spitzer conductivity. 

E. Ion Solution. 

In the Ion case we consider u ~ u >> k V (Imposing a lower limit on the 
* II Ti 

t o r o i d a l mode number n) and b^ < 1 , bu t Vjbj ~ u), which I n t r o d u c e s i o n - i o n 

c o l l i s i o n s a s a c o l l l s l o n a l v i s c o s i t y . 

T h u s , i n l e a d i n g o r d e r , we n o t e t h a t i o n - I o n c o l l i s i o n s d o m i n a t e t h e 

c o l l i s i o n terra a n d , h e n c e , o b t a i n f o r t h e i o n s 

C(h ) = 0 , ( 2 3 ) 
o 

i . e . , 

h = — F„ ( 2 4 ) 
o n M ' 
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where ion s p e c i e s ' s u f f i c e s are again suppressed . In next o r d e r , we have 

L 2 
- i&j-uOh - C(h.) + <C(h =-}> - <XC(h L)> (25) 

D O I O i T] O T 1 

2 
e F M V n A . V , 

Taking the d e n s i t y moment, we o b t a i n 

(o-u) -u. ) n ' = (oo-u).)!^. (<j> + J - 6 B 1 , (26) 
< B * T nfic II 

where in Eq . (2 5) dens i t y and raoraentum conse rva t ion in ion - ion c o l l i s i o n s 

a n n i h i l a t e the c o l l i s i o n terra. 

F. P a r a l l e l Current Moment Equat ion . 
•5 I T 

We form the moment J e. /d Ve of the gyrokinetic equation, Eq.(16), to 

obtain 

B.v^L- i»l f-Jd 3VF H{[l-(l-^J*(a>]« -(l-^)j o(a)J 1(a) rA6B | |} (27) 

i X e / d ^ U p h e 1 1 , + I e / d 3 V e i L < e " i L C ( h e 1 L ) > ^ e /dVv, hn- 7 e U 

where we have used Eq . (8) and charge n e u t r a l i t y . If we cons ider small b, 

i . e . , ignor ing terms i n b , b M-A*), b (6B /B) / (e$ /T) (see subsec t ion G) and 

b l k | | V T i ' ' 0 ) * ' W e o b t a l n 
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Jll i n o e Tt6B„ 

$-1 r- = - T — <u^*i) M + ^* i ^ * e ) s-gpE-
1 1 1 

- He (u + u ) n ' - e v b 2 a n ' (28) 
j J x B j j i l l 

with a = - 3 , and v J = 4 i t 1 / 2 n e 4 ln \ / (3M, 1 / 2 T . 3 / 2 ) . 1 u i o 1 1 

In der iv ing t h i s r e s u l t we have expanded the c o l l i s i o n term in Eq. (27) 

to order b^ t the f i r s t non-vanishing c o n t r i b u t i o n , using appropr i a t e 

conserva t ion p r o p e r t i e s , and Eq . (25) for the o rde r b-̂  c o r r e c t i o n to h . The 

r e s u l t i n g i n t e g r a l s have been evaluated using the p r o j e c t i o n techniques and 

expansion procedure of Shkarofsky e t a l . [ 9 ] . The Ion c o l l i s i o n term 

r ep re sen t i ng the l o v e s t - o r d e r c o l l i s i o n a l non-ambipolar d i f fus ion flux 

corresponds to ion perpendicu la r v i s cos i t y* 

G. Maxwell's Equat ions . 

We can e l imina te 6B by means of the component of Anpere's law 

perpendicular to the magnetic sur face 

l k b 6 B . = T \ • ( 2 9 ) 

with j - £ e / d V V cosn h exp( iL) . Equation (2 9 ) , along with (19) and ( 2 4 ) , 

y i e l d s , in the l i m i t b << 1, 

6 B I I " 4 * 2 f »' > ( 3 0 > 

confirming t h a t 6B. /B-- 8 n /n . Using the i d e n t i t y 

( P t / 2 ) ( u M - i o A e ) = (IOK - toB) where 0 1 = S I U I ^ / B ' 

of 6B i s e f f e c t i v e l y t o rep lace u)„ by u in Eq. (28 ) . 

2 
(P j /2) (wti - i o A e ) = (IO^ - toB) where 0 f = 8iin Tj/B , we note t h a t the r o l e 
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F l n a l l y , we have the p a r a l l e l component of Ampere's law, i . e . , 

k l *1 = — Jll < 3 1 > 

H. Eigenvalue Equation. 

In the limit u Au , p < 1 , Eq . (26) for n ' together with quasl-

neutrallty Implies that 

n'. = 4 ^ * I1 ~ — ) • < 3 2) 

Combining Eqs . (22) and (28) - (32) y i e l d s t he e igenva lue equa t ion 

2 2 ? 
(k /B J B-V<J> -4nn e $ 

B'V { = — } = — ~ (oifej-io )b + X> > io ) 
~ " 1 + [ lkfc/4 ) W («o-u> t ) T i *i i < i *i *e 

1 *e 

+ i a ( u ) - u J f c l ) v l b i

2 } (33) 

o r , employing f lu id n o t a t i o n , 

( | V S | 2 / B 2 ) B • V * 2 2 

B • 7 [ i ] = - 4ii(> {(0 ( t i n , ) m,n | v s | B (34) 
1 + in |VS| /4u(w - ui. ) e .. o -

s ~ ' *e 
4 4 

where p i s the t o t a l p r e s s u r e , T| the Sp i tze r r e s i s t i v i t y , ^ = _n.Jj and 

2 2 
p. = am n T v / e lr. the ion pe rpend icu la r v i s c o s i t y , 

v i o i i 
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I I I . SOLUTION FOR LARGE ASPECT RATIO TOKAMAK WITH CIRCULAR SURFACES 

In t h i s s e c t i o n we cons ider s o l u t i o n s of Eq. (33) for a l a r g e a spec t 

r a t i o tokamak wi th c i r c u l a r flux s u r f a c e s . In t h i s case the equi l ib r ium can 

2 2 
be cha rac t e r i s ed by two parameters :a = 2Rq P / r n B rep re sen t i ng the p ressure 
g r a d i e n t and s = ( r / q ) dq /d r r ep re sen t i ng the shear [ 1 0 ] . It i s convenient to 

Introduce the normalised frequency £3 = ou/w*e and c o l l i s i o n frequency v = 
2 

v

e r /Vje where a = n e /mv. Equation (33) becomes a d i f f e r e n t i a l equat ion 

defined on an i n f i n i t e range of the p o l o i d a l angle 8 : 

2 2 
— [ )

 t , , *- , ] ^ | f 2p (1 + T) (cos 9 + s9 s i n 9 ) A 
d8 1 + Iv b I o ' q /p t n ( Q - 1) 

+ (P b /e T ) Q(Q + x) (1 + s 2 e 2 ) f 1 + i S t u b , * / 2 (35) 
io n L i i o 

2 2 
X ( 1 + S 9 ) & ] 4 P = 0 

2 2 2 2 2 2 2 Here, p = 4-iiq n T /e B , b = m T n q /e B r , T = T /T , and we use the o e n io i i n i e 
l a b e l i n g parameter 6,~ 1 to cons ider ion - ion c o l l i s i o n s independently of 

e l e c t r o n c o l l i s i o n s . We have solved t h i s equat ion for 

s = q = 1 - 1 and £ = b = 0.1 ( cons i s t en t with the expansion u v v_ ) . 

With v = 0 the i n s t a b i l i t y threshold i s P = 0.1997 E p r l - K . We have 
c 

considered the v a r i a t i o n of Im Q with v for the uns t ab l e branch 
A A FT R * 

when p = 0.1995, i . e . , jus t below p r t j l \ and when p = 0.1900, i n t e rmed ia t e 
in the range p M H D < p < p F L R . The r e s u l t s a r e shown in F ig . 1 for two 

c c 

cho ices of 6 . , namely, 6 = 0, corresponding to ignor ing ion- ion c o l l i s i o n s , 

and 5 . = 1, c h a r a c t e r i s t i c of t h e i r being f u l l y e f f e c t i v e . 

I t should be noted t h a t the growth r a t e i nc reases with e l e c t r o n - i o n 
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collisions. Indeed the behavior can readily be understood qualitatively by 

perturbation theory. From the general Eq. (34), with (i = 0 for simplicity, 

one can construct schematically a quadratic form 

^ - * M ) + « A
2 [-^ " 1 + ^ r H -0 (36) 

Pc 
* 

where v a y . TTius 

1 + -HL-] lf2 ---T-*M-^; R-1+^-] « H7) 
P c *c 

FLR 1/2 FTP 
Whtn B=8 , Im u has a v dependence, whereas when B < B ' i t takes on 
a linear variation with v, features characteristic of Fig. I. It can be seen 
in Fig. 1 that Ion-ion collisions have a small stabilizing effect on this 

mode. 

IV. Conclusion. 

We have derived an equation to investigate the influence of collisions on 

high-n ballooning modes in the presence of FLR effects. Calculations have 

been performed for a large aspect ratio tokamak with circular flux surfaces. 

In the absence of collisional effects there are two modes with real 

frequencies in the range of p value given by 

B < 8 < B ' where 8 ' are the critical R values in ideal MHD c c c r 

theory and in the presence of FLR, respectively. Electron-ion collisions, 

i.e., resistivity, destabilize one of those branches with a growth 

rate y a v when 8 < B F L R , but with y a v when 8 < B F L R . Ion-ion 

collisions, I.e., ion perpendicular viscosity, tend to reduce these growth 

rates somewhat. Opposite behaviors are observed for the resistively stable 

branch. Finally, we remark that FLR effects on resistive Lallooning modes in 
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the p < p regime a r e c u r r e n t l y under i n v e s t i g a t i o n and w i l l be repor ted In 

s fu tu re p u b l i c a t i o n . 
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Figure Caption 

F ig . 1. Growth r a t e versus e l e c t r o n - i o n C o l l i s l o a frequency v , for two 

d i f f e r e n t values of 0 . 5 = 1 and 6=0 cor respond , r e s p e c t i v e l y , to 

c a l c u l a t i o n s with and without Ion- ion c o l l i s i o n s . 
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