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ARSTRACT

Finite~ion-Larmor- radius (FLR) effects provide a hand of additional

stability for values of B( £ plasma pressure/magnetic pressure) exceeding tae

limit predicted for 1deal magnetohydrodynamic (MHD) ballooning modes. We

examine the effect of particle collisions on the stable modes of the FLI

modifie: 1deal theory that exist in this range of B values.
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INTRODUCTION

The theory of high-n ideal MHD ballooning modes in an axisymmetric torus

predicts that, for given pressure and current profiles, there will be a

critical value of § , i.e., ﬁcMHD , that will cause instability [1,2,3]. When

MHD there wilil be discrete modes with frequencies

B >B,

wp = W, B8, ™0 - 2, (i)

where wy is the Alfven frequency VA/LC with V, the Alfven speed and L. the
connection length. Below this value of B 1ies a continuum of stable -odes

with w 2
MHD

> 0. In the simplest model [4,5] the effect of finite ion L mocr
radius is to cause the substitution wz > wlw —w*i) for the ceal
. 2

eigenvalue w” of 1ideal MHD, where Way = kiaith/rn is the ion diamagnetic
drift frequency. Here kl is the wave number perpendicular to the magnetic

field, a; 1s the 1on Larmor radius, VTj is the thermal speed of specles j

and rn is the density scale length. Equivalently,
— 22
wey ™ /biﬁ wALc/rn where b, = ki a; - Thus it 1s clear that w is now given by
w
_ 2 2 1/2
e B T T LR ’ (2

and this corresponds to an increase in the critical 8 for instability to

RS R R 3

MHD

wheree = r /L s the inverse acpect ratio, p = ¢ and ;, is approximately
n ¢ c

given by



Ld*i

FLR 1/2
5 + ij (B/Bc - /

1) . (4)

w =

When B > B FLR there 1s one stable and one unstable mode which connect to two
c

FLR
discrete stable modes when B < 60 . As B is further reduced to BCMHD. the

real parts of the frequencies of these modes approach zero and Way
: MHD
respectively. Finally, when B < BC , these discrete stable wmodes are
2
replaced by a stable coontinuum, since then w(w - w*i) >0 (c.f. WyHD >0 In
the ideal case [1l] .
Now in the absence of FLR effects {t is known that unstable high a

MHD [6]. It Is the purpose

resistive ballooning modes are present for g§ < B
c
of this note to examine the effect of resistivity and perpendicular {ion

viscosity on the stable discrete modes present in the range

FLR
8 MHD B <B .
c c

In Sec. II we derive the required elgenvalue equation from a kinetic
description of ions and electrons in the appropriate collisfonal regime. For

the electrons we solve the kinetic equation in the weakly collisional fluid

limit Ve > w, but mvC ~ k

2 2
| VTe , where V5 {s the collision frequency, VTj the

thermal velocity of species j and k” is the wave number parallel to the
magnetic fleld. For the 1lons we constider kl sufficiently large so
that w ~ w, > k”VTi and, to Include lon viscosity, w ~ vibi' Substitution of
the electron and ion responses in the quasi-neutrality and Maxwell's equations
provides an eigenvalue equation. Solutions of this equation (both qualitative

and numerical) for a large aspect-ratio equilibrium with circular surfaces are

discussed in Sec. 1IIL.



II. THE EQUATIONS FOR RESISTIVE MODES
In this section we Introduce the equilibrium, the ballooning
representatlon, the gyro—kinetic equation, from which we derive useful moment

equations, and Maxwell's equations.

A. Equilibrium.

We adopt the axisymmetric orthogonal flux coordinatesd¢, £, x with
Jacobian J, wherec ¢ is the poloidal flux within a magnetic surface, { the
toroidal angle, and x a poloidal angle variable. In these coordinates the

magnetic field is expressible as [1]

B =-9¢ x VL + I()TC , )

where I(¢) 1Is the prescribed toroidal field function, and the gradient

aperator may be written as

o
—
»

5Tt &y TB ox (6)
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with R being the major radius. The safety factor then becomes

1
=35 bva 3

with v = IJ/RZ.

B. Ballooning Representation.

Perturbed quantities are represented ir the form [2]



L

0,Tx,) =1 W, - 2mp) (8)

p=—=
which 1s automatically periodic 1n y. Therefore, for high-n perturbations,
one can use an elkonal form to represent modes with short wavelength
perpendicular to the magnetic fleld but long wavelength along it, without a

conflict with perlodicity in the presence of shear. Thus we write

$(G,x) exp (inS) (9)

A=4
i

with

¢
4 -Jxvdx + [k(4)do, (10)

w
]

so that ne¥S = 0 where n = B/B. ¢ Is a slowly varylng function of ¢
and y which satisfles the same equatfon as ¢ but 1s no longer a periodic
function of y and must he suitably well behaved as [x| » =. We shall

frequently use the notation k.L = nVS. Thus k. = k, e + kb~nx ‘gd’ with

1~

v
= - 2Y _ k (L1
k aRB, ( }dx 5 W] . )

and

k = nB/RB . (12)
X

C. Gyrokinetic Equatilon.
As a result of the small ratio of their Larmor radil to mascroscopic
scales the plasma lons and electrons of a Maxwellian plasma have perturbed

Aistribution functious of the form [S]



£= 35y +hie,px) exp(il) (13
where ¢ 15 the electroztatic potential, FM is a Maxwellian,
m )3/2 exp(—.i.n:) , as)

Fy = n, (o

€ = vz/z is the energy and p = Vf/ZB 1s the magnetic moment per unit mass, 1

is the gyro-phase angle so that'y = VIIE + Vl -cos ngy -+ sim @x.gw),
3
d’v = Bdu de an/[V,[ ,
and
L=(V R k si - k cos 15
(v R) (¥ stm - k cosn) (

with Q being the gyrofrequency.

The function ‘l:, is a solutlion of the gyro-kinetic equation [ S

V.ne¥h - 1h(w=w.) - <e ‘rcinel™y > (16)
[EA D n
v v
e T » Ve I
= 5 Fyww)[J @) (6= = 4) + J () ke 581

where C is the usual Fokker-Planck collisional operator, < > represents a
n

gyrophase average, and

2
mB mV“
= _(AIB + T——w

Wp T T

. an



with wp = (T/mB) px¥B-k, and w, = (T/m@B) px(pe¥n)ek . J, and J) are Bessel

'3 o
functions of argument a = lel/Q, Wkl = Wk [1+0 (me/T - 3/2)] with
wye = (ncT/e)d(ln no)/dd; and n = d(InT)/d(In no). A" and GB“ are the

components of the vector potential and the perturbed magnetic field along the
equilibriun field. Here we use the Coulomb gauge divzx = 0.

We emphasize that this equation contains secular terms 1in x through
©y and 4 arising from shear aand that we seek non-periodic solutions defined on
the interval - = { x < @ which are suitably well behaved at infinity. In this
work we shall cons!der the long wavelengths limit b << 1 where b = ki’T/an so

that in this equation the collision term and Bessel functlions can be expanded

o L and a.

D. Electron Solution.
Using the symbol k" =n-+* Vp/p, we solve the electron gyro-kinetic

equation in the limit m/k“V k,V /ve << 1, be(( 1. To simplify notation,

Te ~ “ ' Te

we now suppress electrcn species suffices.

Thus, in leading order (and writing ¢ for ;, etc.), we have

Cthy) = 0 , (18)
vhich implies a Maxwellian solution
no=Lw , a9

-

where n” is the non-adiabatic density perturbatfon. For simplicity, we shall
ignore equilibrium temperature gradients and the resulting temperature

perturbations.




In next order, we have

eFM
= . - — ) VA 20
CChy) = Vi meZh - L)z Y4 20
and, finally,
eFM VLZ
C(k,) = Vin.Thy =~ fwwdh + 1ww,) — @ +5-68) . (21

The parallel current arises from the solution of Eq. (20) for h;, using

Eq. (19) for hy. This resembles the problem solved by Spitzer [8] and we find

T
r e A
i, = — n.n” —
i m‘eno'P Yne + i(w-w*e) = ] ,

(22)

where o is the Spitzer conductivity.

E. Ton Solution.

In the 1on case we conslder w ~ w*>> k”VTi (lmposing a lower limit on the
toroidal mode number n) and b; < 1, but Vibi ~ w, which introduces 1on - ion

collisions as a collisional viscosity.
Thus, in leading order, we note that fon - ion collisions dominate the

collision term and, hence, obtain for the fons

C(ho) =0 , 23)

n
hy =——F (24)



where lon species' suffices are again suppressed. In next order, we have

2
L
—iﬁu1nD)ho - C(hl) + (C(ho—§)>n - <Lc(hoL)>n (25)

2
eF V. A v
/| 1
+ i .
N 61?'ﬁ:I

Taking the density moment, we obtain

o 72 26
-w n = (ww,)— + 8B )
ww wp) Wi (0 + =068 (26)
where in Eq. (25) density and momentum conservation in ion - ilon collisions

annihilate the collision term.

F. Parallel Current Moment Equation.

We form the moment j e, fdave“‘ of the gyrokinetic equation, Eq.(16), to
J
obtain
jII e2 3 Wi, 2 Yy v 1 27
Be¥—g = 1] 5 [aVE([1{1- I @]o - (1- I @), (@) T{;M“} 27

3 iL 3, iL -iL iL 3 iL
- 1jefd Vw phe +Yefd"Ve " < "TC(he ) >T} 4 efd VY, hre Ve

where we have used Eq. (8) and charge neutrality. If we consider small b,
i.e., ignoring terms in be, biwD/w, bi (BBI /B} /(ep/T) (see subsection G) and

b1 kllvTi/w* , we cbtain

L



2
iy inge T;08
Pﬂg-’wr”@“ﬂ>%°+@q”w>apﬁ

-i):e‘(m+w)‘n"—evb2an‘ (28)
3 i x B'i 3 i1 i
) 3 _ . 172 4 w /20 32
with a “Tﬁa“d vy 41 n e InA/( Mi Ti ).

In deriving this result we have expanded the collision term in Eq. (27)
to order biz, the first non-vanishing contribution, wusing appropriate
conservation properties, and Eq. (25) for the order b; correction to h,. The
resulting integrals have been evaluated using the projection techniques and
expansion procedure of Shkarofsky et al. ([9]. The ion collision term
representing the 1lowest-order «collisional nonambipolar diffusion flux

corresponds to lon perpendicular viscosity.

G. Maxwell's Equations.

We can eliminate BB' by means of the component of Anmpere's law

perpendicular to the magnetic surface
_ 4o,
ikb BB“ s - i R (29)

wieh j - Jefd3V V. cos h exp(il). Equation (29), along with (19) and (24),

1
yields, 1in the limit b << 1,

el
tSB" = ATIEE n R (30)

v
confirming thac 5BH/B ~Bn /n0 . Using the identity

2
8,/ (Way = 0y,) = (mK - wp) where B, = 8rmoTi/B , we note that the role

of ISB" is effectively to replace wp by W, in Eq. (28).
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Finally, we have the parallel component of Ampere's law, i.e.,

2 _bn
kA T GL

H. Ei~envalue Equation.

In the 1limit wD/lu ,B <1, Eg. (26) for n;, together with quasi-

neutrality implies that

n e, Wy -
ey (1- 1) G

Combining Eqs. (22) and (28) ~ (32) ylelds the eigenvalue equation

(/s9)pge | nge’s {
Bev = Www, )b, + 2 (w, w, )
g 2 by T x4 ki X e
1+ [iklc/énc(w-w*e)J i
+ iz w-w,, W, b, (33)
7L
or, employing fluid notation,
2,2
(lys[*/B") B+ 7 o 22
By } = - g {w (w-w*e) m,nolgsl B (34)
) A

1+ 1nS|ZS|2/4'rL(w N

4 4
* 2kt USBxRP S+ by @) [T5])/B

where p 1s the total pressure, ns the Spitzer resistivity, ¢ = n.gyn and

poo= am2 noTi\)i/e2 is the lon perpendicular viscosity.
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III. SOLUTION FOR LARGE ASPECT RATIO TOKAMAK WITH CIRCULAR SURFACES

In this sectlian we consider solutions of Egq. (33) for a large aspect
ratio tokamak with circular flux surfaces. In this case the aquilibrium can
be characterised by two parameters:a = 2Rq ZP/rnBZ representing the pressure
gradient and s = (r/q) dq/dr representing the shear [10]. It Is convenient to
introduce the normalised frequency @ = w/wx, and collision frequency v =
Vern/VTe where g = noez/mv. Equation (33) becomes a differential equation

defined on an infinite range of the poloidal angle 6:

T

22
LI LN D — J %+ 20 (1 +71) (cos 8 + B sin0) b
o 1+vb, Y q"Be @-1)

1/2

+ (8 b /e 1) Q@ +1) (1 +5292)[1+iéi1vb10 (35)

i

X(1+5292)/§2]¢;=0 .

o 2 2 22,22 2
=4 T B = T 3 =
Here, B nq°n e/an , bio m T n"q /e s Ti/Te , and we use the
labeling paramecer 61'\ 1 to consider ion-ion collisions independently of
electron collisions. We have solved this equation for
s=qg=1=1ande = bio = 0.1 (consistent with the expansion Wa s k" VTi)'

2 FLR

With v =0 the 1instability threshold 1is g = 0.1997 = BC We have

considered the variacion of Im @ with v for the unstable branch
when g = 0.1995, 1.e., just below Ec FLR, and when 8 = 0.1900, lntermediate

in the range B The results are shown in Fig. 1 for two
c

MHD <B <P FLR

c
choices of 61, namely, Bi= 0, corresponding to ignoring ion-ion collisions,
and 61 = 1, characteristic of theilr being fully effective.

It should be noted that the growth rate increases with electron—ion
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collisfons. Indeed the behavior can readily he understood qualitatively by
perturbation theory. From the general Eq. (34), withp =0 for simplicity.

one can construct schematically a quadratic form

*
2 a iv 3
- + - + =
w{w w*i) Ya EB MHD 1 ww, ° G0
. >
*
vhere v = y. Thus
g, *
o i r B _ iv ﬁ
e i R B e S U e (37)
B *e
c
FLR 1/2 dependence, whereas when B < B FLR 4t takes on
c

When szﬁc , Imy has a v
a linear variation with v, features characteristic of Fig. 1. Tt can bhe seen

in Fig. 1 that ifomion collisions have a small stabilizing effect on this

mode.

TV. Conclusica.

We have derived an equation to Investigate the Influence of collisions on
high-n ballooning modes 1in the presence of FLR effects. GCalculations have
been performed for a large aspect ratio tokamak with circular flux surfaces.
In the absence of collisional effects there are two modes with real
frequencies in the range of f value glven by
BCMHD <p < BCFLR' where BCMHD'FLR are the critical g values in idesl MAD

theory and in the presence of FLR, respectively. Electron-ion collisions,

i.e., resistivity, destabilize one of those branches with a growth

R 1/2 FLR 54—

rate y @ v when B < BCFL , but with y ¢ v whenp < Be ion
collisions, 1i.e., ion pevpendicular viscosity, tend to reduce these growth
rates somewhat. Opposite behaviors are observed for the resistively stable

branch. Finally, we remark that FLR effects on resistive Lallooning modes in
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MHD

the B < B regime are currently under investigation and wlll be reported in

z future publication.
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Figure Caption

Fig. 1. Growth rate versus electromlon Collision frequency v, for

different values of 8. 51 =1 and 6i = 0 correspond, respectively,

calcuvlations with and without ion-ion collisfons.

two

ta




_15_

~82T0106

IIII VT T 1

1995 x 10"

L9xI0

B
——--- 8

1 L1
-1
10

Ll

1L

L

1072

Ll

e L TTRTRS

10
103

Fig. 1



