LA-7491-C

Conference Proceedings

Proceedings of the 1978 LASL Workshop on

Vector and Parallel Processors

Held at Los Alamos Scientific Laboratory
Los Alamos, New Mexico

September 20-22, 1978

University of California

Z72IT1IT1IT1 OF SS» 13 UNUMI'TKB

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos. New Mexico 87545

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

An Affirmative Action/Equal Opportunity Employer

This work was supported by the Director of the
Applied Mathematical Sciences, US Department of
Energy.

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Department of Energy, nor any of their
employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights.

UNITED STATES
DEPARTMENT OF ENERGY
CONTRACT W-7405-ENG. 36

LA-7491-C
Conference Proceedings

Special Distribution
Issued: October 1978

Proceedings of the 1978 LASL Workshop on

Vector and Parallel Processors

Held at Los Alamos Scientific Laboratory

Los Alamos, New Mexico

September 20-22, 1978

Compiled by

B. L. Buzbee
J. F. Morrison

NOTICE:

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights*

~JiSTK1BUT1ON OF THIS DOCUMENT IS UNLISHT

PREFACE

The 1978 LASL Workshop on Vector and Parallel Processors was
held at the Los Alamos Scientific Laboratory, Los Alamos, New
Mexico, September 20-22, 1978. Since successful utilization of
vector and parallel processors presents a special set of prob-
lems, the purpose of the Workshop was to provide an exchange of
information between organizations that either have acquired or
plan to acquire these processors. Researchers from government
laboratories, industry, and academia participated. Approximately
35 talks were presented covering operating systems, applications,
algorithms, languages, and processors. Complete papers for many
of the talks are contained in these Proceedings. In cases where
the Proceedings contain only an abstract, you should contact the
author if you want further information.

On behalf of the organizers, we thank the Workshop partici-
pants for their contributions. We also thank the Applied

Mathematical Sciences Program, Office of Energy Research, U. S.
Department of Energy for funding of the Workshop.

B. L. Buzbee

J. F. Morrison

iv

AGENDA
1978 LASL WORKSHOP ON VECTOR S PARALLEL PROCESSORS

LOS ALAMOS SCIENTIFIC LABORATORY
LOS ALAMOS, NM 87545

SEPTEMBER 20-22, 1978

FULLER LODGE

HOSTS: 8. L. Buzbee., C-3 GAoup LzadeA
J. F. Mosinj>on, C-11 Gswup LzadeA

SEPTEMBER 20, 1978
COMMUNITY BUILDING

BANQUET

6:00-7:00 HAPPY HOUR! (NO HOST BAR)
7:00 DINNER

8:30 SPEAKER - Weix Ld.ncotn, CVC, "HslLgh-Spzzd Computing
You Take the Htgh Road and [7t/ Take the
Low Road and Someone ElLse WiLi Get TheAe
Redone Ua Both”

vi

10:
10:
11:
11:
12:

w W

fiIsy

:15
:20

:50

:20
: 50

20
35
05
35
05

:35
: 00

: 30

:00
:30
145
:15
:45

SEPTEMBER 20, 1978

SESSION I - OPERATING SYSTEMS

WELCOME - Kyu/e V. LathAop, C-ViviAlcm LmdeA

ADVANCED HIGH LEVEL USER DIAGNOSTICS WITH THE ICL DISTRIBUTED
ARRAY PROCESSOR - Rob-In w. GoAtick

A HIGH PERFORMANCE GRAPHICS SYSTEM FOR THE CRAY-1 - RobeAt H.
Ewé&td, Lynn V. Maca

CRAY-1 ERROR RECOVERY - Afe.x MaAuAak

THE CRAY-1 COMPUTER AND THE DEMOS OPERATING SYSTEM - FOAeAt BaAkeXt
COFFEE S ROLLS

THE ILLIAC IV SYSTEM IN 1978 - Vav-Ld Ste.ve.nAon

CTSS STATUS REPORT - VieteA FuAA

EARLY EXPERIENCE WITH THE CRAY-1 AT NCAR - RIchaAd K. Sato

LUNCH

SESSION II - APPLICATIONS

VECTORIZATION FROM A LARGE CODE POINT OF VIEW - MaAgaAet w. AApAey

VECTORIZED PIC SIMULATION CODES ON THE CRAY-1 - V. u. FoAAlund,
C. w. NtelAon

A CRAY-1 SIMULATOR AND ITS APPLICATION TO DEVELOPMENT OF HIGH-
PERFORMANCE CODES - V. A. OAbtXA, V. A. Calakan

LARC EXPERIENCE IN THE INSTALLATION OF A STAR-100 COMPUTER - M. Rowe
BREAK

SOME LINPACK TIMINGS ON THE CRAY-1 - J. J. VongaMAa

STAR-100 - GOOD NEWS AND BAD NEWS - T. Rudy

HOW TO GET MORE OUT OF YOUR VECTOR PROCESSOR - BAtan (.. BAode

10:

10

11:
11:

12

:15
:45

:15

:45

15

: 30

00
30

: 00

: 30
:00

: 30

: 00

: 30

:45

:15
:45

SEPTEMBER 21, 1978

SESSION III - ALGORITHMS

POISSON SOLVERS ON A LARGE ARRAY COMPUTER - ChuteA E. GAQAck

VECTORIZED FORTRAN SUBPROGRAMS FOR THE SYMMETRIC FAST FOURIER
TRANSFORMS - PauX N. SwaAz&umbeA

A PARALLEL ALGORITHM FOR SOLVING BONDED SYSTEMS ARISING FROM
SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS IN TWO DIMENSIONS -
1. Etlzl, V. PaAkinAon

FINITE ELEMENT DYNAMIC ANALYSIS ON THE STAR-100 -
JudLeA J. LmbXoé&te., JA.

COFFEE S ROLLS

SOME VARIANTS OF METHODS FOR COMPUTING THE VARIANCE - T. Chan,
G. H Golub, R. Lzlleque.

A DIRECT POISSON SOLVER ON STAR - M. J. KaAcXc.

VECTORIZATION OF BLOCK RELAXATION TECHNIQUES - SOME NUMERICAL
EXPERIMENTS - VaviidL L. Bolzy

LUNCH

SESSION IV - LANGUAGES

VECTORAL - A VECTOR ALGORITHMIC LANGUAGE FOR ILLIAC - Al<m IllAaijj

AN INTRODUCTION TO VECTRAN AND ITS USE IN SCIENTIFIC APPLICATIONS
PROGRAMMING - George. Paul, M. Waym WIIAon

REGISTER ALLOCATION IN THE SL/1 COMPILER - Vouglcu, V. Vunlop,
John C. Knight

ACTUS - A LANGUAGE FOR SIMD ARCHITECTURES - R. PeAAott,
Vavld StzvunAon

BREAK

THE VECTORIZER SYSTEM: CURRENT AND PROPOSED CAPABILITIES -
Matkm MyAzmAki

AUTOMATIC STACKLIB FACILITIES IN STAR"FORTRAN - Anil K. LakhwaAa

VECTORIZING FORTRAN - ILee. HlIgble

vii

viii

10:
10:

11
11

:15

:45
:15
145

15
30

:00
: 30

SEPTEMBER 22. 1978

SESSION V - PROCESSORS

COMPUTATIONAL FLUID DYNAMICS, ILLIAC IV, AND BEYOND -
K. G. StevanA, M.

DAP - A FLEXIBLE NUMBER CRUNCHER - S. F. Rzddaumy
ARRAY PROCESSING ON THE PDP-10 - MaAon, Gnongz. G. SutheAland

DISTRIBUTED NUMERIC COMPUTING ENGINES: MINICOMPUTER-BASED VECTOR
AND PARALLEL COMPUTING - W. MoTuen Gzntiman

COFFEE S ROLLS

DESIGN OF ARITHMETIC ELEMENTS FOR BURROUGHS SCIENTIFIC PROCESSOR -
VowwLoJL V. GajAki, L. Rubd.nfid.el.d

THE TEXAS RECONFICURABLE ARRAY PROCESSOR - SpeakeA to be announced

OPTIMIZATION OF VECTOR OPERATIONS IN AN EXTENDED FORTRAN COMPILER -
Kenneth w. Kennedy, 3K.

CONTENTS

SESSION I - OPERATING SYSTEMS

Advanced High Level User Diagnostics with the ICL Distributed

Array Processor - Robin W. Gostick............... i, 2
A High Performance Graphics System for the CRAY-1 -

Robert H. Ewald, Lynn D. MaasS.........c.iiuuetenmeeeeenneeenneeennens 10
CRAY-1 Error Recovery - Alex Marusak................ ... 11
The CRAY-1 Computer and the DEMOS Operating System -

Forest Baskett. i i i e e 12
The ILLIAC IV System in 1978 - David Stevenson.................. 13
CTSS Status Report - Dieter Fuss............. ittt 14
Early Experience with the CRAY-1] at NCAR............cotiiinnnnn 15

SESSION II - APPLICATIONS

Vectorization from a Large Code Point of View -

Margaret W. AS P r eyttt ittt tennae et esneeeenneeeenneens 16
Vectorized PIC Simulation Codes on the CRAY-1 -

D. W. Forslund, C. W. B T = I 3« 41
A CRAY-1 Simulator and Its Application to Development of High-
Performance Codes - D. A. Orbits, D. A. Calahan................. 42
LaRC Experience in the Installation of a STAR-100 Computer -

S 2 = 57
Some LINPACK Timings on the CRAY-1 - J. J. Dongarra............ 58
STAR-100 - Good News and Bad News - T. Rudy..........coiueeiuuue.. 76

Brian Q. Erode. ittt ittt ettt ittt ettt ittt et e e e 77

SESSION III - ALGORITHMS

Poisson Solvers on a Large Array Computer -
Chester E. GroSCh........ ...ttt ittt ittt ittt nnnns 93

Vectorized FORTRAN Subprograms for the Symmetric Fast Fourier
Transforms - Paul N. Swarztrauber................. 133

A Parallel Algorithm for Solving Bonded Systems Arising from
Second Order Partial Differential Equations in Two Dimensions -
V. Ellel, D. ParKkinsSoOmn..........i.iiiiiiieteteeeeeetneeeeeeneeeienneeens 134

Finite Element Dynamic Analysis on the STAR-100 -
Jules J. Lambiotte, Jr..........ttt 135

ix

Some Variants of Methods for Computing the Variance -

T. Chan, G. H. Golub, R. LeVequUe.......... .o tiiuiieeennneeennaeennns 136
A Direct Poisson Solver on STAR - M. J. Kascic, Jr............. 137
Vectorization of Block Relaxation Techniques - Some Numerical

Experiments - Daniel L. BoOley........iui ittt tinnnetennneennenns 166

SESSION IV - LANGUAGES

Vectoral - A Vector Algorithmic Language for ILLIAC -

B = o T 174
An Introduction to VECTRAN and Its Use in Scientific Applica-
tions Programming - George Paul, M. Wayne Wilson................ 176
Register Allocation in the SL/1 Compiler - Douglas D. Dunlop,

John C. Knight.t et et ittt i 205
ACTUS - A Language for SIMD Architectures - R. Perrott,

David StevVen SOttt ittt ittt ittt i i e e 212
The Vectorizer System: Current and Proposed Capabilities -

Mathew MysSzeWsKi...... ...ttt ittt ittt eienaeeennnes 219
Automatic STACKLIB Facilities in STAR*FORTRAN -

Anil K. Lakhwara.ttt ittt ittt ittt 220
Vectorizing FORTRAN - Lee Higbie............t 221

SESSION V - PROCESSORS

Computational Fluid Dynamics, ILLIAC IV, and Beyond -

K. G. StevVensS, T Xt itittteeneeeeeeneeeeeoeneeeeeeneeeeeeneeeeennnn 222
DAP - A Flexible Number Cruncher - S. F. Reddaway............... 233
Array Processing on the PDP-10 - Neil Maron, George G.

Sutherland.t et et e et et et e e 235
Distributed Numeric Computing Engines: Minicomputer-Based

Vector and Parallel Computing - W. Morven Gentleman............ 236

Design of Arithmetic Elements for Burroughs Scientific
Processor - Daniel D. Gajski, L. Rubinfield..................... 237

Optimization of Vector Operations in an Extended FORTRAN
Compiler - Kenneth W. Kennedy, Jr..........c.cccciiietttneeeennnennn 238

PROCEEDINGS
OF THE
1978 LASL WORKSHOP ON VECTOR AND PARALLEL PROCESSORS

Compiled by

B. L. Buzbee and J. F. Morrison

ABSTRACT

This is a compilation of papers and
abstracts presented at the 1978 LASL Workshop
on Vector and Parallel Processors held at the
Los Alamos Scientific Laboratory, Los Alamos,
New Mexico, September 20-22, 1978.

ADVANCED HIGH LEVEL USER DIAGNOSTICS

WITH THE ICL DISTRIBUTED ARRAY PROCESSOR

by

RoMn W. Gostick
International Computers Ltd.

London

ABSTRACT

The unique combination of a powerful bit organised parallel processor
within the store of an advanced virtual storage serial computer allows a
highly flexible and powerful diagnostic system with very low cost to the user.
The diagnostic system of the ICL 2900 series automatically provides
high level post mortem information to the programmer regardless of the
language or combination of languages being used and with absolutely no run-
time overheads. This system has been enhanced to provide run-time diagnostics
for use with the Distributed Array Processor (DAP) but with significant
extensions to take advantage of the properties of the DAP and to overcome
many of the problems usually associated with array processor diagnostic systems.

I. INTRODUCTION

General purpose computers have, over the last few years, provided
increasingly powerful user diagnostic and debugging aids. Development of
supercomputers, on the other hand, has tended to be towards production of
super efficient compilers, with minimal debugging aids. The ICL DAP approach
combines the facilities of the general purpose machine with the power of a
supercomputer.

HARDWARE OVERVIEW

The DAP has been described in ref 1 , but the main features are summar-
ised here. Figure (1) shows the basic construction of the DAP processing
array, which consists of a 64 x 64 element matrix of simple one bit processors,
each with a /K bit storage element. The processors have both simple nearest
neighbour connections and highway connections to the master control unit (MCU).
The MCU performs all the instruction fetching and decoding for the system,
and then broadcasts instructions to be executed simultaneously by all the
processing elements, acting on their local data. One further level of control

is provided by giving each processor a degree of autonomy, whereby it can
select whether or not to obey certain instructions.

SECTION OF DAP ARRAY SHOWING
BASIC INTERCONNECTIONS

Fig.

64x64 element matrix
PE -processing element
SE-store element(4,0fl6 bits)

Row & Column Highways

Neighbour Connections

DAP AS PART OF AN ICL 2900 HOST'

CO M PUTER DISTRIBUTED ARRAY
PROCESSOR
TYPICAL 2900 COMPUTER 64X64 MATRIX
1 MCU
CONVENTIONAL CONVENTIONAL
STORE STORE f AcTive
STORE
1 (2 Mbytes)
SMAC SMAC {
DAC
SMAC-Store Multiple
STORE ORDER Access Controller
ACCESS CODE MCU Ma_ster Control
CONTROLLER PROCESSOR Unit
PERIPHERAL DAC MWDAP Access
CONTROLLERS Controller

Fig.

Figure (2) shows how this processing array forms part of an ICL 2900
host computer, by replacing a standard store module. The storage elements
used by the processors are also seen by the host computer as standard store,
and hence the data held in the storage elements may be processed by either
the 2900 serial computer or by the DAP array processor.

SOFTWARE OVERVIEW

One significant advantage of the DAP/2900 approach over the traditional
front end/back end configuration, is that all the software and facilities
available within the 2900 can be fully utilised to operate on the data in the
DAP store. This is reflected in the overall software structure of the DAP
shown in figure (3). The host machine components, which typically perform
serial functions such as 1/0 and database handling, may be written in any
serial language on the 2900. The DAP routines may be written either in DAP-
Fortran (a parallel dialect of Fortran) or in assembler. Data used by both

sets of software exists as Fortran COMMON blocks.

USER DIAGNOSTICS ON THE ICL 2900

The virtual storage system on the 2900, VME/B, provides a full mixed
language debugging and post mortem facility known as the Object Program
Error Handler (OPEH). All 2900 compilers produce a diagnostic module for
each compilation unit (subroutine). At run time these modules reside in the
virtual storage on disc, until an error occurs. All errors, unless masked
by the user, are handled by the OPEH software, which takes appropriate action
depending on the options set by the user. A typical report is shown in
figure (4), where the user is informed of the nature and location of the
error in terms of the compilation source listing, the calling sequence taken
to the failing module, and values of some or all data items used in the module.
Following the post mortem the user can decide whether to terminate the run,
continue at the next instruction or enter a user written error trap procedure
prior to termination or continuation.

As well as providing diagnostic reports in user language, this system
has the advantage that for an error-free run there is no run-time overhead
caused by the diagnostic system.

INTERFACE TO DAP

The OPEH system handles all programs regardless of which high level
language or combination of languages is used. Thus it is relatively simple
to interface DAP to the OPEH system by merely producing the relevant diagnostic
modules from the compiler, see figure (5)* It is also possible to enhance
the diagnostic system in line with the specialised requirements of the array
processor applications, by using some of the specific properties of the DAP.
These enhancements are outlined below.

HOST PIACHINE PROCESSING

FORTRAN

ROUTINE

MASTER FORTRAN ROUTINE

FORTRAN

ROUTINE

DAP-FORTRAN ROUTINE

DAP FORTRAN ROUTINE

Fig 3. Sample run-time system.

IRTSRSL'PT
?cSC” :pTICN:

”5C0
2EPO DIVIDE

?RCEKA* AT Llf.c: 5 33 <OFFS£T:P-16)
3:. eROCsiUSE: FCLPTL

Cf "CibLi: cOURU

SUF»r»ARr Cf «CU?c LCACIMG TC Th= ERROR (f.cV=°SE CSDER)

fCJTSAN § CG*A* FfUR TL (MODULE FCURTL) AT LI>E 533

cCOT3A SLSORCGFA- AOF12S("COLLE cr.'12S) AT LINE <21

FCRTAAN *11* FRCG6>K FFT (."vOLLE rFT) AT LINE 45

ENC CF 3—tTE SUMART

REPORT CF CURRENT STATE OF 05CGRAN

FCFTRAN SUEPROCRAN «CURTL INODULE FCJRTL) AT LINE 535

CATA * 1072.730

ICENT « 0 IDI~ * 1

1FACT B C 2i 671C££647 11C1026S -1674.7000 4.02653191 12563021 3 21 C

IFCNT * 34 6710*6643 11010366 -26*370516 402653195 12563079 3 26 16777216 65994769

IFCF, * » C

2£8 T« e 402653192 12563039 3 24 0 34 671 C86042 1101 0322 -26c3641 33 4C26531 94

Is:€rn T 1ST* * 0 JD 1™ * 1
N *oc KCURR s 0 ND IN * 1
Mr ACT * ¢ NF CNT co NFSYN * 0
NPP EV X ¢ NR E« * 1 NTOT * 0
NkCRK « 97

UCRK + 0.1686752€-79 0.6325319 E-79 0.9490449E-79 -0.236C977E+63 0.0 0.632531 9E-79 0.8433753 0.2660712E-6

0.2 127625 c-72 -0.2 7773 63 £+21

FORTRAN SL2PROC-RAN FORI 2S<NODULE FOR12S) AT LINE 421

< x 1072.730

1 x 1 ISBN -1 J T

K x ¢ N m 32 NCLBT * 0

N'STRNS 1 NT YPE * 0 N1 x 32

FeSTRAN PAIN PROGRAM FFT (MODULE FFT) AT LINE 45

a x Cc.c an + 3.525534

ANP1 X I0.CCOOO 10.00000 10. 00000 10.00000 10.00000 10.00000 10.00000 IO.OOCCO 8.380524 7.15541S

cN X <G.c, C.0)

CCPY *+ 1072..720 989.6538 587 .1768 1071.311 1037.768 1012.078 961.3201 982.S564 965.2805 1000.042

D x c.c

DATA X 1072.720 93P.6528 557 .1 766 .1071 .311 1037.7e>8 1012.078 961.3201 982.5564 965.2805 TOCO.042

END x c.c

FASE X C.6544986 0.9162985 1 .178097 1.439697 -1.429697 -1.17S097 -0-9162979 -0.5544934 -0.39i6989 -0.130

FF X 1.425897 FN2 * 0.0 1 * 33

IFORH x c IS IGN * 1 ITIME * 1

J x 23 JG * 17 Jp « 33

K x 21 K * 32 NCIH * 1

P X O.C 0 - o.o0 ST » 0.0

IT ART x 54922.75 TIME ' * 0.0

TRAN X (1072. 730, 989 .6528) (487.1768, 1071 .211) (1037.765, 1012.07!) (981.2201, 962.8564) (565.2805, 10
(1CC6.1C0O, 1C09.919) (1000.629, 991 .2254) (984.6716, 9*8.3594) (996.0000, 1002.733) (1005.0SO, 9

40F. K * Co.C, 0.0) C-0 .6693U4,c *23, -0.25375516-»C6) (-0 .U1C216E*§5, 0.5947170E-76) (-0.77 50” OcE *ml,
0.1626010E-77) (-0.1055336E443, -13.61025) (0.4373214E-73, -0.2379023 E*27) (-0.£2975S3 £-*41 *
-0.6693164E4.22) (-0.2537521£4 66, 0.9051 tS2) (0.3279947E-76, -0.1484563E*-49) (-0.5994*13E~30,
-0. 6283628 E+23)

y « C.C

5.*0 CF REPORT

PROGRAM TERMINATED

Fig. 4.

OPEH PIASTER FORTRAN ROUTINE

FORTRAN FORTRAN
ROUTINE ROUTINE

DAP-FORTRAN ROUTINE
DAP
DIAGNOSTIC
MODULE

DAP FORTRAN ROUTINE

Fig. 5 DAP/2900 diagnostic system .

The "basic processing element of the DAP array has a word length of one
bit, and hence provides efficient manipulation and storage of logical (boolean)

variables. A matrix of 64 x 64 logical variables is stored as one bit per
processor, and can typically be used to control operations on a matrix of
64 x 64 arithmetic variables. Various facilities exist to provide local or

global testing of the logical arrays, as well as assignment and manipulation.
To control the action of the diagnostic system the user has three separate
logical matrices, the Program Error Mask (PERM), the Program Error Matrix (PEM)
and the Activity Mask (AM). There are also two 64 element logical vectors
DUMP and GO controlling the action of the diagnostic system for up to 64
different error types, e.g. underflow, overflow, etc.

At the end of each low level arithmetic function, such as floating point
multiply, the result in each processor is checked for errors. If an error
such as overflow has occurred the DUMP and GO vectors are checked for that
error class to determine what action should be taken. If the user has
requested the system to continue regardless of error, the program error matrix
is set for those processors where errors occurred. The user may then take
his own action, such as re-scaling his data, after checking for errors with
a statement such as

IF (AMY (PEM)) CALL SCALE (__)

where the function AMY performs a logical OR of the complete PEM matrix. If
the user has requested a post mortem dependent on the position of the errors,
before any dump is taken the program error matrix is checked against the
Program Error Mask. Only if errors have occurred in processors where the
mask is true will a post mortem be taken. A further check is taken against
the activity mask, if one is being used in the assignment, so that only errors
occurring in positions where the results are actually going to be used will

be notified. This is typically used during parts of a matrix inversion, where
at various stages in the computation the pivot row and column are not used
(see ref 1).

These facilities allow the programmer to make use of the full parallelism
of DAP without worrying about elements of the DAP which, at any time, are not
working on useful data. A further typical use would be when manipulating the
62 x 62 ’'inside' section of a 64 x 64 matrix.

As well as trapping errors, the diagnostic system can be invoked directly
by the user program. DAP-Fortran provides an ERROR statement, which can be
used to signal an error number to either the OPEH system or to the user error
trap procedure.

A typical use might be

IF (AMY (X.LT.0.0)) ERROR 77
Y = SQRT (X)

where X and Y are matrices.

Although a wide range of facilities is provided by the system, there is
only a trivial run time overhead due to the bit level nature of the DAP. The

IF (ANY (X.LT.0.0)) statement will take about one microsecond for the complete
4096 element matrix, compared with around 150 microseconds for a 4096 element
floating point matrix addition.

TRACE

As well as the diagnostic system, which is designed for rapid execution

until errors are discovered which require post mortem printing, the DAP also
allows both high level (DAP-Fortran) and low level (assembler) trace facilities.

At the DAP-Fortran level, this is implemented by a TRACE statement,
which has the status of an executable statement in Fortran. The statement

has the form
TRACE n, (variable list)

and may be combined with conditional statements, e.g.

IF (ANY (Y.LT.0.0)) TRACE 3, (Y)

At run time the value of n is compared with the run time trace level, and
if n is less than the current trace level the DAP interrupts the host system,
which then carries out the necessary printing.

REFERENCE

1. Flanders et al. "Efficient High Speed Computing with the Distributed
Array Processor," High Speed Computer and Algorithm Organisation,
Ed. Kuch, Lawrie and Sameh, Academic Press, (1977)-

A HIGH PERFORMANCE GRAPHICS SYSTEM
FOR THE CRAY-1

by

Robert H. Ewald
Lynn D. Maas
University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

This paper describes the design and implementation of a
state-of-the-art interactive vector graphics system connected to

the CRAY-1 supercomputer. The primary design goal for this
graphics system is that it support large hydrodynamic computer
programs used in weapons design calculations. The interactive

use of these programs requires displays consisting of up to

20 000 vectors, extensive interaction tools, and high-bandwidth
communication rates. The major system components selected for
this project were an Evans and Sutherland Picture System 2 and a
Digital Equipment Corporation (DEC) PDP-11/70 and PDP 11/34 run-
ning the UNIX operating system.

This paper presents the system design goals and performance
criteria. The hardware/software systems chosen for this project
are reviewed, and the integration of this system into the Los
Alamos Scientific Laboratory's (LASL) Integrated Computer Network
(ICN) is described. This implementation involved most areas of
applied computing, including computer graphics, communications,
distributed processing, and-computer security. The level of ef-
fort required for this implementation is described, and the
results and benefits are presented. Future plans for this system
are also briefly described.

*Work for this project was conducted under the United States
Energy Research and Development Administration (ERDA) Contract
W-7405-ENG. 36.

10

CRAY-1 ERROR RECOVERY

by

Alex Marusak
University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

A package of FORTRAN-callable error recovery routines has
been written for the CRAY-1 operating under the DEMOS System.
Programs may regain control after the occurrence of the normally
fatal errors: Error Exit, Program Range, Operand Range, Floating
Point Overflow and Time Limit. On recovery a program may branch
either to a user-specified error-handling procedure or to a
user-specified statement label within a previously entered pro-
cedure. The recovery package will optionally print the type of
error which occurred and a trace-back from the point of error

through the calling path back to the main program. Repeated
recoveries are permitted.

11

THE CRAY-1 COMPUTER AND THE DEMOS OPERATING SYSTEM

by

Forest Baskett
University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

The unusual features of the CRAY-1 computer are described
with emphasis on those relevant to the operating system being im

plemented at Los Alamos. The machine is a high-speed computer
with a 12.5-nanosecond cycle time, vector registers and vector
operations. The memory addressing structure is very simple but
the memory bandwidth is 5 gigabits per second. This results in

an operating system design that is task oriented and depends on
copying information from one address space to another.

The mechanism that supports this communication in DEMOS is
based on ideas from capability-based operating system design.
The implementation is unusual and is especially designed to sup-
port a high-performance file system. The file system design bor
rows ideas from UNIX with important elaborations in allocation
and buffering to ensure high performance.

12

THE ILLIAC IV SYSTEM IN 1978

by

David Stevenson

Institute for Advanced Computation
NASA-Ames Research Center

Moffett Field, California

ABSTRACT

This paper describes the current system
configuration of the ILLIAC IV at NASA-Ames
Research Center. The status of the present
hardware is briefly described and 1/O per-
formance characteristics of representative
ILLIAC codes is used to illustrate the
current modes of use of the memory system.
The paper concludes with a review of plans
to increase the processing capabilities and
memory capacity of the ILLIAC IV.

13

CTSS STATUS REPORT

by

Dieter Fuss
Lawrence Livermore Laboratory
Livermore, California 94550

ABSTRACT

The National Magnetic Fusion Energy Computer Center (MFECC)
provides large-scale computational support to the Magnetic Fusion
research community throughout the country. The MFECC serves over
forty groups of researchers in national laboratories, universi-
ties, and industry, thus facilitating the sharing of information,
codes, data, manpower, and computer power.

The primary worker computer of the MFECC is a CRAY-1. In
order to provide the most human-productive service to the over
1000 users of the MFECC, a timesharing operating system, called
CTSS, was developed for the CRAY-1. The status of this operating
system, its capabilities, and some of the motivations for
developing it will be discussed.

14

EARLY EXPERIENCE WITH THE CRAY-1 AT NCAR

by
Richard K. Sato
National Center for Atmospheric Research
Boulder, Colorado

ABSTRACT

The CRAY-1] at the National Center for Atmospheric Research

was delivered in July 1977. Although general users have access
to the CRAY-1, large numerical models consume a major portion of
the time. The CDC 7600 currently serves as the front-end to the

CRAY-1 system and the Ampex TBM serves as the mass storage medium
for "permanent" datasets.
A brief summary of the first year of the CRAY-1 at NCAR is

pPresented. The work involved in the conversion of a large code
(the NCAR general circulation model) from the CDC 7600 to the
CRAY-1 is described and timing comparisons given. The current

NCAR configuration is described and the system—--hardware and
software--is discussed from a users standpoint.¥*

*The National Center for Atmospheric Research is sponsored by the
National Science Foundation.

15

16

VECTORIZATION FROM A LARGE CODE
POINT OF VIEW
by
Margaret W. Asprey

Energy Division
Los Alamos Scientific Laboratory
University of California
Los Alamos, NM 87545 USA

ABSTRACT

While very large codes make the most efficient wuse
of a vector machine like the CRAY, they also are wusually
the most difficult to vectorize. Since they were wusually
written to optimize scalar usage as well as to solve a
number of different problems, an understanding of the
special techniques and storage structures used is impor-
tant. To prevent wasted effort, a decision should be
made at the start as to the format in which the code is
to be preserved for future maintenance and further modi-
fication.

The MCA VECTORIZER is a useful tool for the purpose
but must be used in conjunction with restructuring the

existing FORTRAN. For efficiency, only heavily wused
sections of the code should be vectorized, so that these
have to be identified initially. The basic restructuring
techniques are: 1) separating vectorizable code from
nonvectorizable, and 2) rearranging DO-loops and
transfers.

From my experience, it seems more efficient to re-
write the pertinent parts of the code from the basic
algorithms to avoid interference from scalar-type
thinking. In any event, an overall knowledge of the code
is important to do an efficient job.

I. INTRODUCTION

Having spent a year struggling with one of the new third-generation
computers, the CRAY-1l, I am quite convinced that a new generation of
programs and/or programmers is needed to cope! Apparently Seymour Cray
feels similarly. He was quoted in Business Week as saying, "Nobody, and I
mean nobody knows how to program large parallel machines."

While it is true that simply moving scalar code onto the CRAY brought
a speed increase of better than a factor of two, the work involved in the
transfer, including the difficulties of a new system and different word
lengths, are 1likely to more than offset the gain wunless additional speed
can be obtained from vectorization. Here the potentials are large, up to
factors of twenty, but obtaining them has not turned out to be so easy.
Since, as I'm sure everyone is aware, the really expensive part of com-
puting is the software, in this report I will discuss my experience with

two attempts to solve this problem. First, the vector primitives developed
at LASL” and second the VECTORIZER developed at MCA (Massachusetts

2 M . .
Computer Associates). 3 At the outset, it must be admitted that more

problems remain than have been solved. While there is talk of a

vectorizing compiler, so far, talk is all we have.
II. VECTOR PRIMITIVES

The vector primitives are a set of callable macros that perform a

variety of vector operations. The general format available follows, with
the first being new, but is now recommended:*

CALL name (3Hjki, P. g
J'Pk'Pi')

or

CALL name 3 k i (PVP,k,Pi)

17

18

where:

name specifies the macro, and always consists of
four alphabetic characters.

ik, i specify the vector registers or small core
arrays to be used in the operation.

NOTE: If j,k, or i are digits from 0 through 7, the cor-

responding vector register is to be used. If any are re-

placed by the letter X, the corresponding argument in the

calling sequence is to be used.

PjjP*jPi” may be array names, elements of arrays,
scalars or zero.

NOTE: The indices <correspond to the register specifi-

cation above where required. If an argument is zero (or

omitted), for example, P#*, the corresponding register,

i, must have been specified. If an array name (or element

of an array) is given, the vector operation will begin

with the first element (or the given element). The 1length
of the operation will be determined by the contents of the
vector length register that is set by the macro SETL as
shown in Table I. In this case the compiler will assign
the registers.

TABLE I
VECTOR TO VECTOR REAL ADD AND VECTOR
TO SCALAR REAL PRODUCT
FORTRAN:

DO 10 I = 1,LEN
10 A(I) = B(I) + C(I)*Q

VECTOR
CALL SETLX (LEN) Set desired
vector length
CALL VRAVXX1(A,B,0) Add A(I) to B(I) and
store in register VI
CALL SRPVX1X(Q,0,C) Take real product of Q

and contents of VI and
store in C(1l)

If the programmer wishes to control register usage, which <can be an
advantage since the maximum speeds are obtainable through what is known as
"chaining," i.e., having registers ready for operation before needed so that

operations can continue without waiting, this could be done as shown in

Table II.

Obviously, this last requires more from the programmer. Codes already
large become still larger, much more difficult to follow and, thus, more
difficult to debug, maintain, and modify. A partial solution to this

problem is the VECTORIZER developed by MCA.%

TABLE II

CONTROL OF REGISTER OPERATED BY PROGRAMMER

VECTOR:

CALL SETLX Set wvector length

CALL ILDV XXO(A,1l) Load A(l) in register VO,
incrementing by 1*

CALL ILDV XXI(B,1l) Load B(l) in register VI,
incrementing by 1%

CALL VRAV 012 Add contents of vectors
VO and VI and place in V2

CALL SRPV X23(Q) Take the product of
scalar Q with the ele-
ments of vector V2 and
place in V3

CALL ISTV 3XX(0,1,C) Store contents of V3 in

C, incrementing by 1*

*Default increments are always |

ITI. THE VECTORIZER

The VECTORIZER is a FORTRAN program developed by MCA (Massachusetts
Computer Associates) for the purpose of performing automatically the conver-
sion of scalar FORTRAN to vector FORTRAN in the format of the wvector primi-
tives such as described above for the CRAY-1 and has been designed so that
code for different systems can be obtained by modification of the
codegenerator, CVPGEN, only. Since all my experience is with CRA!(—1,5'6
only this type of output will be considered here. A simplified diagram of
the structure of the VECTORIZER is given in Fig. 1 with sample input in Fig.
2. Since for the average user, the internal structure of the VECTORIZER is
of no concern, reference 1is made to MCA, the manua12, and their
memoranda.s'4 The VECTORIZER will be treated from here on as a '"black
box" with FORTRAN input going in on one side and vector FORTRAN suitable for
the CRAY-1 coming out the other side. Note carefully, it is truly FORTRAN,

even though at a casual glance it almost looks like assembly language.

Iv. RESTRUCTURING

Before doing any vectorization, the code should be analyzed for the
utility of vectorization. It should be recognized that a certain amount,
possibly even a fairly large amount, of time and effort will be required for
recoding and debugging. Also, the vectorized code is more difficult ¢to
read, maintain, and modify, so that a decision must be made as to whether
one, two, or three versions will be maintained in the future. Will the
original scalar FORTRAN be retained or discarded? Can the people who will
be working on the code, such as making changes and adding features, read the
vector FORTRAN well enough to make changes there or should the restructured
code be maintained as well and changes made in it? One of the big advan-
tages of the VECTORIZER is that changes can be made in the restructured code,
which is then passed through the VECTORIZER, rather than having to make the
changes in the vectorized code itself. However, it should be recognized
that the restructured code is wusually quite different from the original
scalar code and it is quite possible that all three versions will be needed
and when changes are made, the restructuring will have to be done again as
well as passing the code through the VECTORIZER. In my opinion, this

decision should be made almost at the beginning, because it affects how much

20

and where changes are made in restructuring. I have seen restructuring
thrown away because by the time it was debugged, the scalar code had been

rewritten so that the restructuring had to be done again.

Once the decision to vectorize is made, the next decision is "how
much" and "which parts" of the code will be modified. If routines for
determining the amount of time spent in various parts of a program such as
STAT* are available, they should be used to identify the most heavily wused
parts of the code for initial vectorization. The type of <code should be

considered carefully because certain types are difficult, if not impossible,

to vectorize. It cannot be emphasized too much that time and effort are
necessary to obtain results of any magnitude. The more complex the code,
the larger these costs will be. On the surface this may not be obvious, but
for so many years the optimization emphasis for the large '"cell" type com-

puter code has included skipping unnecessary calculations for inactive or
empty cells, that it means a major change in thinking that is not easy.
This sort of programming can only be vectorized by major reprogramming with
attendant debugging.

If the code exhibits many transfers forward and/or backward, into or
out of loops (including function and subroutine calls), or if there are many
optional paths through the code, restructuring will be extremely difficult.
Probably, in fact, a code of this type should not be vectorized at all
unless it is very heavily used. In particular, the algorithm should receive
a long hard look for possibilities of simplification. In my opinion, vec-
torizing in general would be more efficient if one started from the original
algorithm rather than from the scalar code. The scalar methods are dif-
ferent enough that they tend to get in the way of "thinking" vector.

In considering the material that is to be vectorized, there are a
number of basic principles to keep in mind (some of these are due to John

ft
Levesque of Research Development Associates (RDA):

1. Only vectorize the heavily used parts of the code.

2. Only DO loops can be vectorized, but small loops are
inefficient because they don't allow chaining.

3. Avoid transfers as much as possible.

4, Separate vectorizable and non-vectorizable code.

21

5. If possible, rethink the algorithm.

6. Fetches-and stores interrupt chaining and should be
minimized

7. Code that cannot be vectorized include

DO loops with transfers in or out, including function
and subroutine calls

DO loops with internal transfers
DO loops with indirect or offset indexing
Code without DO loops.

Once a routine is selected for restructuring, the first step
consider the DO loop structure. If there are no major DO 1loops in
tine, it is wusually either called from a loop in another routine or it
a routine containing a loop. As much of the calculation as possible
be done within a loop, inside the same routine. Either the calcu
should be pulled into the main routine or the DO loop pulled into the
routine. Examples of both techniques are given in Figs. 3,4, and 5.

The next step is to get rid of as many transfers as possible

is to
a rou-
calls
should
lations

called

. How

this is done is a functionof the original problem. One example is given in

Fig. 6 with the vectorized result as Fig. 7. It should also be noted
very short loops are not efficient since they interrupt the chaining.
possible for best efficiency, all fetches into vector registers sho

done in advance so that as soon as one operation is complete the next

that
Where
uld be

can Dbe

started withoutwaiting for a fetch from memory.This is not being done in

Fig. 6. My understanding is that the VECTORIZER does better on this
now.
In conjunction with removing the transfers, the nonvectorizabl

should be separated from the vectorizable. This can often be done

as of

e code

by pre-

and/or postsetting special and boundary conditions. In the example shown in

Fig. 8, in the original code, immediately after the DO-IO00O K-line,
are complicated tests and transfers involving the setting of inactive
empty cell variables to zero, followed by a skip to the end of the
This prevents any vectorizing in the entire routine. By letting all

be calculated, even though there is "garbage" in the values for the

22

there
and/or

loop.
values

empty

cells, then postsetting them as shown in Fig. 9, the bulk of the calcula-
tions are vectorized (Fig. 10) and a respectable speedup is achieved. How-
ever, this is also an example of how rethinking the algorithm would have
helped. Tests similar to these are made in other places in other routines
as well. Making the determination in one place, setting a few bits on a
flag word of which there is at least one for each cell, would prevent this
repetition. However, this involves knowing the overall code and data
structure rather than just the routines being vectorized.

Another fairly common difficulty is the use of indirect indexing, which
also can effectively prevent an entire loop from being vectorized. Figs.
11, 12, and 13 are examples of this problem with some suggestions of what
can be done about it. Figure 13 uses INDEXED, which is a routine written by
John Levesque of RDA, in CAL, the assembly language for the CRAY-1. Some
further tests have shown that a single call is efficient and will give a
gain in speed while if more than one block is to be wused, it is less
efficient than a single loop. The tests were made by Don Willerton (C-3).
Also included in this problem is that of offset indices when a cell above,
below, or to one side is being considered in a differencing problem. The
VECTORIZER can handle this situation unless it is an iterative procedure

such as:

X(I) = A(I) * X(I+l) + B(I) * X(I-1).

Here the FORTRAN code requires old values for 1+1 and new values for
1-1. But in vector mode only all of the old values or all of the new values
for I, 1-1, and 141 are available at one time. The easiest solution to this
problem is the use of temporaries to store the old values and/or to save the
new values.

Two examples of ways to handle the postsetting of special conditions

are given in Figs. 14 and 15. In Fig. 14 a logical variable is wused for
making the decision rather than the original transfer and in Figqg. 15 the
test is pulled into a DO loop rather than using a transfer. One other minor

problem is that the VECTORIZER cannot convert functions such as SIN, Ccos,
EXP, nor the FORTRAN exponential to vector operation (see Figs. 16 and 17).

Again,these calls will prevent vectorization until vector functions are

available.

23

An example of one way to replace forward transfers so that the loop
can be vectorized is given in Fig. 18. There are, of course, many different
ways to achieve this, for example, use of 1logical variables to make the
tests. The example would be even more useful if more than two values were

to be summed. Another old trick to gain speed in scalar coding and one that

no longer helps in vector mode is that of precomputing indices. At one
time, since CRAY has no vector integer multiply unit, the precomputing was
being done incorrectly. This has been fixed, but is still 1less efficient

than letting the system do it for you.

Finally, we come to the interface difficulties. Both of these result
from precompilation insertion of fixed length dimensions. The results are
hardly the fault of the VECTORIZER since what is being done is quite reason-
able from what the VECTORIZER "sees".

The amount of storage available to run one of these big codes has been
a continuing problem. Some techniques that have been used include:
preprocessors; use of the PARAMETER statement (the latter only now becoming
ANSI standard FORTRAN) so that the compiler inserts the appropriate integer
dimensions; and one large array with all variables packed contiguously with

pointer words precomputed and passed to subroutines through the calling

sequences. Possibly, this will become less of a problem with the new larger
memories. However, in general, experience shows that programmers simply
expand to fill the available space and call for more. The solution wused
here was essentially that of the preprocessor. The MOLL code, which is an

editor as well as pre- processor, uses a PARAMETER-type statement to obtain
and compute values to be inserted into dimension statements in "CLICHE's" or
"COMDECK's". The CLICHE's are then inserted into routines calling for them
and the source code is then sent to the compiler.

In order to run routines through the VECTORIZER, the dimensions must
have been inserted by the editor so that the VECTORIZER "thinks" they are
fixed and unchanging. If now it is necessary to pick a vector out of a mul-
tiply (2-or 3-) dimensioned array, based on the second or third index, a
"stride" is computed based on these fixed dimensions and inserted into the
vector primitives in the body of the routine. If these modified routines
are then inserted in the production version and in the future the parameter
dimensions are changed in the CLICHE's, the strides would not be changed and

wrong values would be indexed by the vector routines. See Figs. 19 and 20.

24

It is clear from Fig. 19 that when a parameter value is changed, a
wrong correspondence would exist between the contents of AAAO(L) and that of
A(K,L). The only solution to this problem that we have come up with is to
allow the option to insist thatvariables always be used for stride wvalues.
However, this is apparently a fairlymajor recoding job and has not. to my
knowledge, been done as yet.

Another difficulty is also caused by the space problem and pre-
insertion of fixed dimensions. In this case, many different types of prob-
lems can be run with the same program using different options. However,
again to save space, it is desirable to use only the storage needed for the
type being currently run and not waste space on variables that will not be

used. Again using the PARAMETER statement, the variables not to be used are

set to dimensions of 1 by 1. An example of this is given in Figs. 21, 22,
and 23. Now in scalar code, when this wvariable is to be used or set, some
parameter is tested before the usage. If the parameter is true, the wvari-
able is dimensioned and will be used. If it is false, the wvariable is not

dimensioned and should not be set. When the VECTORIZER is modifying a loop
containing this test, it looks at all dimensioned variables wused in the
loop, determines the smallest, and concludes that the extent of the DO 1loop
need not be any larger than the smallest such dimension. This is quite

reasonable. In Fig. 22, the VECTORIZER generated variable AAA3 while only
dimensioned one, will be stored intoas if it were dimensioned KMAX. thus
overflowing into other storage. The VECTORIZER doesn't know anything about
our clever trick of saving storage space. The direct solution is to avoid
the problem by removing the wvariable from the DO 1loop, which <can then be
vectorized correctly, and move the test into a 1loop that cannot be vec-
torized anyway. In Fig. 23, the DO-950 loop cannot be vectorized anyway and
now the DO-IOOO loop will be handled correctly. The wultimate and ideal
solution to this problem is not obvious to me, but potential users should be
warned of its existence.

While the VECTORIZER still has some deficiencies, it is a vwvery wuseful
and valuable tool but should be used with some caution. Above all however,
it should be recognized that time and effort will be required to wuse it.
The newly revised user's manual2 of April 12, 1978, has some good sugges-
tions as to restructuring, and MCA has been very cooperative about cor-

recting deficiencies and adding features. Its big advantage, of course, is

25

that once the restructuring is done correctly, by a simple pass through the
VECTORIZER, speed increases of better than two times are obtained without
the need of making changes in the highly unreadable vector code or learning
to write in the vector primitive mode.

To sum up, vectorizing requires a new look at some old problems. The
VECTORIZER, while not a panacea, can be of assistance in rapidly vectorizing
code and does the job reasonably efficiently and usually correctly compared
with the time needed to learn how to vectorize and then to do the cor-
responding thing manually. There are pitfalls, some of which have been
pointed out here. The main point is that vectorizing requires a Dbasic
change in thinking that is not ever easy. My own belief is that one should
go back and rethink the algorithm (probably a useful exercise anyway!)
because I find that efficient vector code and efficient scalar code are
enough different that the scalar code has a tendency to get in the way of
thinking along vector lines. Vector thinking is a necessity to effectively

use the CRAY.

REFERENCES

1. LASL Guide to the CRAY-1 Computer, Software Documentation, Group C-2,
LASL, 7/77.

2. Mathew Myszewski, David Loveman, Vectorizer System User's Manual,
4/12/78.

3. Mathew Myszewski, COMPASS Vectorizer Information Memo, Memorandum from

Massachusetts Computer Associates, Inc., Wakefield, Mass., 3/13/77.

4. Mat Myszewski, CVPGEN, The CVP Generator Control Routine, Memorandum
from Massachusetts Computer Associates, Inc., 9/7/77.
5. CRAY-1, Computer System, CRAY OS Version 1.0, Manual #2240011, Cray

Research, Inc., 7/77.

26

CRAY-1 Computer System, CAL ASSEMBLER Version 1, Manual #2240000, Cray

Research, Inc., 7/1b.

STAT, Program Activity Statistics Package, (For CDC7600, CROS System),

Internal Documentation, L. Rudsinski, C-3, and J. Melendez, C-2, 1975.

John Levesque, How to Write Vectorizable FORTRAN, Unpublished,
Internal Memo, RDA, 1977.

27

FORTRAN Input
!

I
v
PARSER
(reads FORTRAN)
I
I

v
ANALYZER
(recognizes implicit vector operations)

!
v
GENERATOR
(converts to explicit vector operations)
I

I
v

TRANSCRIBER
(writes FORTRAN)

v
FORTRAN output

Fig. 1.
Simplified flow chart of vectorizer
from Ref. 8.

SUBROUTINE YY
DIMENSION A(100),B(100)
LMAX = 100

DO 100 L = 1.LMAX

(CALCULATION SET A)
CALL XX(A(L),B(L))
(CALCULATION SET B)

100 CONTINUE

END

SUBROUTINE XX (A,B)
DATA Z/10/

(CALCULATION SET C)
B-A*1Z+X
(CALCULATION SET D)

END

Fig. 3.

Overall subroutine restructuring. Call

XX prevents vectorization in YY and
nothing can be vectorized in XX.

28

DO FOR ALL body
WRL(I) = (ALR(I,L) + ALR(I+1,L))**2
transformed body

CALL VRAV XXT (ALR(1,L),ALR(2rL)
CALL VRPV 1 1 X (&, O, WLR (1))

Fig. 2.
Example of input and output for
generator

SUBROUTINE YY

DATA Z/10/

DIMENSION A(100), B(100)
LMAX = 100

DO 100 L = 1,LMAX

(CALCULATION SET A}

(CALCULATION SET C)

BL) = AL) * Z + X
! (CALCULATION SET D)

(CALCULATION SET B)

100 CONTINUE

END

Fig. 4.
Restructure by pulling called routine
XX into calling routine YY. Returning
variables to YY requires addition of
indices.

SUBROUTINE YY

DIMENSIONS ACIOO),

CALL XX (A,B)

END

B(100)

SUBROUTINE XX (A,B)

DATA %/10/
LMAX = 100
DO 10 L=1,LMAX

BCL) = A(L)

10 CONTINUE

END

Fig.

(CALCULATION SET A)

(CALCULATION SET C)

(CALCULAL ION SET D)

(CALCULATION SET B)

5.

Restructure by pulling DO-loop into

called routine XX.

addes and calling routine simplified.

no *00«*

Indices must be

qu L UD»P*»* (N1TFB.OuTBuifHjTB***!

e SFTLI IJJTBISI
(If ‘Ba?aD.1TBIS

TSTE I-M>

N0 «00?0 OUTBN*«I,OUTBN)

am

TE*T C»S» Fo* VCCTCBI?ATI«"

#ie Hhaf et ii““ -

3 11STBTO)
o L smwxcr’
e*1L MTazc*I M11ISTOIB1!
e*l L Itowxo] aiv.i.nil)

e*', I S*NVI3*|I—As<

)
C*i L IST!/48%(0.3.1TM2I!STBTO, ,

Cii'l. *»A'v605

Cii'c ISTW50* I0.0.T“0 1ISTOTOL
1Lr'v*05 (1T**1 (ISra;pl

cri L Sv-ife

C’kL " *02C»>1071

IISTBIP.U!

Be:1 TEmidet (0.otmvo 11sTOTC),
C*|.U !LDv*S?11T-2iISTB:Pi !
e*i'u sv-N?

C*LL lLDJXU" (»LOJ3LIST»IP.i . 1%)

c*iX cvw*

Gl SETuB0* 0,0.T«05ISTOTO,
CALL !LDW*e5C1T-1(ISTBIPLI
CAjk

CALL 1LnuABT|I’“21ISTRIP),
CATt V“ST*(SCBCCL (11»

CAI, V-

&V Tunwi02LTPCISTBIR
CAI L SCT**><SCP?''LU
CA!L CS=1*21
CAI'L 1sTwid*
CAi't Sv-Jj .
CALL IL"V INw0J* (ISTBIB, m
CA™L A1T“3 USTPIB)

CAlL CV- 54'25

CAI L ISTVS53*f0.0.THO (tSTBT*1

» .Asn.SrPONi.'fil

d.1TM3 (1sTBTP),

CALL_IATv53*I0.0*A.Cj<(IS'»BIP.Ln

tSTBIPBD'~TBaO* ISTBIP
nUTBvCsAL
Chi't SfT1«IB41l
*#B50 CONTINIF
135 rONTI'.'IF
CO' COST

Fig.

Vectorized version of loop

Fig. 6.

7.
from

Original FORTRAN

DO 135 L«1l,Lwd4d~*
DO)35 K«2,KM4)f

IT ttFITIK.L) .AND_-WJFM*SK)

IMI»fIT(F,L)

IM?»FIT (K'tL»1l ,

IF (IMJ.NE.
IF (iMj.En.
IF /IHI.NE.
|F

135 CONTINUE

Restructured FORTRAN

(cannot be vectorized)

,EQ. 0) (in Tn A3%

,L4M0. Tum* Sk
-»NO. IMMA SK
o .A”o* IMj.NE. 0> 00 1O 13*
j .ANO. 0) ALOJ* fK*l)Eg.o

5 ALOIK(K,L)"ALOJi (K.Ls

0) ALn3K|K,i)»ALo03(5.|

(will vectorize)

+1)

C
Do J35 L*1.LMA*
Do 135 K=2IKM4X
C
[TEST CASE FOOVFCTOFIZATION
ITM3 (R)=FIT(w(L) .ANC.IFHASK
ITHj (K) =F1T (K ,u .AND. IMMASK
ITM? (K)=FIT' (K.L»1lt .AND. IMMASK
Two | *) *0.
IF (iTMi TK| INEIOTI TMn IKI *ALOJl (K«L.)
Ig'UTHE (K, .NEJO1 TMO1K) *ALO0J3 (F,L«l |

IF(ITM] (K!
IFi111*3 (R

ALOJK (K.L) *TMn (R)

135 CONTINUE

Getting rid of

»0 0
jo 1C00
»OrxT

Fig. 6
transfers

IrfTHBcr.0)30 r5 u

ir (MM.E3*,AV0ID) 3? TO 15
.ilK«*IT? (K»L) *AV3.TSXM4SK

iV (1S<,K!:.0
KlaKsl

1U1.1

Wo 10
JO 10 J«L 1«12
$5K»r;(T7 (I,d) AA

10 F'fi‘l nr. 0]0

Is WTler,
FL» (**U»0.0
-0.0

i(ﬁﬁ%»«ﬁ 8

1jTcK*L)«0.0

W<k 30010

*0 TO 1500
ts C3NTXNU»

B

nTSO-TS1

)JGO T3 >5

JysK ASK

bIQT&' r-1»L- lr}

-.NE.6+*ANoI1lTME OO ,NE.0)ITM3 (Kl*e
1 "FOJOI "NO)K1l »ALOJK

(R* 1)

"ANY "O»C C*LCU'.»TfON5 HC»f WITH 4LL «r THE

*Move CISHT VAN

1000
*90

CONTXNU? !
COMTTNun

IAS"Cs

Fig. 8.

$cT. ALR.ALZBCTC,

Original FORTRAN for example of re-
structuring by postsetting of variables

29

(oI eI o N I @ Mo I ¢)}

1000

800

80

90

I?0 990 '.Hi,UMAX

~0 1000 KaltKMAx

iS0»0»5» (RT (K, L) »RT{K-1*L.1))
TS1»0»5* (RT (K-1,i_) .BT (K»L-n>
*LRfK»L) »TSO*TS1

AKP (KtU atso-Tsl1l

*LL OF THE PREVjoJ? rALCU'w»TTONS HEHE WITH AUt OF TH"
VARIABLES BEING SET AS BEFORE, ALR.ALT.ETC.

CONTINUE

UAMHAXO (L—-1%*1)

|»BBHINO (L*1*LMAKPI J

yo 800 <btl £fKMAXSJ

1M2*F1T? (KtLA) .AND, ISXMAS<

IM3-F1T? (K»L),ANO.IS"MASX
JCMAaF1TZfK.LB) .ANO,I3XMAS<

XTM4 (K) 0 | H2*IH3*IMA
CONTINUE'

~1.2

AJ . KMAx

YO Bo Ksex1 *K2

ITM2 (K) .FIT (K,U.AND.IHMA*X
MH»?H1Fr { ITH2 (K) , -TMq>

l.r (MM.NEi.O) MMEMHOUT (HM)

ITM3 (K) t»MH

y 'ONT1NUE1l

DO 90 K»K1»K2

1M1»1TMA (K—1) ¢ITM4 (X) *1THi (K*1)
1F (ITM3 (K) .EQ.M*nlo) IH1»0
*F' (ITH2 (X) .EQ.O) IHI .n

U50» , TRJE,
Aram! ,vr,0)LSD. .FALSE.

1TM1 (K) BLSO
CONTINUE'

Oo 100 <t.l1l,KMAXP1l
LSO-11M1 (K)

ir rLso) *LR (K*L- ao.
iFCLSO) SL~t*iCJon.
I>(L3°) AXR (K.L) BO,
IF (LSO) AKZ (K.L)aoO.
i> <13°) RHAT (K.L) .0.
i>(L30) IJT (K.L)=®O,
1>(Ls0) JR13(K,L)=BO:
XF (LSO) JR24 (K, L) BO.

Ioo CONTINUE

990

CONTINUEI

Fig. 9.

Restructured FORTRAN with all variables set and 'garbage'
end of loop where needed.

30

overwritten at

INTEGER *&A0,0|jTRXStOUTi?MX,LAST.O jTRwWO, IS TRIP, OUTRNX "ITER,

1 INNRMX

OIMENSIDN fiAft0(91)

DO 990 .Pi,LMAX

CALL' LOf"XXX (KM4X tOUTRX? ,0'JTRMX)
CALL S5ETLX (OUTRXS)

LAsT-our«xs

OUTRWD>5UTRXS

ISTRIP-1

DO 90000 OUTRNX.1.0JTPMX

CALL ILO".XOO (RT (ISTRIP.M,

CALL' ILO'i'xoi (RT (ISTRIP-1,|.wl)>

CALL- VRSv,3TK

CALL isr.”ox to, j, AKR (ISTRU.LU
ISTRIP»QUTRWD*ISTRIP ~——7==~

OUTRWD* ?2** Note: Tfte bulk of the
CALL SETLX (6>3) calculations were done at
IAST»0A* ! thls point.

90p00 CONTINUE!
loop CONTINUE'

LA-NAXO (L _i,1)

LBBMINO (!;*1 ,LHAXP! |

CALL LO''t;xxx (NM1xPl tOUTRrS.OUTRMX,
CALL' SETLX (flUTRxS)

LAS5TaOUTRX5

OUTRWD»0UTRX5

ISTRIPBI

DO 90002 OUTRNXBJ.OUTRMx

CALL ILOVXOOI~ITJ1ISTRia.Lai

CALL' SA9VXOl (IS <MASK |

p
4

CALL’ 1STVTPx(0, 9, 1ITMAt1srRTP> |

ISTRIP»oyTPWP*ISTRIP
OUTRWD* 2"
CALL SETf:X(6A)
LAST «»6A
90001 CONTINUE'
BOO CONTINUE'

Fig. 10.

Vectorized version of FORTRAN in Fig.

31

32

90005

90007
8n

O*

90007
100
69n

K1-2
K2 .KMAX
N1ITtR»K2*1->a

CALL' LO"irXXX <Nl T?R tOUTRXS * oUT«MX |

CALL' SEiLx (OULRXS)

OUTRwnaD' JTRXS

XSTRIP X"

DO 9000J- OUTRNX»1 tOUTRMx
INNRHXODUTR”O~I3TRIP-1
CALL! ILOVXOO (F'miSTRiP.L) ,

4
CALL 1isrvd4ox{0fo.AARAO(ISTRID)J
DO 90005 K.ISTRIP.INNRMX

JEJAAAO (k) ,SE*0) AAAO (K)aHMOUT (AAAO (K)

CONTINU'I

CONTINUE'

CALL! ILOVxoo (AAANn (ISTRIB,
CALL' JSTVOOX (0»9«ITH3 (X5TRTP|
XSTRIP»OUTRwn*ISTRIP

Note: While almost all
the postsetting is done
vector operations, this
indirect indexing could

of
using
one
not be.

OUTRWD* 2?2

CALL SETLX (5A)

CONTINUE

CONTINUE'

N1TERaW~1-K1

caLL LO’txxx (NxrrR.o'JTRxs.nUTRHX)
CALL' SEiLX (OUjRxS
LASToOUfRxs

OUTRWD»OUTPX5

XSTRIPaXi

DO 90002 OUTRNXaltOUTRHx
CALL' XL57X00 (1TM* (ISTR1B»in
CALL' ILOVXnl<ITx* (ISTRI»)

t

CONTINUS»

CALL LO"LXXX fKMjxPltOUTBXS.OUTRMX)
CALL SEILX (OUTRX?)

LAsT.DUrNxs

OUTRWD»OUTPXS

XSTRIBal

DO 90007 OUTRNx*!, OUTRM*

CALL' ILO"XOOdTwa (ISTRTBJ |

CALL' ILD:V.X01 (ALRI{ISTRIP,U ,

*
*

4

CALL' ISTVaox (0,f),UR?A ,
ISTRIP»DUTPWD*ISTRIP

OUTRWD*54

CALL- SEtLx (64)

LAST»6A

CONTINUE'

CONTINUt'

CONTINUt1

Fig. 10 (cont).

DC 9one* L3c,L*AX
DO 58 K=~.KMix
(< »L)
Trio(K)sL*N(IMN)
tIKN.Lt.UJ T«iO(K)«l.U

00 60 l«2,lmx CC*T1\LL
DO 69 K«2# «8 CC'Ti\Lt
(R.1,] C

barm(xeL) *v . o HIEES <=7

ir(*«SKLC«,Ll .NF.O! »jrH|«.L).1,372irLT (K.LI CALL LLAL*AA(NITEKAGUTKAS.OVTKMA)
CALL ct nix (UOTKAS)

60 CONTINUE Ou 'MAASUOTAAS

jsinjc="

O0~90ne_3 CUIPNA*1.nL | MMA
C-LL ILUWxyO'c-JIH(TS]Ki*»L))
CALL ILUV/Ui(r*:olISTHir))
CALL wvrrtrix:

gESTaurruscp roara** CALL 151 V2UA(0»U* rAII
CALL jVK.ze*
CALL rS"u/cj(1.nj

c CALL Tbr v<yA(n.o, iwl I (ibl«IK)!
DO 60 L*?»L'<Ax CALL ttuvxu* (rL1 (IsINIHillj)
DO 5« K«?,<MAX CALL .37%0)
THN»«NKL (K. L) CALL VKAV J-
T*io K *CK« <™
frapdt Shlb (1s) <140 ontL

58 CONTINUE CALL Wi, *vi~

o} CALL IBIVEUXt9.n LAJIH(IbIHIHEL))

DO 69 K»2, KMAX CALL TLOVAP-f (MWNL(IS]HIP»L) }

TNI 1»FJTH (< ,1.) -TM40 (K)

T«n OlTMn =
6JT {1} 31 IToeLT (<. L) /Tt
r (MNKL (K, L) .EQ.0) AJTM(K, L) *0.0
60 CONTINUE ALL cS»rtuX"’fO
n»u. A%M IbJKIK*L**

IR f*lsTH
OuNbr=

CALL 5vrx:e

; ctiL=(6A,

_ | Fig. 1L _ 90025 CorTUtt,
Offset indexing and suggested 'fix.' 60 COATKLt
DO-60 K-Loop will vectorize even oozt CempEne

though DO-58 K-Loop will not.

Fig. 12
Vectorized version of FORTRAN
in Fig. 11

Original FORTRAN

DO 10 K»l, KMAXR
1M - F1T(K,L3 .AND.1M-USK
KHOL (k) @ RHO (IM)

Calculations here using RHO01()C)

10 CONTINUE

Restructured FORTRAN

DO 10 K=1,KMAXR
IMN(K) "FIT (K, L) .AND. IMMASK
10 CONTINUE
LEN»KMAXR
oat INDEXED(RHO,IMN,RHOT,LENI
DO 100 K-1.KMAXR

Rest of calculations from original

loop 10 using RHO1 (K)
100 CONTINUE

Fig. 13.
Indirect indexing using CAL routine INDEXED

Original FORTRAN

03 5 U”l.LH&X
03 5 Knl.KHAX

ICH<L (¥,1) B"ITzK,") .AND.TS"MAS!
i> (HNXLf<»L) .NE.n.AMn. ICHKL(<*L),EQ.n)00 TO 5
i:HI (K*L) »0,0
ALK(K'tJ »0.0
StL(K»L)ao0,0
BTL (K*U >0.0
5 CDMTINUr'

Restructured FORTRAN

00 5 L*!,LMAX
00 5 KnuKMAX
MNKL'C*» airIT{K#L» .ANO.IMUASK
1.CHKL (K.L1p"ITPjKtL) .A'JO.JP-MASK
Hso-.”A.EE,
1v(MNKL(K*U.EO.O)LSOa.TRjr.
1/ I'CHXLI(K»L) .NJ. 0| LSDa.T~UE.
IP(LSO)OH I(K»LIlaO.n
i/(LSO) ALMANLJNO fi
Ir (L50) ALt-(K»L) Bp,n
Ir (LSO) 9TL'<K.L) ao.n

5 CONTINurt

Vectorized FORTRAN

INTEGER OUTRXS,OUTRMX,LAST,OUTRWD . ISTRIP,OUTRMX
DO 5 K»l*<KmMax

CALL- LO-'tXXX {LHAX,OUTRXS, 0*JTRMX)

CALL' 5E1LX (OUTRXS)

LAST.OUjRxs

DUTRWD»50TRXS

ISTRIP»1

DO 9000D OQUTRNX»1 »OUTRM) (

CALU' ILDVxXO (FIT (K, IS5TRIP) 81|

CALL' SAVXXOI (IMHASK)

CALL' CS"t?X5? ﬁo’oﬂ o
CALL JSrv.?XX (0%91 ,BTL (K, ISTRIP>)
ISTRIP"OUTRWD*ISTRIP
OUTRHDB?A
CaLL SErhX{i>A)

LAQT «6a
90000 CONTINUE-
90001 CONTINUE'
9 CONTINUt.'

Fig. 14 .
Use of logicals in place of transfers.

Original FORTRAN

IP(NSQ.KE.O)GO TO 990
IF(RT(K,L) .GE.O0)GO TO 990
RT (K, L)=0.0
. OT (K, L) =A3S (UT (KiL)]
RTC (K, L) =0.5*ROLD
990 CONTINUE

Restructured rorTrRAN

IF (NSQ.NE.0)GO TO 987

DO 967 K=1,KMAX

IF(RT(K,L) .LT.0.0) RT (K,L) =0.0

IF(RT(K,L) -LT.0.0)UT (K, L)=ABS (UT (K, L) |

IF(RT (K/L) .LT.0.0) R7C(K,L)=0.5*KTEMP (K)
967 CONTINUE

987 CONTINUE

990 CONTINUE

Fig. 15.
'IF' test pulled into DO-Loop in place
of transfer.

Kestructured FORTPAN

Ur lo* I si» I'AX-1
Iyr ir.c ¥=1.r.”AXcl

+*HKL*T“~1 HCOlFrtt KwK vt-CTOof~LM

IRJSTPCT (K* I»L»

TM"L CwJ = T8ii-».»S0

1"IsT-CT (<si.

|"4sTS Ts

|.MI c"isTS"jSI

0 (C.H= % C1114pl (T (K1Y

U**SnoT (0|.P'<LC*r

OhUr> (", ».)=T-*J(A.L) *.:%,',*AMS{THH!. (R}-Tr-MICK) 1*TS?»
1 ALOJ1 »L) »L1iW

la!- Cr.NT1NUE

Vectorized FO<T?AN

or* op”*/ Lsi *irAx"i

C'LL LO"XXX (KMAXP, #CJITHAZ», OU?KMX;
C-LL Stluttuui”AS)

Le+ST=Ourw<b

O« | TPWr, =UUrKXS

IcTpI*=1

On oO’Ad OUTONX=1 -n'jJWHA

CALL 1LUvx60 (TrltT'trSi*a»d*1+*L) |
CaLL VR"VOUI

CALL

CaLL Ibiv20x(P.n*THPL(ISIHIH)>
C»LL ILUVXO'J (TrtCT (xS InIK.L) >
CALL VRPV'*3**

CALL VKpv<.<.b

CALL ISIV-SOXCO.O.TMMKIMKIP)|)
CALL ILU<XO° (Tn"L (IST*IKI)
CALL

CALL sv.-""

CaLL Cvm"rSl

CtLL Ibl»ltfX(P*dtTMUCiSiwipfL)J
CALL iLdvxpl (DL""LIISi~i~tL*)
C LL V5>«r

Fig. 17.
Vectorization works for second power

Original FORTRAN
lie t==n

(fe-) =TACT (K|
(*+J sSTHCT

L A s T

' ALQI< (R nALlirN
lis tc.N71N.jc

VectorizH FORT-AN (chaining broken for fourth power)
On Q0"b** L=2.L*ax

C*LL LOr'LXXXfNiTEW.OUlWAbtUUTKMX)
c LL StILX(UUT«*S)

L'STsOOIKXb

0, | TpwU=OUT"AS

X TpIts'!

On go~r OUTRNA=1tnuTwM*
IanHXrOUern+lSTRtP"

on < COKSIST IP* TNNKMA
TMpL (<) =THC: (K*L*1) o**
»\Mllli XJsTHCrfKtL) 074

05, CAN
ILOVXUQ (T"7L ¢ ISTKIK) |
CALL ILOVxOL (TMMI (TSrwiRJd

CALL VMBV-U2

CaLL v 10.13

A, . ¥ . iept

Eaﬁf. isrvz.bx (0»0, xMU (isiKiKtL)>
Cr.LL ILOVXOl (OLKRK ((b"Ki~.L) 7
CarLL VijHT

Fig. 16.

No vectorization of exponents other

than two.

ORIGINAL FORTRAN
DIMENSION A(50), B(50), C(50)

DO 20 I =1, N
IF (A(I).LT.X) GO TO 20
IF (B(I).LT.X) TO TO 10
C(I) = C(I) + B(I)

10 c(I) = C(I) + A(I)

20 CONTINUE

RESTRUCTURED FORTRAN

DO 20 I =1,N

Y(I) = 0.0

IF (A(I).GE.X) Y(I)

Ir (B(I).GE.X) Y(I)

C(I) = C(I) + Y(I)
20 CONTINUE

A(I)

Fig. 18.
One method of replacing forward
transfers.

Y(I) + B(I)

35

*PARAMETER' |

KMAX=50 I

LMAX=100 (

£330 > Pre-ConnutingDinensions
CLICHE BL/VNK (

DIMENSION ACK.'L\X,LMAX), AAAO(LMAX) |
END)

SUBROUTINE X
USE BLANK

DO 10 K=1, KMAX
DOIO L=1, LMAX
AAAO(L)=0.S*A(K,L)

10 CONTINUE

Original FORTRAN

END

DO 10 K=1, KMAX

CALL ILDVXXO (A(K,1)> SO)
CALL SRPVXOl (CO-5)

CALL ISTVIXX (0,0.AAAO)

10 CONTINUE

Vector Output (50 is the stride)

.SUBROUTINE X
DIMENSION A(00,100), AAAO(IOO)

DO 10 K=1, KMAX
CALL i!.D\XX0 (AlK,1i),50) Routine with KMAX and LMAX
CALL SRPVXOl (0.5) changed.
CALL 1S1V1.XX (0O.0..VUO)
10 CONTINUE

ENO

Fig. 19.
Stride problem from editor-VECTORIZER interface.

6s

«no?4

90033
9003+

65
c

Original FORTRAN

DO 65 L*21Lw"™"

0f> 65 K«2#KMAX

M A *ALT (<.L)
fkT/K,UNri T)K«L| «2PA <2*"»L)

FI T(K,L)*{rLT{K,LI"AND..NOT, MA5K) .np.
1.ISHIFT{HLP(K,L).-THALT) .AND. MASK
CONTINUE

Vectorizer Output

DO 65 6»1»6MAXPI

CaLL LUHCXXX (L*AXP1l .0UTrtXS.,UUlHMX)

CaALL btILX (OUTHXS)

OnTpwU-UUTKXS

ISTRIF-T

Do Q0033 OUTRNX-1.oUTHMA

XNNRM*»UUTHMD* | STRIP-I

CALL ILOVXAO(FLI(K.ISIKXP),BD

CaLL 1UUVXAl (ORA (4.K, ii, IM1P) *324)

CaLL VRPVO0OX2

CaAaLL ISIV2XX(0fB1.HLP(6»1"THIH))

CALL 1LUVXX3(QPA(2,K.ISIH1P),32”1

CaLL VHPVO34

CALL IS1V4XX(0.6) *CLT (K* (STKI1H) 1

On 90034 L“ISTK1P.INNHUA

FLT (K»L>b (FLT (6#L) .AND. (.NOT.MASK)) .OR. (SnU T HLF (X.L) ¢ ("I HALF) |
.AND.MASK

CONTINUE

ISTRIR*UUTR"P*ISTRIP

OuT RWD® 64

CALL SET LXI064)

CONTINUE

CONTINUE

CONTINUE

Fig. 20.
Typical example of the Stride problem.

37

on

0

(@]

1000

Dimensioning for”Sfecial Untions (Note 1TH)

COMMON/LCHI/ RT t81iti?n 'zrtei«l2l) * = FI "1~ *uxifai»l21),vi («i*i

*21> »TT (RL.T? 1) +ET (61 .121) .1747181.121) » THCT'(IRT i | »PT 181 » j21) . CHJ
e (Ri.)21) .FT7R1.121) .Fjr(8 W)

CoMMON/LCMa/ pET (81.121)rOXHT (81,121>.CET (81,121),VIM<B1~121),FJO
eITISs.121] .ELT7(81>12f) .GT {81.i21) .Ql7 (81. jgi) .027¢81.121> .037(81»1
*2] 1 »07T (81 .1>1)

COMMON/LCMR/ FIT2{81,1?1) , YMASS (4.91»121)
ARRAYS EOR 3-7 PHYStCS

CnMMnN/R37/ TTHCI*!) »7TOon?T) .xRoa.l) .71 n".T'i .xfwr _1)»>TRH(E. 1).
*£fRi (j. i) .cvH(1 ,i.) .1iAMEi (f.f) .sGAMERJI.1i) tsnen.T)

Origitial FORTS”L
Do 1000 RBKK1,6KK2
CAICULSTE NEW DENSIT7Y

TsT=AMT (K.L)
IFCXSI.EC.0) ITMI (KWoO
IF.(XSI.LEOTo) 7S1=T:
TtitK.L | =7M? (jo/Tsi
TC=0.5«> {TMJ (K| *7TrKtL))
FL7 (K.L)=rxC
IF (XHPEE7) TIM' (K tL||=7C
FJTH (K .L) =0.5< (FJT (?«.L) *7MO0 (K))

CONTINUE

DO 980 K=KK1l.KK?

CHpoK IF FVaPYXHING OK

IF UTM2 (K; .FO.0) GO TO 93

IF (ITMJ (K) .F07Q)GO Vo 930

IF(FJT(K.L) .ox. 6 TaAND. TT(K.L) -Gtr o) GO 70 126

Fig. 21.
Example of values being set for special options.

INTEGER NITER»OUTRxS, nuTRMxtOUTRWD.I STRIP,OUTDNX
RrAL AAiO,AAAl { AAAp.AiA3

DIMENS1oN.AAAO (n »AAAL (1) .AfLA2'(1) » AAA3 (1)
EoijIVALENTEF /AAA3*AAA?)

7D0 Nj TER=KK2*1-<KlI
CALL SETLX(NTTER)

o0

CALCULATF NEW DbENSI1Tr

CaLL JLnvxno (AMT (Ki<i,i.'))
CALL SVMZD

CALL iLDVxnirrTHI{Kxi»
CALL CsMGX1i? (o)

CarLn isivpox'ro.otlTMi (KKI)\
CALL SVMZO

CaLL CSMCxOS(1.0)

CALL ILQVXOA (TM2 (KK1ludg

CALL VRXVSB

CALL VRPV456

CarLL VRTV53T

CALL VRPV"TI

CALL ISTV)px'fo, 6«TTVKxi.L")]
CAaLL ITLovxno(TMI(KKJ)Ii

CALL VRAVOIS

CALL SRPVxSf.to,5)
CALL ISTV60X(0,0,AAA3fKKI1V)

CALL ISTV6nX(0,0,F|T(KKi,L)1

IF (.NOT. | THRFTET) | Go TO ROonf

CAaLL ILnvxo";AAA3(KKri"))

CALL ISTVTOX (OKO»TTH(KKI.L)f
9000i CONTINUE

CALL iLOVxno (FIKKKI .'t"))

CALL ILDVXOI (TMO (KKIJ,

CaLL VRAvVOi?

CALL SRPVX?3(0.5)

Carr ISTV30X (0, OtEjTHifKK1 .L! |

I000 CONTINUE

Fig. 22.
Incorrect vectorization of code in Fig. 21.

39

40

Tno He 10n0 K=2Ki,KAA;

c
C CA"UCUL "TE Ntw DENSITY OF ZONE
C
Tclsflvl (K, L)
IF (TSV.E".U)I1TMI1(K) =10
If (Tcl.tciO, 151=1,
7T (K,L)=TM" (~) /TSI
Tr=n.5« (TviiK”*7T (K»U)
FLT{K tLi = re
FJTH{KtLJ=0.F& (FJT (K, L) -*-r"0o(K))
1000 CO'"TINLE
D(I 9A-; K=KKI1,KK2
Tv2 (K) = Tr<0 (N)-FJT (k-?L)
1F(Ty? (K) .Lt-,0)TM2(K)=-TI.
Tf' 1 (K) = . *S«MFJT (K»L) /TM2 (K)) oDTNUP
979 CONTINUE
c
c [)

DO 95n K=KK1,KK2

(@]

IF (THpEEl | ITH(K"L)=FLT (KtL)
C Cht-CK EvEKYTriING OK
1F(ITF2 (K> .FO.0)Gp TO 930
IF(ITwl (K) .to.0)GO 70 930
IF(FJT (K*1) .0T. " .AND., IT(K»D ,GT.

Fig. 23.
Restructuring to correct special option problem of Figs.

[¢]

r Go re 120

21 and 22.

VECTORIZED PIC SIMULATION CODES ON THE CRAY-1

by

D. W. Forslund
C. W. Nielson
University of: California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

The PIC simulation code WAVE has been almost completely wvec-
torized for the CRAY-1 and is being routinely used on a produc-
tion basis. We discuss here the vectorizing techniques for the
particle mover and the field solver as well as the I/O routines
which result in the code being nearly CPU-bound. The procedure
used to vectorize the particle mover is to rewrite it in a series
of small loops which then are readily converted by a wvectorizer
pProgram into special wvector macros recognized by the FTN compiler
at LASL. This allows selective vectorization of different sec-
tions of code to determine the optimal vectorization strategy.

As is well known the interpolation technique used in PIC simula-
tion for the fields, charges and currents is not wvectorizable

We find that the optimal strategl for the FTN compiler is to keep
this interpolation process completely in scalar mode. If we
separate the scalar fetch and then vectorize the interpolation,
we find a degradation of 30% in speed. On the CRAY-1 we obtain
speeds of 5.5 s/particle for a 2-D electrostatic mover,

11.5 s/particle for a 2 1/2-D (with all field quantities) non-
relativistic electromagnetic mover and 12.4 s/particle for a

2 1/2-D relativistic electromagnetic mover. We also use a fully
vectorized Poisson solve algorithm which uses FFT (Berglund real
form) in one direction and tridiagonal solve in the other. Vec-
torization is achieved in the direction normal to the transform
or tridiagonal solve. A 256 x 256 Poisson solve takes 100 ms and
a 64 x 64 Poisson solve takes 5.1 ms. The FFT takes 2/3 of the
time and the tridiagonal solve takes 1/3 of the time. In order
to sustain these speeds for large problems, an efficient I/O al-
gorithm is needed on the CRAY-1. The algorithm we have imple-
mented in production is triple-buffering with two disk channels.
Sustained transfer rates of 375 000 words/sec/channel are ob-
tained which allow for nearly complete overlap with the rela-
tivistic mover. Exploratory tests have shown that it will be
possible to obtain sustained rates of 450 000 words/sec on each
of four channels driven simultaneously and overlapped with compu-
tation. The size of the required buffers to achieve this is
dependent on the details of the operating system.

41

A CRAY-1 SIMULATOR AND ITS APPLICATION TO DEVELOPMENT
OF HIGH-PERFORMANCE CODES

by

D. A. Orbits
D. A. Calahan
Department of Electrical and Computer Engineering
University of Michigan
Ann Arbor, Michigan

ABSTRACT

A logical/timing simulator for the CRAY-1 is described.
Used in conjunction with a companion cross-assembler, the
simulator has provided an invaluable non-resident programming
aid for study of high performance vector linear algebra algo-
rithms and for the development, from a Fortran model, of
large assembly-coded benchmarks for aerodynamic simulation.

I. INTRODUCTION

It has become increasingly clear to algorithm developers for wvector pro-
cessors that management of data flow and myriad vector/scalar resources for
critical computation kernels can often be significantly improved by assembly
coding. Speedups of 2-5:1 are not uncommon, especially for linear algebra codes.

Because timing considerations are far more important to wvector than to
scalar processing, such assembly coding becomes an extraordinary task even for
the skilled programmer. Indeed, analyzing the data flow associated with a pro-
posed algorithm is so demanding that either the algorithm developer despairs of
optimizing code performance, or else becomes so involved in a timing analysis
that the larger issues of algorithm performance are put aside.

These problems arose in the study of vectorized linear algebra algorithms
and in the conversion of aerodynamic simulation ("numerical wind tunnel") codes
for the CRAY-1. We believe that our approach - a logical/timing simulator -
provides a timely solution and suggests an opportunity for closer coupling in the
future between algorithm and architectural designers.

II. THE U OF M CRAY-1 SIMULATOR

A. Introduction
This portion of the paper will discuss in general terms the features of the
U of M Cray-1 Simulator. We will address each of the following three questions:
1. Why we chose to build a Cray-1 simulator?
2. What features does the simulator provide?

42

3. How well does the simulator meet its objectives in terms of cost,
accuracy and usefulness?
Lack of space prevents a detailed discussion of the simulator's features.
Reference <1> provides an in depth discussion of the material presented here.

B. Why Build a Cray-1 Simulator

The decision to build a Cray-1 simulator was motivated by the following

four considerations:

1. Most important is the need to analyze the performance of Cray-1 algo-
rithms. The simulator is superior to the Cray-1 in this respect be-
cause software instrumentation in the simulator permits a detailed
study of Cray-1 resource usage and conflict.

2. For those computational kernels which must be carefully designed and
coded, the programmer can use the simulator to analyze instruction
delays and re-organize instructions as necessary to minimize resource
conflicts.

3. When debugging programs, it is highly desirable to have interactive
control of program execution. A Cray-1 batch environment is not very
conducive to the diagnosis of program bugs. The simulator should pro-
vide a symbolic debugging environment with a rich set of debugging
commands. A companion Cray-1 cross assembler <2> was developed which
provides symbol information to the simulator.

Finally, with the simulator it is a simple matter to architect Cray-1
modifications in software so as to study their impact on algorithm per-
formance. As we study algorithm behavior, we, plan to experiment with
variations of the Cray-1 architecture.

We feel that the Cray-1 simulator meets all of these objectives and will

next discuss the specific features of the simulator.

C. Cray-1 Simulator Features
The four major features provided by the simulator are:
1. Performance reporting
2. The command language debugging facility
3. The subroutine interface to the simulator
The ability to implement Cray-1 architectural modifications

1. Performance Reporting The principal value of a simulator is its'
ability to convey to the algorithm designer and programmer the behavior of algo-
rithms and kernels in the highly concurrent environment of the Cray-1 computer
<3>. The Cray-1 simulator currently provides three kinds of activity reporting.
In increasing level of reporting detail, the three reports are:

1. Operation counts

2. Data flow summary

3. Clock period activity report.

The operation counts report is useful for measuring Cray-1 functional unit
utilization and overall algorithm performance.

The data flow summary is useful for studying aggregate data rates in var-
ious segments of the Cray-1. This g,lso permits the study of the data flow
across the memory hierarchy boundaries.

The clock period activity (CPACT) report provides a detailed record of the
state of the various Cray-1 resources. This can be used to study instruction
delays in algorithm kernels to optimize their performance.

Each of these reports will now be discussed in more detail.

43

1.1 Operation Counts. The operation count report is divided into two sec-
tions: (1) a floating point result counts section, and (2) a vector usage counts

section.

The floating point result counts section reports the program's use of both
vector and scalar floating point operations. For each entry in the table
(Figure 1), both the number of results and their percentage are printed.

FLOATING POINT PESULT COUNTS

ADDITION BULTIPLICATION *ECIPPOCAL TO

v2cTop (%) 5530 (43.7) 7119 | 55.9) 63 | 0.5 12712

SCALAR (¥ 5 (0.0 5 [0.0) 9 (0.1 18

TOTAL (¥) 5535 [43.5) 7124 (56.0) 71 f.6) 12730
Figure 1

Floating Point Result Counts Table

Floating point additions (and subtractions) and reciprocals are counted dir-
ectly from the instructions that perform them. The multiplication count is
adjusted due to the Cray-1 reciprocal approximation.

The vector usage counts section reports the program's use of the Cray-1
vector unit resources. Figure 2 shows the vector usage counts table.

U OF H CFAY-1 SI®ULATCF. (Url33) THU JUK 15/72
VECTOP USAG? COUKTS

CUM. TIF.ISG PP ADD FP MUL FP DIV LOG. SHI FT I. ADD V-LOAD 7-STCR-
TI"E BUbt (CP) 5882 7705 67 67 1277 0 1C322 25010
X TIME BUSY 36.20% 47.42% C.41% 0.41% 7.86% o.c % 63.52% 15.33%
NO. RESULTS 5530 7245 63 63 1201 r 97r6 231%*
HO. /ECTO03S 68 115 1 1 19 c 154 37
AVERAGE VL 62.84 63.C0 63.CJ 63.00 63.21 0.0 6?2.3 62. 57
RUN TIME (CP) 16251
MFLOPS 62. 67
COMPOSITE AVL 62.95
CONCURRENCY 1.71
MIPS 5.02
Figure 2

Vector Usage Counts Table

Each column of the table represents a different vector functional unit.
Left to right the units are:
Floating point adder
Floating point multiplier
Floating point reciprocal approximation
Vector logical
Vector shift
Vector integer adder
Vector memory path (split between loads and stores).

N0 G wdh R

44

The rows of the table represent: wunit busy time, percent unit busy time of total
run time, the number of vector results produced by the unit, the number of vector
instructions issued to the unit, and the average vector length processed by the
unit

Five other statistics are printed beneath the table: the run time, the
MFLOPS (million floating point operations per second) for the program, the com-
posite average vector length over all vector units, the vector unit concurrency,
and the MIPS (million instructions per second) rate.

1.2 Data flow summary This report (Figure 3) provides a summary of the
data traffic over the major Cray-1 data trunks. To aid in identifying the var-
ious data paths for which traffic information is provided, the simulator prints
a block diagram of the Cray-1 central processor and attaches path labels to each
of the data paths. These path labels are referenced on the left hand side of
the report proceeding a number which represents the number of operands shipped
over that path. The data paths with arrows are uni-directional whereas the paths
shown dotted are bi-directional.

The left most column of the figure represents the Cray-1 computational units
divided into three groupsj vector, scalar and address. The floating point func-
tional units are assumed to be shared between the vector and scalar groups.

The center column of the figure represents the Cray-1 register storage. Top
to bottom, four register groups are portrayed; the vector registers, the scalar
registers, the T and B registers, and the address registers. The vertical bi-
directional data paths (shown dotted) between the four register groups are used
for inter-group data transfers.

The right hand column of the figure represents Cray-1 main memory. Memory
is shown in four sections only for the purpose of the figure. Any register group

may reference any location in Cray-1 main memory.
The labeling scheme is defined as follows:

1. 'A', 'S' and 'V are for address, scalar and vector.

2 '0' is for operand and 'R' is for result.

3. 'X' means a bi-directional data path.

U 'M' means the path is a memory path used by the three register groups
tied both to memory and a computational unit. The T and B registers
communicate only with memory and other register groups.

For example, 'SMO' is the operand data path to the scalar registers from memory,

while 'SO' is the operand data path to the scalar computation units from the
scalar registers

Below the data path portion of the report, four other statistics (including
branches, fetches, and instruction issues) are printed.

This data may be used to compute many useful percentages and ratios, some of
which are discussed in <1>.

1.3 Clock period activity (CPACT)report. The CPACT report provides a de-
tailed description of Cray-1 resource activity at each clock period of the simu-
lation. Because of the substantial amount of output produced by this report, it
must be invoked judiciously to avoid producing several hundred pages of output.

Figure shows the format of the report. Across the top of the report, the
various column headings are devoted to the Cray-1 resources that may be called in-
to play by an instruction. Time flows down the page with each clock period of
simulation time producing an output record. When an instruction issues, a single
character tag is assigned to the instruction for the purpose of tracking the in-
struction's resource use throughout its' execution. Some of the tags are shown
underscored, indicating the next instruction to issue requires the resource

45

VO
vao

vs
VHB

S XT

BTO

SXA

BTF j

AXB

AU
Ano

AS
HHE

SISsC.
BRANCHES
FETCHES
ISSUES

occupied by this tag.
must hold issue until its! resource conflicts vanish.
Below we define the various headings of the CPACT report:

46

1. sT.
2. TAG
3. INSTR.
4. P-ADDR
5. CP
6. +*/&>+
7. V. REG
8. MEMORY
9- ARA

10. A. REG

Vo ou \%e) v vno E
2.961 N <«*H-*H 1 F
9776 c1 cE M
T T T 0
14102 0 s ms mmmx > 0 KXX33=> F
2316 B VB B VAR Y
7 . SXV
p
s u SO s St'.0
60 C N <**Enk= C p <373=3= 1
15 AT A E M
LT L G 0
34 A g mmm3x=> A . ======> P
) B SB ? sak Y
10 . . SXT
3TO
H p <333=3= E
5 SXA . & 1 M
G 0
B 3=====> P
17 . arTp Y
66 , . BX5
A A0 A AXO L
414 DU <XXS3=X D P <=3=33=
16 D N D E 1
Pl R G 0
207 E 33=3=3> 2 333=3=> P
i S S A? S Aar Y
s S
237
A
21
123
Figure 3

Data Flow Summary

As a consequence of this conflict, the next instruction

- The machine state.
IS - instruction issue
blank - instruction hold issue
FE

- The

- instruction fetch sequence

An instruction's resource tracing tag.

Cray-1 instruction mnemonic.

'<BLANKS' is a pass instruction.

- The
- The
- The

(FP
- The

parcel address of the issuing instruction.
machine clock period.
Cray-1 vector functional units.

add, FP mult, FP recip., Logical, Shift Integer add)
Cray-1 vector registers.

- The memory access network and memory hanks for tracking scalar

memo

ry references.

- The A-register access path.

- The

address registers.

FT

TS
Is
Is
TS

TS
IS
IS

TS
Is
Is
Is
Is
Is
TS
Is
Ic
TS
TS
Is*
Is
TS

is
Is

Is
Is

Is
TS

Is

IFFTF FCTIOF

<PT.n,TS>
<nL.\N,T>
B1) A7
A7 A4- RO

1 A5
BO1 A4
S1 A7
502 A2
S? «>72
ST 32651
N 51
A7 A7»A0
BOO A6
vl a7
n04 A7
T»0S A3
POS A6
Ar DU

£,2» AS

P12 Al
s1 0,A2
<PLAMK>
A? A2* A0
A7 BIO
AS A7-A5
AO AJ* A3
72 , A0, AO
A0 alen:
S2 0,.A2
<nL A'lA>
SO VO, AO
VO ,AO, AO

P-AODR

1 21A
171B
121C
121P
122A
1220
122C
1320
1 21A
1233
12 3C
1237
124a
1240
124cC
240
2 5A
25C
25C

126B
26C
260

127A
127B

127c

1 30A

1 30B

CP

612]
611
6 14 |
6 15 |
6 16|
6 17 |
6 10|
6 10 |
6 201
621
6221
623
624
6725
626
627
620
627
6301
631
672
633
614

o
[
o

16
171
10
30

IS
o
=

41
47|
43|
44
451
46
47|
40
£40
66) |
651
652]
6 53|
6 54
656
6561
6571
650
650
66J|
661
6621

ooy Oy o Doy o OO

o

TTT
PPPYYT
*»/C>»

T. RIC 5 R RW
CR AA
0123«567 1 A
1 i
1 i
1
1 i
1 i
1 i
1 i
1 i
1 i
1 i
1 i
10
1 o
0
o
T
T
T
T |
T !
T !
T 1
T 1
T 1
* v
T 1 A
1 T 4
1 T 7
x T
X
1X !
ii I
n 1
Tx 1
I X {
Figure 4

CPACT Report

KEPHOFRDAIT*KHERRS A

o oo o

<< <<

I1F|

I'FI

1P|
101
IRIS
Isls

10
|UlU

A. REG S S. REG

R

10|

©o0 ©0 0 0 0 0 0 0 O

BC O123P56789A0CDER A 01234567 A 01234567

4 o< o< << <<

1

T

AS
00
BB

s
Is
]
|0
10

<< <=2 < <<

S 0 EF SB
T 7 CP ST
K 3 GA PX

HH

|H|H =

X =t H =

11. SRA - The S-register access path.
12, S. REG - The scalar registers.

13. VM - The vector mask register flag.

i4. AOB - Register AO busy flag (Branch data invalid).

15- SOB - Register SO busy flag (Branch data invalid).

16. STH - The storage hold flag.

17. 073 - The vector mask read inhibit flag.

18 BCG - The parcel buffer change flag.

19. FPA - The fetch sequence pause flag.

20. BSF - The block sequence flag for vector memory accesses

21, BTX - The B and T register block transfer flag.

2. Cray-1l simulator command language. In developing algorithms
Cray-1, we needed a command language that provided good facilities for debugging
assembly language programs. Consequently, about one half of the simulator com-
mands are provided for debugging purposes. Space limitations prevent more than

a brief mention of the command language features.
The debugging commands allow:

1. The setting of breakpoints with optionally specified automatic commands
2. The display and alteration of storage locations.
3. Symbolic reference to storage locations using the symbol information

provided by a companion Cray-1 cross assembler <2>.

4. Single stepping through programs.

5. The monitoring of bad memory references, floating point overflow and
divide check.

The simulation control commands provide:

1. The loading of absolute and relocatable modules produced by the cross
assembler.

2. Starting and halting the simulation.

3. Linkage control when the simulator is itself called as a subroutine
from another program.

4. Simulator Input/Output control, allowing input command files and output
diversion.

5. Cost control commands that allow disabling instruction timing, thereby
reducing costs by a factor of ten.

3. Cray-1 Simulator subroutine interface. There are two subroutine inter-
faces in the Cray-1 simulator. First, there is a command language interface,
allowing a higher level program to call the simulator as a subroutine. Second,
there is an EXIT interface that allows a Cray-1 program to call a user defined
service program via the Cray-1 EXIT instruction. Figure 5 illustrates the simu-
lator environment.

3.1 Simulator command language interface. Calling the simulator as a sub-

routine has many advantages:

1. The ability to convert only a portion of a Fortran program to Cray-1
assembly language, allows the user to simulate only the converted por-
tion while leaving the remaining program in Fortran to run more effic-
iently on the host machine.

2. Being able to share the simulated Cray-1 memory between the calling pro
gram and the simulator allows efficient data communication across the
interface.

3. When studying a given algorithm for application to the Cray-1, it is
often convenient to perform any housekeeping and initialization

48

USER
CALLING
PROGRAM

CRAY‘l CRAY - 1 TERMINAL

MEMORY
SIMULATOR

EXIT

PROCESSOF

Figure 5
The Cray-1 Simulator Environment

functions in the user's Fortran program. Therefore, only the algorithm need be
coded in Cray-1 assembly language.

This interface allows all command language commands to be passed as text
strings to the simulator.

4, Exit processor interface. As it is useful to call the Cray-1 simulator
as a subroutine, it is also useful to be able to call another program from within
the simulated Cray-1 program. This transfer of control from the Cray-1 program
to a target program is accomplished through the use of the Cray-1 EXIT instruc-
tion.

The Cray-1 assembly language mnemonic for the exit instruction is shown
below:

EX ijk
The exit code field (ijk) is a nine bit field within the exit instruction. Exit
codes may range from zero to 511 decimal. Upon encountering an exit instruction,
the simulator checks the exit code field (ijk) for a non-zero value. If ijk is
zero, a normal Cray-1 program exit is performed. If ijk is non-zero, the simu-
lator will call the subroutine CRAYEX. Through this interface the simulator
passes the A,S,V and VL registers as arguments as well as the exit code for dis-
patching. As mentioned above, simulated Cray-1 memory sharing may be used to
pass data back and forth. This interface is very useful for writing some primi-
tive functions like square root, trigonometric, etc. and running them at full
speed on the host machine.

49

5. Modeling Cray-1 architectural changes. The Cray-1 simulator provides
a flexible medium in which one may conveniently experiment with architectural
changes to the Cray-1.

As an example, one such change we have explored is the effect of increasing
the Cray-1 memory bandwidth to the limit of its' memory system. The 16 memory
banks on the Cray-1 have a bank cycle time of four clock periods, so it would be
possible to move data at a maximum rate of four words per clock period. This
data rate is reduced for unfavorable skip increments, (k) as shown in Table I.
The simulation timing was adjusted to move memory data at the rates shown below,
but with the same vector start-up time. Since data could be loaded into a reg-
ister at four words per clock period, chaining from a memory load was disallowed
for all data rates. This is no hardship since it is usually possible
vector loads within the code.

Data rate Data rate
k mod “S (Words/cp) k mod 16 (Words/cp)
0 .25 8 .5
1 N 9 4
2 2 10 2
3 k 11 4
1t 1 12 1
5 4 13 4
6 2 14 2
7 4 15 4
Table I

Maximum data rates
This alteration has a very favorable impact on memory bound algorithms.

D. Conclusion

In developing Cray-1 algorithms in assembly language, we have found the de-
bugging features and the subroutine interface to be extremely useful. In one
conversion project three numerically complex Fortran programs were converted to
assembly language. Each program was converted by a different programmer. Table
2 shows the man hours required.

Number Number
Fortran Assembly F:A Man
Routine Lines Lines Ratio Hour;
1 98 1500 15:1 50
2 97 239 2.5:1 25
3 40 280 7:1 35
Table 2

Conversion effort

Once developed on the simulator, very little effort was required to get the
assembly codes running on the Cray-1.

The timing accuracy of the simulator has been very good. We have observed
a timing error on the order of 1/2% on some codes and less on others. We have

50

also timed 66 short instruction test segments to calibrate the simulator timing.
In one program the timing error was one clock period out of 318.

In some ways simulating Cray-1 programs is far superior to running them di-
rectly on the Cray-1l. With simulation, the user has complete freedom to instru-
ment the simulator and generate reports of important events under investigation.

Certainly the major disadvantage of simulation is the time cost. As an
illustration, we at the University of Michigan ran the Cray -1 simulator on an
Amdahl U70V/6 (IBM System 360/370 compatible), and the cpu time ratio between
the Amdahl simulation time and the Cray-1 execution time for the same Cray-1
program is shown below.

Mode 1. 3,000 to 1l

Mode 2. 30,000 to 1

Mode 3. 90,000 to 1

where
Mode 1 simulates the numeric computation using host machine arithmetic but
provides no instruction timing. A program executing in one millisecond on

the Cray-1 would require three seconds of simulation time on the Amdahl U7O0.
Mode 2 combines both instruction timing and numeric computation.

Mode 3 produces the detailed activity report for each clock period of the
simulation in addition to the instruction timing and numeric computation.

III. DEVELOPMENT OF HIGH PERFORMANCE CODES

A. Introduction

The designer of algorithms for memory-hierarchical, multi-resource machines
of the Cray-1 class quickly discovers that algorithm performance is profoundly
influenced by language and coding considerations. For example, one finds that
in general the better the short-vector performance, the more the advantages of
serial algorithms (e.g., faster convergence) can be exploited. (Note that
parallel algorithms are a performance subclass of serial algorithms.) This per-
formance thus becomes an excellent candidate for simulator study.

Such optimized kernels can often be developed with the aid of the simulator
in a "top-down" manner. On the assumption that vector floating point operations
form a minimal set which characterize a code's function, the following is
proposed as a two-step high performance assembly code synthesis procedure.

1. Code only the vector instructions, to achieve optimum MFLOP rate. With-
out addressing and other instructions to impede vector instruction issue, a
maximum rate is achieved for any particular choice of vector instruction

sequence. Simulated conflicts and remedial programming are the most obvious
with such a skeletal program.
2. Inspect the simulator output (in the "steady state" for an instruction

loop) for a variety of vector lengths to show any consistent gaps; insert non-
vector instructions in these gaps.

B. An Example: The Vector Inner Product *

In the processing of a single dense system on the Cray-1 a vector accumula-
tion of the form

*The reader not familiar with Cray-1 architectural terminology is referred to
the results of Table 3.

51

v, = E o v, n < 6l

is common, where V| is a vector and a., a scalar. For example, this kernel

would occur in the multiplication of two matrices or in the column-wise solution
of simultaneous equations.
The conventional CAL kernel for this accumulation would have the model form

Start Vo memory vector fetch j
VI SI * VO scalar*vector/ "ping
V3 A~ V2 + VI vector add J
VO -¢ memory vector fetch j
V5 -e S3 * VO scalar*vector> "pong'
V2 -e V3 + V5 vector add ;

Jump Start

The symmetry of this kernel between the first three and the next three instruc-
tions results from the inability of a vector register to function as both a
source and destination register in an accumulation. The simulated clock-level
report is given in Figure 6(a) for vectors of length k. In this case, chaining
forces long gaps between instruction issue, leaving the floating point paths
free more than 50% of the time, and an execution rate of 2h MFLOPS (Table 3).
Inspection of this report rather soon suggests that these gaps could be
filled by interleaving chained register operations. We tentatively assign
{V2, V3} to store one set of "ping-pong" partial products, and {v4, V5} the
other set. For a matrix multiply, each set would accumulate a different column
of the result matrix, as illustrated below.

rvo V6 V2,V3 V1+,V5
sI s2

S3 Sl+

Note that two registers, VO and V6, are used to prefetch vectors from memory;
registers VI and V7 are intended to chain the interlaced multiplier-add chains.
The assignment of two registers for each task reduces the chance of becoming
register bound.
Because each memory fetch yields two scalar-vector multiplies (e.g.,
SI * VO and S2 * VO) the memory traffic is 1/2 that of the standard algorithm.
Figure 6(b) depicts the resulting steady-state loop behavior for a vector
length of it (the assembly code can be deduced from the simulator output).
Bather remarkably, the chains for this wvector length arrange themselves so that
the vector floating point units are never free; clearly this is the maximum

52

(a)

Standard algorithm (1+3 cl/loop) (b) HP algorithm (32 cl/loop)

INSTRUCTION
vo ,A0,Al
VI S1*FV0
V3 V2+FVI
Vo ,A0,Al
V5 S3*FV0
V2 V3TEV5
J 24
vO ,AC,Al

P-ADDR

24Rn

24B

24cC
24D

25A

I5B
25C

24R

CRAY-I SIMULATOR CRAY-I SIMULATOR
FFF V. REG 5SRRR ST FFF V. REG BSRRR
CP PPPWV SCKKK T A INSTRUCTION P-ADDR CP PPPWV SCKKK
01234567 FIABC G +%/&>¢ 01234567 F1AEC
60 |G I G 11 1.0 V7 S2*RV0 24D 107 Y0 10X YWO |
61 ic G . I 1 V2 V3+FVl 25A 108 110 10111 *K01
62| 11 * I ! 109110 10111 YKOI
631 IT G I i 110110 10111 Y 01
641 116 11 1111 10 10111 Y 01
651 I G 11 | I 2 V0o ,A0,Al 258 112110 12111 Y 012
66! : G 11 1 113110 12 1 012
671 I 11 114) 10 12 1 012
8 1 n I 3 VI S1*RV6 25C 115111 1231 3002
601 7 173 | I 4 V4 V5+FV7 25D 116143 123* 443412
701 J 133 117)43 1231 443412
g 77 | | 118I4T 1231443412
720 J JJ ! 115:43 1231 443412
73! 7 JJ i 120143 123144412
741 J J | | 121143 1*¥3 4 0™
750 g J | | 122143 123 ¢
761 J J | I 5 V] S2*RV6 262 123145 123 4 551
77 J | h I 6 V3 VI+FV2 263 124 165 12566* 551
78 iK KKK | 125165 126664 551
79 IK LKKK L i 126165 6664 551
80 IK | LKKK L 127165 6664 551
ol IK LKKK 11 i 1 7V6 ,AO0,Al 26C 128165 6664 7517
82 IK LKKK IL 125165 6 7517
83 IK IL K L ! 130165 6 7517
84 X 1L X 1L I 8 VI S1*RVO 26D 131 168 1886 7517
851K 1L K L I 9 V5 V7+FV4 27A 132198 188 *997917
L+ 1, I AJ 24D 27B 133158 188 6997917
87 1L K L 134196 166 6997917
88! K M KM | 135158 188 6597917
351 M M K M 136198 8 6997917
91 K M K M 137198 18 9%
911 M M M 138198 3 97
921 M M M I B V7 S2*RVO 24D 139198 1B6 97p|
931 M M I C V2 V3-"FVl 25 1401ICB IECCC *7B|
541 M M 1411CB 1ECCC 97E|
551 M M 1421C3 1ECCC 9 Bi
56 2 1431ICB IECCC 9 B
97 IN NN N
98 IN NN N
95 IN NN N
100 1IN NN N
101 IN I NN N
102 In LN !
103 IN IP N 1P
104 1IN P N P
1051 P+ 1P
106 I? N 1P
107 PN 1P

Figure 6.

Clock period reports of accumulation loops for VL = 4. Note
busy time of floating point units under columns FP+ and FP*.

possible execution rate for a vector length of 4. Since the floating point
pipelines are reserved for (VL + M clocks, this rate is

MFLOPS 160

80 (1)

When the vector length is increased beyond K, it turns out that the inter-
laced chains are not maintained. However, as Figure 7 shows, these chains are
not essential to maintenance of a high state of floating point pipeline occu-
pancy! Rather, the fetches, multiplies, and additions now arrange themselves
around the loop so that the appropriate instruction is ready to issue (with
four exceptions) whenever a pipeline becomes free. Whereas (l) indicates a
maximum rate of 107 MFLOPS, the report shows a rate of 102 MFLOPS. This mode
of unchained operation continues through VL = 64, clearly a counter-intuitive
result

A series of simulations for VL = 2k, k =1, 2, ...6, reveals a number of
gaps in the instruction issue suitable for insertion of addressing and loop
control instructions; however, the four scalar fetches per loop add 8 clocks
for instruction issues (being two-parcel instructions).

Comparative execution rates for the standard code, for the wvector-instruc-
tion-only HP version, and for the complete HP code are given in Table 3. The
maximum rate from equation (1) is also given. The HP version outperforms the
standard code by 2.5:1 for VL = 2,4 and by 1.8:1 for VL = 8. Further it is
always an improvement over the standard code.

High Performance

Vector Length Standard Vector-Only Complete Maximum
2 12 44 31 53
4 24 80 6l 80
8 48 102 87 107
16 87 125 11e6 128
32 125 l4o 135 142
64 l4o 149 146 151
Table 3

Execution rates of accumulation loops (MFLOPS)

The complete HP code has been timed on the CRAY-1l; simulated timings were
found in error by 1 in 318 clocks
A matrix multiply code constructed from this CAL kernel shows a 35%

decrease in computation time wversus the standard CAL algorithm for VL = 4 and 8,
and always shows an improvement for 2 < VL < 64.

Other high performance linear algebra codes are being developed in this
"top-down" manner and will be reported in reference <4>.

54

T A INSTRUCTION

s T

G
I WvV7
I XV2
I YVO
I 2VI
I ov4
I 1v7
I 2V3
I 3Ve6
I 4VI
I 5V5
I 6 J
I 7 V7

S2*RVO

V3+FV1

,A0,Al

S1*RV6

V5+FV7

S2*RV6

VI+EV2

,AOr AL

S1*RVO

V7+FV4
240

S2*RVO

P-ACDR

24D

25A

258

25C

25D

26A

268

26C

260

27A
278

240

CRAY-I SIMULATOR

FFF
Cp PPPWV

V.

REG BSRRR
SCKKK

+*/&>+ 01234567 FiABC

112 |Uw
1131UW
1141U0W
1151UW
1161 W
117IXW
1181xXwW
119IXW
120IXW
121 IXW-
122 IXW
123IXW
124 1x

1251x2
1261x2
1271x2
1281x2
129102
130102
131102
132102
133102
134102
135102
136102
13710T
138101
139151
140101
1411 1
142121
143121
144121
145121
146121
147121
148121
14912

150124
151 124
1521724
153174
154154
155154
156154
157154
158154
159154
160154
161154
162157
163157
16457
165157

Figure 7.
HP accumulation loop with broken chains for VL

I WT * W
IWT U Wl
I WT U Wl
i WT U Wl
| WT U WL
wxxx U WL
twxxx U W|
lwxxx U WL
| YXXX Wl Y
| YXXX *1Y
Y¥YXXX Wl Y
| YXXX W| Y
I YXXX W1 Y
1 YZ* ZW!Y
1 YZX ZW1Y
1 YZX ZW1 Y
| YZX ZW| Y
| *ZX 00zO0IY
1¥ZX 00zOo Y
1¥ZX 00zZ0|Y
1¥ZX 00zOo !
1YZ 00 0!
LY* 00 o1
tyz 00 7|
tyz 00 71
1z * i1l
1z 0 111
z 0 111
iz 0 111
z 0 111

1 2220 111
1 2220 111
1 2220 T1|

1 222 3113
1 222 3* 13
1 722 3113
1 722 311 3
1 722 3113

174

174
174

* 3113
2 3113
2 3113
2 3713
255*513
2553513
2553513
255351
5535
5535 |
5535 |
5537
* 7.

5
5 71
5

55

IV. CONCLUSION

Simulation has been employed for some time as an aid in the design of com-
puting systems. It now appears useful to algorithm designers as well, and may
even become essential when multi-resource scientific machines such as the Flow
Model Processor <5> become available in the 1980's. Indeed, it may be that, for
the management of such machines, a simulator will become an integral part of
innovative code preparation procedures that exploit a high degree of user inter-
action and intuition concerning computer and problem structure.

Acknowledgements

This work was jointly supported by the Directorate of Mathematical and
Information Sciences, Air Force Office of Scientific Research, and by the Air
Force Flight Dynamics Laboratory, Wright Patterson Air Force Base, under Grant
AFSOR 75-28]2.

The authors acknowledge the assistance of William Ames, who prepared the
cross assembler; of Cray Research, Inc., who provided timing information; and
the National Center for Atmospheric Research, who provided Cray-1 processor
time.

References

1. Orbits, D. A., "A Cray-l Simulator," SEL Report No. 118, System Engineering
Laboratory, the University of Michigan, Sept. 1978.

2. BAmes, W. G., "A Cray-1l Cross Assembler," SEL Report No. 120, System
Engineering Laboratory, The University of Michigan, Sept. 1978.

3. Russel, R. M., "The Cray-1 Computer System," CACM, Cray Research Inc.,
January 1978, pp. 63-72.

4. Calahan, D. A., "Performance of Linear Algebra Codes on the Cray-1,"
Proc. 5th Symposium on Reservoir Simulation, Denver, January 31 -
February 2, 1979-

5. "Final Report, Numerical Aerodynamic Simulation Facility, Preliminary Study
Extension," two reports prepared by Burroughs Corporation and Control Data
Corporation for NASA/Ames Research Center, Moffett Field, CA.

56

LaRC EXPERIENCE IN THE INSTALLATION
OF A STAR-100 COMPUTER

by
M G Rowe
NASA/Langley Research Center
Hampton, Virginia 23665
ABSTRACT

A Control Data Corporation (CDC) STAR-100 computer system
was installed by CDC at the NASA/Langley Research Center (LRC)

December, 1975. Since that time the use of the STAR-100 as a
vector processor to solve research problems at LRC has steadily
increased. The evaluation of the STAR-100 system as a major

research tool at LRC will be discussed, as well as the perform-
ance and reliability of the system.

Both hardware and software system configurations for the
STAR-100 system installed at LRC have undergone significant
modification and growth since the initial installation. The
hardware and software configurations will be discussed. There
have been numerous problems to overcome, with some failures.

As a result of LRC's experience in installing and using a
vector processor such as the STAR-100, a summary of items that
may be of interest to other installations considering such
actions will be discussed.

57

SOME UNPACK TIMINGS ON THE CRAY-1%*

by

J. J. Dongarra**
University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico

ABSTRACT

This report compares the Los Alamos Scientific
Laboratory (LASL) compilers and FORTRAN tools used
in running programs on the CRAY-1 computer. A sample
of linear equation routines from the LINPACK collec-
tion were tried using these compilers and tools to
determine what aids give the fastest execution speed
for FORTRAN codes run on the CRAY-1.

INTRODUCTION

This report gives timing data obtained from experiments performed on the
CDC 7600 and CRAY-1 computers at the Los Alamos Scientific Laboratory (LASL).
The timing studies were done using linear equation solvers from the LINPACK
package.* The CDC 7600 does only scalar processing, whereas the CRAY-1 does both
scalar and vector processing. Extremely high execution speeds can be achieved
by utilizing the vector capabilities of the CRAY—l.2 Algorithms for solving
linear equations are amenable to a high degree of vectorization. This, to-
gether with their wide use at LASL and other Department of Energy (DOE) labora-
tories, motivated this study.

One of the ground rules for these experiments was that the algorithms would
not be changed; no modifications were made to the structure of the algorithms.
The LINPACK algorithms are designed to access matrix elements by column when-
ever possible. The results of other studies suggest that column orientation
is beneficial for general computers.354 This study finds that it is beneficial

for vector computers as well.

*Also released as LA-7389-MS, August 1978.
**Current Address: Argonne National Laboratory, Argonne, IL 60439

58

All LINPACK routines used the Basic Linear Algebra Subprograms (BLAS)*

in carrying out basic computations. Since the BLAS do most of the arithmetic
work in the package, it is critical that they run efficiently. A decision to
retain the BLAS in LINPACK has not been finalized at this point. If we decide
the BLAS are a burden to the package, thereby making the execution time of the
routines substandard, we are prepared to remove them automatically using a
system designed by Boyle and Dritz called TAMPR.~ TAMPR can remove calls to
the BLAS and replace them with the corresponding inline code. This is done

by describing the replacement transformations to TAMPR along with the code that
is to be transformed. TAMPR detects the calls and replaces them with appropri-

ate "optimum" inline FORTRAN code (see Appendix)

LASL currently has two FORTRAN compilers and a vectorization package
available for the CRAY-1. First, there is the FORTRAN FTN cross-compiler
(FTNX). This compiler is a modified Control Data Corporation (CDC) FTN compiler
that is used on the CDC 7600 and generates CRAY Assembly Language (CAL) code.
This CAL code can then be sent to the CRAY-1 and executed. The FTNX compiler
performs some instruction scheduling and optimization of the generated CAL code.
It has limitations in that it only generates scalar code.

LASL uses the Massachusetts Computer Associates' (MCA) Vectorizer7 in con-
junction with the FTNX compiler to utilize vector instructions on the CRAY-1.
The vectorizer analyzes the FORTRAN source code for vectorization possibilities.
If vectorization can be performed on a loop, the Vectorizer transforms the
serial FORTRAN code into vector primitives, in the form of subroutine calls,
which perform the same function as the serial code. When the code that has been
passed through the Vectorizer is given to the FINX compiler, the compiler re-
places the calls to vector primitives with inline vector instructions.7 This
enables the user to access vector features of the CRAY-1 while keeping his
source code in standard FORTRAN.

There is also a set of BLAS written in CAL code that takes advantage of
the CRAY-1 vector hardware.g These routines have the same subroutine linkage
conventions that were adopted in the FTNX compiler and therefore can be utilized
by FORTRAN code that references the BLAS compiled by the FTNX compiler.

The second compiler, which runs on the CRAY-1, was developed by Cray

9
Research, Inc. (CRI). This compiler does no instruction scheduling, but does

59

perforin vectorization of the FORTRAN source code. The CRI compiler will ex-

amine FORTRAN loops for possible vectorization and, if it can, generate the
appropriate CAL code to utilize vector hardware instructions. The user may

also turn vectorization off, that is, the compiler generates only scalar
instructions. At the present time the CRI compiler does very limited code
optimization, such as common subscript elimination. Work is currently going
on at CRI to include instruction scheduling and global optimization. Unfor-
tunately, the subroutine linkage conventions of the FTNX compiler and the CRI
compiler are not compatible. Therefore, the CAL BLAS used with the FTNX com-

piler cannot be utilized by the CRI compiler.

TIMING STUDIES

Timings were carried out on the CRAY-1 for four routines in LINPACK. The
four routines deal with real general square matrices and perform the following
operations: decompose a matrix into its LU factors and estimate the condition
number (SGECO), decompose a matrix into its LU factors (SGEFA), solve a system
given the factorized matrix (SGESL), and compute the determinate and inverse
given the factorized matrix (SGEDI). The amount of work required for routines
SGECO, SGEFA, and SGEDI is 0(N3) and for SGESL is 0(N2), where N is the order
of the matrix.

Seven different implementations of these four routines were timed on the
CRAY-1l. Two different versions were used: one with calls to the BLAS and one
with the BLAS replaced by inline code. These were compiled on both the FTNX
and CRI compilers. In addition, on the FTNX compiler two versions of the BLAS
code were used, one with a FORTRAN unrolled structure (see Appendix) and another
with the BLAS coded in CAL. The inline version for the FTNX was also passed
through MCA's Vectorizer. In the CRI compiler, runs were made with vectoriza-
tion turned on and off. Table I summarizes the environments in which the codes
were executed.

Figures 1 through 4 and Tables II and III summarize the results of the
timings for routines SGECO, SGEFA, SGESL, and SGEDI. Timings were done on ma-
trices of order 50 through 350 in steps of 50. The X-axis displays on a linear
scale the order of the matrix timed, and the Y-axis displays on a log scale the

3 2
time, T, divided by N or N , depending on the work done by the routine.

60

TABLE I

CODE TIMING ENVIRONMENTS

Graph
Compiler Legend Characteristics
FTNX + FORTRAN BLAS*
FTNX \% CAL BLAS
FTNX O inline code replaces calls to the BLAS
FTNX X inline code vectorized
CRI A FORTRAN BLAS*
CRI o inline code replaces calls to the BLAS
vectorization turned off
CRI 0 inline code replaces calls to the BLAS

vectorization turned on

*FORTRAN BLAS have been unrolled.

LEGEND
0 - FTNX INLINE
0 - CRI INLINE VECT-OTF
A - CRI FORTRAN BLAS
¢ - PINX FORTRAN BLAS
* " FTNX VECTORIZED INLINE
o - CRI INLINE VECT-ON
v - FINX CAL BLAS

350-0
N ORDER

Fig. 1 SGECO timing

6z

Figo 2

Fig. 3.

N

N

o-f1NX INLINE

0 - CRI INLINE VECT-Orr

A - CRI FORTRAN BLR?

¢ - FINX FORTRAN BLRS

x - FTNX VECTORIZED INLINE
© - CRI INLINE VECT-ON

v - FINX CRL BLRS

ORDER

SGEFA timing.

LEGEND
O- FTNX INLINE
0 -CRI INLINE VECT-OTF
A-CRI FORTRAN BLRS
¢ - FINX FORTRAN BLRS
x - FINX VECTORIZED INLINE
© - CRI INLINE VECT-ON
© - FINX CRL BLRS

ORDER

SGESL timing.

400-0

CRI Inline VECT=OFF
CRI FORTRAN BLAS

1
1
FTNX FORTRAN BLAS 3.
FTNX Vectorized Inline 9

CRI Inline VECT=ON 13.

FTNX CAL BLAS

LCGCNQ
o-FTNX INLINE
o- CRI INLINE VECT-OTF
A - CRI FORTRAN BLRS
¢ - FTNX FORTRRN BLRS
* o FTNX VECTORIZED INLINE
0 - CRI INLINE VECT-ON
v - FINX CRL BLRS

N ORDER

Fig. 4. SGEDI timing.

TABLE II

RATIOS OF EXECUTION TIME FOR SGEFA AT ORDER 350
RUN UNDER DIFFERENT CONDITIONS

FTNX
CRI CRI FTNX Vector-

FTNX Inline FORTRAN FORTRAN ized
Inline VECT=OFF BLAS BLAS Inline

.2

.7 1.4

3 2.7 1.9

.1 7.5 5.4 2.8

1 10.8 7.8 4.0 1.4
15.1 12.4 8.9 4.6 1.7

(Row entries are so many times faster than column entries.)

CRI
Inline
VECT=0N

1.

2

63

TABLE III

MILLIONS OF FLOATING POINT OPERATIONS PER SECOND (MFLOPS) ACHIEVED
IN DIFFERENT ENVIRONMENTS

MFLOPS

SGECO SGEFA SGESL SGEDI
FTNX Inline 1.8 1.8 1.9 2.0
CRI Inline VECT=OFF 3.2 3.3 3.1 3.7
CRI FORTRAN BLAS 4.4 4.5 4.5 5.2
FTNX FORTRAN BLAS 5.7 6.0 5.8 6.8
FTNX Vectorized Inline 14.0 16.6 17.7 20.6
CRI Inline VECT=ON 20.4 23.8 25.4 31.1
FTNX CAL BLAS 24.2 27.4 26.0 31.7

As can be seen from Figs. 1-4 and Tables II and III, there is a factor of
15 between the slowest and fastest execution speeds when run under different
conditions. This wide range in execution rates is due to execution at scalar
speeds compared to vector speeds. It should be pointed out that there is a
version of Gaussian elimination, coded entirely in CAL, that executes around
the 120-MFLOP range.This version uses an algorithm designed to perform well
with the CRAY-1's architecture.

We would expect the FTNX inline coding to be faster than the CRI inline
VECT=OFF. They both deal exclusively with scalar code, but the FTNX compiler
performs scheduling and optimization while the CRI compiler does not. The
timings indicate the CRI inline VECT=OFF is faster by a factor of 1.2 than the
FTNX inline. After studying the generated assembly language code for both
compilers it became apparent why the timings were contrary to our expectations.
The FTNX compiler does not keep the loop index in a register. Consequently, it
must load and store the loop index each time the loop iterates. The CRI com-
piler, on the other hand, maintains the loop index in a register during the
loop execution. The inline code in this comparison is typified by one-operation
loops, which are executed O(Nz) times. The FTNX compiler for the inline case is
spending a large amount of time fetching and storing the loop index; this loop
overhead can take as long to be performed as the operation itself. Because the
CRI compiler keeps the index in a register, it can fetch and store in two cycles,

thus giving it the advantage.

G4

In the case where FORTRAN BLAS are used, the FTNX compiler is faster than
the CRI compiler. The FORTRAN BLAS used are an unrolled version (see Appendix).
The unrolled BLAS are perfect for concurrent operations and segmentation, since
many results are defined per pass through the loop. Because the FTNX compiler
does optimization and instruction scheduling and the CRI compiler does not, we
would expect the FTNX execution to be faster even though the FTNX compiler
forces a fetch and store of the loop index from memory each time through the
loop. The loop-indexing operation in the unrolled case is a small part of the
loop execution time. There is close to a factor of 2 in execution speeds be-
tween the FTNX and CRI compilers using the FORTRAN BLAS.

For the case of the vectorized FTNX inline compared with the inline CRI
VECT=ON, the CRI code executes faster by a factor of 1.5. It appears that the
vectorized FTNX inline code pays a substantial overhead for using FORTRAN code
to manage vector segments (that is, wvectors on the CRAY-1 must be partitioned
into segments of length £ 64; see Appendix). The CRI compiler, of course, has
the same structure but at an assembly level. The vectorized FTNX code appears
to have another defect: because of the way calls to vector primitives are set
up under FTNX, chain slots may be missed during execution. This is not the case
in the CRI compiler. (The people at LASL have corrected the FTNX compiler, and
it now catches chain slots.)

The CAL BLAS under the FTNX compiler provide the fastest execution speed.
These BLAS are painstakingly and cleverly coded implementations. The CRI com-
piler VECT=ON comes very close to the execution speed of the CAL BLAS.

Timing of the routines was also carried out on a CDC 7600 using three
different codings. The inline versions were compiled and run on the CDC 7600
as well as the versions involving calls to the BLAS. Two different implementa-
tions of the BLAS were used on the CDC 7600; one was the FORTRAN BLAS unrolled
and the other was a COMPASS (CDC 7600 Assembly Language) version of the BLAS,
which were tuned to run optimally on the CDC 7600. Table IV shows the ratios
of execution time at order 100 for SGEFA, which was run in seven different
environments on the CRAY-1 and three different environments on the CDC 7600.

The timings indicate that at order 100 the CDC 7600 FTN-compiled inline
run is faster than the CRAY-1 FTNX-compiled inline run. Again, this is because
the FTNX compiler stores and fetches the loop index every pass through the
loop, while the CDC 7600 FTN compiler keeps the loop indexes in a register

during loop execution.

65

TABLE IV

COMPARISON OF RELATIVE EXECUTION TIMES FOR SGEFA AT ORDER 100
ON THE CDC 7600 AND CRAY-1 USING THE FTN, FTNX, AND CRI COMPILERS

CDC CDC FTNX
CRI 7600 CRI 7600 FTNX CRI Vector-

FTNX 7600 Inline FORTRAN FORTRAN COMPASS FORTRAN 1Inline ized
Inline 1Inline VECT=0FF BLAS BLAS BLAS BLAS VECT=0N Inline

CDC 7600 Inline
CRI Inline VECT=0FF
CDC 7600 FORTRAN BLAS

i

CRI FORTRAN BLAS

CDC 7600 Compass BLAS
FTNX FORTRAN BLAS

CRI Inline VECT=0N
FTNX Vectorized Inline

- O NN N e e
N O O O oy O W 1
[I S ST R e N
w w N o o O
BwWw W ke e
w U1 w o U N
w W W P
o N o o s
W NN
o W O W W
NN e
© w N o

S}

S}

=

o

FTNX CAL BLAS

(Row entries are so many times faster than column entries.)

The CRAY-1 FTNX run with FORTRAN BIAS was 1.5 times faster than the
CDC 7600 FTN run with FORTRAN BIAS. This is more typical of the results ex-
pected in comparing the CDC 7600 to the CRAY-1 run on scalar code.

The CDC 7600 COMPASS BLAS run about the same speed as the CRAY-1 FTNX
FORTRAN BLAS run. The COMPASS BLAS on the CDC 7600 have been carefully coded
so the loops are unrolled, and the instructions are scheduled so full overlap of
arithmetic operations can occur. The results here are not surprising; the

COMPASS BLAS can be thought of as running at "vector" speeds on the CDC 7600.

SUMMARY

This report describes what can be expected from the CRAY-1 for solving
linear systems in a FORTRAN environment at the present time. There are things
that can be done to the compilers to make the code generated more efficient.
For example, in the FTNX compiler the loop index should be held in a register,
and in the CRI compiler the performance could be improved by local and global
optimization and instruction scheduling. This report is not intended to
describe how the hardware performs. Readers who would like that information
are referred to a report by T. Keller.” This report shows that the way in
which an algorithm is implemented on the CRAY-1 affects the way it will perform.

After the timings were completed, an improvement was realized in the CAL
BLA SAXPY that made the four codes that used the CAL BLAS run between 15-20%

faster.

66

ACKNOWLEDGMENTS
Iwould like to thank Bill Buzbee, Thomas Jordan, and all the people at

LAST who made my stay interesting and educational.

UNPACK ANECDOTE #1

One of the interesting things uncovered by the timing was a hardware problem
in the LASL CRAY-1l. During the timing runs, a check was made of the answers
produced by the various routines. It was discovered that codes run in two
different implementations produced the wrong answers. After some investigation
by T. Jordan, the CRAY-1 engineers, and me, the problem was traced to a hardware
board in the arithmetic unit that adjusts the exponents of operands before wvec-
tor addition. The exponent adjustment was not being performed correctly in
certain instances when operating in vector mode. Incorrect results were pro-
duced when the exponent to be adjusted had a certain bit pattern, making the
errors in the answers appear somewhat mysterious. When it was finally tracked
down and the defective board replaced, the correct results were obtained. The
interesting thing is that the CRAY-1 had been in operation at LASL for a little
over two months and no one seemed to notice any problems. The machine passed
its diagnostic tests every morning and many hours of production work had been

completed before the problem was uncovered.

REFERENCES

1. J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, "LINPACK
Working Note #9, Preliminary LINPACK User's Guide," Argonne National
Laboratory report ANL TM-313 (August 1977).

2. CRAY-1 Computer System Reference Manual, 2240004, Cray Research, Inc.,
(February 1977).

3. C. B. Moler, "Matrix Computation with Fortran and Paging," Comm. ACM 15
(April 1972), pp. 268-270.

4. J. J. Dongarra, "LINPACK Working Note #3, Fortran BLAS Timing," Argonne
National Laboratory (December 1976).

5. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, "Basic
Linear Algebra Subprogram for Use with Fortran," Submitted to Trans.
Math. Software, July 1976.

6. J. M. Boyle and M. Matz, "Automating Multiple Program Relations," Proc.
MRI Symposium XXIV; Computer Software Engineering, (Poly. Tech. Press,
New York, 1977), pp. 421-457.

67

1

7. "LASL Guide to the CRAY-1 Computer, PIM-7, Los Alamos Scientific Laboratory
report LA-5525-M, Vol. 7, (November 1977).

8. T. L. Jordan,

private communications, Los Alamos Scientific Laboratory,

(November 1977).

9. CRAY-1 Fortran Reference Manual, 2240009, Cray Research, Inc.,
(November 1977).

0. K. Fong and T.

L. Jordan, "Some Linear Algebraic Algorithms and their Per-

formance on CRAY-1," Los Alamos Scientific Laboratory report LA-6774

(June 1977).

11. T. W. Keller,
LA-6456-MS (December 1976).

OO0 D

"CRAY-1 Evaluation," Los Alamos Scientific Laboratory report

APPENDIX

SUBROUTINE SGEFAl - EXAMPLE WITH CALLS TO THE BLAS

SUBROUTINE SGEFAl (A,LDA,N,I PVT,INFO)
INTEGER LDA, U, IPVT (1), INFO
REAL A (LDA,1)

SGEFA! FACTORS A REAL MATRIX BY GAUSSIAN ELIMINATION.

SGEFA! IS USUALLY CALLED BY SGECO, BUT IT CAN nr CALLED
DIRECTLY WITH A SAVING IN TIME IF RCOMD IS MOT NEEDED.
(TIME FOR SGECO) = (1 + 9/10* (TIME FOR SGEFA!)
ON ENTRY
A REAL (LDA, N)
THE MATRIX TO BE FACTORED.
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A
N INTEGER
THE ORDER OF THE MATRIX A
ON RETURN
A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
WHICH WERE USFD TO OBTAIN IT.
THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
L IS A PRODUCT OF PERMUTATION AND UNIT LOV.'PR
TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
I PVT I NTEGER (N

68

AN INTEGER VECTOR OF PIVOT INDICES.

1000000NO0O0O00 00000

0ono

0ono ono

ono

000

000

10

20
30
*40

0 NORMAL VALUE.

K IF U(K,K) .FO. 0.0 . THIS IS HOT AN ERROR
CONDITION FOR THIS SUBROUTINE, BUT IT DOES
INDICATE THAT SGESL1 OR SCED1! WILL DIVIDE BY ZERO

INFO INTEGER

IF CALLED. USE RCOND IN SGECO FOR A RELIABLE
INDICATION OF SINGULARITY.

LINPACK. THIS VERSION DATED 07/14/77 .
CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LABS.

SUBROUTINES AND FUNCTIONS
BLAS SAXPY,SSCAL.ISAMAX
INTERNAL VARIABLES

REAL T
INTEGER ISAMAX,J,K,KP1,L,NMl1

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

INFO = 0

NM = N - |

IF (NMl .LT. 1) GO TO 70

DO 60 K - 1, NM!
KPl = K + |

FIND L = PIVOT INDEX

L = ISAMAX(N-K+1,A(K,K),1) + K - 1|
IPVT(K) = L

ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRI-ANGULARIZED
IF (. (L,K) .EQ. 0.0E0) GO TO *0
INTERCHANGE IF NECESSARY
IF (L .EQ. K) GO TO 10
T = A(LK]|
A (LK) A(KK)
T

A (K K]
CONTINUE

COMPUTE MULTIPLIERS

T = -1.0E0/A(K,K)
CALL SSCAL(M-K,T,A(K+1,K),1)

ROW ELIMINATION WITH COLUMN INDEXING

DO 30 J = KP1, N
T = A(L,J)
IF (L .EO.
A(L,J)
A(K,J)
CONTINUE
CALL SAXPY(N-K,T,A(K+1,K),1,A(K+1,J) 1)
CONTINUE
GO TO 50
CONTINUE
INFO = K

K) GO TO 20
A(K,J)
T

69

OO0 DODOODODODODODOODODOODODOOHOOOOOOO

000000000000

50

60 CONTINUE
70 CONTINUE

70

IPVT(N) =
IF (A(N,N)
RETURN

END

CONTINUE

N
.EQ. 0.0EO0) INFO = M

SUBROUTINE SGEFA2 - EXAMPLE WITH BLAS REPLACED WITH INLINE CODE

SUBROUTINE SGEFA2 (A,LDA,N,IPVT, INFO)
INTEGER LDA,N,IPVT (1), INFO
REAL A(LDA,!]

SGEFA2 FACTORS A REAL MATRIX BY GAUSSIAN ELIMINATION.

SGEFA2 IS USUALLY CALLED BY SGECO, BUT IT CAM RE CALLED
DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
(TIME FOR SGECO) = (1 + 9/N)*(TIME FOR SGEFA2)
ON ENTRY
A REAL (LDA, N)
THE MATRIX TO BE FACTORED.
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY
N INTEGER
THE ORDER OF THE MATRIX A
ON RETURN
A AN UPPER TRIANGULAR MATRIX AND THEMULTIPLIERS
WHICH WERE USED TO OBTAIN IT.
THE FACTORIZATION CAN PE WRITTEN A = L*U WHERE
L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
TRIANGULAR MATRICESAND U ISUPPER TRIANGULAR.
IPVT INTEGER (N
AN INTEGER VECTOR OF PIVOT INDICES.
INFO INTEGER
= 0 NORMAL VALUE.
= K IF U(K/K .EO. 0.0 . THIS IS NOT AN ERROR
CONDITION FOR THIS SUBROUTINE, BUT IT DOES
INDICATE THAT SGESL2 OR SGEDI2 WILL DIVIDE RY ZERO
IF CALLED. USE RCOND IN SGECO FOR A RELIABLE
INDICATION OF SINGULARITY.
LINPACK. THIS VERSION DATED 07/14/77

CLEVE MOLER, UNIVERSITY OF NEW MEXICO; ARGONNE NATIONAL LABS.

SUBROUTINES AND FUNCTIONS

BLAS'SAXPY,SSCAL, ISAMAX

INTERNAL

REAL T

VARIABLES

000000 000 0000

000

000

10
20

30

NO
50

60

70
80
90
100

110

INTEGER ISAMAX,J,K,KP1,L,MM1

GAUSSIAN'

INFO = 0

NMI = N - |

IF (NM1 .LT. 1) GO TO 130
120 K = 1, MM
KPl = K + 1|
ISAMAX = K

IF (N .LT. K) GO TO 20
DO 10 IAMAX = K, N

IF (ABS (A (IAMAX, :<))
CONTINUE
CONTINUE

FIND L = PIVOT INDEX

L = ISAMAX
IPVT(K) = L

ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED

IF (A(L,K .EQ. O.OEO0) GO TO 100

INTERCHANGE IF NECESSARY

IF (L .EQ. K) GO TO 30
T = A(L K)
A(LK) = A(KK)
A(K,K| =T

CONTINUE

COMPUTE MULTIPLIERS

T = -1.0E0/A(K,K
KSCAL = K + |

IF (N .LT. KSCAL) GO TO 50

DO NO ISCAL = KSCAL,

N

A(ISCAL,K) = T*A(ISCALK)

CONTINUE
CONTINUE

ELIMINATION WITH PARTIAL PIVOTING

.GT. ABS (A (ISAMAX K)))

ROW ELIMINATION WITH COLUMN INDEXING

DO 90 J = KPl, N

T = A(L,J)

IF (L .EQ. K) GO TO 60
A(L,J) = A(K,J)
A(K,J) =T

CONTINUE

KAXPY = K + |

IF (N .LT. KAXPY)

GO TO 80

DO 70 IAXPY = KAXPY, N
A(IAXPY,J) = A(IAXPY,J)

CONTINUE
CONTINUE
CONTINUE
GO TO 110
CONTINUE
INFO = K
CONTINUE

+ T*A (IAXPY,K)

ISAMAX

IAMAX

lsNeoNo KoKz Kz EeEeNesNeoNoNoNoNoNoNoNoNoNsNoNoNo Yo NooNoNoNoNpNo NP N @]

000000000000

120 CONTINUE

130 CONTINUE
IPVT(N) = N
IF (A(N,N) .EQ. O.OEO) INFO = N
RETURN

END

SUBROUTINE SGEFA3 - EXAMPLE WITH INLINE CODE THAT HAS BEEN

PASSED THROUGH THE VECTORIZER

SUBROUTINE SGEFA3 (A, LDA,N,IPVT,INFO)

INTEGER LDA N,IPVT(1l),INFO,ISAMAX,J,K,KP1,L,NM1
REAL A(LDA, 1) ,T

INTEGER NITER,OUTRXS,OUTRMX,OUTRWD,ISTRIP.OUTRNX

SGEFA3 FACTORS A REAL MATRIX BY GAUSSIAN ELIMINATION.

SGEFA3 IS USUALLY CALLED BY SGECO, BUT IT CAN BE CALLED
DIRECTLY WITH A SAVING IN TIME IF RCOND IS MOT NEEDED.

(TIME FOR SGECO) = (1 + 9/N)*(TIMF FOR SGEFA3|
ON ENTRY
A REAL (LDA, N)
THE MATRIX TO BE FACTORED.
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A
N INTEGER
THE ORDER OF THEMATRIX A,
OH RETURN
A AN UPPER TRIANGULARMATRIX AND THE MULTIPLIERS
WHICH WERE USED TO OBTAIN IT.
THE FACTORIZATION CAN PE WRITTEN A = L*U WHERE
L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
IPVT INTEGER (N
AN INTEGER VECTOR OF PIVOT INDICES.
INFO INTEGER
= 0 NORMAL VALUE.
= K IF U(K,K .FO. 0.0 . THIS IS NOT AN ERROR
CONDITION FOR THIS SUBROUTINE, BUT IT DOES
INDICATE THAT SGESL3 OR SGEDI3 WILL DIVIDE BY ZERO
IF CALLED. USE RCOND IN SGECO FOR A RELIABLE
INDICATION OF SINGULARITY.
LINPACK. THIS VERSION DATED 07/14/77

CLEVE MOLER, UNIVERSITY OF NEW MEXICO; ARGONNE NATIONAL LAPS.

SUBROUTINES AND FUNCTIONS

BLAS SAXPY,SSCAL,ISAMAX

INTERNAL VARIABLES

0000

000 000

000

000

0007V

10
20

30

00
40
50

60

GAUSSIAN ELIMINATION VITH PARTIAL PIVOTING

INFO=0

NMI=N- !

IF(NM1.LT.1) GO TO 130
DO 120 K=1 ,NM

KPl =K+l

ISAMAXrK

IF(H.LT.K) GO TO 20

DO 10 IAKAX=K M

IF (ABS (A (IAMAX,K)) .GT.ABS (A (ISAMAX ,K))| ISAMAX=IAMAX
CONTINUE

CONTINUE

CONTINUE

FIND L = PIVOT INDEX

L=ISAMAX
IPVT (K) =L

ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
IF(A(L,K) .EQ.C.0) GO TO 100
INTERCHANGE IF NECESSARY

IF(L.EO.K) GO TO 30
T=A(L,K)
A(L,K)=A(K,K)
A(K,K)=T

CONTINUE

COMPUTE MULTIPLIERS

T=-1.0/A(K,K)

KSCAL=K+!

IFCN.LT.KSCAL) GO TO 50
NITER=N+1-KSCAL

CALL LOPCXXX (NITER,OUTRXS, OUTRMX)
CALL SETLX(OUTRXS
OUTRWD=OUTRXS

ISTRIP=KSCAL

DO 90000 OUTRNXrl, OUTRMX

CALL ILDVXO00 (A (ISTRIP,K) |
CALL SRPVXOKT)

CALL ISTV10X(0,0,A(ISTRIP,K))
ISTRIP=OUTRV:D+ISTRIP
OUTRVD=64

CALL SETLX(64)

CONTINUE

CONTINUE

CONTINUE

ROW ELIMINATION WITH COLUMN INDEXING

DO 90 J=KP! N
T=A(L, J)

IF(L.EQ.K) GO TO 60
A(L,J)=A(K,J)

A(K, J)=T

CONTINUE

73

90001

o 00000

0000

74

70
80
90

100
110

120
130

10

KAXPY=K+!

IF(N.LT.KAXPY) GO TO 80
NITER=!!+1- KAXPY

CALL LOPCXXX (NITER .OUTRXS, OUTRMX)
CALL SETLX(OUTRXS
OUTRWD=QUTRXS
ISTRIP=KAXPY

DO 90001 OUTRNXrl.OUTRMX
CALL ILDVXOO (A (ISTRIP,K))
CALL SRPVXO01 (T)

CALL ILDVXO02 (A(ISTRIP, J))
CALL VRAV213

CALL ISTV30X(0,0,A(ISTRIP,J))
ISTRIPrOUTRWD+ISTRIP
OUTRV/D = 6il

CALL SETLX(64)

CONTINUE

CONTINUE

CONTINUE

CONTINUE

GO TO 110

CONTINUE

INFOrK

CONTINUE

CONTINUE

CONTINUE

I PVT (N)=N

IF (A (N, H) EQ.0.0) INFOrN
RETURN

END

SUBROUTINE SAXPY - EXAMPLE OF A BLA WITH UNROLLED LOOP

SUBROUTINE SAXPY(N,SA K SX,INCX,SY,INCY)|

CONSTANT TIMES A VECTOR PLUS A' VECTOR
USES UNROLLED LOOP FOR INCREMENTS EQUAL TO ONE.
JACK DONGARRA, LINPACK, 6/17/77.

REAL SX(1),SY(1),SA
INTEGER I, INCX, IMCY,6 IX IY M,'NP1 N

IF(N.LE.O)RETURN
IF (SA .EQ. 0.0) RETURN

IF(INCX.EQ.1.AND.INCY.EQ.1)GOTO 20

CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
NOT EQUAL TO |

IX 1
IY 1
IF(INCX.LT.O)IX = (-M+1)*IMCX + |
IFUNCY.LT.0)IY r (-M+l)*INCY + |
DO 10 I r 1,M

SY(IY) = SY(IY) + SA*SX(IX)

IX r IX + INCX

IY r IY + INCY

CONTINUE
RETURN

00000

CODE FOR BOTH INCREMENTS EQUAL TO

CLEAN-UP LOOP

20 M = MOD(N,idJ)

30
40

50

IF(M .EQ. 0) GO TO 40

DO 30 I = 1 ,uM

SY(I) = SY(I0 + SA*SX(I)
CONTINUE
IF(N .LT. 4) RETURN
MP1 = M + !

DO 50 I = MP1,N,4
SY(I)= SY(I) + SA*SX(I)

SY(I + 1) = SY(I +1) + SA*SX(I + 1)
SY(I +2) = SY(I +2) + SA*SX(I + 2)
SY(I + 3) = SY(I +3) + SA*SX(I + 3)

CONTINUE

RETURN

END

!

75

STAR-100: GOOD NEWS AND BAD NEWS

by
T. Rudy
Lawrence Livermore Laboratory
Livermore, California 94550
ABSTRACT

The optimal utilization of the CDC STAR-100 requires the
pProgrammer to investigate several alternatives in code restruc-
turing. This paper presents performance measurements for wvarious
programs and describes the trade-offs programmers must address in
using a vector machine.

76

ROW TO GET MORE OUT OF YOUR. VECTOR PROCESSOR

by

Brian Q. Erode
Massachusetts Computer Associates, Inc.

ABSTRACT

This paper presents suggestions to aid
in "restructuring" a FORTRAN program so that
it more efficiently uses a vector machine.
Code conversion and restructuring techniques
are discussed; in the final section, working
examples and timings are presented.

I INTRODUCTION

To get more out of your Vector Processor, as much of your code as possible
must execute in vector mode. This paper presents a "bag of tricks" to aid in
"restructuring" a FORTRAN program so that it more efficiently uses a vector
machine. In the following sections the entire process of converting a code is
briefly examined, beginning with the code as a whole and telescoping down to the
statement level. Special attention is given to the inherent overhead intro-
duced by some restructuring techniques. The discussion is kept as machine-
independent as possible, with only a knowledge of FORTRAN assumed. No explicit
vector syntax is used; but the conversion to any vector syntax from our re-
structured FORTRAN should be very straightforward for human or machine. In the
final section, working examples and timings are presented.

II. FIRST PASS: CODE OVERVIEW

When faced with a program to speed up, the first step is to determine
where all the time is spent. Restructuring can be a time-consuming, error-prone
process and it would be foolish to waste effort on insignificant parts before
hitting the main chunks of the program. Frequently a very small percentage of
the code can eat up a huge portion of the CPU time, and these are the places
where conversion should begin. An idea of which sections are greediest about
CPU time can usually be gathered just by eyeballing the program, but actual
timings of each segment of the code are a much better starting point. Some
installations have sophisticated programs that print out histograms of CPU
usage; these tools prove to be very valuable when restructuring a program.

71

We should next check to see if the particular techniques being used to solve
the problems in the program can be converted to a more optimal method for a
vector processor. If the technique is very inefficient for use on a vector
machine, one should investigate an entirely different (more array-processing
oriented) algorithm. Vector versions for such commonly used techniques as
fast fourier transforms already exist. Many times, better results and less
effort come from a total rewrite of a particular algorithm with a vector
processor in mind as the target machine.

Finally, we need to have some knowledge about the normal values of the
important flow-changing variables. It is important to know the lengths of
DO loops, common values of switches, normal density of arrays, and other
calculation dependent features if a good restructured version is to be obtained.
Another important piece of knowledge is the amount of memory available that can
be safely used for vector temporaries.

III. GENERAL RESTRUCTURING COMMENTS: THINGS TO WATCH FOR

On machines with no built-in "preferred" vector length (STAR, 7600, 176),
the longer the length of your vectors the better your performance will be.

The overhead involved in setting up vector operations can be large and is
diluted significantly only for relatively long vector lengths. Long vectors
are imperative for good timing results. Specific suggestions on increasing
vector length appear in the next section (IV.12), and timings demonstrating
its import are in the last section. On machines with a hardware-influenced
"natural" vector length (CRAY, ILLIAC), the above discussion applies up to
the built-in length and cycles modulo(built-in length).

Restructuring almost always involves the introduction of temporary arrays
to hold intermediate results that were previously held in scalar locations.

If care is not exercised to conserve temporaries, excessive memory will be
gobbled up. Reusing temporary arrays from one loop to another, and placing
them in a common block specially for reuse in other routines can aid in reducing
memory requirements. (On some machines, temporary arrays should also be
allocated in such a way as to minimize memory conflicts.)

Frequently overhead must be introduced when restructuring some sequences
of code. Care must be taken so that this overhead doesn't cancel any speedup
offered by using a vector processor. An example of such a problem arises when
one is faced with a DO loop with several loop-dependent branches. One technique
for optimizing such a condition is to calculate each path for the entire range
of the DO loop and merge the results accordingly. Such a technique may intro-
duce so much extra calculation that the vector code may execute slower than
the original.

Iv. SPECIFIC TECHNIQUES: A BAG OF TRICKS
What follows is an attempt to catalog most known restructuring techniques;
some sections may be less interesting than others for the experienced re-

structurer. The emphasis in this section is on examples rather than lengthy
explanation.

78

1. Change IF loops to DO loops where possible.
A simple example:

Original: (IF loop)

N=1
100 CONTINUE (SCALAR)

A (N)=B(N)
N=N+1
IF (N.LE.10) GO TO 100

Restructured: (DO loop)
DO 1 N=1,10 (VECTOR)

A(N)=B(N|
1 CONTINUE

More complex is the case where the IF statement depends on a variable set in

the IF loop. If a lot of calculation is contained in the IF loop and we have
reason to believe that most of the array would run through the loop before the
IF statement kicks us out, we can restructure as in the following example. Of
course, we introduce overhead (unused calculations) by doing this.
Original:
N=1
100 CONTINUE
A (N)=B(N) **2+_5*C (N) *D (N) /E (N) (SCALAR)
N=N+1
IF (A(N).GT.0) GO TO 100
Restructured:
DO 1 N=1,ADIM (ADIM: Dimension of A)
r 1 TEMP (N)=B(N)**2+_ 5*C(N) *D(N) /E(N) (VECTOR)
2 CONTINUE
A (N)=TEMP (N)
N=N+1 (SCALAR)
IF (A(N).GT.0) GO TO 2
2. Pull functions and subroutines into loops they are called from. This
maneuver should actually cut down on overhead as it will eliminate the sub-
routine linkage time. If the routines cannot be pulled into the calling

loops (because there are too many occurences of calls to the routine to make

code repetition feasible, or because of disruption to the logical structure of

the code) then perhaps the loop can be pushed into the routine. Regardless,

a vector loop must be contiguous in its flow of control so if the subroutine

cannot be altered, its call must be isolated from the rest of the loop (see IV.U).
Original

DO 100 1=1,100
100 CALL SUB(A(I),B(I)) (SCALAR)

END
SUBROUTINE SUB (X,Y)
X=Y/2 .4X

RETURN

END

79

Restructured

DO 100 1=1,100 (VECTOR)
100 A(I)=B(I)/2.+A(I)

3. Eliminate temporary scalars by introducing vector temporaries. If the
machine does not have vector registers, this step adds some overhead as scalar
temps usually are kept in fast scalar registers, while the vector elements must
be fetched from memory. If the "temporary" scalar is used outside the loop,
the last value of the corresponding vector temporary must be assigned to it
after the end of the loop. (if a machine has vector registers and a smart
compiler or pre-compiler that can propagate scalar temporaries to vector
registers, then the reverse process of changing vector temporary arrays (in
memory) into temporary scalars should be employed to save needless vector
fetches and stores.)

Example 1:
Original
DO 100 1=1,100
SCAl1=A(I)*B(I)+0(I)
100 C(I)=E(I)/scal+scal
Restructured
DO 100 1=1,100
TEMP (I)=A(1)*B(1l)+C (1)
100 D(I)=E(I)/TEMP (I)+TEMP (I)
Example 2: (A(l) is a "Pseudo Scalar")
Original
DO 100 J=1,100 (SCALAR)
A(x)=B(T,TJ)*C(J)+F(JI)
100 D(I,J)=E(I,J)/A(I)+A(I)
Restructured
DO 200 J=1,100 (VECTOR)
TEMP(J)=B(X,JI)*C(I)+K(JI)
200 D(I,J)=E(I,J)/TEMP(J)+TEMP (J)
A(X)=TEMP(100)
100 CONTINUE
4. Split out non-vectorizable code into separate loops. When an inherently

un-vectorizable element exists in the body of a loop, it must be broken out into
a loop of its own so that the rest of the original loop can be converted to

vector code. Examples of things that need isolation are intrinsic and basic
external functions that have no vector counterpart, programmer routines that
cannot be moved inside the loop (see IV.2), input and output statements, re-

cursive statements (see IV.8), reduction functions (see IV.9) and non-subscript
references to the loop index (see IV.10).

Example
Original
DO 100 1=1,101 (SCALAR)
A(I)=B(I)*C(I)
D(1)=ASINH(A (1) **2+2.0) (Assuming ASINH is not a
100 E(I)=D(I)/B(I)+A(I) convertible function)

80

Restructured:

DO 200 1=1,101 (VECTOR)
Aa(I)=B(I)*c (I
200 TEMP (I)=A(I)**2+2.0
o
DO 300 1=1,101 (SCALAR)
300 D (I)=ASINH (TEMP (I)]|
c
DO U00 1=1,101 (VECTOR)
Uoo E(I)=D(1)/B(I)+A(T)
5. If the loop contains conditional assignment or conditional GOTO statements

which are independent of the loop index,
loop-independent decisions are not made inside a loop.

the loop must be split up so that the

Example:
Original
DO 100 J=1,100
A(I)=0.0
IF (NSWITCH.EQ.0) A(1)=1.0
B(I)=A(I)+.5*C(I)
IF (NDONE.EQ.1l) GO TO 100
D(1)=A(1l)+B(1) **2
100 CONTINUE
Restructured:
IF (NSWITCH.EQ.0) GO TO 110
C
DO 100 J=1,100
100 A(I)=0.0
GO TO 130
C
110 DO 120 1=1,100
120 A(I)=1
130 CONTINUE
C
DO iro 1=1,100
1140 B(I)=A(I) + .5*C(I)
IF (NDONE.EQ.l) GO TO 200
C
DO 150 1=1,100
150 D(I)=A(I)+B(I)**2
200 CONTINUE
9. Loop-dependent conditional assignments can be handled with vector merge
routines. If such routines are not available, the offending statement must be

isolated in its own loop so that the rest of the loop is not dragged down into
scalar mode with it

Example:

Original

100

DO 100 1=1,100
A(I)=B(I)+C(I)

IF (A(I).EQ.O0) D(I)=E(I)+F(I)

G(I)=A(I)+D (I

(SCALAR)

81

Restructured: (no MERGE)
DO 100 1=1,100

100 A(I)=B(I)+C(I) (VECTOR)
DO 110 1=1,100
110 IF (A(I).EQ.O0) D(I)=E(I)+F(I) (SCALAR)
DO 120 1=1,100
120 G(I)=A(I)+D(I) (VECTOR)
Restructured: (with CRAY CFT style MERGE function)
DO 100 1=1,100
A(I)=B(1)+C(I) (VECTOR)

D(I)=CMVGZ (E(I)+F (1) ,D(I) ,A(I))
100 G(I)=A(I)+D(T)
NOTE: CVMGZ is _Conditional Vector Merge Z”%ero. CVMGZ (true vector, false vector,
test vector) merge or controlled-store type functions exist for the 7600, STAR,
and other machines having a hardware capability of this kind.

A frequently used application of loop-dependent conditional statements is
to make sure that division by zero does not occur. Handling of these singu-
larities requires special restructuring to avoid a zero divide or other
floating-point error.

Example: Singularity Handling
Original:
DO 100 1=1,100
100 IF (C(I).NE.0.0) A(1l)=B(1l)/C(1)

Restructured:
DO 100 1=1,100
cTt(x)=1.0
TEMP (I)=A(I)
IF (C(I).NE.0.0) CT(I)=C(I) (MERGE)
100 IF (C(I) .NE.0.0) A(I)=B(I)/CT(I) (MERGE)

7. The loop dependent conditional forward transfer. This is a very interesting
case, since one must always introduce some overhead in the restructuring process.
There are three options available; 1) doing all pathways over the whole vector
length and merging the results (overhead: those computations which were not
performed in scalar mode but are in vector mode), 2) pre-packing the arrays for
each path and doing the computations for only those elements of the original
array who need it (overhead: packing and unpacking logic, reduced vector 1length),
and 3) leaving part of the loop in scalar mode. Which method to select depends
on the number of paths, frequency of execution of each particular path and the
amount of calculation done in each path. In the simple case of a transfer around
a few statements, if the transfer does not occur very often (i.e., most of the
array elements get set), vector merging is warranted. (Not too many unused
calculations.) If the transfer occurs more often (or there are several different
paths), pre-packing the arrays may be an alternative strategy. This method
should be used only with very long vectors, as the packing/unpacking overhead

can be considerable. If a path is rarely executed, it should be left scalar.
Frequently, it is difficult to glean information about how many times a certain
pathway is run through by looking at the code or the data; in these cases it

is advisable to put counters in the code, run several test cases, and print out
exactly what the program is doing.

82

Example (Merging):
Original

DO 100 1=1,100
A(I)=B(I)*C(I)
IF (A(I).EQ.0) GO TO 110
A(x)=D(I)*E(I)

B(I)=1
110 CONTINUE
F(I)=A(I)+B(I)
100 CONTINUE
Restructured: (with MERGE function)
DO 100 1=1,100
a(I)=B(I)*c(T)
B(Ix)=CcvMmcz(T.,B(I) ,A(I))
A(1l)=CVMGZ (D (1) *E (1) ,A(I) ,A(I))
F(I)=A(I)+B(I)
100 CONTINUE
Example (Pre-packing):
Original:
DO 100 1=1,1000 (SCALAR)
A(I)=B(I)*C(I)
IF (A(I).EQ.0) GO TO 110
IF (A(I).LT.0) GO TO 120
R(I)=SQRT (A(I)**24+W(I))*.05+D (1)
s(x)=a(x)*D(I1)
GO TO 100
110 CONTINUE
R(I)=ALOG(B(I)**24W(I))*.05+E (1)
S(I)=B(I)*E(I)
GO TO 100
120 CONTINUE
R(I)=EXP(C(I)**2+W(I))*.05+F (1)
s(x)=c(x)*F (1)
100 CONTINUE
Restructured:
IGT=0
IEQ=0
ILT=0
DO 100 1=1,1000 (VECTOR)
100 A(I)=B(I)*C(I)
c
C PACK
c

DO 110 1=1,1000 (SCALAR)
IF (A(l).EQ.0) GO TO 120

IF (A(I).LT.0) GO TO 130

IGT=IGT+1

TGTA (IGT)=A(I)

TGTW (IGT)=W(I)

TGTD (IGT)=D (I)

GO TO 110

83

120 IEQ=IEQ+1
TEQB (IEQ) =B (I)
TEQW (IEQ)=W (I
TEQE (IEQ)=E (I)
GO TO 110
130 ILT=ILT+1
TLTC (ILT)=C(I)
TLTW (ILT)=W (I)
TLTF (ILT)=F (I)
110 CONTINUE
c
C CALCULATE
c
DO 200 1=1,IGT (VECTOR)
TGTR(I)=SQRT(TGTA(I)**2+TGTW(I))*.05+TGTD(I)
200 TGTS (1) =TGTA (1) *TGTD (1)
DO 300 1=1,IEQ (VECTOR)
TEQR (I)=ALOG (TEQB (1) **2+TEQY¥ (1)) *.05+TEQE (1)
300 TEQS (I)=TEQB (I) *TEQE (I)
DO UOO 1=1,ILT (VECTOR)
TLTR (I)=EXP(TLTC(I)**2+TLTW(I))*.05+TLTF (I)
400 TLTS(I)=TLTC(I)*TLTF(I)
c
C UNPACK
c
IGT=IEQ=ILT=0
DO 5001=1,1000 (SCALAR)
IF (A(I).EQ.0) GO TO 510
IF (A(I).LT.O0) GO TO 520
IGT=IGT+1
R(I)=TGTR (IGT)
s(x)=TGeTS(IGT)
GO TO 500
510 IEQ=IEQ+1
R(I)=TEQR(IEQ)
S (I)=TEQS (IEQ)
GO TO 500
520 ILT=ILT+1
R(I)=TLTR(ILT
S (I)=TLTS (ILT)
500 CONTINUE

There are other methods of handling conditional statements as well. Some
conditionals can he replaced by minimum and maximum functions, and sometimes
the use of a temporary array containing ones and zeros as multiplicative factors
can do the job.
Example: Elimination of Conditional with min/max
DO 100 1=1,100
100 IF (B(l) .GT.0.0) B(I)=A(I)+B(J)

Restructured:
DO 100 1=1,100
100 B(I)=A(I)+AMAX1l (B(I),O.)

84

The next four items (recursiveness, reduction functions, non-subscript loop
index uses, and indirect addressing) have in common that they usually must be
split out of the main loop and either be left scalar or handled with special
array utility subroutine calls. (Some reduction functions are recognized by
sophisticated vectorizing compilers and pre-compilers.) The first three can
all use the trick of switching the order of double nested loops so that the
inner loop becomes convertible.

8. Recursiveness. When array element assignments use a value set on a previous
pass through the loop, we have a recursive relationship, which cannot be vec-
torized because successive loop passes are not independent. Here there is an
additional option to those mentioned above: find a closed form expression (if
a simple one exists) that is non-recursive and does the same calculation.
Example 1: Split Out
Original
DO 100 1=2,100 (SCALAR
a(x)=B(1)*c(x)
100 D(I)=D(1-1)*A(1)+C (I

Restructured: Isolated
DO 100 1=2,100 (VECTOR
100 A(x)=B(I)*C(I)
DO 110 1=2,100 (SCALAR)
110 D(I)=D(I-I)*Aa(I)+Cc (1)
Restructured: Special Call (optimal assembly-language subroutine
DO 100 1=2,100 for 7600)
100 A(x)=B(I)*C(I1)
INDEX=........

CALL RVTVP (INDEX,D,A,C)

Example 2: Switch Loops

Original
DO 100 1=1,100
DO 100 J=2,100 (SCALAR)
100 A(I,J)=A(I,J-1)*B(I,Jd)
Restructured: (inner Loop is now not recursive)
DO 100 J=2,100
DO 100 1=1,100 (VECTOR)
100 A(I,J)=A(I,J-1)*B(I,dJd)
9. Summations and other reduction functions. This category includes totals
(sum of array elements). Dot products (a.k.a. inner products, scalar products),

sum of the squares of the elements of a vector, minimum and maximum elements
of a vector, and any other function that maps a vector argument into a resultant

scalar
Example 1: Summation
Original
DO 100 J=1,100 (SCALAR)
100 S=S+A(I)*B(I)/C(I)+.05*D(I)
Restructured:
DO 100 1=1,100 (VECTOR)
100 TEMP (I)=A(I)*B(I)/C(I)+.05*D(I)
S=VTOTAL (TEMP (I),1) (or equivalent loop)

85

Example 2: Min and Max of Vector
Original
DO 100 1=1,100 (SCALAR)
A(I)=C(I)**2+.05*F(I)
B(I)=E(I)**2-D(1)
ASCA=AMINI (A (I) ,ASCA)
IF (BSCA.LT.B(I))BSCA=B(I)
100 CONTINUE

Restructured:
DO 100 1=1,100 (VECTOR)
A(l)=C(1)**2+.05*F (1)
100 B(I)=E(I)**2-D(I)
ASCA=AMIN1 (ASCA,VMIN(A,100,1)) (or loop)
BSCA=AMAX]1 (BSCA,VMAX (B,100,1))

Example 3: Switch Loops
Original
DO 100 1=1,100
DO 100 J=1,100
100 B(I)=B(I)+A(1,J) (A(1,j) is summed across J'

Restructured:
DO 100 J=1,100
DO 100 1=1,100

100 B(I)=B(I)+A(I, 6 J (Vector B = Vector B + Vector A(l,j))
10. Non-subscript use of loop index. The loop index may be replaced by a real
temporary array containing the appropriate sequential values. This array can

be set up by a data statement (if the DO loop length is known before execution)
or by a special call, or in an isolated DO loop.
Example: Data Statement

Original
DO 100 1=1,100 (SCALAR)
100 A(I)=CO0S(D(I)*I)
Restructured:
DATA TEMP/1.0,2.0,3.0,0.0,5.0,6.0,T.0,. . 100.0/
DO 100 1=1,100 (VECTOR)

100 A (I)=COS(D(I)*TEMP(I))

Example: Loop Switch
DO 100 1=1,100 (SCALAR|
DO 100 J=1,100
100 A(I,J)=COS(D(I)*J)

Restructured:
DO 100 J=1,100
SCA=FLOAT (-J)
DO 100 1=1,100 (VECTOR)
100 A(I,J)=C0S(D(I)*sSca)

11. Indirect addressing. Arrays that are addressed via an integer array

subscript must be "scrambled" (either by a small DO loop or special subroutine
calls) into a temporary vector whose elements are accessed sequentially in the
DO loop. This procedure does involve some overhead (all the extra stores and
fetches of the temporary), but not as much as the merge problem. If indirect
addressing occurs on the left side of the assignment statement, the situation

86

is more complex. If the variable occurs only on the left side of the equal
sign, then we can use an "un-scramble" process and there is no problem. If
the variable occurs on both sides, then the unscramble should not be performed
as incorrect results are possible if the integer array has any duplicate elements.
Example
Original
DO 100 1=1,100
100 A(IA(I))=B(IB(I))*C(I)+D(ID(I))**2-.5

Restructured:
DO 100 1=1,100 (or use array utility calls)
TEMPB (I)=B (IB(I)) (VSL: SCRMBL (INDEX,B,IB,TEMPB))

100 TEMPD (I)=D(ID(I))

as

DO 200 1=1,100 (VECTOR)
200 TEMPA (J)=TEMPB (I)*C (I)+TEMPD(J)**2—-.5

DO 300 1=1,100 (or use array utility calls)
'300 A (IAa (Iy)=TEMPA (I) (VSL: USCRMBL (INDEX, TEMPA,IA,A)

12. Maximize DO loop length. In a multiply-nested situation, make sure the
longest loop is the inner one. Sometimes double-nested loops can be combined
into one super-long loop and this is even better.
Example 1: Two loops to one long loop
Original
DO 50 J=1,JN
DO 50 1=1,IN
50 A(I,J)=B(I,J)*C(I,J)

Restructured:
(REAL T1(1l),T2(1),T3(1))
(EQUIVALENCE (T1(1),A(1,1)),(T2(1),B(1,1)),(T3(1),C(1,1)) i

INJN=IN*JN
DO 50 I=1,INJN
50 T1(I)=T2 (I)*T3(I)

Example 2: More complex case
Original:
DO 100 1=1,IM
DO 100 J=1,JM
K=IM* (J-1)+I
z(K)=A(K) *B (K) +C (K)
100 W(K)=Z(K)*V(I)*Q(J)

Restructured
DO 100 1=1,IM
DO 100 J=1,JM
K=IM* (J-1)+I
100 TEMP (K) =V (I) *Q(J)

KM=IM*JM
DO 200 K=1,KM

Z (K)=A (K) *B (K) +C (K)
200 W(K)=z (K) *TEMP (K|

87

13. Environment Dependent Consideration. Although I have ignored them so far,
the conditions under which the code will be run will affect the restructuring
process. If vectorizing compilers or pre-compilers are to be used, their quirks
and capabilities must be taken into account. If hand coding in a vector syntax,
machine particulars need to be understood (CRAY: chaining, vector register
utilization, strip-mining, 7600: memory conflicts, LCM, etc.)

One very powerful restructuring tool is the Vectorizer (TM) (marketed by
Massachusetts Computer Associates), a pre-compiler which detects array opera-
tions in FORTRAN DO loops. It is able to do the tricks described in Sections
Iv. 3,4,5,6,9, and some of IV.10 and IV.12, as well as being able to output
several different explicit vector syntaxes. It also gives informative diag-
nostics that aid in the restructuring process. Someone using the Vectorizer
will have less hand restructuring to do and will have an easier time doing
the restructuring that remains.

V. EXAMPLES AND TIMINGS: THE REAL WORLD

The following example demonstrates several of the techniques put forward
in Section 1IV.

DO 120 J=1,NZ
120 AD(J)=D(J,NZ,JET)

END
REAL FUNCTION D (K,N,M)
COMMON X (66)

D=1.0

Q=X(K]

DO 3 L=1,M

DO 2 J=L,N,M
IF (J-K) 1,2,1

1 D=2.0*D* (Q-X(J))

CONTINUE

3 CONTINUE
D=1.0/D
RETURN
END

N

The first thing to do is pull FUNCTION D into the 120 loop (making the*
appropriate substitutions). Then we must get rid of the IF statement and put
the longest loop (J=1,NZ) on the inside.

Restructured:
DO 119 J=1,Nz
119 AD(J)=1.0

c
DO 3 L=1,JET
DO 2 K=L,NZ,JET
0=X (K|
TEMP=AD (K)

C

88

DO 120 J=1,NZ
120 AD(J)=2.0*AD (J) * (X (J) -Q)

c
AD (K) =TEMP
2 CONTINUE
3 CONTINUE
c

DO 121 J=1,NZ
121 AD(J)=1.0/AD(J)

This example was timed on a CYBER 176 using VSL (Vector Subroutine
Library, a product of Massachusetts Computer Associates). Note the dependence
on vector length. (As the vector length increases, the subroutine overhead
is further diluted).

FUNCTION D TIMINGS (Microseconds)

VECTOR LENGTHS SCALAR VECTOR SCALAR/VECTOR
FTN (4.5 OPT=2) VSL
10 130 120 1.08
20 390 290 1.35
30 850 560 1.52
Uo 1460 870 1.68
50 2200 1290 1.71
60 3160 1750 1.81
70 4240 2310 1.84
80 5470 2920 1.87
90 6810 3610 1.89
100 8430 4360 1.93

Next we turn to an interesting real-life example (run on the CRAY) showing
the overhead vs. vector speedup trade-off. We have a loop where as soon as we
find certain conditions to be true, we branch out of the loop. What we have
done is to always look at the whole vector length and use the vector mask
instruction to tell us whether any of the elements of the vector met the con-
ditions (if the vector mask word is 2zero, no elements met the conditions). Thus
if the conditions are met very often (say on the second iteration through the
loop) all the overhead of looking at the whole array (when we could have stopped
at number 2) will drag us down. However, if on the average the conditions are

89

DO 120 J=1,NZ
120 AD(J)=2.0*AD (J) * (X (J) -Q)

c
AD (K) =TEMP
2 CONTINUE
3 CONTINUE
c

DO 121 J=1,NZ
121 AD(j)=1.0/AD(j)

This example was timed on a CYBER 176 using VSL (Vector Subroutine
Library, a product of Massachusetts Computer Associates). Note the dependence
on vector length. (As the vector length increases, the subroutine overhead
is further diluted).

FUNCTION D TIMINGS (Microseconds)

VECTOR LENGTHS SCALAR VECTOR SCALAR/VECTOR
FTN (L.5 OPT=2) VSL
10 130 120 1.08
20 390 290 1.35
30 850 560 1.52
>+0 1U60 870 1.68
50 2200 1290 1.71
60 3160 1750 1.81
70 k2b0 2310 1.81+
80 5070 2920 1.87
90 6810 3610 1.89
100 8L30 1+360 1.93

Next we turn to an interesting real-life example (run on the CRAY) showing
the overhead vs. vector speedup trade-off. We have a loop where as soon as we
find certain conditions to be true, we branch out of the loop. What we have
done is to always look at the whole vector length and use the vector mask
instruction to tell us whether any of the elements of the vector met the con-
ditions (if the vector mask word is zero, no elements met the conditions). Thus
if the conditions are met very often (say on the second iteration through the
loop) all the overhead of looking at the whole array (when we could have stopped
at number 2) will drag us down. However, if on the average the conditions are

90

rarely met and most of the time we would be looking at all or most of the array
anyway, then we will do well. A listing of the original, its translation for
the CRAY, and the timings follow. Notice that if we get through the loop at
least three times before being kicked out, the overhead is beaten out by the
savings from vector execution. 1In the actual code, the average is much

greater than three iterations, so we win by a lot.

LOOP FROM MATCHM

DO 50 K=1,ID
IF (KCN(K,KP,10) GO TO 50
P=PPLANE (K, KP)
IF(P.GT.TOP] GO TO 50
IF(P.LT.BOT) GO TO 50
IASSOC=IASSO0C+1
GO TO 60

50 CONTINUE

CVP TRANSLATION

CALL SETL("X",ID)

CALL ILDV("X00",KCN(1l,KP,10)
CALL SVMN("O0")

CALL VMSI ("X",MASK1)

CALL ILDV("X01l",PPLANE (1,KP))
CALL SRSV ("X12",TOP)

CALL SVMP ("2")

CALL VMSI ("X" ,MASK2)

CALL SRSV ("X13",BOT)

CALL SVMM("3")

CALL VMSI ("X",MASK3)
MASK=MASK1.AND.MASK2.AND.MASKS
IF (MASK.NE.0) IASSOC=IASSOC+1

91

VECTOR SCALAR
LENGTH
1 1.021x10"2 2 1.
) 1.276x10-3 1
3 1.531x10~3 1.
4 1.786x10-3 1.
5 2.041x10-3 1.
10 3.316x10"3 1.
15 4.591x10-3 1.
20 5.866x10 3 1
25 6.716x10"3 1.
REFERENCES
1)
Utilization of Super Computers, Vol.
R & D Associates.
2)
Massachusetts Computer Associates
3)

92

MATCHM TIMES IN

SECONDS

VECTOR

468x10 3

.468x10 3

468x10'3

468x10 3

468x10 3

468x10 3

468x10-3

.468x10 3

468x10”3

SCALAR/VECTOR

.70

.87

1.39

2.26

3.13

S.M. Einstein, J.M. Levesque, G. Wagenbreth, G.M. Waller, Optimal
1 - The Control Data 7700,

Mathew Myszewski, David Loveman, Vectorizer System User's Manual,

J.M. Levesque, Vectorizer System Seminar, Massachusetts Computer

Associates.

POISSON SOLVERS ON A LARGE ARRAY COMPUTER

by

Chester E. Grosch
Institute of Oceanography
and
Department of Mathematical and Computing Sciences
0ld Dominion University
Norfolk, Virginia

ABSTRACT

A recent analysis of the performance of a proposed large array computer
for solving numerically the Navier-Stokes equations showed that the major
portion of the time was spent solving the Poisson equation for the pressure
field. It was assumed, in the analysis, that a parallel relaxation scheme
(Red-Black SOR) was used to solve the Poisson equation at each time step. It
is well known that, on serial computers, direct methods are more efficient
than relaxation methods for the solution of the Poisson equation. This is
not necessarily true for the proposed array computer because of the archi-
tecture. The memory is distributed throughout the array and data transfers
are only possible between nearest neighbor elements in the array; hence long
range data transfer is very time consuming. The performance of three classes
of Poisson solvers, standard parallel relaxation methods, parallel multi-grid
relaxation methods, and parallel direct methods, on this array computer are
analyzed. The analysis includes both the arithmetic operation time and the
data transfer time imposed by the array architecture.l

1. INTRODUCTION

The numerical calculation of turbulent flow fields is one of the major
research areas in fluid dynamics.? These calculations can be divided, quite
roughly, into two classes: true simulations which resolve all of the dynam-
ically significant scales of motion; and phenomenological calculations which
make use of turbulence models. The computing power of existing computers is
the effective 1limit on both classes of calculations. There is a need, for
both these types of calculation, to increase the number of mesh points (or

modes, for spectral calculations) in the flow volume and to reduce the average

93

computation time per mesh point. This requires an increase in both the
memory size and speed of computers.

Increasing the memory size allows the use of a finer spatial resolution
for a fixed volume, the calculation of a flow in a larger volume at fixed
resolution, the use of a more complex, and presumably more accurate, turbu-
lence model, or some combination of these improvements. It is, of course,
well known that the number of operations increases at a slightly faster rate
than the number of mesh points, so that large problems require substantially
more computational effort than small problems.

There have been some major improvements in algorithms; perhaps the most

important are the development of efficient spectral methods, via the Fast

Fourier Transform,3} and the various algorithms for the efficient direct solu-
tion of the Poisson Problem.{ 6 Quite recently a new algorithm, the Multi-Grid

Algorithm, has been developed7-8 which appears to offer a substantial improve-

ment in performance for a wide class of problems

However, despite these major improvements in algorithms, progress in
computational fluid dynamics has generally been tied to the development of
larger and more powerful general purpose computers. Today's large computers
incorporate very large memories, arranged in a hierarchy of size and speed
and substantial amounts of pipelining and/or parallelisim in their CPU's, in
addition to using high speed components. Despite these improvements in comput-
ing power, existing computers are barely adequate for many computational fluid
dynamics problems.

Some years ago the computational problems associated with turbulence
simulations were reexamined in the light of existing and projected computer
capabilities.9 The conclusions of that study were that a few simulations had
already been carried out at moderate Reynolds numbers and that, even with the
most powerful computers which were likely to be available in the near future,
the range of Reynolds numbers for which turbulent flows could be simulated was
quite limited. One of the recommendations of the study was to examine the
feasibility of building a special purpose computer to carry out numerical flow
simulations as well as flow calculations using turbulence models.

Quite recently a tentative design of the architecture has been proposed
for a "Navier-Stokes" computer.! This architecture, which will be described
below, is in essence a large number (0(104) to (105)) of simple processing

and memory cells arranged in an array. An analysis and simulation of a

94

laminar to turbulent flow transition simulation on such a computer showed
thatl’10 the major part of the computational effort (more than 80%) was expended
in solving the Poisson problem for the pressure field. The efficient parallel
solution of the Poisson problem thus appears to be a key element in utilizing
a large array computer to solve the Navier-Stokes equations.

There exists an extensive literature on the structure and cost of parallel

algorithms.11’12 The Poisson problem, its generalizations and simplifications,

appears to be a favorite test problem for parallel algorithms. The work of
Stonel3’14 on parallel tridiagonal equation solvers and Sameh, Chen and Kuckl5
on parallel Poisson and Biharmonic solvers are typical examples. These studies
usually consider only the arithmetic operation counts and neglect "overhead"
costs such as the time associated with data rearrangement and transfer. Ortega
and Voightlé give an up to date review of the solution of partial differential
equations on vector computers. Most of this review is devoted to consideration
of Elliptic systems and Ortega and Voight point out the importance of start-up
time on pipeline computers as well as the necessity for efficient data manage-
ment in using computers like Illiac IV and Cray 1.

In this paper an analysis is made of the solution of the Poisson equation
on this array computer using a number of different algorithms. It will be
shown that the data transfer costs for the parallel algorithms are at least
as important, and in some cases, more important than the cost of computation.

The architecture of the array computer is briefly described in section 2.
Section 3 contains an analysis of the arithmetic and data transfer counts and
total time cost for a number of parallel relaxation schemes for the solution of
the Poisson problem. A description of the Multi-Grid Algorithm for the solution
of the Poisson problem and its adaptation to the array computer is given in
section 4. The results of a number of simulations of the use of standard
parallel relaxation schemes as well as multi-grid relaxation methods on the
array computer are presented in section 5. Section 6 contains the analysis of
the solution of the Poisson problem by a direct method on the array computer,
including arithmetic operation and data transfer counts as well as the total
cost in time. The results of the analysis and simulations presented in sections
3 through 6 are compared in section 7. Section 8 is a brief summary of

conclusions

95

2. THE ARRAY COMPUTER

The array computer is a two-dimensional array of N by N cells, see Figure
1. Each cell can communicate directly with its nearest neighbors above and
below and to the left and right. There is an end-around connection from top to
bottom and the left end to the right end. This interconnection scheme permits
the array to be rearranged logically as an by array where AN

A single cell (hereafter called a processing cell or PC) is assumed to
contain a modest amount of memory, say IK or 2K (K = 1024) words; some registers,
32 or 64; and an adder-shifter. The data is stored in the memory and the reg-
isters store state information and intermediate results. The add-shifter is
used to perform binary addition and multiplication by shift-and-add

All of the PC's are connected to a control unit which issues instructions
to the PC's, and receives and interprets state information from them. It is
assumed that every PC performs the same operation or is turned off. One way to
handle input-output is to treat the array as a set of N parallel shift regis-
ters. All data in the PC memories can be shifted, one word at a time, to the
right and out the right side of the array. If there are words of memory per
PC, then N cell-to-cell transfers are required to dump or load the entire
memory on N output wires.

There appear to be three potential advantages of this architecture. First,
it seems possible to build such a computer using existing technology at fairly
modest cost, (each PC is only a few microprocessorchips, perhaps only a single
chip) particularly if the intercelluar connections are as minimal as in this
preliminary design. Second, technological developments in the semi-conductor
industry are leading to increasing complexity and density per chip as well as
lower cost per chip which will make the proposed computer even more cost effec-
tive. Third, if an N3 computational domain can be efficiently mapped onto the2
array such that N2 operations can be performed in parallel in the N2 PC, the
number of sequential operations can be reduced by O(NZ), a very considerable
reduction in time.

In order to exploit the full power of the array computer concept the numer-
ical algorithms must match the architecture. Local communication is relatively
cheap and long range communication may be prohibitively expensive because of the
cell-to-cell communication. Serial computation,i.e. computation which uses only

2
a small subset of the N processors, must be avoided because such computation

96

makes very ineffective use of the parallel array hardware and is, therefore,
very expensive. The challenge in applying the array processor concept is to
couch the physical (numerical) problem in terms which do not require large
amounts of long range communication and in which almost all PC's perform the
same operations nearly all the time.

The basic cell array is rectangular but that does not, of course, restrict
the problem which can be solved on the array computer to those in rectangular
geometries any more than does the 'rectangular' indexing of FORTRAN arrays.

Any geometry which can be mapped onto a cube can be solved on this array com-
puter. Internal boundaries can be easily treated by initializing interior cells
as boundary cells.

In discussing problems to be solved on the array computer, it is assumed
that one coordinate direction is mapped into the array such that the data at
all mesh points at fixed values of the other two coordinates are stored in a
single PC. This is called a rod of data and, in terms of the indices (i,Jj, k),
is all data at fixed (i,j). All data at constant (j,k) is called a column and
all data at fixed (i,k) is called a row. If k is constant, the data is said to
be in a plane

In order to estimate the time to solve the Poisson problem using different
techniques it is necessary to make some estimates of the time required to carry
out the primitive operations in a PC. These operations, and the estimated
operation times are: In cell transfer- 100 nsec; Cell to cell transfer -

3 ysec; Addition - 500 nsec; and Multiplication - 5ysec. Although the
absolute values of these operation times depend on the technology used to pro-
duce the PC's, it is believed that the operation time ratios will be reasonably
independent of the technology used to manufacture the PC's. The multiplication
time is used as the basic time unit so that the relative cost of the operations
are: In cell transfer - 0.02; Cell to cell transfer - 0.6; Addition - 0.1;

and Multiplication - 1.0.

3. PARALLEL RELAXATION SCHEMES

It is required to solve the Poisson Problem

V2 Pi.j.k = qgi,j,k (1)

97

whereV is a discrete form of the Laplace operator

on a spatial grid with suitable (Neumann, Dirchlet, Periodic, or Mixed) boundary

conditions and with given q.
)7 »*

Applying the seven point centered difference operator to Eq. (1), we have

Pi+l,j,k 2pi,j,k + Pi-1,j,k + * “pi,j+l,k 2pi,j,k Pi,j-1,k*

Y ~Pi,j,k+1 2pi,j,k + Pi,j, k-1? qi,j, k» (2

where
B = Ax/Ay, y = Ax/Az .
It is assumed that there are periodic boundary conditions in the z direction,

Pi»j,0 Pi,j, N3 (3)

Neumann boundary conditions on the other faces.

. - - (4a)
PL,3>k Py g = 2BxEy 5 = Bpay
pn+1,j,k Pn-1,3,k 2Ax*n,J,k = fn,jk, (4b)
pi, 1,k Pi,-1,k ~ 2Ay®i,0,k = 8i,0,k (4c)
pi mt¢l,k Pi,m-1,k 2Ay8i,m,k 8i,mk. (4d)

This set of boundary conditions arises, for example, in the solution for the

pressure field in the simulation of transition from laminar to turbulent flow.!

Fourier transforming p. .

Cy e 9. and the boundary conditions along the
i399k3 1,5,k

z(k) direction yields

98

—2ap.i,.. +P'+’1,j',a + 3 (p. . 1 +B‘i,j+’i,a) =

i-1,j,a j,a 1

‘ 5
(Bx) q':'L»J ,ot, !

where the {p. . |} and (g

. } are the Fourier coefficients of the (p _]}
i,j,a 1,3 ,a i,3,k

and (qk>é>k}’ and

a=1+ 32+ Y2 - Y2 cos (21T -p) . (6)
3

The transformed boundary conditions are of the same form as Eq. (4a-d) with
k replaced by -.

This reduces the solutions of one 3D Poisson problem to the solution of
uncoupled 2D problems. In this section the solution of the 2D problems by
relaxation will be analyzed. The subscript a will be dropped hereafter to
simplify the notation.

The relaxation scheme must be a parallel one in order to exploit the
inherent speed-up of the array architecture. The possible relaxation schemes
appear to be:

The Jacobi method,17

(k+1)
P1iJ 2a i+lj

The single weight Jacobi method,’

k
1)
i.3

+ (8

(k)
where . . is calculated from Eq. (7) and w is a weight;
>J K

The five weight Jacobi method,7

(H) _), s 0 A 0 At A k)
i,y - F 1 P13 2 i+l ,3 1-1,1 1,1+1

99

(k) (k) (k)

: h dp. ...
15':'1,j Pisy ,J an pi,J‘fl
weights;

The Red-Black SOR methodl7

where are calculated from Eq. (7) and 0),_and oo. are
=

a+1l) - (1 - a.) P<k). + Wp-a&>
(10)
1.1 1,1 1,1
: : (k) .
for i + j odd and, separately, i + j even, () is a weight, and p. l.lS
l!
computed from Eq. (7). In all of the above the superscripts denote the
iteration number.
It is a simple matter to find the operation counts (in-cell transfers
cell to cell transfers N ::iEfEtions N , and multiplications N) for each of
— —— m
these methods. For example, the Jacobi method requires no in-cell transfers,
. N -
four cell to cell transfers, to obtain piiﬁ,lZand pi.lil, four additions and
two multiplications. It is assumedothat (Ax) q.l X and 1/(2a) have been
4
precomputed and stored along with 3
After each relaxation sweep the current residuals,
(k) = 2 (k)
ri,j ~ Pi,l1 ~ gi,Jj (D

must be calculated.

These operation counts are given in Table I . The time for each of these
procedures, in units of one multiplication time, are also given. The basic
times for each of the operations are as given in section 2.

The results given in Table I show that all of these relaxation schemes,
except the five weight Jacobi, cost about the same. The five weight Jacobi
method is nearly twice as costly as the others and the calculation of the
residuals costs about 50% more than a typical relaxation sweep. Because of its
superior rate of convergence and low cost the Red-Black SOR method is clearly

the best of these parallel relaxation methods.

4. ANALYSIS OF THE MULTI-GRID ALGORITHM (MGA)

The MGA is a multi-level adaptive solution strategy which intermixes the

discretization and solution processes for the numerical solution of boundary

value problems. Brandt? MKadg described, analyzed, and given numerous examples

100

of the MGA. 1In this section, the application of the MGA to the solution of

two and three dimensional Poisson problems on the array computer described in

section 2 will be analyzed.

4.1 Multi-Grid Solution of the Poisson Problem
It is desired to solve the Poisson problem, as described in section 3, on
some grid. The given grid is taken to be the finest grid. It is convenient,

but not necessary, to assume that the number of grid points, including boundary
1, 2, or 3,

points, in each direction is of the form 2 + 1, M* an integer; a

corresponding to the x, y, z coordinates. This grid is called the M grid,

M = min{M }. Now consider a sequence of coarser grids, M- 1, M - 2,...,

M-m, m;M—Z , which are nested within the finest grid. Each of these grids
has 2%x-j +1, 1 < j < m, grid points in each coordinate direction. Brandt has
shown that this ratio of 1:2 in the grid spacing for the different grids is
optimum. The restriction that m > M - 2 ensures that there are a minimum of
five grid points in each direction on the coarsest grid, so that there is at
least one purely interior point in the coarsest grid.

The basic solution technique is relaxation using one of the parallel
relaxation schemes described in section 3. The first few relaxation sweeps on
the finest grid are very effective in reducing the norm of the residuals,

R The rate of reduction of the residuals decreases after a few relaxa-
tion sweeps and, asymptotically, becomes very slow even for the best relaxation
methods. The objective of the MGA is to preserve the rapid reduction of
|lr. . || and prevent the asymptotic reduction of the convergence rate.

The MGA precedes according to the rules:

(a) If the rate of reduction of the norm of the residuals slows down so

that

.a+i ~
ia;j ! ri,.;l: . (12
11 a constant and < 1, and £ the relaxation index, transfer the residuals to a
coarser grid.

(b) Relax the solution on the coarser grid so as to reduce the residuals to
zero. If the rate of reduction slows down, according to criterion (12), transfer

to a still coarser grid. If the relaxation converges on the coarse grid;

oo - A 13
* coarse ri,) fine > (13)

where is the latest value of the norm on the coarse grid,
11 11 coarse

. is the last value of the norm on the next finer grid, and 6 is a
11 11 £ine

constant, < 1; transfer the corrections to pﬁ_.> back to the finer grid and

»J
proceed

(c) On the coarsest grid, continue the relaxation until the convergence
criterion (13) is satisfied.

(d) Overall convergence occurs when the norm of the residuals is reduced
to the desired level on the finest grid.

The MGA proceeds by smoothing the residuals by relaxation on a grid. The
relaxation process is most effective for the Fourier components of the residuals
whose wavelengths are of the order of twice the grid spacing. After these short
wavelength residuals are destroyed, the rate of reduction of the residuals
decreases because relaxation is less effective at smoothing the long wavelength
residuals. The MGA speeds up convergence by shifting to a coarser grid where
some of the longer wavelength residuals have wavelengths of the order of twice
the grid spacing.

The efficiency of the MGA is due to; first the actual reduction of the
number of iterations required for convergence; and second, the reduction in
the number of arithmetic operations necessary to carry out a sequential relax-
ation sweep through a coarse grid as compared to a fine grid. The reduction of
the number of iterationsis quite substantial but the reduction in the number
of arithmetic operationscan be very great fora computer which 1is sequential
or almost so (the degree of parallelism is much smaller than the number of mesh
points in the grid). Shifting from any grid to the next coarser grid reduces
the number of sequentialarithmetic operations by a factor of 2 , where d is
the dimension of the problem. The combination of fewer iterations and, on
average, fewer arithmetic operations per iteration results in a very large

speedup in the relaxation process.

4.2 Analysis of the Multi-Grid Algorithm on an Array Computer
The architecture of the array computer imposes severe constraints on the
MGA. 1In a conventional computer which has a central memory every piece of data

is equally accessable, or inaccessable. Because the memory is distributed in

102

the array computer the transfer of a data word between two PC's whose indices
differ by N requires N data transfers.

Assume that the finest grid coincides with part of, perhaps the whole of,
the array. Further assume that a five point star is used for a 2D relaxation
and a seven point star is used for a 3D relaxation. Then, all the data
required for a relaxation is in a PC or, at most, requires a single transfer
per word from a nearest neighbor PC. After a shift to the first coarse grid
the rods of data needed for the relaxation sweep are in PC's whose indices
differ by two so that two data transfers per word are required. After a fur-
ther transfer to the next coarsest grid the PC indices differ by four and four
data transfers are needed per word, and so on.

There are two possible strategies that can be used in the application of
the MGA. The first is to leave the data in place and accept the increase in
the number of data transfers for each relaxation. The second strategy is to
transfer the data into nearest neighbor PC's; in effect compress the working
array and pay the increase transfer cost once per grid shift. Note that this
strategy requires that the working array be expanded and a similar transfer
penalty be paid when there is a shift from a coarse to a finer grid.

If the first strategy, leaving the data in place, is used, the number of
cell to cell data transfers per relaxation is increased by the factor 2M_£ on
grid #, for a 2D or 3D problem. The data transfers in the third coordinate
direction are along the dat”® rod and only require internal transfers. A
typical MG cycle has K iterations on grid M; a shift to grid M - 1, followed
by K iterations, and so on until the coarsest grid, grid 2, is reached. After
K iterations on grid 2, there is a shift to grid 3, K iterations, and so on
until grid M is reached. If there are cell to cell data transfers per
iteration, the total number of cell to cell transfers in one MG cycle is
then.

M-1

L =KL + 2KL I 2 (14)
1 ° U £=2

The second strategy requires that the working array be compressed each
time there is a shift from a fine to coarse grid and an expansion every time
there is a shift from a coarse to a fine grid. The number of data transfers
to do one array compression and expansion between grids 1 and £ - 1 is 4%*2

103

for a 2D array or one plane of a 3D array. Therefore the total number of grid
transfers to compress and expand a 2D array or one plane of a 3D array for a

MG cycle is

M
£+1 M+1
Z = 22 4) .
3=2
There are M - 2 grid levels, K relaxations at each level, and transfers

per relaxation so that the total number of data transfers for a 2D problem,

using the second strategy, £22¢

L22 = KLOM " 2) + 2(2m'l ™ 4) (15)
For a 3D Poisson problem with layers, the total number of data transfers is
M+1
L23 = KLg(M - 2) + 2(2 - 4)Nr (16)
The ratio of to is
L /L (17)

22 1 \2M - 3/ KLO (2M - 3)

For M > > 1,

L22/Ll ~ 4/KL0 (18)

because K > 2 and .o > 4. For any M > 3, K > 2, and Lo > 4, Eq (17) shows
that L~/L” < 1. Exact values of this ratio are given in Table II.

Next considering the 3D problem, the ratio of L~/Lj is

M+1
2(2 - 4)

KLO (2n - 3)

+ N, (19)

104

IfM> > 1,

123/l ; 4AN3/KLO > > 1 (20)

because the number of planes in the third direction, > > I+ Exact values of
this ratio are also given in Table II, and it can be seen that this ratio is
greater than 10 for reasonable choices of K, , and

It can be concluded that in applying the MGA to 2D problems the array
should always be compressed and expanded, but that the data should always be
left in place for 3D Poisson problems. This analysis also suggests that the
introduction of a few additional data paths, connecting the first and ninth
PC's, the ninth and seventeenth PC's etc. but not the second and tenth, could
decrease the number of transfers sufficiently so as to make the in place strat-
egy optimum for the 2D problem.

Shifting from a fine to a coarse grid also involves the additional cost of
the transfer of the residuals. Simple injection has the minimum cost; the
residuals at points where the coarse and fine grids coincide are multiplied by
four, for 2D problems or by eight for 3D problems, in order to take into account
the doubling of the mesh size. In addition there are two in-cell transfers, one
to store the fine grid solution and the other to store the fine grid residuals.

Certain relaxation schemes require a weighting of the residuals. The full

weighting scheme gives, in 2D,

~137 rijj + 2”ri,j+1 + ri,j-1 + ri-1,j + ri+l,3~ +
(21]
4(ri-1,9J+1 + ri-1,3-1 + ri+l,3+1 + ri+l,3j-1
where r* is the weighted coarse grid residual, and r* * is the fine grid
residual. This method uses no internal transfers, six cell to cell transfers,

eight additions and two multiplications and is, therefore, very costly as
compared to simple injection.

Shifting from a coarse to fine grid is somewhat more costly. The simplest
possible method of transfering the corrections to the solution from the coarse

to fine grid is by linear interpolation.

105

Figure 2 shows a section of the array. Each block represents one cell
which is labeled by the appropriate indices. The heavy lines deliminate the
primitive correction block; all fine grid solutions in this block are corrected
by the local coarse grid solution and the correction algorithm is periodic, with
period 2, in both the i and j indices. If cell (i,j) is in both the fine and

coarse grids, the corrected fine grid solution (in 2D) is

- - s — L) 22
Fi, 7%, 37+ 8y 5 (22
where p. ..is the corrected solution p, 3 is the old fine grid solution, and
i,J 1,
P.- J.is the correction to the fine grid solution which is obtained from the
i,
coarse grid solution. Similarly in fine grid cells, (i,j-1) and (i-1,3)
Pr v b =P v { d&*~(p. , , +P, 9, (23)
157 1 -LjiJ L R D |
Pr 1, =P, 1 . + 4+ 24 4), (24)

and in cell (i-1, j-1)

~i-1,3-1 *i-i,j-1 + 4%Pi_i,j + *i-1,3+1 + 7*i,3-1 + *i.3+1° (25)
Note that p. , . which is in the coarse mesh, is two cells to the left of
p. . and one cell to the left of pi i 3.in the fine mesh.

A study of Figure 2 and Eq. (22) - (25) shows that linear interpolation
requires four internal transfers, six cell to cell transfers, four additions
and one multiplication. The particular sequence of operations which has been
chosen minimizes the number of cell to cell transfers and multiplications at
the cost of adding some (very inexpensive) internal transfers. The operation
counts and costs of these operations, compression, expansion, injection, both
simple and weighted as well as linear interpolation are given in Table III.

This analysis shows that there are substantial overhead costs in applying
the MGA on the array computer because of the constraints imposed by the archi-
tecture. A coarse grid relaxation is executed by turning off the fine grid
cells which are not in the coarse grid. Therefore the cost, in operations, of

a coarse grid relaxation is exactly the same as that of a fine grid relaxation.

106

It can be seen that, when the overhead operations of compression and expansion
or long range transfer, injection, and interpolation, are included, a coarse
grid relaxation is more expensive in operations and time than a fine grid relax-
ation. Problems in 3D are relatively less expensive than 2D problems because
the inplace strategy reduces the number of operations on a coarse grid to one-
half the number on a fine grid. Basically, the major improvement in using the
MGA on an array computer is due to the reduction in the absolute number of
iterations needed for convergence.

It is clear that 2D Poisson problems are a 'worst case' because there are
no reductions for the operation counts of a coarse grid relaxation compared to
a fine grid relaxation. Therefore, from this point on, only 2D Poisson problems
will be considered.

The relative costs given in Table I show that the cost per grid sweep,
which is a relaxation sweep plus a calculation of the residuals is rough&y the
same for all of the methods. From the results given in Table II, it is clear
that simple injection is very inexpensive and weighted injection and linear
interpolation cost of the order of one-half of a grid sweep. In contrast com-
pression and expansion are very costly. A compression from level 7 to level 6
and an expansion from level 6 to level 7 has a cost of 153.6 units, which is of
the order of ten grid sweeps. It is clear then that the use of the MGA must
reduce the number of grid sweeps by a considerable factor in order for it to be
competitive with simple relaxation.

It is possible to derive a theoretical 'efficiency rating,' A, for the
MGA; but note that this differs from the convergence factor defined by Brandt.
Let y be the theoretical smoothing rate, the factor by which the high frequency

errors are reduced by a single sweep over a grid. Brandt]! has calculated y for

a number of relaxation schemes and shown that a MG cycle with K sweeps on each
grid level will reduce all the error components to, approximately, ;K of the
original error.

Now let w be the cost of a MG cycle. If M is the finest grid level and
the coarsest grid level is 2, K grid sweeps are carried out on each level, and

grid compression and expansion are used, then

107

w=K '+ (M- 2) + (relaxation cost + residual cost) +

(M - 2) + (injection cost + interpolation cost) + (26)
M
2 (single transfer cost) £ 2%

j:

The error reduction efficiency, y, is

y =1 - yK (27)
and the error reduction efficiency per unit work, is given by
A=y/w= (1 - yN)/w (28)

Clearly the larger y, and more important. A, is the more efficient is the
algorithm. Table IV lists values of A for various K and M. The values of y
given in Table IV are those given by Brandt.7 It can be seen that, for a given
method and size of grid (M), there is an optimum number of iterations per grid
level. This optimum is two for the Single Weight Jacobi and Red-Black SOR
methods and one for the Five Weight Jacobi method. However, for M = 7, the
problem size of most interest, the use of two iterations per grid level is only
about 11% less efficient than performing only a single iteration per grid level.
It can also be seen that, in general, the Five Weight Jacobi method is, theoret-
ically, the most efficient followed by Red-Black SOR and the Single Weight

Jacobi methods.

5. SIMULATION OF STANDARD AND MG RELAXATION METHODS

A set of Fortran programs have been written which simulate the relaxation
solution of 2D problems using standard parallel algorithms and the MG relaxation
algorithm on the array computer. The MG simulators incorporate parts of the
sample program (called CYCLEC) given by Brandt.7 The simulators can handle
rectangular or square grids up to M = 7 ie. grids which have less points
than 129 by 129. 1In addition to the number of relaxations and residual cal-
culations, the number of 'overhead' operations; compressions, expansions,
injections, and interpolations, are also counted. The output of the residuals

after each relaxation permits the observed error reduction efficiency, y, to

108

be calculated. The total cost is also calculated using the unit operation
costs given in Table I and HI. Finally the error reduction efficiency per
unit work and the total cost of obtaining a solution are computed.

The results of the simulations are relatively insensitive to the grid
aspect ratio as long as it is not too large. Large aspect ratio grids require
the use of line relaxation methods, whose implementation on the array computer
have not yet been analyzed or simulated. Therefore only the results of simu-
lations on square grids with M = 5(33 by 33), 6(65 by 65) and 7(129 by 129)
will be given here.

Simulations of the relaxation solution of two different Poisson problems
have been run so far. For both of these problems the solution is to be found in
O<x<l, O<y<1l with Dirchlet conditions on the boundary. For problem 1
the right hand side of the Poisson equation is sin[3(x + y)] and the boundary
values are given by cos[2(x + y)]. The right hand side for problem 2 is a set
of random numbers in (-1,1) with a mean of zero and the boundary values are
zero. For both problems the initial approximation was taken to be the boundary

values, i.e.

P cos[2(xi + Yj)*5 problem 1!

Pi,j 0 i problem 2.

Results of the simulations of the MGA for these two problems are given in
Table V. The relaxation methods are the Single and Five Weight Jacobi methods
and Red-Black SOR. The weights, listed in Table V, are the optimum weights
for these methods as determined by Brandt.7 Table V lists the method; the
problem (1 or 2); the grid size, M (there are Zyd—l_ grid points in each
direction); the theoretical and observed error reduction efficiency, {I; (with
K = 2) and the theoretical and observed error reduction efficiency per unit
work, X.

Examination of Table V shows that, first, the observed error reduction
efficiency per unit work is always greater than the theoretical wvalue. The
difference ranges from about 5% to 40% for both problems. The observed values
of y and x for the Five Weight Jacobi method fall between the theoretical

values for K= 2 and K = 1. This can be explained by noting that in the

109

simulations the algorithm always performed two iterations per grid level on the
fine to coarse grid shift but only one iteration per grid level on the coarse
to fine shift.

The Red-Black SOR method has an observed error reduction efficiency close
to that for K = 4 (y = 0.9375) but the cost per MG cycle is about that for
K = 2 so that the error reduction efficiency per unit work is even greater
than that of the Five Weight Jacobi. The parallel execution of both a Red and
a Black relaxation makes this the most efficient method for the MGA on the array
computer

The results given in Table V are quite revealing, but the most meaningful
comparison between methods is given by the total cost to achieve convergence.
These results are given in Table VI. In Table VI the column labeled 'Transfers'
has sub-columns labeled 7-6-...-2. These indicate grid compressions from grid
7 to 6, 6-5, etc. There is a grid expansion for every compression. The column
labeled 'Relaxations' is the total number of relaxations on all grids and the
column labeled 'Overhead Cost' gives the fraction in percent of the total work
expended in 'Overhead', which is here defined as compression, expansion, injec-
tion, and interpolation. The column labeled 'Transfer Cost' lists the fraction
in percent of the total cost that is due to data transfers. Finally the column
labeled 'Total Cost' is just that, in units of a multiplication time. The solu-
tion is considered to have converged when the norm of the residuals is less
than e; the values of e used are also listed in Table VI.

The results given in Table VI clearly show the superiority of the MGA
using the Red-Black SOR relaxation scheme. This method (depending on the
problem, grid size, and convergence criterion) costs 15% to 35% less than
the corresponding Five Weight Jacobi method and only about 50% of the Single
Weight Jacobi method. The improvement over the standard parallel Red-Black
SOR method is even more striking. The MGA reduces the cost by a factor of
from four to seven as compared to the standard parallel Red-Black SOR method
for large (M = 7) problems. The standard method has, however, lower cost for
small problems (M = 5). These results suggest that, the MGA for Red-Black SOR
is the best relaxation method to use on the array computer for the large
problems of most interest in fluid dynamic simulations. A (129) grid is about
the smallest grid for which it would be worthwhile to build an array computer

to carry out fluid dynamic simulations. It is hoped that the technology will

110

eventually be available to build a 1025 by 1025 array computer with, say 512
grid points per PC. The advantage of the MG Red-Black SOR for these large
problems would be even greater.

The results given in Table VI also show that overhead cost (arithmetic
Plus transfers) of all of these relaxation methods is fairly substantial.
It is of the order of 40% to 60% of the total cost. The transfer cost is
even larger; counting transfers in relaxation, residual calculation and over-
head, it accounts for about 60% to 75% of the total cost. That is the arith-
metic operations account for only 25% to 40% of the total cost. This shows
the necessity of accounting for overhead and transfers in determining the cost
of running an algorithm on this computer. If overhead operations had been
neglected, the time cost would have been underestimated by about a factor of
two. If data transfer costs had been ignored the total time cost would have
been underestimated by a factor of three or four. If both data transfer costs
and overhead costs had been neglected the cost would have been underestimated

by a factor of five or more.
6. DIRECT SOLUTION OF THE POISSON EQUATION

There are a number of algorithms for the direct solution of the Poisson
equation in 2D and 3D which are mathematically equivalent. Each of these
algorithms generate a solution in a finite number of steps which is, in prin-
ciple, exact to within the computer round-off error. The Buneman form of
the cyclic odd-even reduction algorithm has been chosen for analysis because
it is both representative of this class of algorithms and is a practical
(numerically stable) algorithm. The nota?ion used here is a slight variant

on that used by Buzbee, Golub,and Nielson in their discussion of this, and

other, direct algorithms for the Poisson equation.

The vectors { ¥s } and { ¥. }, j = 0,I,...,m are defined so that X. is
J J J
the column vector with elements { p. . }, i =0,1,...,m and
i»J»
Y. = (Ay)2 ¥ /14 + (6 + () ¥/2) +3 2 x/3" (29)
J J 0j mj' H j
where Y.”3*" is the column vector with elements { q. . }
J i»3,a

111

/ON

Y. is the column vector with elements { g. . }
]
(3) is the column vector with elements { f. . },
(see equations 4a-4d) with i = 0,1,...,n, and where 69 and 6” have the usual
meaning. The equations (4) and (5) are equivalent to the system
A X, + 2 X, =Y, (30a)
X. + A X. Xj+l = Y¥j, j ~ O,m (30b)
-1 3 J 1.3
2 xm—l + A Xm = Ym' (30c)

2
In these equations A is B~ times a tridiagonal matrix with diagonal elements

equal to -2a, super-diagonal elements { 2,1,...,1 }, and sub-diagonal elements
{ 1,1,...,1,2 }. All of the matrices are (n+l) by (n+l) and m = 2*+4*, with
k an integer. 1In order to compare the results of thissection withthe results
given in previous sections for the relaxation methods, note that k = M - 1.
It will be assumed that the { Y* } have been precomputed and stored in the rows
of the array computer. The { X. } will also be storedin the rows.

The Buneman algorithm has two variants, of which the second is less

efficient than the first on the array computer, because it requires consider-
ably more transfers. Therefore, only the first variant will be analyzed.
The Buneman algorithm has two stages; reduction and back-substitution

(for details see Buzbee, Golub, and Nielson6). The reduction stage requires

the computation and storage in the rows of the array computer of a set of

column vectors { (2) Ay ana R’j(';‘) }, r=1,2,...,k+1.

These are computed from

A(0) - (31)
J J

PU) = Rjl}, j = 0,2,...,m (32)

J
= 2(¥x - p£l}) (33a)
- Vi +Y¥3j—-i' 2pPa)> 7 (33b)
—2(V4L -p™) > (33c)

112

Then, for r = 1,2,...,k-1

2O gd?) - 2pd - of? (34a)

A(r) R(r) = P(r + P(r> O(r

A() R%) Pj(+)2r + Pj(—2r - Qj()’ (34b)

A(r) R(r) - 2P(r> - Q(r), (34c)

m m-2L m

? = -

P?r+1> R<> (35)

J J J

g'r+l) - 2(Q> - P'r+l)) (36a)

- . 2 - _
S<r+I) Q<:>r + g<?2r 2P<—>» (36b)
~ - ' -
+1> 2(Q'rt, P<r+>») (36¢c)

where j = 12r+\ i = 1,2,...,2% r-1
Finally for r = k

A(k) .(k k) | k n(k

AE R - B LB . B (37)

k+1 k k

ALY . 4 (38)
In these equations

AO) - 3, (39a)

A(r+l) = 21 - (A(r))2 (39b)
with I the identity matrix. It is not necessary to calculate Q*k"*"* because it

may be assumed that the singular solution is zero for fluid dynamic applications.

The { Xj } are solved for in the back-substitution stage by

v _ pP(k+D

x2k - p2k (40)
A (k) R';?O = Qo(k) - 2%k (41)
¥o = po + Ro (42)

113

a) R(k) - k) - 2x2»

(43)
m

pgghggl m
Then for r = k-1,k-2,...,0

A<r) *jr) - A<r) - < \INS + x3-2r > (45)

J J J
with j = 2r, 3 x 2r,...,2k+" - 2r. Note that the { Ry} * are intermediate
results,

It is clear from an examination of equations (31) through (46) that the
major portion of the computational effort is expended in obtaining the * Rfr) 1
It is obvious that at each level, r = 1,2,...,k, the equations for the
{Rfrl } can be solved in parallel for all j by using the PC's in the individual
rows in parallel. The key to an efficient implementation of the Buneman algo-
rithm on this array computer is then the efficient solution of a ID set of

equations in a row of PC's.

6.1 Solution of a ID Problem

The typical problem is to solve the equation

BU =V (47)
for U={ u }, with V = { v. } known and stored in a set of n+l PC's. The
A 1 s+1
matrix B is (n+l) by (n+l) and n = 2 with s an integer.

The most direct way of solving for U is by matrix multiplication. B * is

precomputed and the itk row is stored in the itk PC. A total of n cell-to-cell

2
and n in cell transfers using the end around connection are required to move
all of the () into all of the PC's and arrange them in sequential order.
The calculation of U can then be done with n+l multiplications and n additions.

The cost of this method is

C =1+ 25+1 (1.70 + 0.02 x 23+1), (48)

and n+l words of permanent store are required in the itk PC for the itk row of B

114

In addition n+l words of store are needed for the temporary storage of V in

each PC.
An alternate method is to use the ID version of Buneman's algorithm. The
matrix B is, at the r*"* level, which can be written as the product of 2v
gt
tridiagonal matrices. Then U can be obtained by solving 2 tridiagonal systems

(see Buzbee, et al.7 and Swartztrauberl8 for details).

The application of the Buneman algorithm gives rise to the same problem as
the MG algorithm; initially all the data are stored in adjacent PC's, but after
one level of reduction, the relevant data are stored in PC's whose indices
differ by two, requiring two cell-to-cell transfers, etc. It can be shown that
as for the MGA, the optimum strategy for large problems is to compress and
expand the data array. Just as for the MGA, it can be shown that a total of
4(2g—1) cell-to-cell transfers are required to compress and expand the P and
Q vectors.

Apart from compression and expansion, it can be shown that the ID version
of equations (31) through (46) requires (4+14s) in cell transfers, (6s) cell-to-
cell transfers, (5+10s) additions, and (2+2s) multiplications. Ths cost of

using this algorithm is easily shown to be

C2 = 2r (2.40 x 2s + 6.88s + 0.18) (49)

The values of 2 C~A/C2 increase from 1.15 to 17.6 as s increases from 4 to 9.
It is therefore clear that for a single tridiagonal equation (r=0) the ID Buneman
algorithm is always less costly and, for large s, very much less costly than
matrix multiplication on this array computer. The reason is that for large s
the cost of the internal transfers necessary to rearrange the data for matrix
multiplication comes to dominate the total cost. However, for any s, matrix
multiplication is the less costly method for sufficiently large r because the
ID Buneman algorithm must be applied 22T times.

The matrix method requires n+l words of memory per PC for each level of
reduction for which it is used. It appears to be worthwhile to allocate this
storage because the reduction in the time cost is substantial.

The optimal strategy to solve the sequence of ID problems is then to use
the ID Buneman algorithm for small r when it is the more efficient method and
switch to matrix multiplication at large r for which this method is the more
efficient. This strategy will be used in the application of the 2D Buneman

algorithm

115

6.2 Operation Counts and Time Cost of the 2D Buneman Algorithm

Once the operation counts and time costs for the solution of the ID problem
have been obtained it is a simple matter to find them for the 2D Buneman algo-
rithm from Eq. (31) through (46). It is easily shown that just as for the ID
case, the least costly strategy is to compress the array of P and Q vectors
during the reduction stage and expand it during the back-substitution stage.

The operation counts and time costs for the ID problem, using both matrix
multiplication and the Bureman algorithm, as well as for the 2D problem, are
given in Table VII. The ID problem has n+l variables and the 2D problem has
(n+l) - (M+1) wvariables, where n = 2 and M = 2

In this table, the operation counts and costs for the solution of the ID
problem discussed in section 6.1 are given first. Note that the counts and
cost for the ID Buneman algorithm do not include the operation of compression
and expansion. The operation counts and cost of the 2D Buneman algorithm do
not include those of compression and expansion, and the solution of the ID
problems. Two sets of vectors, the P's and Q's must be compressed and expanded,
and two ID problems must be solved at each level from r = 0 to r = k.

In Table VIII the total cost of the direct solution using the Buneman algo-
rithm of the Poisson equation for the cases k = s = 4,5 and 6 is listed. The
basic cost unit is one multiplication time. These correspond to the relaxation
solutions for M = 5,6 and 7. Also given in Table VIII are the cost of solving
the ID problems and the transfer cost. Both of these costs are given as per
cent of the total cost. It can be seen that the transfer cost is always more
than half of the total cost and that the cost of solving the ID problems,
including both arithmetic and transfers, is always in excess of 90% of the

total cost.7

7. COMPARISON OF RESULTS

The results of the analysis and simulations of sections 3 through 6 show
quite clearly that the relative speed of the various algorithms depends very
strongly on the architecture of the array computer, particularly the data
transfer paths. The data transfer cost is minimum for the standard parallel
Red-Black SOR for which it is only 40% of the total cost. It is always in
excess of 50% for MG relaxation methods and the Buneman algorithm. Transfer

cost is 2/3 to 3/4 of the cost of the solution of the larger problems for both

116

the MGA and Buneman algorithm. If the transfer costs were ignored the cost of
all of these algorithms would have been underestimated by a factor of 2 to 4.
The overhead costs of the MGA are also substantial, in the range of 50% to 60%
of the total cost.

The superiority of MG Red-Black SOR among the relaxation methods is also
quite clear. It is more than twice as efficient as Single Weight Jacobi and
more than five times as efficient as the standard Red-Black SOR. The next
most efficient, or least costly, relaxation method, is the MG Five Weight Jacobi,
but it still costs about 30% more than MG Red-Black SOR.

It is difficult to compare the cost of relaxation methods with direct
methods because direct methods produce solutions which are exact (within round-
off) in a finite number of steps which depend on the problem size, while
the number of steps needed for convergence of any relaxation method depends
not only on the problem size but on the convergence criterion. 1In order to
make a comparison between direct and relaxation methods it will be assumed
that the direct method cost can be compare% to the cost of relaxing until
the norm of the residuals is less than 10 . On this basis the MG Red-Black
SOR is more efficient than the Buneman algorithm on this array computer. The
Buneman algorithm costs almost two and one-half times as much as MG Red-Black
SOR. As can be seen from Table VIII, the major portion of the cost of the
direct method is incurred in solving the ID problems at each stage of reduction
and back-substitution, and most of that cost is due to data transfers. Bearing
in mind that the wvalue of 10 for the residual norm has been somewhat arbi-
trarily chosen as giving an accuracy equivalent to the direct method it seems
clear that, on this array computer, the Buneman algorithm and the MG Red-Black

SOR methods are competitive.

8. CONCLUSIONS

It can be concluded that, on this array computer; both the MG parallel
relaxation methods and direct methods are much more efficient than standard
parallel relaxation methods. The cost of solving the Poisson problem for
the pressure field can be reduced by a factor of five by using one of these
methods. The study of a fluid dynamic simulationl’10 showed that about 80%
of the total cost per time step was incurred in solving for the pressure field.

The increase in efficiency of the Poisson solver makes possible a reduction

117

by about a factor of three in the cost (time) per time step in a fluid dynamic
simulation

The transfer costs are always at least as important as arithmetic operation
costs and for large problems, can be two or three times more than the arithmetic
operation costs.

The overhead costs of applying the MGA are about half of the total costs.

I wish to thank Dr. A. Brandt for helpful discussions concerning the Multi-
Grid Algorithm. I also wish to thank Dr. W. Lakin for a number of extensive

discussions concerning this work and for reviewing the manuscript.

118

OPERATION COUNTS AND RELATIVE COSTS FOR VARIOUS
GRID RELAXATION SCHEMES FOR 2D PROBLEMS

Operation

Jacobi Relaxation

Single Weight
Jacobi Relaxation

Five Weight
Jacobi Relaxation

Red-Black SOR
Relaxation

Calculation of
Residuals

TABLE I

Cost

4.

5.

5

7.

.0

119

TABLE II

RELATIVE DATA TRANSFER COST OF THE EXPANSION
STRATEGY TO THE IN-PLACE STRATEGY, PER MG CYCLE
FOR 2D AND 3D POISSON PROBLEMS ON THE ARRAY COMPUTER

NI =N2=2M+ !, K=,
20, L0 = 4 3p, L =6
0
L22/Ll L23/Ll
N3 = 32 64 128
M
5 0.620 11.13 22.16 44.22
6 0.574 10.90 21.74 43.42
7 0.544 10.79 21 .54 43.05

120

TABLE III

OPERATION COUNTS AND COSTS FOR VARIOUS OVERHEAD
OPERATIONS USED IN APPLYING THE MGA

Operation N* N, N Nm Cost
Compression

(Level M - M-1) 0.6 x
Expansion M

(Level M-1 M) 0 0 0.6 x
Injection 0 1 1.0
Weighted Injection 8 2 7.6
Linear

Interpolation 5.1

TABLE IV

ERROR REDUCTION EFFICIENCY PER UNIT WORK

THERE ARE K ITERATIONS PER MG CYCLE ON A 2+ 4+ 1 BY 2M + 1 GRID

X x 103

Single Weight Jacobi (y = 0.60)

K 1 2 3 4
M
5 2.00 2.11 1.93 1.71
6 1.33 1.52 1.45 1.31
7 0.81 0.99 0.98 0.91

Five Weight Jacobi (y = 0.22)

K 1 2 3 4
M
5 3.39 2.62 1.99 1.58
6 2.25 1.85 1.45 1.18
7 1.45 1.29 1.05 0.87

Red-Black SOR (y = 0.50)

K 1 2 3 4
M
5 2.29 2.38 2.13 1.85
6 1.50 1.66 1.53 1.35
7 0.96 1.13 1.08 0.98

122

TABLE V

RESULTS OF SIMULATIONS OF SEVERAL MG
RELAXATION METHODS FOR PROBLEMS 1 AND 2
THE METHODS, PROBLEMS, AND SYMBOLS ARE EXPLAINED IN THE TEXT

Problem M y X x 103
Theoretical Observed Theoretical Observed
Single Weight Jacobi (&g = 1.0)

1 5 0.640 0.653 2.11 2.60
6 0.691 1.52 1.85
7 0.604 0.99 1.06

2 5 0.642 2.11 2.56
6 0.631 1.52 1.69
7 0.617 0.99 1.08
Five Weight Jacobi (o* = 48/41, (02 = 8/41)

1 5 0.952 0.829 2.62 2.79
6 0.821 1.85 1.091
7 0.820 1.29 1.28

2 5 0.918 2.62 3.09
6 0.903 1.85 2.10
7 0.894 1.29 1.40

Red--Black SOR (0 = 1.0)

1 5 0.750 0.919 2 .38 3.04
6 0.919 1.66 2.09
7 0.920 1.13 1.41

2 5 0.952 2.38 3.21
6 0.947 1.66 2.34
7 0.954 1.13 1.54

123

Problem

124

M

TABLE VI

OVERALL PERFORMANCE OF A STANDARD PARALLEL RELAXATION
METHOD AND MG RELAXATION METHODS FOR PROBLEM 1 AND 2.
THE PROBLEMS AND SYMBOLS ARE EXPLAINED IN THE TEXT.

THE UNIT OF COST IS ONE MULTIPLICATION TIME.

Overhead Transfer
Transfers Relaxations Cost $% Cost %

7-6-S-4-3-2

MG Single Weight Jacobi (&0 ==1.0)

e = 10-2
0 06 655 69 38 57
07776 6 102 48 64
77T 77176 130 58 71
e=10"
0071776 84 38 57
0 888817 119 50 67
8 8 8 8 8 4 137 62 75
e = 10"6
13 13 13 13 13 7 226 58 76
MG Five Weight Jacobi = 48/41, Cd2 = 6/41)
e =107
00 44143 48 32 58
055553 72 42 64
55555 3 87 53 71

Total
Cost

1441.

2544.

4039.

1747.

2851.

4312.

6860.

1176.

2077.

3126.

Problem

Transfers

TABLE VI CONT

Overhead
Relaxations Cost %
-4
e = 10
42 30
47 43
56 55
£ = 106
96 55

Red-Black

ro

-2
= 10

44
56
68
-4
= 10
42
49
60
= 10 6

106

SOR ((0 = 1.85)

59
267

1132

MG Red-Black SOR (0J = 1.0)

40

48

58

43

50

60

54

Transfer
Cost %

58

65

72

72

59

64

71

60

65

72

80

40

40

40

Total
Cost

1002.

1368.

2074.

3569.

878.

1291.

1934.

879.

1167.

1798.

2790.

708.

3204.

13584.

125

Problem

126

TABLE VI CONT

Overhead Transfer

Transfers Relaxations Cost % Cost %
ey 1o
57 0 40
185 0 40
674 0 40
e = 10-6
1282 0 40

Total
Cost

684.0

2220.0

8088.0

15384.0

TABLE VII

OPERATION COUNTS AND TIME COST FOR THE COMPONENTS OF THE

DIRECT SOLUTION ALGORITHM FOR THE POISSON EQUATION

Operation Nt

Compression &
Expansion of 0
One Vector3

Motrix

Multiplication (28+1)2

ID Buneman
Algorithm 2r (4+14s)
Compression &

Expansion of One 0
Set of Vectors**

2D Buneman *

Algorithm 6+3k

cl
The

The

s
ID problem has a (2

Nm
T

2(2s-1)

25+1

2xr (6s)

2 (2k-1)

8+6k

+1) by

g.
(2~
ID Buneman algorithm also requires compression and expansion of two vectors

N N
a m
0 0
25+1 1+2s+1
2xr (5+10s) 2xr (2+2s)
0 0
16+8k 0

A

+1) matrix and (2

and solution of 2r tridiagonal systems.

bThe

4-1
2D problem has (2° +1) (2

|c"t" 1 +1)

unknowns.

Cost

1.2 (2s-1)

1+2S+1(1.70 +
0.02-2S+1)

2r (2.58+6.88s)

1.2(2k-1)

6.52+4 .46k

+1) element vectors.

The 2D Buneman algorithm also

requires compression and expansion of two sets of vectors and the solution of
two ID problems at the levels r = 0,1,2...,k.

127

128

TABLE VIII

TOTAL COST OF SOLVING A 2D POISSON PROBLEM
USING THE BUNEMAN ALGORITHM, WITH

k+l = s+1 = M

Cost of ID Solutions Transfer Cost
(% of Total) (% of Total)

92.5 55.0

95.4 63.0

97.6 68.5

Total Cost

799.8

2243.0

6808.1

CELL ARRAY

ONE CELL

ADDER
REGISTERS

Figure 1. Schematic representation of the cell-array computer
and a typical Processing Cell.

129

(-2, j) (i-i> 3) a j)

. wr us
pu Pi-1, j! PI",J
(i-2, j-D (-1 J-I) (G, j-1)
RiJ ,j=L; —Pij~rd |
T i i -l
Ei-1»j ipi,j-1
Pi, -1
Pi-1,5-1
(i-2, j-2) 1 (i-1.j-2) (i, j-2)
—P-i-1~1 —Ai-24-2 __Pinl,j-2_ 'Ui-1—"i ., 5

Figure 2. A section of the array. Each block represents one
PC, which is labeled with the appropriate indices.
The heavy lines deliminate the primitive correction
block; all fine grid solutions in this block are
corrected by the coarse grid solution and the
correction algorithm is periodic, with period 2 in
both the i and j indices.

130

REFERENCES

1.

10.

11.

12.

13.

14.

E. C. Gritton, W. S. King, I. Sutherland, R. S. Gaines, C. Gayley, Jr.,
C. Grosch, M. Juncosa, H. Peterson, "Feasibility of a Special-Purpose
Computer To Solve the Navier-Stokes Equations," Rand Corp. report
R-2183-RC (June 1977) .

S. A. Orszag and M. Israeli, "Numerical Simulations of Viscous Incom-
pressible Flows," Ann. Rev. Fluid Dyn., M. Van Dyke, W. G. Vincenti, and
J. V. Wehausen, Ed. s, 281-318 (1974).

S. A. Orszag and G. S. Patterson, Jr., "Numerical Simulation of Turbulence"
Lecture Notes in Physics, Vol. 12. M. Rosenblatt and C. Van Atta, Eds.
(Springer-Verlog, Berlin, 1972) pp. 127-147.

R. W. Hockney, "A Fast Direct Solution of Poisson’s Equation Using
Fourier Analysis," J. Assoc. Comput. March 12> 95-113 (1965).

R. W. Hockney, "The Potential Calculation and Some Applications" Methods
in Computational Physics, Vol. 9, B. Adler, S. Fernbach and M. Rotenberg,
Eds. (Academic Press, New York, 1969) pp. 136-211.

B. L. Buzbee, G. H. Golub and C. W. Nielson, "On Direct Methods For
Solving Poisson's Equation," SIAM J. Numer. Anal. 7, 627-656, (1970).

A. Brandt, "Multi-Level Adaptive Solutions to Boundary-Value Problems"
Math. Comput., 31> 333-390 (1977).

R. A. Nicolaides, "On Multiple Grid and Related Techniques for Solving
Discrete Elliptic Systems," J. Comput. Phys. 19, 418-431 (1975).

K. M. Case, F. J. Dyson, E. A. Frieman, C. E. Grosch, and F. W. Perkins,
"Numerical Simulation of Turbulence," Stanford Res. Inst. Tech. Kept.
JSR-73-3 (Nov. 1973) .

C. F. R. Weiman and C. E. Grosch, "Parallel Processing Research in Computer
Science: Relevance to the Design of a Navier-Stokes Computer," Proc.
1977 Int'l. Conf. Parallel Processing. (In press) .

W. L. Miranker, "A Survey of Parallelism in Numerical Analysis,"
SIAM Rev. JL3, 524-547 (1971).

J. F. Traub (Ed.)"Proceedings of Conference on Complexity of Sequential
and Parallel Numerical Algorithms," (Academic Press, New York, 1973) .

H. S. Stone, "An Efficient Parallel Algorithm for the Solution of a
Tridiagonal Linear System of Equations,”" J. Assoc. Comput. Mach. 20,
27-38 (1973) .14

H. S. Stone, "Parallel Tridiagonal Equation Solvers," ACM Trans. Math.
Software, 289-307 (1975).

131

15.

l6.

17.

18.

132

A. H. Sameh, S. C, Chen, and D. J. Kuck, "Parallel Poisson and Biharmonic
Solvers," Computing, _P7, 219-230 (1976) .

J. M. Ortega and R. G. Voight, "Solution of Partial Differential Equations
on Vector Computers," Inst. Computer Applications in Science and Engineering
(ICASE) Kept. 77-7, NASA Langley Research Center (March, 1977).

W. F. Ames, "Numerical Methods for Partial Differential Equations,"
2ed Ed. (Academic Press, New York, 1977), pp. 103-106.

P. N. Swarztrauber, "The Methods of Cyclic Reductions, Fourier Analysis
and the FACR Algorithm for the Discrete Solution of Poisson's Equation
on a Rectangle," SIAM Rev., J*9, 490-501 (1977).

VECTORIZED FORTRAN SUBPROGRAMS FOR THE
SYMMETRIC FAST FOURIER TRANSFORMS

t>y

Paul N. Swarztrauber
National Center for Atmospheric Research
Boulder, Colorado 80307

ABSTRACT

In addition to the usual real and complex periodic
transforms, the package contains programs for fast sine, cosine
and quarter wave transforms. The package has been used to solve
constant coefficient elliptic partial differential equations us-
ing the Fourier method where the symmetric transforms are used in
the event the boundary conditions are not periodic. For example,
if the solution is specified on a boundary and its derivative is
specified on the opposite boundary, then a quarter wave transform
can be used and the application of the Fourier method is not res-
tricted to problems with periodic boundary conditions. The sym-
metric transforms are performed by preprocessing the data into a
complex periodic sequence. The coefficients for the symmetric
transform can then be obtained by post processing the complex
transform. The programs are written in standard FORTRAN in such
a way that they are vectorized by the CRAY compiler. Sorting is
not explicitly required in the complex transform which uses a
data structure in which sorting is done implicitly. Timing com-
parisons are presented and several aspects of the implementation
of the FFT on the CRAY-1 are discussed.

133

A PARALLEL ALGORITHM FOR SOLVING BONDED LINEAR SYSTEMS
ARISING FROM SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS
IN TWO DIMENSIONS

by
V. Ellei
D. Parkinson
International Computers Ltd.
London, England

ABSTRACT

A new iterative method is proposed for dealing with sparse

linear systems typically arising from finite difference represen-
tations of second order partial differential equations in two di-

mensions.

The time for a single iteration is proportional to

log2N where N is the largest number of mesh points in either of
the two dimensions.

equation will be represented

The results of some experiments using the method on Poissons

although the method is quite gen-

eral and can be applied to more general equations on non uniform
rectangular meshes.

134

FINITE ELEMENT DYNAMIC ANALYSIS ON THE STAR-100

by

Jules J. Lambiotte, Jr.
NASA Langley Research Center
Hampton, Virginia 23665

ABSTRACT

Work is in progress at Langley Research Center to develop a
model finite element code for the dynamic analysis of structures.
Higher-order finite elements are used to describe the spatial
behavior. The temporal behavior is approximated by using either
the central difference explicit scheme or Newmark's implicit
scheme. The total computational algorithm is broken up into a
number of basic macro-operations. This paper will discuss the
data organization and vectorization procedures used to implement
these macro-operations on STAR. In particular, the procedures to

generate the element stiffness and mass matrices,

to decompose
the global matrices,

and to multiply the global stiffness matrix
by a vector will be discussed and sample times given.

135

SOME VARIANTS OF METHODS FOR COMPUTING THE VARIANCE

by

T. Chan, G. H. Golub, R. LeVeque
Stanford University
Department of Computer Science
Stanford, California 94305

ABSTRACT

We consider the problem of computing the sample wvariance in
a numerically stable manner. We describe several algorithms

which can be implemented on a variety of computer architectures
and give an estimate of the error.

The results of numerical
simulations will be presented.

136

A DIRECT POISSON SOLVER ON STAR
by
M J. Kascic, Jr.
Control Data Corporation

Arden Hills, MN 55112

1- Introduction:
The study of three dimensional turbulent channel flow with

pPlanar homogeneity involves the solution of the Poisson

Equation

VAf = g

on a rectangular parallelepiped

with the following types of mixed boundary conditions:

f-COTyiZ} f {A*nyTZ}
£ {xT 0-izy f{xnA*nZ}
ffxry)0} £Q-Cxiy}
ffxn yr A1 frfxnyl
i-e- periodic in x and y and Dirichlet in z
and
-
£{0 iyr z} f-Car-iy iz>
f{xilliz} f{xT AgizJ
3fl1xryrA-nl = g = dflxiyiOl
~

i-e- periodic in x and y and Neumann in z.*

*This work was supported by a CDC Sponsored Research Award for "Research in
Numerical Fluid Mechanics Using the CDC STAR Computer".

137

In this report we shall discuss the solution of the
discretized Poisson Equation with boundary conditions It
using a cyclic reduction algorithm on the CDC STAR IDO and
100A computers. It is planned to study a gamut of Poisson

solvers on STAR for such an application.

2. STAR Architecture

The interested reader is invited to consult the relewvant
literature -C2}1r {3}r -CS> for details of the STAR
architecture. Ue shall recall highlights.

The major components of the STAR we will consider are the
memoryi the stream unit and the floating point unit- We

shall compare and contrast these for the STAR 100 and 10DA-

Memory: The STAR 10D half million word machine utilizes a
nDh core memory that consists of 32 phased banks containing
IbK words each. On the one hand the cycle time for an
individual bank is 1-26 j*sec. which implies that a random
load/store busies a bank for 31 cycles. On the other handn
when streaming! i-e. when linear access is made to memory!
four independent streams can be sustained to/from memory at

a rate of 2 !/ bit words/MD nsec. each. This implies a

total bandwidth of 12.A gigabitsi a high rate even by today's

standards.

It is quite obvious that efficient usage of the STAR 100

memory demands a "linear" or "vector" access mode.
The STAR-100A million word memory! by contrast! is LSI and

consists of 12A phased banks containing AK words each.

Both access and cycle-time for this memory are AO nsec-

138

{2-1}

Stream: For our purposes we shall only need to know that
the stream unit contains the register file and the control
with ancillary buffers to allow the memory fin either case}

to perform as indicated above-

On the STAR IDDn the register file consists of 25b program-
mable b4 bit registers with one read from and write to

per 40 nsec- in scalar mode- On the STAR IOOAr the register
file also consists of 5Sb programmable 04 bit registers but
two reads and one write may take place each 20 nsec- in

scalar mode-

The STAR 100 has two general purpose segmented functional
units that perform both scalar and vector floating point
operations- When in vector modei these units are kept
busy processing operands which are streamed in and out of
memory using the high bandwidth stream rate. Thus the
effective megaflop rate is independent of the pipe length-
The time to do a vector add/multiply of length N is

2f140 + 2DN / bBbD + 40N nsec-
By definition! a vector on STAR consists of contiguous

elements.

In scalar mode the effective time to do an arithmetic

operation depends on many factors such as 1- whether
operands are in the register file 2- how many independent
operations are to be done 3- the existence or lack
thereof of register file conflicts! etc- We will illustrate

these points later-

Naturally on the STAR 1DD! vectorand scalar arithmetic

cannot be done at the same time-

139

The STAR 1DOA has an independent scalar box with special
purpose segmented units for add and multiply {as well as
others we need not mention}. Because of this independent
uniti the STAR 10BA can issue a vector instruction and go
on to process scalar instructions that do not reference

memoryl
Ue will bring out other features of the architecture as
they become important to the discussion of the problem
at hand.

3. Discretized Poisson Equation

Ue shall solve the discretized Poisson equation on the

rectangular parallelepiped

The discretization consists in imposing a mesh of points

with
coordinates {1-1>Ar Tk-11A-. jA 3 1=1,Ll k=1nKl j-On
with A

A typical point will be written {1likij} and any quantity f£
defined at that point will be written fﬁnk j
Ue now use a standard second order central difference

approximation for the partial derivatives occurring in the

equation! viz.

140

f o 1rk4y 11kij 1+1rkij
11k j

the y and * directions treated mutatis mutandis.

Hence the Poisson equation is replaced by a set of
simultaneous linear equations with a typical one having

the form:

A1-1ikij lik-1ij likij-1 A Inkij AInkij+1 AInk+1ij

+ £1+4i,k, j = A2gi,k, j

Since our boundary conditions are periodic in x and y and

Dirichlet in z we have

= sFDE1"~ Tk A } |

llx:1o0
1=—1 ' T.i
~d1ki T~ = £.—c1 A —.ka } I
a3 /
L+lrtk-j DTkT3J k=1-,K §—1i -—=1
FI1nNnoOnj
A"l ix+115 J =1 "T1.1 =1

Hence the unknowns consist of the set

£{~1ikis i T =1 135

ITn +this raper we will Fizx ouxr attention on the

case

Ji=t4 'Li=Ki=32-

If we order the unknowns as follows:

14141 1lilibB 1T2-11 113211 1T32-1L33

"t £321111 £32-,1nb3 £32,32-,1 £32n32-.b3

the discretized Poisson equation becomes 32x32xb3 = b4512

linear equations is b4S12 unknowns which has the following

block periodic tridiagonal form:

with block dimension = 32 and each B has the same

block periodic tridiagonal form:

142

with block dimension K = 32 and each A is b3xb3

tridiagonal of the form:

1 -6

In an attempt to set up a clear picture of this block

structure! 1let us illustrate for L, = K-, = |
A1 O1I 1 000O0OO0OOOTIOO0O
1 A1 0OOI1 0O0OOO0OOGOT OTIO0O
O1L A1 O0OO1I1O0DO0O0OOOOOTIO
1 01 AOOOTI O0O0OOUOOTU O]
1 00O0OAT1OI110O0O0O0O@ OO
01 0011 A1 0O0OT1I1O0O0GO0UOT OO
001 O0O11 AT OOTIOOO OGO OGO
0001101 AO0OO0OOTIO0OTU OO
00001 0O0O0OATOITOO0O
0000OTI1O0O0OTIATLIOOTIOOQO
0000O0O0OTI1O0O0OTIAILIOOTID
0000O0OOOTILTITIOTI1 AOOTU O.I
1 000O0O0OOTIO0OOOA ATl 01
01 000O0DO0OO0OOTI O0OTILI ATILO
001 00O0O0OO0OOCOTIOOTI A
0001 000O0O0OOTOTIL 11 O0OT1 A

143

{4-1}

{4.E}

{4.3}

{4.4}

144

Block Cyclic Reduction

tile shall now discuss the algorithm used to solve the
blocked form of the discretized Poisson equation!
Bunemann variant I of block cyclic reduction. A complete
discussion of this algorithm including a proof of
numerical stability can be found in -Cl >H LJe shall

recall some necessary details using the notation of { 1}

Henceforth = and = +

Consider three consecutive block equations wusing the block

level of {3.5}

* B *5n-1 + x5n y5n-1
x5n-1 + B X5n + x5n+1 = y5n
X5n + B X5n+l1 + X5n+5 y 5n+l

If we multiply the middle {even} equation by {-B} and
add all three equations together! we get

*en-B + IC2I~B > x5n + xBn+5 = y5n-1"By5n+y5n+l

If we carry out this process for all the even equations-

{4.5} becomes another block periodic tridiagonal system

*spn-s * B >xEn * *2n+l y T}
5n

in the even block wvariables with

B*1]! = 5I-B? 4c¢

and V5n-1 By5n + y5n+l

Concomitantlyr the odd equations taken together yield a
block diagonal system that one can solve for the odd

block wvariables given that the even variables are known:

{4.5} B *4n-1 - Y3dn-1 -~ {¥spn-g * ¥*an!

This reduction phase can be repeated again and again

until a d x d block system remains

In carrying out the various stages of the cyclic

one generates at the {r+l}st stage:

fr+l
{a.py pfrtil a - strté
o+l , r A r} 1
{ } {r} % yr{1+}2r> B{r> y Cr>
n n
One can show { 1 }i that
r
(4.7} B3 = —T?" { B+tdcos &r I y r < L+l
J-u J
where -~ r {dj-1ITT
<) -, r+l r< 1L
and L+1 -jjr
e . ar
J
Direct usage of {4.b> to evaluate the right hand side for
progressive stages of the reduction! however! is numerically
unstable. The instability can be eliminated however! by
the following method due to Bunemann-
Define P{r} . {r} such that
D)
(4. A} {r> p {r> + qg{r> = yCr>
) n n

145

146

Thus at each stage of reduction! one has

B—Cr>x
n
. . -CrT .
It is shown in { 1> that the norms of the ¢ remain
bounded and that the become "good" approximations
to x_1
n
Implementation

The algorithm described in section M is implemented on
STAR to solve the problem discussed in section 3 as

follows:

There are three levels of calculations:

Level 1lembodies cyclic reduction at the level of -C3.B}.
Level Bembodies cyclic reduction at the level of {3.3}.
Level 3embodies the LU decomposed tridiagonal substi-

tution at the level 3.M.

Levels 1 and 2 are written in STAR Fortran using explicit

descriptors { 5} to access STAR'S vector hardware.

Level 3 is written in META {the assembly language for
STAR} - The reason for this will be clear when we discuss

this level.

Because STAR vector performance gets more efficient with
longer vectors {allowing more operations to amortize
startup}! besides the actual arithmetic! at levels 1 and B!
there will be data motion to rearrange elements into proper

long vectors-

Let us outline the database requirements. The RHS of
resides in an array k>553b {= 33x33xh4> words long.
The bM513 -C= 32x33x!=i3> wvalues are distributed according
to the scheme outlined in section three for the f wvalues
with each bMth word blank- Thusn the two block sizes we
shall work with arei b4 at level 2 and t» x {=2D4fi>

at level 1-

As the solution progresses! the p wvalues will overwrite
the RHS values! so that when we are done! the solution will
fill the original array! a not uncommon practice to cut

down memory utilization-

Notationally! we shall use singly subscripted variables
Xj! to refer to blocks of length 204A at level one and
doubly subscripted variables Xj* to refer to blocks of
length b4 at level two! which will be subblocks of X--

An ancillary array Bi of length 3/4 x +* x +* x 14

{= 4H1S2> words will be used to carry the Bunemann P._cﬂ

{r>

vectors along- {The ¢q will reside as intermediate

results in the X array.Jd

Level 1

Upon entering level 1! the following situation exists:

147

HCS.2}

-Cs.3}

148

The level 1 blocks of the X -C(B array resp.} will be
denoted by x—J -CBJI resp]-. Thus the above tableau has

Xj = vj j = 1,32

Cl>

Since the first step is to calculate p2j- such that

= v27 j = 1liltn we rearrange the X array sorting

out even and odd blocksn wviz.

vyl y3 . y31 y2 yi4 . y 32

This is accomplished by 3fl vector moves of length ED4fi.
Then level 2 is called to solve
= v23 j — 1Tlb

The ppj**“'s overwrite the Xgj Hence at this point:

” _Cl} A 2"
yl y3 ' v31l p2 ’ p32
The formulae to calculate are given in {1 > as
- 2p2n>
q? = vyl + y3
, . -C1* 23+i ' 2p23{1> .
rqaj - yBj-1 + Y<3 P23 { j - 2n1s
. {i>
q32 = y32 + yl 2p32

The calculation of {S.3> involves MS x 2DM6 {= TSSOM}
arithmetic operations. Let us carefully outline how this
particular kernel is calculated on STAR since comparable

situations arise repeatedly in the solver-

A glancing acquaintance with STAR will yield the fact that
{5.3} could be done in 3 x 1lb {= Mfl} wvector operations.
Howeveri {2.1l} makes clear that for a fixed amount of
arith.vieta Cr we should strive to minimize the number of

vector instructions to minimize startup time-

In the present case! the data is so arranged that five

vector instructions accomplish {5.3}.

x1? X1l6 X 32
_ , n 'C:IL> r! — ' " 11}
Instr 1: dove P2 P4 32 }
Bl B2 Blh

This is one vector instruction since all the blocks to be

moved and the targets to be filled are contiguous.

Also note that j=1'1lb are now free.

Instr. 2: Subtract

X2 __MLb

yl y3 ' v31
n il . r! {:1>

P2 Bt P32 {

X17 hi, X 3P

149

Instr- 3: Subtract

X1,1 "32
-Cl ' -cu
yp2) y3xrp32
Bi Blb
-Cl}
-Cl '
o2 M p32
X17 X32
Instr. 4: Add
! tai
yx=2p2{:L> . y2cf Bp3o'C:L>
X2 X1.
y3 . y31
X17 X 31

150

Instr* 5: Add

A31!

y31f 2p32

At this point we have

X1 X5 X1,h
vyl y3) y31
Bl BE ht

-ci> b g N
pP3 PM . P3E

X3P

§3E

151

A block sort of X1? eee X32 and LX) yields:

X1 XE X1b X17 XI1fi *xs4 XE5 o
““““ j X r, 1[1> , ill . A -Cl} © == .
yl y3 5 y31 = ab 93n ad G3E
BE
1b
n {1> n IC1> -Cl1} -Cl} . ECl}
PE Pb . P30 j =1 '3B

This completes the first stage of level !o Effectively

we have uncoupled variables

Bl ml 'BE from wvariables X1"X3n 371
Basically the same process is repeated for stages two
through five. One particular difference is that the RHS

of needs to be calculated before the call to level E.

The steps are:

-CS.M> -Ci} Two or three vector instructions to calculate the RHS
ECii> Call to level E to solve {M-T}

E

{iii} Four or five vector instructions to calculate qj P

-Civ} Two block sorts to rearrange data.

At the conclusion of the fifth reduction stage of level 1

we have
Xi, XE Xlb X1,7 xE4 X< s X?A X?H X30 11 > B
-Cl} , 0 -C3} 0 -C3}
vi y3 ¢ y31 * g30 " gM qgifl gl gEM gib
B1 BE BA BH B10 B BIE SF o Bl B1S 1lib
&
m 1 -cu D IC2>L n <-Si
-Cl} rr -CE} —[4}

PS Pb : P3D p4 P1E f5E0 PEA o6 PE4plbt " 5y

Now we begin to backsolven starting with

B'cs> fX ucs> B HCS}
b ~ Py} T d1p

152

The outline for the successive substitutions is very similar

to 15.4} except that we block merge at step -Civ}.

To complete our discussion of level 1li we shall present an

analysis of the execution time.

Except for negligible scalar overhead-i 1level 1 consists of
vector arithmetic and data motion. The vector arithmetic
performs 47513b floating point operations in 1-bb msec- for
a megaflop rate of 4(].E. However-i to be honest one must
include the data motion execution time since it is an
integral part of getting the vector performance- This
raises the execution time to 17.5S msec- for an effective

megaflop rate of E7.D-

Level 2

At various stages of level 1l-i it is necessary to solve

equations of the form

o-Cr} r —Cr+1}) »o, 117} r I>m} , In} ,
B <Pj - Pj > - qj - {Pj_ar * PJt2r>
Each matrix B + 2 cos in the decomposition of is

block periodic tridiagonal of the form {3.3} except that

the diagonal wvalue will vary.

Hence level 2 must solve a recursive sequence of block

periodic tridiagonal systems of the type solved in 1level 1.

A given call to level two demands 2 recursive block

tnaiagonal solution with 2° RHS's-

153

-Cs. 5}

-CS.bl

154

Call the RHS's 2,1 Note that each Z
J

itself has a block structured hence we have

o 7 - Tt 7S, N 2

Upon entering level 5 we first block transpose -CS.S}
allowing us to use a simultaneous solution approach to

the 5° RHS's. At this point we have

With the following exceptions in mind-i the rest of the

treatment of level 2 is identical to level 1:

*Ci} Several recursive systems are to be solved. This
involves nothing more than an extra 10 loop and some

indexing arithmetic.

°Cii} At each stage of level 2 reduction and back substitu-
tion! point tridiagonal systems will have to be
solved by 1level 3. These point tridiagonal matrices

have the form:

- b + 2 cos e'Cr> -Cs>

With the O term arising from the particular stage of
fs}

level 1 reached and the o * term arising from the

-Cr}
A

particular stage of level 2 reached.

As in level oneT let us summarize the execution rates

achieved at level two.

A total of SfiSOfilb floating point operations are accomp-
lished in £f1.MB msec- for a megaflop rate of 31.1.

Howeveri if we add in the data motion! the time rises to
1fil.13 msec* for an effective rate of 15.7 megaflops for

level two-

Level 3
At level three we actually solve the point tridiagonal

systems generated at level two.

The number of RHS's to be solved for! NRHSi and the number
of recursive tridiagonal systems for each RHS! NTRI are

related as follows:

for NB =

NRHS NTRI
NB 32
NB 1b
BNB a
4ANB 4
6NB 2

IbNB 1

We now seek an algorithm to efficiently solve NTRI tri-
diagonal system with NRHS right hand sides efficiently on

STAR-

One possibility is to simultaneously solve the various
RHS's in vector form using the standard LU decomposition.
This involves more data motion to line up the operands

and only results in a mean vector length of 33. Thus

it can be discarded.
155

-Cs.7}

156

One can also use straightforward point cyclic reduction.
This may be a viable alternative on the STAR-1DDB with

its improved merge instruction. Howevern compared to

the algorithm usedi it is marginal at best on the STAR-100

and certainly inferior on the STAR-IOOA-

Let us now discuss the algorithm of level three. There
are b3 x L.4/3 {= 201b} different bB x bB tridiagonal

matrices each of the form

if one examines the LU decomposition for such a matrixn

-Cii} In the -substitution phase one wishes to divide by

the bE's i-e. to multiply by 1/bj

Hence the LU decomposition of {5.7} can be held in bB

words.

In cases {such as the present} where the Poisson solver is
used each time step in a transient problemn it becomes
possible to once and for all produce the 201b LU decomp-

ositions and store them in 127005 words.

This method has been utilized in the present casei and
we store each LU decomposition in a o word block.
Moreover! the present version actually stores all L>3*
decompositions in a E'UBIMM word array. This allows

smoother paging characteristics'

The total LU data occupy 4 large pages of STAR virtual
memory . With the advent of the million word TIL large
page} STAR-1DQAi and larger memories on the horizon!

this subsidiary data base is no longer frightening.

Thus! level three carries out the substitution phase of
the LU decomposed point tridiagonal systems generated

by levels one and two-

Since this algorithm is recursive! it would seem to imply
a tremendous degradation of performance from the standards
attained by levels one and two- While it is true that
STAR-10D performance of level three is not as good as
levels one or two! it is still respectable- Moreover!

the performance of the STAR-1DDA on level three is

comparable to that of level two.

The main impediment to high performance scalar code on
the STAR-1DD is the load/store bottleneck e.g. a succession
of loads causes a} memory bank conflicts and b} result

address register overload.

We can circumvent this problem using the SWAP instruction.
This instruction allows one to store the contents of a
contiguous set of registers to a contiguous set of {virtual}
memory locations while simultaneously loading the contents
of some other contiguous set of memory locations to the
register file. {This instruction demands that an even
number of words be moved in either direction and the memory

addresses that start both the load and store stream be on
157

double word boundaries. Hencen our passion for bM word
blocks instead of b3.} After a bE cycle startup! this
inst ruction moves two words in and two words out of the

regi ster file each cycle!

The next problem we face is the recursion. Let us discuss
two facets of STAR architecture that ameliorate the

situation for recursion.

Firstn we need some further data about STAR-

STAR arithmetic scalar instructions are register to
register i-e. two registers supply the inputs and a third

accepts the output-

The flETA mnemonic for multiply and subtract are HPYS and

SUBN.

There are four epochs of importance to a scalar arithmetic
instruction a> begin issue b> issue c¢> shortstop

d} register file arrival.

a} is the epoch at which one can consider the instruction
to begin whatever processing is necessary for it to issue
{suich as procuring operands from the register file}.

b> is that epoch at which the instruction commences usage
of the functional unit d} is that epoch at which the output
is returned to the register file. As we go alongn we will

explore c>

158

Suppose the b3 wvalues of 8j are in registers L3--*Lt3
with in LbM and the b3 wvalues of a RHS are in
registers P1l...PH3. The following instruction stream

will execute the forward phase of the solution and deposit

the solution in registers P1l...PH3
nPYS LE- Pl-. TEMP
SU BN PBn TENPn PE
ripvs L3r PBn TENP
S UBN c8., TENPi P3
L)
1)
HPYS Lb3n PE2-, TENP
SUBN Pb3n TENPr Pl=3

If we time this instruction stream for the STAR-10Ch the
first multiply begins issue at cycle Dr issues at cycle 2
and reaches the register file at cycle 1?. Howeveri at
cycle 12 the output operand is available to be put right
back into the functional unit if that is in line with the
instruction stream- This is the shortstop capability-

In this case the opportunity to use the shortstop operand
occurs for each instruction- This opportunity continues
right through the instruction stream for the back substi-

tution-

Ue are not done yeti however- Notice that the cycle epochs

for the first four instructions are:

a b c d
D 12 17
ID 12 Ifi 23
1b Ifi 2f1 33
2b 26 3M 3H

159

-cs.fi>

160

There is a lot of dead time between these instructions! wviz.!

we are only getting one floating point result each 6 cycles.
If we can squeeze in some other useful work! w'e can increase
the effective megaflop rate. Uhat we can squeeze in is
another forward substitution: In most cases ait level
three there are at least two RHS's: Since we have 25b

registersn there is ample room to put another RHS in

register (21...t2b3. Then consider the instruction st ream
f1PYS LZ! Pl-. TENP 0 2 12 Iv
nPYS 12! f£11! TENS 2 4 14 10
SUBN pP2! TENP! P2 10 12 Ifi 23
S UBN S2i TENS! S2 12 14 20 25
nPYS L3! PE! TENP 1b is 2f1 33
NPYS L3! S2! TENS Ifi 20 30 35
SUBN P3! TENP! P3 2b 2fi 34 30
SUBN S3! TENS! S3 21 30 3b 41

It is easy to see we have increased thie effective execution

rate to one floating point result each { cycleSr 0 respectable

if not spectacular b-ES megaflops.

In its present form! level three has an outer loop on pairs

of RHS 's. At the beginning of each pass through the outer
loop we can simultaneously SUAP in two new RHS 's and SUAP
a total of ESh words!

out two solutions! in 12b cycles.

The inner loop begins by SUAPing in a new set of a'si a total
of tI words in cycles- It then proceeds through the 41S
arithmetic instructions to complete a forward and back

substitution.

Level three performs floating point operations in

1.fl1b sec- for a megaflop rate of 4.1.

In addition to the three components already discussedi viz-i
vector arithmetic! vector data motion and META register file
scalar arithmetic! there is also overhead! to take care of
such housekeeping duties as subroutine linkage! descriptor
setup and integer index arithmetic. This overhead takes
approximately .14 sec. To sum up! on the STAR ![T]! we

have performed 1E5050AA floating point operations in 2.2 sec-

for an overall 5.7 megaflop rate.

STAR 1DOA and Beyond

Let me briefly discuss the projected performance of this
program on the STAR 1Q0A whichi at the time of this writing!

is in final checkout-

The vector performance of levels one and two! of course! will
not be affected. The improvement will come in the scalar

arithmetic of level three and the overhead.

The four instruction kernel illustrated in -C5.A} executes

in 1b 4D nsec, cycles on the STAR IDO- On the STAR 1DOA

this same kernel will execute in ID 20 nsec, cycles. Further-
more! the significantly improved load capability of the

STAR 1DDA allows the inner loop SWAP to be replaced by

loads sprinkled throughout the forward substitution- All
toldi it is projected that level three will execute in

.5A sec- on the STAR 1DOA! which results in a 15.A megaflop

rate.
161

162

It is more difficult to tightly estimate the performance of
the overhead on the STAR inOA- One of the main reasons for
this uncertainty is that much of the overhead will be over-
lapped with vector arithmetic- !ilc estimate that the over-

head will execute in .04 sec-

With these estimates for level three and the overheadn one
can project an execution time of -S5 sec- on the STAR 100A

which results in a 15-3 megaflop rate-

Future enhancements to STAR architecture will not only
improve the megaflop rate of this algorithm! but they will
also afford the opportunity to rethink the choices of
implementation made at various levels- In particular! the
STAR 1DOB with its significantly faster vector arithmetic
and merge capability may bring vectorized point cyclic

reduction back into the picture at level three-

However! in order to take the fullest advantage of this
algorithm on STAR! one must look ahead to the point where
the data motion and vector arithmetic of levels one and
two can be done in parallel- Recall that the wvector
arithmetic of level one executes virtually at peak hard-

ware rate even on the STAR 100-

Conclusion

The results we have presented can be tabularized as follows

FLOPS STAR 100
Level One 47513b WD1fl sec 37-0 mflops
Level Two Ef1S0filb -IflE sec- 15-7 mflops
Level Three 017013b 11ilb sec- 4.0 mflops
Overhead -14 secl

Total IB505036 B- B sec 5-7 mflops

FLOPS STAR IDOA

Level One M7S13L *0lfl sec. 2?.0 mflops
Level Two 0£fiS0f1l1b ISP sec 15.7 mflops
Level Three OITOIOL . Sfi sec. 15.6 mflops
Overhead — DM sec'

Total iSSD*0f1fi OTTd sec. 1~?. 3 mtlops

These performance figures are "portal to portal"i i.e.i

they include everything They are not what Prof. B- flarschner
of Colorado State has termed "EPA" computer ratings. In
perusing the literaturen all too often-i one sees algorithm
performance for a given architecture rated in terms of
megaflops for selected kernels {presumably chosen to

prove a pointi be it positive or negative! or in terms of
operation count per node without regard to the computational
environment of these operations. It would seem that one of
the simplestn most direct measures of an algorithm's
performance is the total execution time. This is especially
true for those who are more interested in solving real

applications problems.ee-

163

164

REFERENCES

B. L' BuzbseT G. H. Golub and E. LJ. Nielson:
On Direct Methods for Solving Poisson's Equations.
SIAM J- Numer- Anal. Vol 7 No- 4 December n70.

Control Data Corporation: STAR 100 Computer Hardware
Reference Manual No. bDESBOOD.

Control Data Corporation: STAR 100 Features Manual
No. HO425500-

Control Data Corporation: STAR 100A Computer Hardware
Reference Manual No- b025b010-

M. J. Kascicn Jr.: Notes from the STAR seminar.

ADDENDUM

According to the great mathematician ANONYMOUS-. "Sophistication
is the ability to transform ten 1lines of simple logic into

two lines of unreadable 3jargon".

Nowhere is the thrust of this principle better illustrated
than in level one. Recall that level one executes at 57
megaflops. Of an evening-, while perusing the completed
manuscript-. I chanced to ask myself an a posteriori very
obvious question. If all the vector arithmetic of level

one were done without data motion-, what execution rate

could be achieved” The initially embarassing {to the author-,

certainly not to STAR} answer is MU megaflops.

The very simple fact is that at wvector length 50MA-. STAR
is operating at better than 40 megaflops. Thus-, if 1level
one were performed in "bits and pieces'” it would run
significantly faster than it does organized into longer

vectors according to a "sophisticated" scheme.

Erasing much of the author's chagrin is the fact that
since level one carries a small percentage of the compu-

tational 1load-, the bottom line performance is unchanged.

One might ask whether the same situation exists at level two-
The answer is no-, since the extra descriptor setup time
along with the limitation of wvector length U4 leads to a
maximum 14 megaflop rate. However-, even this figure is
misleading since at level three-, the fact that all the U4

word blocks are contigious leads to a simple SUAPing scheme.

At the very least-, a more time consuming addressing scheme
would be needed. Indeed-, the present SUAPing scheme of
level three depends-, as a sine qua non-, on having pairs of

U4 word blocks contiguous.
165

VECTORIZATTON OF BLOCK RELAXATION TECHNIQUES
SOME NUMERICAL EXPERIMENTS

by

*
Daniel L. Boley
University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico

ABSTRACT

Carefully vectorized linear system solvers
achieve performance levels of 40 to 90 million
floating point operations per second on the
CRAY-1. Since classical point successive over-
relaxation is not easily vectorized, one way to
exploit the potential performance of the CRAY-1
is block relaxation using the aforementioned
linear system solvers. This paper compares the
performance of three schemes of Block Successive
Over-Relaxation on the Model Problem.

INTRODUCTION

Classical Point Successive Over-Relaxation schemes using natural ordering
and written in a language such as Fortran can typically run at a rate of ~ 2
million floating point operations per second (2 megaflops)” on a machine such
as the CRAY-1 without taking advantage of the vector architecture. If we use
a checkerboard ordering we can achieve up to 20 megaflops.

However, by using a Block S.0.R. scheme we can use a linear system solver
to do much of the work and thereby take advantage of the wvector architecture.
Such solvers can run from 40 megaflops for a tridiagonal system solver to 90
megaflops for a band solver when using the wvector hardware of the CRAY—1.4*5
We would like to compare the performance of three different schemes of Block

Relaxation that utilize these kinds of linear system solvers. To do this we

study solving the model problem; i.e., Laplace's equation Au=4 on the unit

Current address, Computer Science Department, Stanford University,
Stanford, CA 94305.

166

square with boundary conditions x + y on all four boundaries. The solution
is u = x2 + y2, and this solution also exactly satisfies the discrete equation
derived from the 5-point formula. We consider solving the model problem using
three different Block Successive Over-Relaxation schemes on the CRAY-1. The
three schemes are: scheme L — Line S.O.R., in which each block is a single
column; scheme K — K-line S.0.R., in which each block is a group of K consecu-
tive columns; and scheme B — square block S.0.R., in which each block is a

K x K square set of grid points. Scheme L uses a tridiagonal solver that takes
advantage of the vector architecture by solving for up to 64 systems simultane-

ously. Schemes K and B use a band solver.

Let us discretize the unit square so that grid point (i,j) corresponds to

point (x,y) = (ih,jh) where h = 1/(N+l1). Thus, the grid looks 1like
(x,y) = (0,1) (x,y) = (1,1)
(0,N+1) (N+1, N+1)
(x,y) = (ih,jh)
(1, 3)
(x,y) = (0,0) (x,y) = (1,0)
(i,3) = (0,0) (N+1,0)
2
There are N unknowns and 4N boundary values. We assume that the interpoint

spacing h is the same in both the x and y directions.

We denote the spectral radius of the Jacobi method associated with each
block scheme by P _/P_ /P, the optimal w in each case by o W wD and the
spectral radius of the associated block S.0.R. iterator by XL,XK AB. Then we

have the following relationships (true for all three schemes, so the subscripts
will be omitted) :

2 , 1 -Vg - 2 -V1 - p2
0 = ————- ZIZZIZ: ? A = co — 1 = —-——-—- - ———= 2l-————- —1
1 +v1 - p? 1 +vi - p2 \ P

167

Using the results from [Boley, Buzbee and Farter] we have that

pB =1 - £ Oh)?2 PK = 1 " KOh)? 2)
2 . .
and P, = 1 - (TTh) is the same as Py with K = 1.
Combining (1) and (2) gives:
UB = - , \ = (3a)
1 + TThi*K K 1+ /2 irn/K 1+ /2™
and
A =1 - Zirhv* + 2 (uh)2
D
AK = 1 - 2/2 TThv" + 4 (TTh)2 (3b)
A =1 - 2/2 TTh + 4(TTh)2,

The number of iterations needed to reduce the initial error e by a factor of
h2 is

=~logh
- log A

In each of the three schemes this yields

- IK = I, = (4)
B 2TTh /K 2 1/2 TTh j/x L 2 TTh

where C = -log h2

Note here that the number of iterations is smallest for the K-Line scheme.

Now we turn to the work required in each iteration. We are solving for
N2 unknowns in each sweep. We assume that the matrices are factored only once
at the beginning, so we show only the cost of the back-substitutions.

In Scheme L each block has N unknowns and we have a symmetric tridiagonal
system. The work in each block is 3N (see [Dahlquist and Bjork] 3), and there
are N blocks so that the total work is 3N2

168

In Scheme K, each block has K columns for a total of NK points. If we
scan each block by rows, the matrix for each block becomes a symmetric banded
system of order NK with K super-diagonals (half-bandwidth = K). The work to
solve this system is (2K + 1)NK operations.3 There are N/K blocks so the total
work per sweep is 2KN2 + N2‘

In Scheme B, each block consists of K2 points giving a symmetric banded
system of order K2 with half-bandwidth K. To solve this requires K2(2K + 1)
operations.3 There are (N/K)2 blocks over the whole grid, so the total work

. 2 2 . . .
per sweep is 2KN + N . Note that this is the same as for the K-line scheme.

We combine work per sweep with the estimated number of sweeps to arrive

at Table 1I.
Table II tabulates the results of numerical experiments. In the experi-
ments only the linear system solvers were vectorized. These were hand-coded by

4,5 and called each time as a sub-

T. Jordan in CRAY Assembly Language (CAL)
routine. All the rest of the processing was in unvectorized Fortran. The
iteration started with an initial guess of 0 and continued until the 'o-norm of
the residual was 1less than l—hz. The storage requirements listed are just those
for storing the matrix for 1 block. In the case of the Line scheme, unknowns in
lines 1, 3, 5, 7 ... were solved for at once and then the unknowns in lines

2, 4, 6, 8 ...; we define this as odd-even ordering. This was done in order to

TABLE I

COMPARISON OF VARIOUS PARAMETERS BY SCHEME

Work/ Expected #
Scheme p 0) X Sweep of Sweeps Total Expected Work
L 1-(TTh)2 2 1-2/2-nh 3N2 c 3 Cn3 - .338 CN3
1+irh/2 2/27Th 222 "
K 1-K(TTh)2 2 C 2 c2k N3 Y
1-2227Th, 4 2KN2+N2 + .225 CN3 ™~ + .113
1+TTh/K/f 225rrhvlc 2/2 1 2/2TT/k J4C
B 1- f(TTh)2 2 1-2Tth2k 2KN2+N% C e/x N3 W-2- = .318 CN3"k + .159 —
1+TTh/K 2TTh2K B 2r» /K
where C = - log h2 = log(N+1)2

169

16

32

64

16

32

64

16

32

64

170

TABLE II

VECTORIZED S.O0.R. CONVERGENCE DATA

(Numbers in parenthesis are the grid size N)

Storage required for matrix

Scheme B (128x128)

12

Scheme L 3(N/2)>N - 6144 (64) 24576 (128)
Scheme K (64x64) Scheme B (64x64) Scheme K (128x128
(K+1)KN - 384 (K+D)k2 - 12 768
1280 80 2560
4608 576 9216
17408 4352 34816
67584 33792 135168
266240 266240 532480
Iteration Count
Scheme L 14377 314(128)
Scheme K (64) Scheme B (64) Scheme K (128)
ratio ~ /2 ratio ~ ratio ~ /2
113 1.41 159 1.43 245 1.43
80 1.33 111 1.39 171 1.39
60 1.20 81 1.29 123 1.32
50 .98 63 1.09 93 1.19
51 3.60 58 2.32 78 .96
17 25 81
Iteration Times in Seconds
Scheme L 1.6367" 14.201"29)
Scheme K (64) Scheme B (64) Scheme K (128)
ratio ~ /2 ratio ~ i/2 ratio ~
2-592 1.48 5-503 2.68 22,265 1.50
1-749 1.33 2,659 1.52 14,856 1.38
- t.u 1,748 1.26 10.741 x 25
1*159 .84 1,383 .93 8,598 1.01
1-388 2.21 1,487 1.69 8.476 71
L6217 .881 11.945

80
576
4352
33792

266240

Scheme B (128)

ratio ~ /2

346 1.44

240 1.41

170 1.36

125 1.28

98 1.07

92

Scheme B (128)

ratio ~ uz

47,884 2.26

23,303 1.69

14,674 1.34

10,972 1.09

10.052 78

12.960

effectively vectorize the solver. The storage in the line case reflects the

need to store the matrices for half the blocks at once. The other two schemes
used a vectorized band solver.

The number of iterations required diminishes as K increases in proportion
to v*k. Comparing the number of iterations between the K-line and the square
block cases, the ratio is /2 as expected. These properties do not continue as
K approaches N. This is also expected since the analysis assumed that N was
much larger than K (cf. [Boley, Buzbee and Farter]z).

The third part of the table is the work required to iterate until the
residual is reduced to 1/2 h2. The most unusual feature in this table is that
the times go through a minimum as K increases. This is partly explained by the
failure of the analysis as K approaches N, and partly by the overhead involved
in the subroutine calls. This latter property is exhibited by Table III.

The times in Table III should increase linearly in K. For small K the
times are actually decreasing, showing that much of the time is spent in calling
the linear system solver and in the overhead of operating with short vectors.
The work done by the solver per subroutine call increases as K increases, les-

sening the effect of overhead in the linkage.

TABLE III

SECONDS PER ITERATION IN SQUARE BLOCK SCHEME

K Seconds Ratio
2 .1412 .699
4 .0988 .888
8 .0877 1.02
128 x 128 grid

16 .0891 1.18
32 .1039 1.36
64 .1422

171

Returning to Table II, Scheme L compares quite favorably with schemes K and
B, and takes a lot less storage. If we went to larger problems then Schemes K
and B would probably beat Scheme L by a more substantial margin, but the storage
required to achieve such speeds would be impossibly large.

In Table IV we show the times for doing the exact same problem with no
vectorization. Except for K=2 when the overhead is large, the times are
monotonic increasing. When K is small enough for the analysis to be valid
(4 K < N/4) the ratios in the times even approach /2. One can tell when the

analysis begins to break down by noticing when the iteration counts stop

decreasing like /k

TABLE IV

UNVECTORIZED S.O0.R. CONVERGENCE DATA

Iteration Count

K Scheme K (64) Scheme B (64) Scheme K (128) Scheme B (128)
2 113 159 245 346
4 80 111 171 240
8 60 81 123 170
16 50 63 93 125
32 51 58 18 98
64 17 25 81 92

(Above exactly matches vectorized case as expected.)

Times in Seconds

K Scheme K (64) Scheme B (64) Scheme K (128) Scheme B (128)
1/ratio 1/ratio 1/ratio 1/ratio

2 5-052 0.95 6.699 0>91 43,812 0.94 58,300 0.91

4 4, 784 1.15 6,118 1.15 40.961 1>:L1 52.908 712

8 5,523 1.43 7,036 1.37 45,391 1.30 59.066 129
16 7,880 1.87 9,612 1.72 58,802 1.54 76,284 1.47

32 14,740 0.64 16,532 0.85 90,525 1.99 111,730 1.81

64 9.393 13.760 179.674 202.548

172

The improvement achieved in using vectorization is 2 to 14-fold, with the
speedup around 7-fold at the optimal values of K for the vectorized cases
(K=N/8). Vectorizing some of the system preparation and convergence tests, or
writing the entire inner loop in CAL would make the speedup even more marked,
and less sensitive to K.

Conclusions: On a vector machine such as the CRAY-1, it is possible to
vectorize the relaxation iteration schemes. As long as the block size K < *- N,
where N is the grid size, the work diminishes, but at a prohibitive cost in
storage. The old standard single-line case with odd-even ordering seems to be

the best compromise in most situations.

ACKNOWLEDGMENTS

I am indebted to Thomas Jordan for providing the vectorized kernels, and to
B. L. Buzbee and S. V. Parter for their ideas and guidance. This work was
performed under the auspices of the Los Alamos Scientific Laboratory when I was

there during the summer of 1978.

REFERENCES

1. J. M. Ortega, Numerical Analysis, A Second Course, (Academic Press,
New York, 1972).

2. D. Boley, B. Buzbee and S. Parter, "On Block Relaxation Techniques,"
University of Wisconsin, Math Research Center Report #1860 (June 1978).

3. Dahlquist and Bjork, Numerical Methods, translated by Ned Anderson
(Prentice Hall, Englewood Cliffs, NJ, 1974), p. 166.

4. T. L. Jordan, private communication, Los Alamos Scientific Laboratory,
(July/August 1978).

5. K. Fong and T. L. Jordan, "Some Linear Algebraic Algorithms and Their
Performance on the CRAY-1," Los Alamos Scientific Laboratory report
LA-6774 (June 1977).

6. J. J. Dongarra, "LINPACK Working Note #11: Some UNPACK Timings on the
CRAY-1," Los Alamos Scientific Laboratory report LA-7389-MS (August 1978).

173

and their

174

VECTORAL: A VECTOR ALGORITHMIC LANGUAGE FOR ILLIAC

by

Alan A. Wray
NASA-Ames Research Center
Moffett Field, California

ABSTRACT

Though a FORTRAN-like language, CFD, has been in use on
ILLIAC IV for several years, the need has arisen for a more
flexible and powerful language on that ancestral maxicomputer.
Several goals may be given for this project:

(1)

(2)

(3)

(4)

Some

(1)

(2)

provide modern control structures to enable and
encourage the writing of well-structured programs;

provide an optimizer to enhance machine productivity
and to allow source programs to be more human engi-
neered without loss of machine efficiency;

provide language features to exploit all of the impor-
tant hardware features;

provide a variety of useful language constructs to ease
the implementation of the very large codes generally
run on ILLIAC.

examples of the language features available in VECTORAL
syntax in the above four areas are as follows:

A two-way Boolean branch is provided by IF ... THEN
ELSE, a multi-way branch by DO CASE <integer expres-
sion>, and a looping Boolean branch by WHILE; statement
brackets are used with these control structures to per-
mit the logical grouping of several statements into one

object statement. Simple GO TO is allowed, but 1labels
are identifier-like strings of higher mnemonic wvalue
than numeric 1labels. Nested procedure declarations and

corresponding levels of nomenclature are provided.

The optimizer features folding of constant expressions,
redundant operation elimination, movement of invariant
code from loops, reduction of strength of multiplica-

tions and routes by iteration counters, elimination of

redundant routes, and wvarious optimizations of the use
of Control Unit memory, as well as localized machine-
dependent optimizations.

(3) Several useful hardware features are given a high-level
language implementation not available in CFD: wvector
and scalar bit string operations (and, or, exclusive
or, bit setting, resetting, complementing, and testing,
shifting, and rotating) and the single precision
(32 bit) mode of operation to provide a 128 PE machine.

(4) A large number of "small" but nevertheless useful
features are provided to make the programmer's 1life
easier, e.g., identifier names of arbitrary length, no

significance to card boundaries or columns, nested
iterative data specifications, recursive procedures,
scalar as well as vector functions, EBCDIC and ASCII
character strings, no restrictions on expression com-
Plexity, up to 15 indices, arbitrarily complex Boolean
expressions, use of the "natural" relational symbols
(<,>,= rather than .LT. , .GT , .EQ.), brackets
and braces allowed as well as parentheses.

175

An Introduction to VECTRAN and Its Use
in Scientific Applications Programming

by

George Paul
M. Wayne Wilson

IBM T.J. Watson Research Center
Yorktown Heights, New York 10598

ABSTRACT

VECTRAN is an upward compatible extension to
FORTRAN which permits the problem programmer/scientist
to incorporate and utilize natural vector/matrix problem for-
mulation in his program. VECTRAN minimally extends the
syntax of FORTRAN while greatly extending its semantics.

VECTRAN contains IBM FORTRAN 1V as a proper
subset.

This paper will introduce the basic concepts and new
syntax provided in the VECTRAN extensions, and will demon-
strate the utilization of VECTRAN in a variety of numerical
algorithms.

I INTRODUCTION

VECTRAN [1] is an experimental language extension to IBM FORTRAN IV [2]
developed within IBM to study and facilitate the application of vector/array processing
algorithms. An experimental prototype compiler has been written for VECTRAN.

Since VECTRAN was developed as a tool both to study the potential applicability and
extent of vector processing in scientific computation and to define the prerequisite language
support required, several design prerequisites and functional requirements were specified for
the design/implementation of the language/compiler.

176

Among the functional requirements specified for VECTRAN, the authors felt that to
be viable the language must go beyond the use of unsubscripted array names in expressions
and the simple semantic extension of current operators and library functions to operate
distributively, element by element upon the scalar elements of arrays. Consequently the
following five requirements were set forth for the language. The language must provide:

i) a convenient means to specify rectangular subarrays and general sections of arrays

ii) a direct facility to manipulate both arrays and subarrays as entities on either side of
assignment statements

iii) array-valued functions and the use of array-valued expressions as arguments to
subprograms

iv) an array oriented operator set including matrix and reduction operators

v) facilities to support sparse matrix algorithms employing both logical arrays and index
vectors as means to specify the structure and compressed storage addressing mecha-
nisms.

Among the design prerequisites specified, the authors felt that two considerations —
performance and compatibility, should dictate the language and compiler design. Consequently
the following guidelines were set forth. The language/compiler should:

i) maintain an object-time orientation and provide for early binding (compilation)
wherever possible and avoid constructs which would require late binding
(interpretation) at object-time

ii) provide for subset containment, i.e., the new features where not utilized should not
adversely affect performance

iii) be upward compatible with existing FORTRAN and be immediately comprehensible as
an extension to FORTRAN

iv) be notationally analogous to ’standard’ mathematical convention wherever possible
within the constraints of the character set, etc.

v) as an operational and conversion consideration, should allow mixed FORTRAN and
VECTRAN object modules.

I1. NEW CONCEPTS

The FORTRAN concept of an array is limited only to view arrays as a set or aggregate
of data items (scalars) identified by a single symbolic name. This notion allows only the use of
individual elements of an array in expressions, and expressions must always represent a single
scalar value. In order to broaden this narrow view of arrays, VECTRAN introduces the
concept of an array value and its ancillary notions of atomicity, range and conformability and
the concepts of elemental and transformational operators and functions.

A .Arxray Values and Atomicity

VECTRAN introduces the concept of an array value and defines this concept in a
manner analogous to the relationship defined in FORTRAN between arrays and scalar data
items. An array value is defined to be an aggregate of scalar values. In VECTRAN entire
arrays, subarrays and/or subsets of arrays, as well as elements of arrays may be used in
expressions. Furthermore an expression may represent either an array value or a scalar value.

As a consequence of this concept VECTRAN maintains a sharp distinction between
the storage (memory allocation) associated with an array name and the array value represented
by that name. This point will be elaborated upon further as we proceed.

Individual scalar values bear the same relation to the array value they compose as
subscripted variables do to the array name. However, in place of the explicit subscript
quantities used to specify subscripted variables, we refer in VECTRAN to the ’implied free
indices’ of an array value. These indices are analogous to the indices of tensor analysis, and
imply a rectilinear structure to array values.

177

The implied free indices which exist in VECTRAN for all array values from simple
array names to complicated array-valued expressions, are implicit and independent of explicit
subscripts which may or may not exist. The implied free indices are independent of storage
locations or addresses. All array values in VECTRAN are rectilinear. Each free index
conceptually running in unit steps from one to a specified upper limit value.

In VECTRAN an array value is a single atomic entity, as it is conceptually in mathe-
matics. The use of an array name in an expression refers to the entire array value, and it is
not simply an abbreviation for a sequence of scalar values. In an assignment statement
involving array values, the array value specified by the right-hand-side expression is conceptu-
ally totally evaluated prior to assignment. Hence the atomicity of array-valued expressions is
maintained.

Bs;Range and Conformability

The bounds on the implied free indices of an array value are defined by the range
associated with the array value. The range of an array-valued entity or expression is a list of
N entries, where N is the maximum rank (mumber of dimensions) allowed for arrays in the
compiler implementation. (In the current implementations of IBM FORTRAN IV and
VECTRAN, N is equal to seven.) Each entry may be either a positive integer constant (the
value representing its name) or the name of an unsubscripted integer variable. Range defines
at compile-time the structural characteristics (shape and bounds) of the array value represented
at object-time. The actual number of scalar values contained or represented by the array value
remains a dynamic function of the values represented by the range entries at object-time, and
the range of the array is independent of the storage allocation (DIMENSION) associated with
the array name.

Array-valued entities or expressions are judged to be conformable if they have
identical ranges. A scalar entity or expression is defined to be conformable with an entity of
any range. Note, two arrays may be conformable even if their rank (dimensionality) are
unequal, and on the other hand, two arrays at object-time may have identical shapes even
though they are not conformable. Conformability is purely a compile-time concept, and allows
the compiler to determine the legality of expressions at that time.

Rank, range and conformability are compile-time concepts analogous to the concepts
of length, type and mode in FORTRAN. Rank and range, like mode, propagate through
expressions according to rules associated with each operator in VECTRAN.

C.Elemental and Transformational Operators/Functions

An operator or function is said to be elemental if it operates distributively on each
element of its array-valued argument(s) independently, and if its result has the same range as
its arguments.

An operator or function which is not elemental is said to be transformational. Typical-
ly the elements of the result of a transformational operator or function are each computational-
ly dependent on several or all elements of the operands, and/or the array-valued result has a
range which is different from its operands. Matrix multiply, reduction operators and matrix
transposition are examples of transformationals.

178

III. ARRAY IDENTIFIERS

The range of an array-valued data item may be specified by the user by means of the
RANGE statement. The RANGE statement is a new declaration statement which may be used
in lieu of, or in conjunction with the DIMENSION statement.

The syntax of the RANGE statement is illustrated below:

General Form
RANGE | MK ™ /afnr AN
‘Where:

Each 3jj is an array name, or the name of an array-valued function subpro-
gram supplied by the user.

Each kj j is optional, and is composed of one through seven unsigned integer
constants, separated by commas, representing the maximum value of each subscript in
the array. Each kj . may contain integer variables only when the RANGE statement
in which they appear is in a subprogram and the corresponding 3jj is a dummy
argument of that subprogram.

Each f{j is composed of one through seven unsigned integer constants or
integer variables (not array elements), separated by commas, representing the range
list to be associated with the list of array names which follows it. Note, the number
of entries in each range list determines the rank specified for the associated array
names, and this number should be equal to the number of entries in the dimension list
for these arrays.

If an explicit RANGE statement does not appear for an array, its range list is deter-
mined from the dimension data provided for the array. Thus preserving upward compatibility
with FORTRAN.

The use of a variable in a range list in no way restricts its normal usage in the
program. Consequently, the active range of an array at object-time may be varied dynamically
by assigning new values to the variables referred to in the range list.

A.Unsubscripted Array Identifiers

Array names in VECTRAN may be used without subscripts in arithmetic or logical
expressions to designate array-valued entities. When utilized in this manner, the unsubscripted
array name references only those elements in the array which lie within the currently defined
range. These elements are referred to as belonging to the ’principle subarray’ of the refer-
enced array.

179

For example:

RANGE/N,M/ A(10,10),B(15,25)

Z
|
)]

M=N+2

A= 2.5*A+B

In this example, the dimensioned storage allocations for A and B are [10x10] and [15x25]
respectively. Both A and B are defined to have range NxM. The integer variable N is
assigned the value 5, and M is assigned the value 7 (5+2). The statement

A= 2.5%A+B
thus refers to the [Sx7] principle subarrays of A and B.

R Sections of Arrays

In addition to unsubscripted array names, VECTRAN allows the use of sections of
arrays as array-valued data items. (The concept of array sections in VECTRAN is somewhat
analogous to that of PL/I.)

In VECTRAN a section may for example be that part of any row, column, etc. of an
array which lies within the active range of the array. A section is designated by the use of an
asterisk (the section selector symbol) as a subscript selector. The asterisk implies that all
values of the designated dimension within the object-time range are to be used in the expres-
sion. For example, G(*,K) implies that all elements (rows) within the active range of the K’th
column of the matrix G are to be used; G(J,*), that all elements (columns) within the active
range of the J’th row are to be used and G(*,*), the entire active range of the matrix is to be
used. The latter is entirely equivalent to using the array name G unsubscripted.

The reader should carefully note the distinction between PL/I and VECTRAN
sections;

The range of a VECTRAN section is determined by selecting the ordered subset of the
range list entries of the parent name, specified by corresponding section selector symbols.
Consequently, the sections retain the active range of the parent array within the dimension(s)
of their free subscripts. The rank of the section is the number of section selector symbols, i.e.,
the number of free indices. (PL/I sections apply to the entire declared dimension of the
array.) Note, this characteristic is retained even though the ’fixed’' subscript quantities of the
section may lie outside of the active range designated for their respective dimensions. Refer to
the examples below.

180

RANGE/N,M/A(7,15)

M=7
N =M/2+I
A(CF,13)
\ 1 ~7
ja a afaja a ala a a a a (a) a
! l
la a a@a a a(a a a a a (a) a
A(N-1,*)
v s & a a a <o a
O OSSO »x)
A=la a a (a) a a ala a a a a a
1 SJ R
aaaaaaaaaaaaaaaaa=aaa a
AC6,%)12

CORCOO@ » = + = = » = »
a a©aaaaaaa

a a a a a
A(M,M+

Sections may be used in VECTRAN in the same manner as any other array-valued entity in
the language.

VECTRAN further extends the section concept by defining shifted sections. We have
thus far considered only designation of contiguous arrays and subarrays defined by the active
range or by sections. In either case these subarrays consisted of the elements referenced by
the lowest valued subscript quantities in each dimension, i.e. the origin of these arrays or
sections began with the first array element in each dimension. We shall now consider the
designation of internal and other general rectilinear subarrays.

The concept of the shifted section allows the user to specify an independent shift in
the origin of each dimension of the section. The shift may be any valid real or integer
scalar-valued expression. The shift in origin may be either positive or negative. Furthermore,
the user may specify the direction or sense in which the subscript quantities of the section are
to be incremented.

A shifted section is specified by placing an additive expression to the immediate right
of the asterisk, subscript selector, specifying the section. This expression must begin with
either a plus sign or a minus sign immediately following the asterisk. The shifted section
designation is read to mean that the origin (first element of the section in the specified
dimension) of the section is to be the first element of the array in the specified dimension of
the array, plus or minus the value of the expression. If the expression is real-valued, it is
converted (truncated) to integer.

The direction in which the section is to be taken is specified by either a plus or minus
sign immediately to the left of the asterisk designating the section. If no sign appears,
VECTRAN assumes the positive direction. The user should carefully note the precedence in
which the shifted section is determined. Specifically:

1. The section is first determined.
2. The subscript quantities of the section are incremented in the reverse order.

The range of the shifted section, and consequently the object-time range, and the rank
of the section are determined in the identical manner as ordinary sections. That is, shifting the
origin of the section does not affect rank, range (or object-time range), but only the specific
elements of the parent array which are referenced. Again, consider the example above.

RANGE/N,M/A(7,15)
M=17
N=M/2+1

Now, we shall consider shifted sections in the negative or converse direction. Let us
again consider our example.

RANGE /N, M/ A{ 7,1 5)

M=7
N=M/2+1
A(_*’4)9 A(_*+2’7) >A(*+l,_*+M)

aaa@aa\aaanaaaaa

a a a @ aa\a | aaaaaaa a

AN rAeRRE@®@ (&) a a

A=aaa@taa@laaal a a aj a

!
a a a a aa©-

a a 235 a
a 2 ©OO(EtE)©OO© a

A(6,-*+N-|
aaaaaaaoaaoaoaoaoaoasasoasasa a

182

The reader should once again note that the shifted sections illustrated above in each
case retain the active range of the matrix A in the free dimension(s) of the section.

VECTRAN does not test to determine whether a shifted section remains within the
storage associated with the referenced array.

The concepts of sections and shifted sections combined with the range concept provide
the VECTRAN user with a very powerful notational tool by which general rectilinear contigu-
ous subarrays may be directly specified and operated upon. VECTRAN EXPRESSIONS ARE
FULLY EVALUATED PRIOR TO ASSIGNMENT OF THE COMPUTED RESULT.
Consequently operations between arrays or sections may be carried out, and array-valued
results assigned without ambiguity or loss of data integrity.

The following program excerpt is taken from a subroutine which performs the Levin-
son algorithm [3] for the solution of a system of linear equations in which the matrix of
coefficient values has the Toeplitz form. This algorithm is commonly used to compute Weiner
match filters.

SUBROUTINE LEVIN (M, F,G,R)
RANGE/K1/A(100),R{ 1), F(1),G(1)

Ml = M-1

C SOLVE LOOP
DO30K=1,Ml
Kl = K-1

H = -BETA/ALPHA
IF (K1 >20,20,10

* 10 A(*+1) = A(*+1) +H*A(-*+1)
20 A(K+1) = H*A(1)
ALPHA = ALPHA+ H*BETA
K1l = K+1

BETA = A.,. R(-*+1)
Q = (G(K1) - GAMMA)/ALPHA
F(K1) = Q*A)

Kl =K
F = F+ Q*A(-%+1)
Kl = K+1
GAMMA = F ., . R(-%+1)
30 CONTINUE

The four lines indicated by the solid right arrows utilize either unsubscripted array
names, shifted sections, converse sections or some combination of these array identifiers.
(Note, these arrows are utilized purely for illustration herein, and are not part of the input
syntax.) The first such line, line 10, utilizes both the shifted section A(*+-1) and its converse
section A(-*+1) in the same expression, and stores the resulting vector back into A(*-+1).
This line offers both an excellent example of the use of shifted and converse sections and of
the importance of maintaining atomicity in the evaluation of array-valued expressions. In this
example, a vector temporary is created to preserve data integrity. The second and fourth lines
utilize the vector inner product operator (denoted symbolically by ..) and involve both
unsubscripted array names and converse shifted sections. (The inner product operator is
described below.) The third line, like the first, computes the sum of a vector plus a scalar
times a vector. These examples not only illustrate the general utility of these array identifiers

183

in computation, but also illustrate the dynamic flexibility allowed by the range concept. In this
example the reader should note that not only is the value of the range of these vectors being
changed with each pass through the loop, but that it is being re-evaluated during the execution
of the loop as well. (The value of the range is specified by the variable Kl.) Furthermore,
the concept of range allows the conformability of these expressions to be determined fully at
compile-time.

C.Vector-Valued Subscripts

Vector-valued subscript quantities are legitimate subscript selectors in VECTRAN.
Vector-valued subscripts are incorporated into VECTRAN to facilitate sparse matrix manipula-
tion and to provide a convenient means of indirectly addressing and manipulating arrays via
tables.

Vector-valued subscripts are utilized in much the same manner as scalar-valued
subscripts. Vector-valued subscripts, however, denote the selection of a set of array elements
(in the order specified by the vector subscript selector) rather than a specific individual array
element. Note, an array subscripted by vector-valued subscript quantities cannot be used
directly as an argument to a subprogram because of the indexing procedures invoked to
address the array. Expressions containing arrays with vector-valued subscripts may be utilized
as arguments to subprograms, and both the array name and vector subscripts may be passed as
separate arguments to a subprogram which may then utilize the vector subscripts to reference
the array.

Suppose Z is a matrix of active range 5x7, and U and V are vectors of active range 3
and 4, respectively. Furthermore, assume:

U 132

v=2113

then, Z(3,V) consists of the elements of the third row of Z in the order:
Z73,2) 2(3.D) Z2@3.D) Z@3,3),

and Z(U,2) consists of the column elements:
Z7.(,2) Z3.,2) Z(2,2),

and finally Z(U,V), of the elements:

Z1,2) ZQ,D ZQ@D) Z(1,3)
Z3,2) Z(3,)) Z@3,D) Z@3.,3)
Z(2,2) Z(2,) Z(2,) Z(2,3).

Section selector symbols may also be used with vector subscript selectors, for example,
Z.(U,*) consists of the elements:

ZAD) Z2(1,2) Z2(,3) Z(1.4) Z(1,5) Z(1,6) Z(1,7)
Z3,) Z@3,2) Z3,3) Z3,4) Z3,5) Z(3,6) Z(3,7)
Z2.) Z(2,2) Z(2,3) Z(2.4) Z(2,5) Z(2,6) Z(2,7).

When a vector-valued subscript is used in a subscripted array, the range list entry
which corresponds to that dimension in the subscripted array is the first entry of the range of
the vector subscript entity. The corresponding entry in the range of the parent array is
ignored. The range list entries of the parent array and the vector subscript quantity need not
be named identically. The active range of the vector subscript ’overrides’ the active range of
the referenced array name.

184

For example, the array specified by Z(V,U) has active range 4x3, and consists of the
elements:

Z(2,1) Z(2,3) 7Z.(2,2)
Z,D) 7Z(1,3) Z(1,2)
Z(,) 7Z(1,3) Z(1,2)
Z.3.) Z(3,3) Z(3,2),

whereas the array Z had active range 5x7. In this example the reader should also note that the
second and third rows of the matrix Z(V,U) are identical replications as specified by the
second and third elements of the vector V.

By the above examples, the reader can easily see that vector-valued subscripts permit
the user to access the elements of arrays in any desired order, and indeed the ordering
specified need not be one to one with the array referenced. Consequently, the use of vector-
valued subscripts permit the referenced array to be augmented by any specified repetition —in
any sequence— of the array elements.

IV. IDENTIFICATION OF SECONDARY ARRAYS

We have thus far considered only designation of contiguous arrays or subarrays and
selection of ordered subarrays using subscript selectors. VECTRAN further extends the user’s
capability to define and manipulate sections of arrays which are regularly ordered, but which
may be composed of elements which are non-contiguous or which may belong to skewed
sections of the array, (e.g. the diagonal elements of a matrix, etc.), by means of the IDENTI-
FY statement. The IDENTIFY statement may also be utilized to facilitate implementation of
algorithms involving storage mappings for banded matrices, etc.

A.Dynamic Equivalence and Virtual Arrays

The IDENTIFY statement IS AN EXECUTABLE STATEMENT which allows the
user to dynamically equivalence an identified secondary (virtual’) array with selected elements
of a primary (real’) array or with the elements of another identified secondary array.

This statement is perhaps the most powerful semantic extension to FORTRAN in the
VECTRAN language. IDENTIFY allows the user to readily manipulate non-contiguous data,
skewed sections and other similar subscripted arrays directly by array name in the same
manner as any explicitly declared array.

The IDENTIFY statement consists of four principal parts:

i) A range list declaration for the identified secondary (virtual’) array.

ii) The variable name to be associated with the identified (virtual’) array.

iii) The variable name of the host array, Creal’ or ’virtual’).

iv) A selection mapping which specifies which elements of the host array are to be
equivalenced with the virtual array name, and the subscript order in which these
elements are to be referenced in the virtual array.

It is important to note, that neither execution of the IDENTIFY statement nor
subsequent reference to the identified array cause duplication or creation of a new array.
However, identified array elements may be selected from the host array and stored into any
other conformable array via the normal assignment statement. An identified array is an
equivalenced array and program reference to either the host array name or the identified array
name may be used to change the value in main storage of the array elements.

The IDENTIFY statement differs in two important aspects from the EQUIVALENCE
statement.

i) The EQUIVALENCE statement specifics a static equivalence relation which is in
effect throughout the program execution. The IDENTIFY statement dynamically
establishes at its point of execution an equivalence relation which may be altered

185

through the course of the program execution. Indeed reference to an identified array
invokes the mapping parameters last associated with the identified array name in order
of program execution. (The rank of an identified array, however, must remain the
same throughout the program unit.)

ii) The EQUIVALENCE statement establishes an equivalence between arrays, array
elements or scalar variables with respect to a ’fixed point’ or element of the array. All
other elements are equivalence by virtue of their position relative to this element. The
IDENTIFY statement may be utilized to identify the virtual array name with selected
elements of the host array. The host array may be an explicitly declared array in
storage or another identified array.

IL Index Mapping Parameters and the Subscript Mapping Mechanism

Prior to defining the IDENTIFY statement, it is convenient to first define and discuss
addressing procedures invoked by VECTRAN to reference arrays [4] . VECTRAN stores
arrays in ascending storage locations in main storage with the value of the first subscript
quantity of an array increasing most rapidly, and the value of the last subscript quantity
increasing least rapidly.

Consequently given a primary array A of rank S, dimensioned N|XN2x ...xNs, and
given that the length of each element of A is L bytes; the address of the array element A(I],
12....... Is) is g*ven by:

ADDR (AL, 12, ..., Is))= BA + L*((Ixr]1) + (I2-1)*N, + (Lj-O'N,*~ + ...)

= BA + (1,M, + I2*M2 + I3*M3 + ... +IS*MS)
- (M, + M2 + ... + Ms)

Where:
BA is the byte address of the first element of A.

Mj, M2, ..., Ms) is a set of multipliers determined from the storage allocation
(dimension) of A, and the length in bytes of each element of A, (i.e., M| = L, M2 =
L*N,, M3 = L*N,*N2, ..., etc.).

The byte address, BA, and the set of multipliers (M|, M2, ..., Ms) are the index
mapping parameters for the array A. The function ADDR is the subscript mapping function
for A.

Let B be a secondary array of rank R, which is identified as a ’regular’, rectilinear
section of A. (By ’regular’, we mean that for each dimension, the elements of B have equal
spacing.) The array B may also be described by a subscript mapping function:

ADDR (B[, J2, ..., JR))= BA’' +(J1*M, + J2* M2’ + ...+ JR*MR’)
- (M, + M2' + ..+ Mr)

The multipliers Mj’ are no longer as simply related to dimension data as in the former case
however.

Upon execution of the IDENTIFY statement, the selection mapping specifying the
equivalenced elements is examined and the index mapping parameters for the identified array
are evaluated, stored and associated with the virtual array name. Subsequent program

186

references to the identified array name invoke the above array indexing procedures using these
parameters. Clearly, the host array may in turn be an identified array as this process is simply
a transformation of the index mapping parameters.

Note, however, from an implementation point of view, an explicit vector of multipliers
need only exist at object-time for certain types of arrays (clearly for identified arrays, although
the vector need not exist as a contiguous entity). In general, index mapping vectors need only
exist for array-valued parameters, array-valued function names and identified arrays.

C. The IDENTIFY Statement

General Form
IDENTIFY /n,n2,...nN/ vfi,,,...,~) = r(ml,m2,....mM)
‘Where:

v is the identified or ’virtual’ array name and has rank N.

r is the host array name and has rank M.

nl,n2,,nN is a set of one through seven unsigned integer constants or
integer variables, (not array elements), separated by commas, representing the range
list to be associated with the ’virtual' array v.

i],i2, ...,iN is a set of one through seven distinct integer variables, (not array
elements), separated by commas, representing the list of dummy subscript variables
defining the ordinal order of the mapping of v onto a subset of r.

mi,m2, ...mM is a set of one through seven valid scalar subscript quantities,
separated by commas, defining the mapping of v onto r in terms of the set of dummy
subscript variables, i|.i2, ...,iN.

Only scalar-valued subscript selectors are valid subscript selectors in the
IDENTIFY statement. Vector-valued subscripts and section selector symbols are
invalid. (Sections and replications may be specified by scalar-valued subscripts.)

The identified array name, v, must not have been previously declared as an array name
except possibly in another IDENTIFY statement in the program unit, nor may v and r be the
same name. The identified array may be of a different type than the host array, however, the
host array and the identified array must agree in element length.

The identified array name may appear undimensioned in a type declaration or RANGE
statement, but must not appear in a DIMENSION, COMMON, EQUIVALENCE or DATA
statement. The first appearance of an identified array name in an executable statement must
be on the left-hand-side of the equals sign in an IDENTIFY statement.

The first occurrence (in statement order) of the identified array name in an IDENTIFY
statement defines its rank throughout the program. The rank is implicitly declared by the
number of entries in the range list, (n|,n2, ...,nN). Note, the identified array name may appear
in a RANGE statement (undimensioned) only after its first appearance in an IDENTIFY
statement. The rank declared for v in any subsequent use must equal the initial declared rank
of v, although any or all of r, (m,,m2,mM), (ni,n2, ...,nN) and (i,i2. ...,iN) may be different
in any subsequent IDENTIFY statement. Further, the subscripts (ij.i-j, ...,iN) are utilized only
in a formal sense; values assigned to the variables, (names), elsewhere in the program unit are
unaltered by the occurrence of these variables, (names), in the IDENTIFY statement.

It should be carefully noted that the scalar-valued subscript quantities appearing in
(m|,mz, should be linear expressions of the implicit dummy subscript variables, (ij.H,
..siN). This linearity is assumed over the integers after evaluation (conversion) of expressions
appearing as subscript quantities. If linearity is not maintained, the resulting identified array
may not be the array desired.

The host array, r, may be an explicitly declared ’real’ array or a previously identified
virtual' array.

The array r may have at most rank seven; similarly, the rank of v may be at most
seven.

The scalar subscript quantities, (m|,ni>, ...,mM), along with the dummy subscript
variables, (i],”, ...,17), specify the selection mapping of the identified array. The order in
which the ’dummy subscript variables’ appear in the list, (i],i2, ..,i[M)> defines the specific
ordering in which the virtual array v is to be defined and referenced. If a dummy subscript
variable included in the list (i“H, °mJN) is not utilized in the list of subscript quantities
(mj,mz, ...,mM), in general, a replication of the real array r is implied.

Once defined by an IDENTIFY statement, identified arrays are treated the same as
any other array in the program unit.

Consider the following examples. The following statements dynamically equivalence
the upper and lower diagonals of the [7x7] matrix X as the vectors XU and XL respectively,
and equivalence the skew diagonal indicated as the vector Y.

DIMENSIONX(7,7)

IDENTIFY/K/XUQ@) = X(1,1+1)
IDENTIFY/K/XL(I) = X(1+1,1)
IDENTIFY /L./ Y(J) = X(8-J,2%J-1)

The following program excerpt is taken from a subroutine which performs the odd-
even reduction algorithm [5] for the solution of a tridiagonal system of equations.

188

SUBROUTINEODDEVN(IDIM,N,U,D.L.B.X,IFAIL)
DIMENSION U(1),D(| D,L(1),X(!),B(1)

INTEGER*4 VCIL,VPTR,UPTR,DPRT.LPTR,BPTR,RPRT.XPTR
REAL*8 L,LOD,LEV_.LRM

VPRT = 0
RPRT = N

START A NEW ITERATION

UPRT = VPRT

DPRT = VPRT

LPRT = VPRT

IDENTIFY/VCTL/UOD(K) = U(UPTR+2*K-1)
IDENTIFY/VCTL/DOD(K) = D(DPTR+2*K-1)
IDENTIFY/VCTL/LOD(K) = L(VPTR+2*K+1)
IDENTIFY/VCTL/BOD(K) = B(VPTR+2*K-1
IDENTIFY/VCTL/BDD(K) = B(VPTR+2*K+1
IDENTIFY/VCTL/UEV(K) = U(VPTR+2*K)
IDENTIFY/VCTL/DEV(K) = D(VPTR+2*K)
IDENTIFY/VCTL/LEV(K) = L(LPTR+2*K)
IDENTIFY/VCTL/BEV(K) = B(VPTR+2*K)
IDENTIFY /VCTL/ URM(K) = U(RPRT+K)
IDENTIFY /VCTL/DRM(K) = D(RPRT+K)
IDENTIFY/VCTL/LRM(K) = L(RPRT+K+1)
IDENTIFY/VCTL/BRM(K) = B(RPRT+K)
DIVIDE ALL THE ODD-NUMBERED ROWS BY THE PIVOTS
BOD = BOD/DOD

VCTL = VCTL- |

UOD = UOD/DOD

DPRT = DPRT + 2

IDENTIFY/VCTL/DOD(K) = D(DPTR+2*K-1)

LOD = LOD/DOD

UPDATE EVEN-NUMBERED DIAGONAL ELEMENTS

DRM = DEV - UOD*LEV - UEV*LOD

UPDATE EVEN-NUMBERED ELEMENTS IN B

BRM = BEV - BOD*LEV - UEV*BDD

CHECK IF VCTL IS EQUAL TO |

IF (VCTL .EQ. 1) GO TO 50

VCTL = VCTL - |

CREATE NEW SUPER-DIAGONAL

UPRT = UPRT + 2

IDENTIFY/VCTL/UOD(K) = U(UPTR+2*K-1)

URM = UOD * UEV

CREATE NEW SUB-DIAGONAL

LPRT = LPRT + 2

IDENTIFY/VCTL/LEV(K) = L(LPTR+2*K)

LRM = LOD * LEV

RESET ALL VECTOR POINTERS ; CHECK AND RESET LENGTH
VPRT = RPRT

RPRT = VPRT + VCTL + |

LCTL = VCTL/2

IF (VCTL .GT. 2* LCTL) GO TO 40

VCTL = LCTL + |

GOTO 10

)
)

In this example the IDENTIFY statement is utilized to define the odd and even
elements of the main, upper and lower diagonals at each iteration. With these definitions, the
vector structure of the algorithm is readily recognized and coded. The lines designated by the
solid right arrows again specify vector operations. Note, the program assumes the input
vectors are dimensioned two N in length. The results of each iteration are stored end to end
as the pointer variables and IDENTIFY statements are updated.

V. OPERATORS AND FUNCTIONS

As indicated above among the functional requirements set forth for VECTRAN was to
provide array-valued functions and operators and to extend the operator set and library
functions of FORTRAN to provide operators/functions for matrix computation and reduc-
tions. As a first step in this direction VECTRAN extends the semantics of all existing
FORTRAN operators and library functions (e.g., SIN, COS, LOG, etc.) to imply that the
operation or function is applied distributively element by element to array-valued arguments.
That is, all existing FORTRAN operators and library functions are defined to be elemental in
VECTRAN.

VECTRAN goes beyond this first step, however, and provides a number of new
operators and library functions for:

i) arithmetic and logical operations between array-valued arguments

ii) manipulation of arrays within expressions

iii) reduction operations

iv) utility functions
as well as allowing the user to define array-valued function subprograms with scalar and/or
array-valued arguments.

A .INew Arithmetic Operators and Functions

Among the new array arithmetic operators provided in VECTRAN are the matrix
multiply operator (denoted .*.) and Hermitian vector inner product operator (denoted .,.).
These new operators have been defined and implemented to accumulate all intermediate inner
product evaluations in twice the arithmetic precision of the greater of the two input operand
data types (lengths) to preserve numerical accuracy. The general syntax of FORTRAN,
however, requires that the length of the result of a dyadic operation be equal to the greater of
the length of its input operand data types; therefore upon completion, these operators convert
the resulting inner product values to the precision of the maximum operand length.

Since it is frequently desirable numerically to preserve ’double precision accumulation’
of an inner product (matrix product) with the sum or difference of an initial value, VECTRAN
provides library functions for these operations as well. These functions GMXP, (generalized
matrix multiply), and GHIP, (generalized Hermitian inner product), respectively, allow initial
values as third operands and provide not only ’double precision accumulation’ with the initial
value, but also afford the user a more flexible control of both the intermediate computational
precision and the final precision of the result.

In addition to these functions, VECTRAN provides a third library function, GLAP
(generalized linear algebraic product). Most frequently in numerical linear algebraic algorithms
involving complex matrices, the true Hermitian inner product of complex vectors is not desired.
Rather, the sum reduction of the element by element complex products of the vector argu-
ments is desired. (The Hermitian inner product takes the complex conjugate of one of the
complex operands to preserve the metric of the inner product operator over the complex vector
space.) Refer to Wilkinson [6] . VECTRAN accomodates the numerical linear algebraist by
providing an alternate entry point to GHIP, GLAP, which avoids the taking of the complex
conjugate twice in this application. GLAP and GHIP are identical for INTEGER and REAL
arguments.

190

R New Manipulation Operators and Functions

Among the new array manipulation operators and functions provided in VECTRAN
are operators/functions for matrix transposition, vector/subarray extraction and the creation
of index vectors.

Operators are provided for both transposition and Hermitian transposition of real and
complex matrices. These operators (denoted .T. and .H. , respectively) are suffix operators
and do not recopy data when used in expressions unless an explicit assignment of the trans-
posed array value is made. Library function equivalents are also provided for these operators.

Several array extraction library functions are provided including ROW, COL and
SECT. ROW and COL provide for row (column) extraction from matrix-valued expressions.
SECT provides for general section extraction from array-valued expressions. These functions
are primarily useful when the user wishes to preserve (compute) only the array value specified
by the extracted section from an array-valued expression for which he does not wish to
explicitly allocate permanent storage. These functions supplement the section concept,
allowing the user to use the specified array-valued result abstracted from an array-valued
expression (input argument) for which the compiler dynamically allocates temporary storage.

The VECTRAN library function INDEX is provided as a convenience to the user; it
may be used to generate index vectors with an arbitrary increment between successive
elements. This function is somewhat analogous to the APL iota function, but allows for
arbitrary starting, ending and increment values.

C. New Reduction Operators and Functions

Among the new reduction operators and functions are arithmetic and logical reduction
operators and functions to determine algebraic maximum/minimum values and the locations of
these values within arrays.

The arithmetic reduction operators are addition (denoted —+/), subtraction (denoted
-/), multiplication (denoted */) and division (denoted //). The logical reduction operators
are AND (denoted .AND./), OR (denoted .OR./) and Exclusive OR (denoted .XOR./).
Each of these operators operate on arrays of arbitrary rank producing a single scalar-valued
result.

VECTRAN provides the library functions RMAX and RMIN to determine the
algebraic maximum (minimum) scalar value contained within an array-valued argument.

The VECTRAN library functions MAXEL and MINEL are provided to determine the
location of the algebraic maximum (minimum) value contained within an array-valued argu-
ment. Both MAXEL and MINEL return a vector-valued result, a subscript vector locating the
first occurrence of the maximum (minimum) element in the array.

D. New Utility Functions

Two new utility functions are provided in VECTRAN, namely LIMIT and RANGE.

LIMIT allows the user to dynamically determine at object-time the current values of
the range variables associated with an array identifier or array-valued expression.

RANGE allows the user to override the range of its array-valued argument to force
conformability within a particular expression.

These two functions are analogous to the FORTRAN functions which specify mode
conversion, e.g., DBLE, REAL, etc.; LIMIT and RANGE, however, specify the range of
’shape’ data.

The following program excerpt is taken from a subroutine which computes the LU
matrix decomposition of an asymmetric matrix using the Crout algorithm [7]. This program
illustrates the use of several of the operators and library functions described above.

191

SUBROUTINE DEOOMP(IDIM, N,A_,CHG.DET_IED,IFAIL)
RANGE/LI ,L.2/A(IDIM, |) /L1/CHGQ)

C TL (TU) IS THE LOWER (UPPER) TRIANGULAR FACTOR RESPECTIVELY .
VIRTUAL ARRAY TL IS CREATED ONLY FOR CLARITY IN EXPRESSIONS .
C TU IS NEEDED TO PROVIDE CONFORMABILITY IN RANGE .

IDENTIFY/LI ,L2/TL(LJ) =A(L,J)

IDENTIFY/L2, LUTU(LJ) = A(LJ)

a

C FACTORIZE LOOP
DOSOK=1,N
KM = K-1
LI = NP-K
L2 =KM
C FORM K'TH COLUMN OF MATRIX L. THE FIRST COLUMN OF L IS
C THE FIRST COLUMN OF A. THE PIVOTAL ELEMENT IS A(L, K).
IF(X .EQ. |)GOTO 25
TL(*+KM,K)= A(*+KM,K)- TL(*+KM,*) — TU(*,K)
C LOOK FOR EQUILIBRATED PIVOT.
25 L = KM + MAXEL(ABS(CHG(*+KM) * TL(*+KM,K)))
C PERFORM INTERCHANGE IF NECESSARY.
CT = CHG(L)
IF(L . EQ. K)GO TO 30
DET = -DET
L2 =N
A) ==A(L,*)
CHG(L) =CHG(K)
30 CHG(K)=L
C CHECK FOR SINGULARITY AND UPDATE DETERMINANT.
D=ABS (TL(K,K))
IF (D*CT .LT. DEL) GO TO | 00
DET = SCALE(D*DET,IED)
C FORM K' TH ROW OF U
IF (K .EQ. N) GOTO80
LI = N-K
IF (K .GT. 1) GOTO 70
TU(!,*) =(1./D) * RANGE(A(| ,*),/L.1/)
GO TO 80
70 L2 =KM
C THIS EXPRESSION INVOLVES TRANSPOSES BECAUSE | -DIMENSIONAL
C SECTIONS ARE INTERPRETED TO BE COLUMN VECTORS .
TU(K, *4K) = (RANGE(A(K,*+K),/LI/) = TU(*, *+K).T. .*. TL(K, *)) /D
80 CONTINUE

192

The following figure illustrates the computation of the 4’th column of the lower
triangular factor for the case in which A is an [9x9] matrix. This calculation is performed by
the first line desigated by a solid arrow in subroutine DECOMP. Note, in this case K = 4 and
KM = 3. Note the use of the matrix multiply operator.

TU(*,K)

TL(*+KM, *) —— -

TL(*+KM,K) or A(*+KM,K)

The second line designated by an arrow illustrates the use of MAXEL to determine the
location of the maximum element of its vector-valued expression.

The third line designated by an arrow is a new type of assignment statement provided
by V.ECTRAN called an exchange statement, (denoted by the double equal sign). The
exchange statement causes reciprocal assignment to take place with data conversion in both
directions if indicated.

The fourth and fifth lines designated by arrows are alternate expressions for the
computation of K’th row of the upper triangular matrix, TU. The first expression is used only
for the case K = 1. These statements employ the RANGE function to override the declared
range of A, because all one dimensional sections in VECTRAN are defined to be column
vectors. Note also the use of the suffix transpose operator in the latter expression. The
matrix operator (.*.) is used in the examples presented herein primarily for clarity of
exposition; the GMXP function would provide better numerical accuracy, particularly in
DECOMP.

193

The following figure illustrates the calculation of the 4’th row of the upper triangular
factor for the case in which A is an [9Xx9] matrix. This figure illustrates the computation
performed by the last line designated by an arrow; for the case shown, K = 4 and KM = 3.

TUCH,*+K)

\

u u ulu u u u u

TL(K, *). - — JTU(K, *+K)orA(K, *+K)
M | /11 1a a a a a*
J

VI. ASSIGNMENT-LIKE STATEMENTS

VECTRAN provides several new statement types which are not present in FORTRAN.
The first class of statements, called ’conditional assignment statements, provide the user with
a convenient way of assigning values to specified subsets of elements of an array within the
context of array manipulations and computations. The second class of statements provides a
direct means for the dynamic compression/expansion, merging/splitting and restructuring of
arrays. These instructions are particularly useful in the manipulation of sparse arrays via
logical truth tables or logical-valued expressions.

Together these two classes make up a new general type of statement which we shall
call "assignment-’like’ statements'" because of their similarity and relationship to the assign-
ment statement.

A.Conditional Assignment Statements

There are two new statement types in this class, the WHEN statement and the AT
statement. These statements may be thought of as extensions of the logical IF statement.
Since array-valued expressions may, or may not be elemental by nature, two basic forms are
suggested. The WHEN statement is defined to handle the more general case involving
non-elemental or transformational expressions. The AT statement is defined to handle the
simpler case of elemental expressions. The AT statement is not strickly required, but is
provided as a user convenience and for performance reasons. As we shall see, however, its
presence uniquely extends the power of VECTRAN.

194

The syntax of the WHEN statement is illustrated below.

General Form
WHEN (logexpr) a = [expr]|] [, OR [b] = expr2]
Where:

a and b are the names of arrays, or subscripted arrays, b is optional, but if
present in the WHEN OR form, b must be conformable with a. Note, a and b may
be the same entity.

expr| and expr2 are arithmetic or logical expressions conformable with a.
expt) is optional in the WHEN OR form, but if omitted, the equal sign following a
must be followed by the comma.

Note, both exprj and b may not concomitantly be omitted in the same
statement.

logexpr is a logical expression conformable with array a.

In the execution of this statement:

The entire expression logexpr is first evaluated.

Then, in the event the ’OR’ condition is present, the expressions
exprj and expr2 are entirely evaluated, and for each element of lo-
gexpr which has the value .TRUE. (.FALSE.) the corresponding
element of the result of expr| (expr2) is assigned to the corresponding
element of a (b).

Or, in the event the ’OR’ condition is not present, the expression
exprj is entirely evaluated, and for each element of logexpr which has
the value .TRUE., the corresponding element of expr) is assigned to
the corresponding element of a. The elements of a corresponding to
elements of logexpr which have the value .FALSE, are left un-
changed.

If expr, (expr2) is a logical expression, then a (b) must be a LOGICAL array. If
expti (expr2) is an arithmetic expression, then a (b) must be an INTEGER, REAL or COM-
PLEX array. Assignment of the values of expr, (expr2) into the array a (b) follows the same
rules of conversion as an assignment statement.

If logexpr is a scalar variable, or an array or subscripted array, its value(s) may not be
changed by any function reference during the course of the evaluation of the expression expr,
(expr2), or in the evaluation of subscript quantities of a (b).

The WHEN statement should only be used when one or more of the expressions
logexpr, expr| or expr2 cannot be evaluated on an element by element basis. That is. when the
value of each element of the result of logexpr or expr, or exprT may not be evaluated inde-
pendently of the computation required to compute the values of the other elements of the
result.

195

expr, (expr2) is an arithmetic expression, then a (b) must be an INTEGER, REAL or COM-
PLEX array. Assignment of the values of expr, (expr2) into the array a (b) follows the same

Now consider the AT statement.

General Form
AT (logexpr) a = [expr|] [LOR [b] = expr2]
Where:

a and b are the names of arrays or subscripted arrays, b is optional, but if
present in the AT OR form, b must be conformable with a. Note, a and b may be
the same entity, expr, and expr2 are arithmetic or logical scalar-valued expressions,
or elemental array-valued expressions conformable with a. expr, is optional in the
AT OR form, but if omitted, the equal sign following a must be followed by the
comma.

Note, both expr, and b may not concomitantly be omitted in the same
statement, logexpr is a logical scalar-valued expression, or an elemental array-valued
expression conformable with a.

In the execution of this statement:

In the event the ’OR’ condition is present, the expression logexpr is
evaluated element by element in subscript order, and the expression
expr, (expr2) is evaluated and assigned to the corresponding array
position of a (b) if the element of logexpr has the value .TRUE.
(.FALSE)).

Or, in the event the 'OR’ condition is not present, the expression
logexpr is evaluated element by element in subscript order, and for
each element of logexpr which has the value .TRUE., the expression
expr, is evaluated and assigned to the corresponding array position of
a, otherwise the element of a remains unchanged and no evaluation of
expr, is carried out.

If expr, (expr2) is a logical expression, then a (b) must be a LOGICAL array.

rules of conversion as an assignment statement.

each element of expr,

This statement differs from the WHEN statement in that although the assignment of
(expr-.) is conditional on the corresponding value of logexpr, expr,
(expr2) is evaluated only for those elements corresponding to true (false) values of logexpr.
Consequently, expr, (expr2) must be such that evaluation of each element of their respective
results may be individually and independently evaluated.

must also be computable element by element.

196

Similarly, the expression logexpr

To illustrate the difference between the WHEN and the AT statements note the
differences in the order of the resulting data storage illustrated by the following example.
Assume V is a vector of eight elements, and the range of V is five. Initially V consist of:

v, V2 v3 v4 v5 v6 V7 vg
Then the statement:
WHEN (.TRUE.) V(*+1)=V
implies that upon completion of execution of the statement, V consist of:
vV, vV, V2 V3 v4 v5 vT Vg
Whereas, the statement:
AT (.TRUE.) V(*+1)=V
implies that upon completion of execution of the statement, V consist of:
vV, V, Vo V, V, V, V] Vg

Thus data integrity is preserved on an array basis in the execution of the WHEN
statement, and on a scalar basis in the execution of the AT statement.

As an immediate consequence of element by element evaluation and storage of
array-valued expressions by the AT statement, iterative evaluation of expressions with data
feedback is possible within a single VECTRAN statement. This is illustrated by the following

program excerpt taken from a subroutine which performs the forward and backward sweeps of
a decomposed tridiagonal system of equations using the standard Gaussian algorithm.

SUBROUTINE TRISOL(AA,X,B,N)
RANGE/M/X(1),B(1) /M,3/AA(*,*)

C ASSUME
C AA(*, 1) =LOWER DIAGONAL OF MATRIX L, (AA(1,1)=0.0)
C AA(*,2)=MAIN DIAGONAL OFMATRIXL
C AA(*,3) = UPPER DIAGONAL OF MATRIX U, (AA(N, 3)=0.0)

M=N-1
C PERFORM FORWARD SUBSTITUTION

X(1)=B(1)AA(1,1)

AT (.TRUE.) X(*+1)= (B(*+1) - X(*) * AA(*+1,1)) / AA(*+1,2)
C PERFORM BACKWARD SUBSTITUTION

AT (.-TRUE.) X(-*) = X(-*) - X(-*+1)*AA(-*,3)

In this example the first AT statement performs the forward solution of the lower
triangular factor of the tridiagonal matrix. The use of shifted sections coupled with the
element by element evaluation and assignment causes the computed results to be fed back
iteratively in the calculation. The second AT statement similarly performs the backward
solution by utilizing converse sections.

The reader should carefully note that although the array syntax of VECTRAN is
utilized in this example, that the computation is performed in scalar mode.

IT Assignment with Array Expansion/Compression

As mentioned above, the second class of '""Assignment ’Like’ Statements' are those
statements for expanding/compressing, spliting/merging and restructuring arrays under logical
control. There are two new statements types in this class: PACK and UNPACK. Each of
these new statements has conditional forms related to the WHEN and AT statements defined
above.

The syntax of the PACK statement forms are illustrated below.

General Form

PACK /Kk/ a = expr!
PACK /k/ WHEN (logexpr) a = [expr,] [, OR [b] = expr2]
PACK A/ AT (logexpr) a = [expr,] [, OR [b] = expr2]

Where:

a and b are the names of arrays of rank one, or vector-valued sections of
arrays, b is optional, but if present in the PACK WHEN OR or PACK AT OR form,
b must be conformable with a. Note, a and b may be the same entity.

expr, and exprl are conformable arithmetic or logical scalar or array-valued
expressions of arbitrary rank, expr, is optional, but if omitted in the PACK WHEN
OR or PACK AT OR forms, the equal sign following a, must be followed by the
comma.

logexpr is a logical scalar or array-valued expression conformable with expr,,
(expr2).

In the case of the PACK AT form of this statement logexpr, expr, and expr2
must be either scalar-valued or elemental array-valued expressions.

k is the name of an integer scalar variable or integer subscripted variable.
The count of the number of elements assigned to a is assigned to k upon completion
of execution of the PACK statement. Note, k is not the range of a unless so declared
by another statement such as the RANGE statement.

If expr, (expr2) is a logical expression, then a (b) must be a LOGICAL array. If
expr, (expr2) is an arithmetic expression, then a (b) must be an INTEGER, REAL or COM-
PLEX array. Assignment of the values of expr, (expr2) into the array a (b) follows the same
rules of conversion as an assignment statement.

198

The unconditional form of the PACK statement causes the evaluation of the array-
valued expression exprj, and the values of exptj to be assigned in subscript order to the vector
a. If one of the conditional forms of the statement is used, then the logical expression logexpr
is evaluated and governs the assignment of the values of expr, and expr2 into the arrays a and
b in a manner analogous to the WHEN and AT statements. Values of exprj corresponding to
true values of logexpr are assigned to a, and in the event the ’OR’ condition is present —
values of expr2 corresponding to false values of logexpr are assigned to b. Values of expr,
(expr2) corresponding to false (true) values of logexpr are ignored. In either case, the number
of values assigned to a is counted, and upon completion of the PACK statement this count is
assigned to the variable k.

Consider the following example, to merge selected elements from two arrays into a
single vector. Suppose the matrices IA and IB are as shown:

7 14 3
IA= 3 1 2 6
2 8 5 9
4 2 3 6
IB= 8 1S5S 4
17 2 8

The statement

PACK/K/AT (IA .GT. 4) IV= 1A, OR= IB

yields the results:

IVv= 7812183S5SS669

K = 5

199

Now consider the forms of the UNPACK statement.

General Form

UNPACK a = expr,
UNPACK WHEN (logexpr) a = [expr,] [, OR [b] = expr2]

‘Where:

a and b are the names of arrays or subscripted arrays of arbitrary rank, b is
optional, but if present in the UNPACK WHEN OR form, b must be conformable
with a. Note, a and b may be the same entity.

expr, and expr2 are arithmetic or logical array-valued expressions of rank
one. expr, is optional, but if omitted in the UNPACK WHEN OR form, the equal
sign following a, must be followed by the comma.

logexpr is a logical array-valued expression conformable with a.

If expr, (expr2) is a logical expression, a (b) must be a LOGICAL array. If expr,
(expr2) is an arithmetic expression, then a (b) must be an INTEGER, REAL or COMPLEX
array. Assignment of the values of expr, (expr2) into the array a (b) follows the same rules of
conversion as an assignment statement.

The unconditional form of the UNPACK statement allows the user to dynamically
expand a packed vector onto an array of one or more dimensions. This statement comple-
ments the PACK statement. That is, the unconditional form of the UNPACK statement
causes the vector-valued expression expr, to be evaluated and the values assigned to the array
a in the subscript order indicated by the range of a. If a conditional form of the UNPACK
statement is used, then the expression logexpr is evaluated and governs the assignment of the
values of expr, and expr2 into the arrays a and b analogous to the WHEN statement. Each
sequential value of expr, is assigned — in subscript order — to the element of a corresponding
to the next true value of logexpr, and in the event the OR’ condition is present — each
sequential value of expr2 is assigned in subscript order to the element of b corresponding to
the next false value of logexpr. Otherwise values of a (b) corresponding to false (true) values
of logexpr are left unchanged. Thus, this statement may be used to merge values from two
vectors into a common array or to store selected elements of a vector into two arrays under
logical control.

We shall consider two examples. First consider, expanding the packed vector IV onto
the matrix IU according to the LOGICAL array L.

200

Assume:

10 10 0 O

L=
0 0 110 1|
X X X X X X

IU =

IV= 347 1S263F

Where the x’s in IU simply denote original values of IU. Then the statement,
UNPACK WHEN (L) IU =1V

yields the result:

10U

Second, consider the use of the UNPACK statement to accomplish a threaded merge of two
source vectors under logical control.

Assume,

10 110
L= 0 0 10
0 10 0 |1

JIA= 7431286509

IB= 3027465138937

201

then the statement.

UNPACK WHEN (L) IU = 1A, OR=1B

yields the result:

Iw= 3 7 16 8

From these examples we note that the PACK and UNPACK statements like the
WHEN and AT statements may have any combination of one or two target arrays and one or
two source expressions.

VII. SUBPROGRAMS

As stated in the introduction, one of the functional objectives of VECTRAN was to
provide the user with a means of defining array-valued function subprograms and to allow the
user to utilize array-valued expressions as arguments to subprograms. Let us first consider
array-valued arguments.

A.Array-Valued Arguments

In general array identifiers (with the exception of vector-subscripted arrays) and
array-valued expressions may be used as arguments to function or subroutine subprograms
except for statement functions. This includes all array names (primary or identified) and their
sections. Although vector-subscripted arrays may not be utilized as an actual argument, they
may be a component of an array-valued expression which is an actual argument, and both the
array name and the vector defining the subscripted array may be passed as actual arguments —
thus allowing the subscripted array to be ’recreated’ within the subprogram.

R Extensions to User-Supplied Functions

VECTRAN extends FORTRAN function definitions in two ways:

Firstly, VECTRAN provides a new declaration statement, namely the ELEMENTAL
statement, which allows the user to declare that his function subprogram may be applied
distributively element by element to array-valued arguments and that the ’result’ of this
function is an ’array’ conformable with its arguments. Note, elemental function subprograms
are actually defined as scalar-valued functions which may be applied distributively over
conformable array-valued arguments.

Secondly, VECTRAN extends the FUNCTION statement to include the definition of
array-valued functions by extending its syntax to include the explicit specification of the
assigned range for the array-valued function. Note, when using user-defined array-valued
functions, the name of the function must appear in a RANGE statement in the calling program
prior to its first usage therein.

202

Q Extensions to Formal Parameter Specification

Although a VEC1 RAN-compiled subprogram may generally be referenced by either
VECTRAN or FORTRAN program units, some distinct advantages accrue in overhead if the
programmer provides structural information regarding array dummy arguments. (FORTRAN
subprograms may always be referenced by VECTRAN program units.)

Firstly, in a subprogram if the programmer can guarantee that it will be referenced
only by VECTRAN program units and that the actual argument will be an array or an
array-valued expression and not a scalar clement, then the dimensioning data for array-valued
dummy arguments may be replaced by asterisks, indicating only rank. Consider the following
example.

REAL FUNCTION /M, M/ SIMXFM (X, Y,M)
DIMENSION X(*, *)

RANGE/N,M/X /N,N/Y (*(¥)

COMMON N

SIMXFM = X.T. Y .*. X

In this example, which applies a similarity transformation to the the matrix Y, note firstly the
inclusion of the range information in the FUNCTION statement and secondly the use of
asterisks in the DIMENSION and RANGE statements. In the example the defined function
SIMXFM will determine the dimensioned storage allocation of the dummy array-valued
arguments X and Y at object-time from the calling program. Note, the presence of these
asterisks preclude the subprogram being called by a FORTRAN program unit. This mechanism
is defined as ’call by mapping only.’

Secondly, in a subprogram if the programmer knows that, for a particular dummy
argument, any actual argument will be only the name of an array defined by dimensioning
data, (i.e., the array is contiguous), or an array element of such an array, then he may convey
this information to the compiler by placing slashes around the dummy argument in the
FUNCTION or SUBROUTINE statement thereby specifying ’call by location only.” Informa-
tion on the storage structure associated with the array is then determined solely from the
dimensioning data provided in the subprogram unit, and must consequently correspond to the
dimensioning data of the array used as an actual argument.

Lastly, and the more normal situation, a formal parameter may be dimensioned in the
usual FORTRAN manner within the subprogram (without slashes surrounding the dummy
argument). In this case the mapping information generated internally is utilized when the
subprogram is called by FORTRAN program, but this information is overridden when supplied
mapping data is passed with the array-valued actual parameter from a VECTRAN calling
program.

VIII. CONCLUSION

In conclusion the authors believe VECTRAN not only offers a general extension to
FORTRAN without greatly expanding its syntax, but does so while maintaining the general
philosophy of FORTRAN and its object-time performance orientation.

The VECTRAN extensions arc designed to be implementable on a broad range of
machine architectures and do not specifically reflect any particular machine design or prefer-
ence. VECTRAN may be implemented on scalar, vector or parallel type machines.

The VECTRAN extensions complement automatic vectorization approaches and offer
more information about the underlying problem structure to enable higher optimization and
vectorization at lower compile-time cost.

Finally, VECTRAN provides for increased programmer productivity for new applica-
tion development as well as ease of program conversion for existing FORTRAN applications.

Only the major features of VECTRAN arc presented herein, for a more complete and
detailed exposition of VECTRAN the reader is referred to reference [|], and in particular to
Chapters II, IV and V, and Appendix D. The authors would welcome any criticism or remarks
concerning VECTRAN, its function, or its applicability.

ACKNOWLEDGMENTS
The authors wish to acknowledge W.A. Murray, L. Manzanera and J.W. Huang who
originally wrote the various subroutines used as examples in the paper.
REFERENCES
1. G. Paul and M. Wayne Wilson, "The VECTRAN Language: An Experimental

Language for Vector/Matrix Array Processing,”” IBM Palo Alto Scientific Center
report G320-3334 (August 1975).

2. IBM System/360 and System/370 FORTRAN IV Language, form GC28-6515.

3. N. Weiner, Extrapolation, Interpolation and Smoothing of Stationary Time Series.
Appendix B by Norman Levinson, John Wiley <« Sons, Inc., New York (1949), pp.
129-139.

4. M. Wayne Wilson, '"Flexible Subarray Facilities for Classical Programming Lan-

guages,"” IBM Houston Scientific Center report G320-2426 (November 1973).

5. J.J. Lambiotte, Jr., "The Solution of Linear Systems of Equations on a Vector
Computer,"” PhD Dissertation — University of Virginia (May 1975), pp. 112-152.

6. J.H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford University Press, London
(1965), p. 4.
7. J.H. Wilkinson and C. Reinsch, Linear Algebra, Handbook for Automatic Computation

Volume II, Contribution 1/7 "Solution of Real and Complex Systems of Linear
Equations," by H.J. Bowdler et al., Springer-Verlag, Berlin (1971), pp. 93-110.

204

REGISTER ALLOCATION IN THE SL/1 COMPILER

by

Douglas D. Dunlop*
Computer Sciences Corporation
Hampton, Virginia

and

John C. Knight
NASA Langley Research Center
Hampton, Virginia

ABSTRACT

The problem of allocating the 256 general
purpose registers of the CDC STAR-100 is discussed.
The algorithm employed by the SL/1 compiler devel-
oped at NASA Langley Research Center is described.
The algorithm is based on estimation of the effects
of different allocations on execution time of a
program. Preliminary measurements of the algorithm’s
performance are given.

I. INTRODUCTION

One important characteristic of the CDC STAR-100 is that it has 256 general

purpose registers. All scalar operations take place out of registers and vector
descriptors for vector instructions are held in registers. A vector descriptor
is just the length and beginning address of a vector. The number of available

registers typically exceeds the number required for temporary results and
special addresses, and this leads to the idea of keeping frequently used data
permanently in the register file. All references to these data items are then
made directly to the register file, thus eliminating the need to load and store
from memory. These savings can be very important in view of the relatively slow
main storage access time of the STAR-100.

*Work performed under NASA Contract Number NAS1-14900,

205

In a high level language program, a choice has to he made of the most

appropriate data items to allocate to registers. One solution is to introduce
into the language the notion of the register file through a register declaration
or compiler directive. This solution was rejected for SL/1 because it is

contrary to the spirit of a high lewvel language, and it has been found that
through careful program analysis, the compiler can make an effective selection.
In the SL/1 compiler, this selection is based on a "cost" function which, for
each candidate estimates the benefits of keeping it in a register. The selection
process then maximizes these estimated benefits.

II. THE COST FUNCTION

Let P be an SL/1l program and D be the set of data items in P that are
candidates for being permanently allocated to a register. The cost function for
a data item de D is denoted C(d) and is defined as the cost, in machine cycles,
of running P with d stored in main memory less the cost of running P with
d stored in a register. A positive value of C(d) indicates that P runs more
efficiently with d stored in a register.

Given the C(d) wvalues for all deD, one could allocate storage optimally as
follows:

(1) allocate to a register the deD with the largest positive C(d),

(2) delete this item from the set being considered,

(3) repeat (1) and (2) until all available registers are used or
there are no more candidates.

The other members of D should be allocated to main storage. Strictly
speaking, this algorithm is unrealizable in that the C(d) values can only be
known after the program executes. The cost function depends on the program's
run-time flow of control which cannot be determined, in general, prior to the
execution of the program. The C(d) values may be estimated, however, by a
compiler through careful study of the source program. The SL/l1 compiler utilizes
a variety of techniques to obtain cost function predictions and allocates storage
based on these results.

III. ESTIMATING THE COST FUNCTION

An SL/1 program consists of a set of global declarations followed by a set
of non-nested procedure definitions. Procedures may contain local declarations.
A wide variety of control structures are available in SL/1 and all of them
(except the GO TO) operate on a sequence of statements. This leaves the pro-
gramer with very little need for the GO TO statement which is important because
the mechanisms for estimating the cost function rely on detecting program loops
by the presence of explicit iterative statements rather than using control flow
graphs. Implicit loops constructed by the programer using GO TO statements are
not detected.

The cost function is based largely on estimations of statement execution
counts. These are predictions of how often a particular SL/1 statement will be
executed in a given program. Initially, each procedure is analyzed separately
and it is assumed that the procedure will only execute once. In addition, all
the statements inside a procedure are given initial statement execution counts
of 1. As explicit loops are encountered in the procedure, the execution counts
of all of the statements controlled by the loop are multiplied by a factor f£.

206

The factor f 1is the compiler's estimate of the number of iterations, on
average, that the loop will execute. Occasionally, f may be calculated exactly
based on the constant nature of the termination criterion and the absence of
exits from the loop body. In more general cases, the compiler simply assumes
that the loop will iterate a constant number of times. This constant is the same
for all 1loops.

The statement execution count estimations are modified by estimating
procedure execution counts. Let V be the set of procedure definitions in the
program being compiled. The compiler constructs a directed graph containing
elements of V as nodes and arcs of the form <*x,y*> where x,yeV in the event
that procedure x contains a call to procedure y. Associated with each arc
<(x,y*> is an estimate of the number of times x will call y. This estimate
(written E((x,y)>)) is the sum of the statement execution counts of the CALL
statements calling y from x. For y 6 V, the procedure execution count of
y (written R(y)) is calculated using

R(y) (E(<x,y>) *R(x))
xfsSv

where SV is the subset of V containing procedures with calls to y. The R
values can always be calculated provided the graph is acyclic. If the compiler
detects a cycle in the graph, a diagnostic is issued to alert the programer to a
possibly recursive procedure call (illegal in SL/l1) and an R value of 1 is
given to the offending procedure. Finally, the statement execution counts of all
of the statements in a procedure are multiplied by the R value of that proce-
dure, thus incorporating the R information into the statement execution counts.

Once the statement execution counts have been estimated, the cost function
C(d) where deD can be calculated. All C(d) values are initially zero. Each
reference to a de D in the program is examined and the difference in cost between
d permanently residing in main storage and permanently residing in a register at
that point in the execution is estimated. If the reference to d requires d
to be in a register (for example, if it is a scalar involved in an arithmetic
operation) C(d) is increased by the cost in machine cycles of loading d into a
register multiplied by the statement execution count of the statement involved.
Similarly, if the reference to d requires d to be in main storage (for
example, if it is a variable passed as a parameter), C(d) is decreased by the
cost of storing and reloading d multiplied by the appropriate execution count.
The cost of loading d into a register depends on the type of d. For example,
a scalar variable must be loaded from main storage which is a relatively slow
operation whereas a constant can be created from data in the instruction stream
which is relatively fast.

When this process is complete, the cost function in terms of machine cycles
has been computed for all quantities in the program which could reside in
registers. This information is then used for register allocation.

IV.APPLYING THE ESTIMATED COST FUNCTION

Variables declared globally in an SL/1 program are known to every procedure
in the program. Those declared locally are known only to the procedure in which

207

they are declared. Consequently the SL/1 compiler divides the portion of the
register file that is available for permanently holding data items into a global
section and a local section. The procedure entry code saves the caller's local
register section. Local data items of the callee which are permanently allocated
to registers are loaded into the local section from memory on procedure entry and
are stored back to memory when exiting the procedure. This mass loading and
storing of portions of the register file is made relatively efficient by the
STAR-100's SWAP instruction.

The existence of the global and local register sections has a complicating
influence on the register allocation technique. Each register in the local
section can be used to contain a local data item for each procedure. Assume the
set of global data items and the sets of local data items for each procedure are
sorted in order of decreasing C(d) values. As each register is being allocated,
two possibilities exist. If the next global data item has a positive C(d) value
which exceeds the sum of the C(d) values of the next local data item from each
of the procedures, the global data item is allocated to the register; otherwise,
the next local data item with positive C(d) values from each procedure is
allocated to the register. The process terminates when the available register
set is full or when no data items with positive C(d) wvalues exist. The remain-
ing data items, if any, are allocated storage in main memory. Actual register
numbers are allocated following this selection process to ensure that global and
local sets are contiguous.

V.DIFFICULTIES WITH REGISTER ALLOCATION

In allocating registers, several problems arise for which there is no easy
solution. Four of the more significant are described here. The SL/1 compiler
presently makes no attempt to handle them in an optimal way. Temporary "ad hoc"
solutions have been implemented and work is continuing to find more effective
algorithms.

Certain computations can be recognized at compile time as being constant
(for example, the address of an array reference with constant subscripts).

These quantities are candidates for residence in a register, but the cost dif-
ference between register and memory residence cannot be determined. If the
constant computation is not allocated to a register, it can be made available
when needed either by loading from memory or by recomputing it. Recomputation
is preferred if the necessary operands are in registers, but if not, it is
faster to load it from memory. Thus, the choice, which is part of register
allocation, cannot be made properly until after register allocation has been
completed.

A portion of the register set must be reserved for holding temporary
values, etc., during execution. These temporary values include scalar sub-
expression results and data items not residing permanently in registers. The
number of registers required depends upon the maximum number of temporary values
that are needed at any one time. This number can be estimated at compile time,
but its precise value is influenced by what is permanently residing in registers.
Hence, the way in which the register set should be divided up in an optimal way
cannot be determined until the registers have been allocated.

In computing C(d) it is not sufficient to process the program linearly,
incrementing C(d) for each reference to d. If several references to d occur
in one basic block, it may not be necessary to reload d for each reference
since it may still be residing in a temporary register from a previous reference.

208

The way in which d is used is also a factor since if it appears on the left
hand side of an assignment, the new value will prohahly have to he stored even

if it is between references in a basic block. Whether the store is needed or
not depends on the existence of other assignments in the basic block and how d
is managed between assignments. Thus, in order to estimate C(d) as accurately

as possible, the program structure in terms of basic blocks, references to d
and assignments to d must be known as the estimate is computed.

The STAR-100 is capable of a high degree of parallelism in the execution of
scalar instructions. If the unit which executes load and store instructions is
not busy and there are no data dependencies, a load or store instruction can be
issued and immediately afterwards subsequent scalar instructions can be issued.
They will be executed in parallel with the load or store. Clearly, a compiler
should take advantage of this by reorganizing instruction sequences in an
optimal way. The SL/1 compiler currently does not do this although the situation
can easily occur by chance. This complicates the computation of C(d) consider-
ably since what appears to be a cost of keeping d in memory could be partially
or completely masked by the parallelism of the hardware.

VI. PRELIMINARY EVALUATION OF THE ALGORITHM

In order to assess the performance of this algorithm, the SL/1 compiler has
been modified to output its estimate of the cost functions and to generate
instructions which measure the actual cost functions at execution time. Instruc-
tions are also produced to count the number of times each line of a program
executes.

One measure of the algorithm* s efficiency is the proportion of the optimal
set of data items which it actually allocated to registers. This can be measured
by examining the actual cost data after execution, using this to determine the
optimal allocation, and then comparing it with the compiler's selection. The
proportion of the optimal set actually allocated is then the efficiency measure.

Clearly, the performance of this algorithm is program dependent and even
data dependent for a given program. In order to draw any general conclusions,
it is necessary to measure the algorithm's performance over a wide range of
programs and average the results. At the time of writing, a complete set of data
had been obtained for only one program. The program is 1100 lines long and
contains 350 global quantities which could be selected for permanent allocation
to a register. There are an insignificant number of local variables. The actual
number of registers available is 113. If registers were allocated randomly, the
efficiency measure would be 0.32, and this is a lower bound against which the
algorithm can be judged. Table I shows the actual efficiencies which were
obtained for a range of values of the constant which the compiler assumes for
number of iterations of explicit loops.

TABLE I

LOOP CONSTANT

h 16 6k 10000

Efficiency

0.67
Measure 0.59 0.59 0.59

209

TABLE II

ALLOCATION TYPE

1 2 3
Processor
Time 6.15 6.03 6.69
(Seconds)

The algorithm will never achieve an efficiency of 1 except by chance, but
it is important to examine the compile time estimates to determine how they can
be improved. The problem which occurred with the program described above is
that it contains a loop which is executed many more times than any of the others.
Several variables appear just a few times in the program, but all of the
appearances are inside this single critical loop. These variables do not seem
important to the algorithm, and so they are incorrectly allocated to memory.

Perhaps the most important measure of the algorithm is its effect on total
program running time. The program described above was compiledfand executed
three different ways. They were:

(1) normal operation of the algorithm,

(2) optimal allocation performed by reading in the actual cost
data from a previous run,

(3) nothing permanently allocated to registers. A quantity will
remain in a register for the duration of a basic block only.

The measured processor times are shown in Table II. The difference between
cases (1) and (3) is only about 10¢ which is initially surprising. The reasons
are that the program is well written, it uses mostly vector instructions, and it
uses long vectors. These have the effect of largely swamping the overhead
introduced by the additional load and store operations. This effect will vary
considerably from program to program. It can be seen from Table II that of the
benefit to be gained in this case by register allocation, most has been obtained

by the practical algorithm.

VII. CONCLUSION

An algorithm has been presented for management of the 256 general purpose
registers of the STAR-100. The algorithm has been implemented in the SL/1
compiler and is in production. Visual inspection of its actions and early
results of experiments indicate that it is performing well.

The algorithm is quite complicated, requires considerable code in the
compiler, and adds a small, but non-trivial, amount to the compile time of a
program. Is it worth the effort? It is reasonable to consider algorithms which
are simpler and use much less information about the program in making the
allocation decision. It may transpire that near optimal register allocations
can be made this way. Carrying this a step further, random allocation or allo-
cation of the first variables declared may be efficient.

In the other direction, there may be cases where greater analysis of the
program than described here will make better choices. Very small changes in the
set of data allocated to registers may have a significant effect on programs
with complicated loop structures performing many iterations.

210

As well as being appropriate to the STAR-100, it is felt that these
techniques may have relevance to machines with similar structures. For example,
allocation of the B and T registers on the CRAY-1l is a very similar problem
to that described for the STAR-100.

211

ACTUS: A LANGUAGE FOR SIMD ARCHITECTURES

by

Ron Perrott
Department of Computer Science
The Queen's University
Belfast, N. Ireland

David Stevenson
Institute for Advanced Computation
NASA-Ames Research Center
Moffett Field, California 94035

ABSTRACT

A new language has been defined at the Institute
for Advanced Computation, NASA-Ames Research
Center, aimed specifically for lock-step parallel
computers such as the TIlliac IV, STAR-100 and
Cray-1l The two major dsign goals in defining the
language were i) that it would represent the
state-of-the-art in language design with respect
to support for developing reliable programs and
ii) that it would permit codes developed on one
parallel architecture to be moved to a different
parallel architecture without undue loss of
efficiency. This latter goal is possible only
when algorithms are expressed at an appropriate
level of generality, since the actual
implementation of algorithmic consructs may differ
considerably for efficient utilization of
different architectures.

I. INTRODUCTION

During the last two decades at least three generations of hardware components
have been developed with a resulting increase in efficiency and reliability of
computing machines. For high 1level programming languages, only the second
generation has Jjust been reached; and it is not yet widely disseminated among
the scientific coliimunity which uses the special purpose computer architectures
to solve their problems. The result 1is that most of the programmers and
researchers using high performance machines are expected to tackle a task on a
machine of the 1latest hardware technology using a comparatively inferior
software tool.

This mismatch of technologies has led to cumbersome project
implementations, usually delivered late and operating inefficiently. Also, the
size and the complexity of the projects that a software engineer is being asked
to implement have increased with the available processing power and are now
almost beyond the power and features of the programming languages being used to
tackle them.

There is every reason to believe that the size of the projects being
undertaken in the next decade will substantially increase: the volume of data
being generated by current satellites is already swamping existing computers,
and this volume will increase dramatically in the next decade. Hence, from this
single application area one can expect an increasing reliance on or demand for
the special architectures of today's high speed computers which give greater
performance over conventional computers through the exploitation of parallelism.

Most of the high 1level languages being wused to program the existing
parallel computers are extensions of languages designed many years ago for
conventional sequential machine architectures: STAR FORTRAN for the STAR-100,
CFT for the CRAY-1 and IVTRAN and CFD (FORTRAN-like languages) and Glypnir (an

Algol-like language) for the ILLIAC 1IV. Each of these languages have been
oriented toward one particular computer with the result that transporting codes
between these machines, or to other parallel computers, is difficult if not
imprudent

It is now apparent that these parallel computers require a language created
in their own generation using, as far as possible, the experience accumulated in
language design and implementation techniques and incorporating the new
approaches that are necessary in writing algorithms for these special
architecture computers. SL/1 is one such approach being undertaken at Langley,
although it is explicitly designed for the STAR-100.

A language designed for parallel computers requires a means of expressing
the parallel nature of a problem for these parallel computers. This is achieved
in ACTUS by means of the data declarations. In addition, new control methods
are introduced for controlling the extent of parallelism in the program
execution. As a final point, the language was explicitly designed to enable a
compiler to generate efficient object code for the different parallel computers.

213

II. REVIEW OF CURRNT ILLIAC IV LANGUAGES

The currently available languages for scientific computing (primarily FORTRAN
and its dialects) appear in many situations to have been overtaken by the range
of applications which they are expected to handle. These applications require a
greater number of instructions to be executed per second and the only way that
current hardware can do this is by duplicating the existing execution wunits.
Programming languages are, therefore, urgently required to handle parallel
computation on such machines as the STAR-100 and ILLIAC IV; this, in turn, will
lead the way to the development of languages for the new parallel processors of
the 1980s. The existing languages for today's parallel machines have been based
on FORTRAN and Algol; their major weakness is the limited capabilities of the
compiler to detect the inherent parallelism which has been hidden by the syntax
of a sequentially oriented programming language.

More specifically, in the case of the ILLIAC IV, the available high 1level
languages are CFD, IVTRAN, (both FORTRAN-like) and Glypnir (Algol-like). The
languages CFD and Glypnir force the user to think in terms of a fixed number of
processors. The user has to be continually aware that the ILLIAC IV consists of
a central processing unit with limited arithmetic capability and 64 processing
units executing in lockstep. The data declarations then indicate on which
processor or processors execution is to be performed. In effect, the wuser is
aware that there is a single instruction stream with the central processor
selecting those instructions that it is capable of executing. IVTRAN adopts a
different philosophy by extracting the parallelism within sequential FORTRAN DO
loops; the extraction is somewwat restricted and often the code generated is
executed in one processing unit only. In such situations, to get the compiler
to generate more efficient code, the user must restructure the program. IVTRAN
also requires some knowledge of the ILLIAC IV architecture for the allocation of
arrays and the alignment of operands.

Hence, the notation or framework provided by all three languages often
forces the programmer to think and construct a solution to his problem in a
manner which is not the most natural or straightforward. It 1is ©possible,
however, to 1look to the past and adopt those software engineering principles
which have led to the successful design and implementation of languages for the
construction of reliable programs for sequential machines. A programming
language for today's high performance computers should, therefore,

i) try to hide the idiosyncrasies of the hardware as much as possible from
the user,
ii) enable the user to express the parallelism of the problem directly,

iii) enable the user to think in terras of a varying rather than a fixed extent
of parallel processing, and

iv) enable control of the processing both explicitly and through the data, as
applicable.

214

III. DESCRIPTION OF ACTUS

The major features of the new language are the explicit expression of
parallelism in the syntax of the program and the implicit and explicit control
of the extent of parallel processing during the execution of the program.
Another important feature is the alignment of parallel operands. These
features will be briefly described and an example program will be given.

A. Expression of Parallelism

Since today's high speed computers were developed as a means of performing
the same operation on independent data, it is the data which should indicate
the extent of the parallelism. To represent this parallelism in a high level
language, each data declaration has associated with it the maximum extent of
parallelism that can be applied to that data type.

For example, if the user wishes to operate on a three dimensional (mxnxp)
array 'a' of integers, the data declaration can be used to indicate in which
direction the parallel processing is to be applied. For example,

var a: array[l..m; 1l..n; 1l:p] of integer;

The parallel dots ':' indicate that this is the index which is to be processed
in parallel, that Iis, spread across the processors in an array processor or
stored contiguously in a vector processor.

B. Implicit Control

The language constructs representing sequencing, selection and iteration can
then be applied to such declarations. This, among other things, enables
control by means of the data values. For example,

var t: array[l:q] of real;
while t[! :q]>0.0 do
begin
'statements
end

causes those components of 't' which are positive to determine which processors,
in an array processor, are enabled for computing or which values are presented
for processing in a vector processor; in both cases execution continues until
all the components of 't' are negative or zero.

Another example of implicit control is the 'for' loop. The index, start
and termination variables of a for 1loop construct can be either scalar or
parallel variables; the extent of parallelism must be the same for all parallel
variables in the loop. Such parallel control variables are represented by means
of one-dimensional arrays. The semantic meaning of a parallel 'for' loop is
that each component of the extent of parallelism has associated with it its own
start, increment and termination values, but that each component can be

215

processed in parallel. This construct is an example of a program construct that
will be compiled into different machine-level primitives for different
architectures. On an array processor, each processor would have its own start,
increment and termination variables. When the termination condition is met in a
processor, that processor will be disabled until all processors have finished
executing their 'for' loop. On a vector computer, each pass through the ‘'for'
loop will be preceded by the constrction of vectors containing the components to
be processed in parallel. (For simplicity, this discussion omits the issue of
data alignment.) In current high level languages for the different parallel
architectures, this general construct is lacking and constructs reflecting the
machine-level primitives are supplied instead (mode bits in an array processor
and vector compress operations in a vector processor), thus making codes
developed on one architecture prohibitively expensive to transport to another
architecture. The parallel 'for' construct is used in the example at the end of
this section.

C. Explicit Control
A control value can be declared to modify the extent of the parallelism.

For array processors, the extent of parallelism is defined to be the number of
processors that could logically compute upon a particular data structure at the

same time; the definition of extent of parallelism for vector machines is
similar. The members of the control value are integer values which identify the
parts of an array which are to be processed. For example,

control inb = (2:m-1);

For an array processor this indicates that only processors 2 to m-1 are to

be enabled. When used with the above declared array 'b' as b[inb;j] it would
cause all but the perimeter of the rectangle to be processed. In a vector
processor, the control value indicates which elements of the vector are to be

presented for processing.

Control values can be manipulated by the following set of operators: union,
intersection and difference. These operators facilitate computation on wvarious
parts of parallel data structures.

D. Dynamic Control

In those situations where the extent of parallelism does not change for a

group of statements, the ‘'within' <construct can be used to avoid repeated

specification, as follows.

within i:j do

begin
t[#]:=2.0;
b[#;1]:=b[#;3]+x[#];
end;

The '#' abbreviation is wused to represent the extent of parallelism
indicated by the 'within' specifier, in this example from 'i' to 'Jj' for each of
the statements.

216

The extent of parallelism will not be re-evaluated until either the

construct is exited, or until another 'within' construct or extent setting
construct is encountered. The extent of parallelism can be varied dynamically
by changing the values of 'i* and 'j' (in the above example) in a loop
construct.

E. Alignment

It is also necessary to be able to align the elements of one parallel data
structure with (any of) the elements of another parallel data structure; this is
called operand alignment. In this situation contiguous elements are to be
aligned with respect to other contiguous elements in a shift or wrap-around
fashion.

The notation for achieving operand alignment is by using a positive integer
(move data from right to left) or a negative integer (move data from left to
right) as one of the operands for an alignment operator; the other operand is a
control value or explicit identification of the extent of parallelism. The
abbreviations shf and rtn are wused to represent the shifting and rotation
(wraparound) movement of data; the movement is effected on the maximum declared

extent of parallelism for the variable concerned. The indices are calculated
before the operands are fetched and manipulated. In particular, all index
calculation and alignment actions are performed before the operations indicated
by the statement are performed. For example,

while t[inb]>0.0 do
begin
t[inb] :=(t[inb shf - 1] + t[inb shf + 1])/2
end ;

will cause the components of 't* (excluding the extremities) to be updated using
the wvalues of its neighbors.

217

F. Example

The following example is the inner loop of a feature extraction algorithm
that illustrates some of the features described above (from "Texture Measurement
on the Illiac IV using a Maxmin Algorithm, IAC T.M. 5632) . The array L
contains the pixel values; 255 is used for an undefined pixel value. C is an
array to count the number of threshold crossings detected on each scan line and
d is the hysteresis matrix: an entry of d is ! if the pixel value passed through
the top of the hysteresis range and 0 if it passed through the bottom of the
range. The variable T contains the value of the threshold parameter, the array
a contains the value of the top of the threshold range and b the bottom of the
threshold range.

within 1:j do

begin
c[#]:=0;
di#,1]:=1;
if L[#;1]=255 then LI[#;1]:=0;
al# 1]1:=L[#;1];

b[# 1]:=L[#;1]-T

for i[#]1=2 to S[#] do
begin
af#;i[#]]:=al[#;i[#]-1];
b#;i[#]1]1:=b[#;i[#]-1];
A#;i[#]1]:=d[#;i[#]1-1]1;
end,

if (L[#;1[#]]1<255) and

(L[#;i[#]1]1>a[#;i[#]1-1]) then

begin
al#;i[#]1]1:=L[#;i[#11;
bl#;i[#]]:=L[#;i[#11-T;

dl#;i[#1]1:=1;
cl#l:=c[#]+1-d[#;i[#]-1];
end,

if (L[#;i[#]1]1>=0) and
(L[#;i[#]1]1<b[#;i[#]1-1]) then
begin
af#;i[#]1]:=L[#i[#]]+T
bI#;i[#]1]:=L[#;1[#11]1;
cl#]l:=c[#]1+d[#;i[#]-1];
end;
if (L[#;i[#]1]1<=al#;i[#]-1]) and
(L[#;i[#]1-1>=b[#;i[#]-1) then
begin
al# i[#]1]:=al#, i[#]-1];
bl#,i[#]1]:=b[#;i[#]-1];
cl#]:=d[#;i[#]1-1]1;
end;
end;

218

THE VECTORIZER SYSTEM: CURRENT AND PROPOSED CAPABILITIES

by

Mathew Myszewski
Massachusetts Computer Associates, Inc.
Wakefield, Massachusetts 01880

ABSTRACT

The Vectorizer system, developed by Massachusetts Computer
Associates, Inc., is a powerful tool for converting FORTRAN pro-
grams to use the wvector operations available on large scale com-
puter systems. The Vectorizer system addresses both the safety
and the efficiency of the conversion. A machine-independent
analyzer determines which FORTRAN constructs can be safely con-
verted to vector operations. Each of the machine-dependent gen-
erators addresses the issue of producing efficient code for a
particular target system. Examples will be drawn from over a
year's experience with user codes.

219

AUTOMATIC STACKLIB FACILITIES IN STAR*FORTRAN

by
Anil K. Lakhwara
Control Data Corporation
Sunnyvale, California 24086

ABSTRACT

STAR*FORTRAN as implemented for the STAR-100 and the
STAR-100A computer systems contains a variety of compile time op

tions. One of the options which can be invoked is automatic vec
torization. This option will cause the generation of wvector
hardware instructions in place of conventional scalar instruc-
tions. The STAR*FORTRAN automatic vectorization process has re-

cently been expanded to include the generation of very efficient
stacklib routines for a selected set of FORTRAN sub-routine con-
structs not otherwise vectorizable (due primarily to recursion
requirements). The examples which will be discussed include the
inner product, the first sum and two second-order recursions.
The method is quite general with respect to both the syntax in
FORTRAN and with respect to implementation of additional coded
constructs

220

VECTORIZING FORTRAN

by

Lee Higbie
Cray Research, Inc
7850 Metro Parkway, Suite 213
Minneapolis, Minnesota 55420

ABSTRACT

This paper discusses techniques that will increase the vec-
torizability of programs written in Fortran. The general ap-
proach is from the viewpoint of modifying existing programs so
that they will run faster on the CRAY-1, but the tricks that are
pPresented are ones that will be generally useful for any wvector-
izing Fortran compiler. The more fundamental techniques are ones
that can be considered essential for wvirtually any program that
is to run on a vector machine, others are stop-gap measures that
will not hurt in the long run but will only be necessary in the
near future for CFT, Cray Fortran. Topics that are not discussed
are vector extensions to Fortran and vector functions. The topic
is rewriting standard Fortran to increase vectorizability, within
or close to the confines of standard Fortran.

221

COMPUTATIONAL FLUID DYNAMICS, ILLIAC IV, AND BEYOND

by

K. G. Stevens, Jr.

NASA-Ames Research Center
Moffett Field, CA 94035

ABSTRACT

This paper summarizes the computational fluid
dynamics work being done at Ames Research Center utilizing
the ILLIAC IV. Both the physical nature of the problems
and computational requirements are discussed with
utilization of the illiac Disk System being highlighted.
Finally, results of studies for an even more powerful
computational resource to be incorporated in a proposed
Numerical Aerodynamics Simulation Facility are also
discussed with respect to the Ames computational fluid
dynamics effort.

I. INTRODUCTION

At present the Computational Fluid Dynamics Branch at Ames
Research Center is developing several codes for use on the ILLIAC
Iv. These codes are the fore-runners for the eventual development
of three dimensional Reynolds-averaged Navier-Stokes codes which can
be used for aircraft design. This paper briefly discusses three of
these codes and their use of the ILLIAC 1IV. It then discusses the
Numerical Aerodynamics Simulation Facility (NASF) which is an effort
to develop a computational facility of sufficient magnitude to allow
economic solution of these codes once they are developed.

222

II. TRANSONIC AILERON BUZZ

Transonic aileron buzz was first encountered by World War II
Pilots and is described as a one degree of freedom flutter where
shock wave motion causes a phase difference in the response of the
hinge moment to aileron movement. Tests were conducted from 1947 to
1949 on an F-80 wing mounted in the Ames 16-foot wind tunnel. The
wing tip was supported to prevent bending, and the aileron was
allowed to move freely about the hinge 1line.

A recently developed viscous flow airfoil code” has been used
to simulate transonic aileron buzz. The thin-layer Navier-Stokes
equations are solved with the turbulence modeled by a two-layer
algebraic eddy viscosity model. The calculated results, which were
obtained on the ILLIAC IV, are in essential agreement with the wind
tunnel data (see Figure 1.) For an angle of attack of -1 degree and
Mach numbers of 0.76 and 0.79, the aileron failed to buzz. at a
Mach number of 0.82, buzz occurred and the calculated aileron
deflection history nearly follows the experimental data.

The ILLIAC IV code uses up to a 64 x 128 grid. This code runs
about three times faster on the ILLIAC IV than on the CDC 7600.

III. SIMULATION OF TURBULENCE

Turbulence and transition phenomena are being simulated on the
ILLIAC IV, which has the capacity for handling 500,000 grid points”.
This permits spacial resolution much finer than possible before with
serial processors. The compressible Navier-Stokes eauations have
been solved for several three dimensional geometries including a
circular Jjet”. The development of the jet is traced from the
orifice, through roll-up into "smoke rings" and into transisition to
turbulent flow (See Figure 2.) The mean velocity profile and
turbulent intensities in the resulting turbulent jet are similar to
those observed in subsonic jets. More detailed comparisons with
experimentally measured shear stresses and temporal correlations are
Planned as are computations of the noise produced by the turbulence
as determined by the contained quadrupole sources and also by the
pressure and normal velocity data on a surrounding control surface.

These classes of codes use FFTs and finite difference methods
on grids as large as 128 x 64 x 64 and make heavy use of the Illiac
Disk system. This problem would be impractical on a CDC 7600 due to
the slow disk transfer rates. The FFTs used by these codes run six
times faster that those on the CDC 7600.

Iv. VISCOUS SEPARATED FLOW IN THREE DIMENSIONS

A three dimensional Reynolds-averaged Navier-Stokes code has
been developed for the ILLIAC IV~". The current code uses a 40 x 40

223

x 40 grid. A laminar viscous flow calculation is shown in Figure 3
for a hemisphere-cylinder with an angle of attack of 19 degrees and
free stream Mach number of 1.2. The calculation compares well with
the experimental profiles from Hsieh”. On the leeward side
strearowise separation occurs at the nose. Points of streamwise
separation and reattachment predicted by numerical calculations are
denoted by S and R in Figure 3. Also shown in Figure 3 are
numerical results for the windward side which remains attached and
crossflow velocity vectors which show the separation. This code is
now being modified by Lomax, Pulliam and Steger to simulate the flow
around a wing using a 80 x 40 x 48 grid. This code is a path finder
on the way to engineering use of the three dimensional Navier-Stokes
solutions. It is this code which uses an implicit method and
another three dimensional code which uses an explicit method to
solve the Reynolds-averaged Navier-Stokes equations that are serving
as the aerodynamics benchmarks for the NASF study. This code runs
from 2 to 5 times faster on the ILLIAC IV than the CDC 7600
depending on the grid size.

V. THREE DIMENSIONAL CODES AND THE ILLIAC 1IV.

The ILLIAC IV currently has a small "vector" access memory and
a large block addressable memory which is logically a drum. Because
of this memory organization considerable effort has gone into
developing buffering schemes for the ILLIAC 1IV. One of the schemes
is discussed by Lomax6. This scheme works well when the numerical
method can be factored into a sequence of one dimensional operators.
This factoring allows the data to be brought into memory in a series
of x, y, and z columns so that one dimensional operators can be
performed in parallel across the cross section of the column as
shown in Figure 4. Also shown in this figure is the manner in which
the subblocks are skewed on the drum to allow equally fast access to
all three directions. (Note: The data within the subblocks are
stored in the usual FORTRAN way. This implies actual transposes of
the data must be performed if contiguous vectors are to be accessed
or it implies noncontiguous memory access for vectors for two of the
column accesses.) This scheme for data buffering will be applicable
to the new Charged Coupled Device (CCD) memories and allows easy
identification of "vectors" provided the numerical method can be
split into a sequence of one dimensional operators.

VI. NUMERICAL AERODYNAMICS SIMULATION FACILITY (NASF).

Even with improvments in numerical methods it is anticipated
that a machine 40 times more powerful than the ILLIAC IV will be
required to allow the use of three dimensional Reynolds-averaged
Navier-Stokes solutions as an engineering tool. This is a goal of
NASF and corresponds to solution times of less that ten minutes per

224

case which translates to the rate of one billion useful floating
point calculations per second. An Ames survey of the computer
industry as well as one by Los Alamos Scientific Laboratory and
other surveys predict that a machine of this magnitude will not
exist in the mid-1980's unless its development is sponsored by a
user orginization. Ames further determined that there were no
technology constraints which precluded such a machine in that time
frame.

With this in mind Ames has awarded two feasibility studies to
determine if the fabrication of a NASF is possible in the
mid-1980's. These studies have been awarded to Burroughs and
Control Data Corporations. The remainder of this paper covers the
concepts which these corporations feel indicate that NASF is
feasible.

VII. BURROUGHS CORPORATION CONCEPT OF NASF

The Burroughs concept” is shown in Figure 5. The Support
Processor System (SPS) for the Burroughs NASF concept is
conventional and is built around hardware and software similar to a
B7700. This SPS concept is quite similar to the way the BSP is
front-ended. However, the Flow Model Processor (FMP) shown in the
system is quite different from the BSP and ILLIAC 1IV. The major
points to notice about the Burroughs FMP concept are

1. 512 Processors with their own instruction issue unit
2. 521 Memory modules
3. Transposition Network (TN)

4. CCD staging memory.
The fact that each processor has its own instruction stream makes
this concept quite different from other lock-step parallel designs.
Most of the problems with data dependent branches are gone as are
the problems with "scalar" code. This would be a nearly optimal
approach if we could afford a full cross-bar switch as the TN.
Memory conflicts are greatly reduced by having a prime number of

memory banks. However, a full access TN is too large and expensive
to be practical. It's here where Burroughs has spent much of its
time. The current Burroughs concept for the FMP incorporates a
double Omega network with one layer having inverted priorities as
the TN. This network seems to be a good compromise between
throughput, cost, and reliability. Although normal access to the

memory is for planes of data from three dimensional arrays, the
machine's multiple instruction stream concept would, over time,
randomize the "vectors" to be fetched. If the TN were not a cause
of delay the Burroughs FMP would run at 1.7 Billion Floating Point
Operations per Second (GFLOPS) on the benchmark aerodynamics codes.
When the TN is included the estimated speed on a real aerodynamics
code is estimated to be one GFLOPS.

225

VIII. CONTROL DATA CORPORATION CONCEPT OF NASF

The Control Data Corporation (CDC) concept” is shown in Figure
6. The front end hardware is all connected to high speed network
trunks. This allows many different types of devices to he accessed
by the FMP. The CDC proposed SPS includes two CYBER computers, an
819 disk farm, 38500 archival storage systems and high speed
graphics

The CDC FMP concept is similar to the CDC STAR 100. The major
difference being the size of memory—eight million words, and the
number of pipes—mnine, as can be seen in Figure 6. Special care is
being taken to minimize unoverlapped startup times for the
pipelines. The FMP pipes allow linking of operations similar to the
chaining allowed by the CRAY-1, If a 16 nanosecond clock is used,
the CDC FMP has a maximum speed of three GFLOPS. This speed is
reduced for real problems since vectors must be gathered and control
vectors must be used instead of IF statements. It is presently

estimated that this FMP concept will execute the benchmark
aerodynamics codes at a rate of about one GFLOPS.

IX. CONCLUSION

It appears at this point that it is possible to build the NASF
in the mid-1980's and that with continued code development it will
be possible to use three dimensional Reynolds-averaged Navier-Stokes
solutions as engineering design tools at that time. Ames is,
therefore, seeking funding beginning in FY80 for design and
construction of the NASF.

REFERENCES

1. J. L. Steger and H. E. Bailey, "Simple Calculations of Transonic
Aileron Buzz," submitted to the AIAA 17th Aerospace Science
Meeting, 1978.

2. R. S. Rogallo, "An ILLIAC Program for the Numerical Simulation

of Homogeneous Incompressible Turbulence," NASA TM-73,203,
November 1977.

3. A. Wray, Ames Research Center, Moffett Field, California,
private communication, 1978.

4. T. H. Pulliam and J. L. Steger, "On Implicit Finite-Difference
Simulations of Three Dimensional Flow," AIAA Paper 78-10, 1978.
5. T. Hsieh, "An Investigation of Separated Flow About a

Hemisphere-Cylinder at 0- to 90-deg Incidence in the Mach Number
Range from 0.6 to 1.5," AEDC-TR-76-112, July 1976.

6. H. Lomax, "Three-dimensional Computational Aerodynamics in the
1980’'s," NASA CP-2032, February 1978.
7. Burroughs Corporation, "Final Report Numerical Aerodynamics

226

Simulation Facility Preliminary Study Extension," NASA Contract

No. NAS2-9456, February 1978.
N. R. Lincoln, et. al., "Preliminary Study for a Numerical

Aerodynamics Simulation Facility Final Report -- Phase 1
NASA Contract No. NAS2-9457, February 1978.

Extension,"
CALCULATION OF AILERON BUZz
STEGER/H. BAILEY, 1978
M = 0.79 NO BUzZz
SUPPORT \
M = 0.82 BUZZ
MEASURED-,
COMPUTED-,
e o0 CALCULATED
QC .82

BUZZ

MEASURED <
NO BUZzZ BOUNDARY

.04 .08 .12 .16 .20 .24 .28
ANGLE OF ATTACK, deg TIME, sec

FIGURE 1.

SIMULATION OF TURBULENCE

CIRCULAR JET

NORMAL VORTICITY CONTOURS

LAMINAR

TRANSITION

TURBULENT

FIGURE 2.

228

SEASA OMANO

100

80

60

40

20

VISCOUS FLOW ABOUT A HEMISPHERE - CYLINDER
=1.2 a=19° ReD = 445,000

NOSE SEPARATION BUBBLE

VORTEX SHEETS

= HSIEH MEASURED

----STEGER-PULLIAM CALCULATION

R X/R

X/R

o =0° LEEWARD

PRIMARY, §,

SECONDARY, 8§,

10 15

FIGURE 3.

o=0° A \ - s
LEEWARD 4 i M M v
a v T
T >
54 i
/ 1
~s~171 |
Villi* |
sp ANV) T T 1t £ T
A,
2
= vyl
0= 180°
WINDWARD *
/ ’ I
/ / / t
, / £ £

-
-

.

CROSSFLOW VELOCITY VECTORS

229

1,1,1
2,1,1
3,1,1

4,1,1

230

1,2,1
2,2,1
3,2,1

4,2,1

1,3,1
2,3,1
3,3,1

4,3,1

1,4,1
24,1
3,4,1

4,4,1

SKEWED DATA STORAGE OF SUBBLOCKS

1,1,2
2,1,2
3,1,2

4,1,2

DATA BUFFERING ON ILLIAC IV

1,2,2
2,22
3,2,2

4,22

1,3,2
2,32
3,32

4,3,2

1.4,2
2,42
3,42

4,4,2

1,1,3
2,1,3
3,1,3

4,1,3

FIGURE 4.

x COLUMN

1,2,3
2,23
3,2,3

4,23

y COLUMN

1,3,3
2,3,3
3,3,3

4,33

1.4,3
2,43
3,43

4,43

z COLUMN

1,1.4
2,1,4
3,1,4

4,14

1,2,4
2,2,4
3,2,4

4,2.4

1,3,4
2,3,4
3,3,4

4,3,4

1.4,4
2,4,4
3,44

4,44

BURROUGHS NASF CONCEPT

BURROUGHS FMP CONCEPT

EXTENDED MEMORY

TRANSPOSITION NETWORK

(TN)
PROCESSORS CONTROL
UNIT
BURROUGHS SPS CONCEPT
MEMORIES
FILE
STORAGE
CENTRAL
PROCESSORS
B7700 AND 1/O
EXCHANGE PROCESSORS
ARCHIVE
STORAGE

FIGURE 5.

231

CDC NASE CONCEPT

CDC FMP CONCEPT

SCALAR
READ 3 PROCESSOR
(STORE)
BACKING SWAP MEMORY
STORE UNIT INTERCHANGE O —
256
MILLION
64 BIT MAP
WORDS (128) — UNIT 5
+ ECC. _ - 5
N O o BUFFER
UNIT
8K
WORDS
+ SECDED
MAIN
MEMORY 9 VECTOR
UNITS
10 8 MILLION
64 BIT WORDS
UNIT + SECDED
SERIAL
DATA
TRUNKS
CDC SPS CONCEPT
HIGH PERFORMANCE
GRAPHICS
FEP FEP
131K ngus(131K
WORDS WORDS
50 NS 60 BIT 50 NS
CLOCK WORDS CLOCK PDP-11 PDP 11
NETWORK TRUNK
DISK 38500 38500
CTRL
ARCHIVAL
TAPE
CTRL

FIGURE

232

DAP - A FLEXIBLE NUMBER CRUNCHER

by

S. F. Reddaway
International Computers Ltd.
London, England

ABSTRACT

A wide range of routines and large applications can be performed on the
Distributed Array Processor"' (DAP). The DAP goes back to fundamentals, offering
new and very different basic capabilities. These capabilities have been applied
to a number of applications and techniques, many of which have been implemented
on the pilot DAP which has 1024 processing elements arranged 52 x 52 and has
been running for two years

A three dimensional stellar evolution simulation in which each of 1024
stars interacts every time step with every other star under gravitational force
has been implemented in DAP-Portran. Such total interaction and the lack of a
grid structure mean that it is not an obvious array processor problem. However,
l-- million force components are calculated each time step in 5*5 seconds, giving
a performance on this problem of about 2 times an IBM 570/195*

A Hadamard transform, implemented in DAP-Portran with 2048 16-bit integers,
takes 1.5 msec; due to the use of low precision fixed point and the absence of
multiplications, this is about 10 times faster than the 1024 point complex PET
dealt with in reference 1.

Tridiagonal systems of N equations have been solved using a "recursive
doubling" technique needing log N steps. The technique has been used to solve
Poisson's equation on a 52 x 52 grid with an ADI method; a straightforward
implementation in DAP-Portran took 150 msecs for 12 iterations, at which point
it had nearly reached the final precision. An improved method implemented in
DAP-Portran does most of the computing on increments using shorter words and
took 85 msecs for 12 iterations; at this point the error was rather less than
the straightforward method and the final precision was substantially better.

Reference | reported 29 msec for an assembly language 52 x 52 matrix
inversion with full pivoting. This has since been reduced to 26 msec. A
DAP-Portran implementation, using essentially the published code, executes in
50 msec, representing a 15% overhead compared with assembly language. Many

233

DAP-Fortran routines, for example matrix multiply, have a substantially
lower overhead.
Several arithmetic functions are remarkably fast. Reference | has already

reported square root as significantly faster than multiplication. Logarithm
and exponential, now being implemented, are expected to be almost as fast as
multiplication.

On the DAP, many problems can use parallel table look-up on a common table.
Recent ideas can improve earlier DAP performance estimates by a factor of up
to 10.

The Processing Element of the DAP is simple, general and flexible, with
few decisions built in to the hardware. Operations are built up in low level
software so that simple things such as sign changing or comparing numbers are
much faster than complex ones such as floating point arithmetic. Hence the
organisational overheads normally associated with numerical work tend to be
small. Boundaries and conditional operations can be handled effectively by
activity control, often with less degradation of performance than on a
conventional machine.

Simple categorisations of parts of jobs into "scalar" and "vector" have
proved unsound if applied to the DAP. Effective DAP solutions have been found
to most large compute-bound jobs studied, with nearly all processing being done
in the DAP. Indeed, factors which make jobs large and CPU-bound, tend to make
them well suited to the DAP. The range of application of the DAP already
extends from scene analysis to number crunching, and the 1limits to its potential
have yet to be found.

DAPs with 64 x 64 processing elements, 4 times more powerful than the pilot
with 2M Bytes of integral store, are being manufactured. The first delivery
will be to Queen Mary College, London University.

REFERENCE

1. P.M. Flanders, D.J. Hunt, S.F. Reddaway and D. Parkinson, "Efficient

High Speed Computing with the Distributed Array Processor", High Speed
Computer and Algorithm Organisation (Academic Press, Inc., New York,
1977), pp 113-128.

234

ARRAY PROCESSING ON THE PDP-10

by

Neil Maron
and
George G. Sutherland
University of California
Lawrence Livermore Laboratory

Livermore, California 94550
ABSTRACT
We are attaching a Floating Point Systems, Inc.”+* micropro-

grammable array processor (AP190-L) to the M-division PDP-10.
The AP has a cycle time of 167 nanoseconds (ns) and is interfaced
though another microprocessor to the PDP-10 memory bus and I/O

bus. The AP is capable of producing the results of a multiply
and an addition every cycle. This is permitted because of paral-
lel functional wunits. The total time for a multiply is 3 cycles

and for an addition is 2 cycles.

We will report on the PDP-10 monitor overhead required to
obtain useful results from the array processor as well as some
benchmark results of PDP-10 performance enhancements.

+
()Reference to a company or product does not imply the exclusion
of any other that may be suitable.

DISTRIBUTED NUMERIC COMPUTING ENGINES:
MINICOMPUTER-BASED VECTOR AND PARALLEL COMPUTING

by

W. Morven Gentleman
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

In many scientific and engineering institutions, the re-
quirement for massive computing power comes not from a few prob-
lems with immense requirements and tight realtime constraints,
but rather from a large number of problems, each with substantial
requirements but requiring only reasonable turnaround. In this
situation, the enhanced reliability, the opportunities for modu-
lar growth, and the cost (in today's world where economies of
scale are associated with volume production rather than unit
capacity) make it attractive to consider a distributed solution
to meeting the computing needs instead of the conventional large
machine solution. From currently commercially available equip-
ment, it is possible to put together configurations such that
each user, or at least each small group of users, has an indivi-
dual computer of considerable power, with network access to
shared services such as a central file store or microfilm graph-
ics devices. The individual numeric computing engines can rea-
sonably be given ample local backing store, through wvirtual
memory techniques can appear to be given large main memories, and
through add-on vector processors or collections of subservient
microcomputers can be given adequate compute power. There are
ter of considerable power, with network access to
shared services such as a central file store or microfilm graph-
ics devices. The individual numeric computing engines can rea-
sonably be given ample local backing store, through wvirtual
memory techniques can appear to be given large main memories, and
through add-on wvector processors or collections of subservient

microcomputers can be given adequate compute power. There are
software problems, but not worse than for any new architecture.
Some specific configurations will be presented. Their pros
and cons will be discussed and performance estimated. The use of
these configurations to solve several sample problems will be
discussed, in order to address that wvital question: could such

computing be exploited by average users without requiring an
overwhelming effort to learn a new way of programming?

236

DESIGN OF ARITHMETIC ELEMENTS
FOR BURROUGHS SCIENTIFIC PROCESSOR

by

Daniel D. Gajski
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

and

L.P. Rubinfield
Burroughs Corporation
Great Valley Laboratories
P. 0. Box 517
Paoli, Pennsylvania 19301

ABSTRACT

The design criteria and implementation of the Arithmetic
Element (AE) of the Burroughs Scientific Processor, a vector

machine intended for scientific computation requiring speed of up

to 50 million floating-point operations per second, is discussed.
An array of 16 AEs operate in lockstep mode, executing the same
instruction on 16 sets of data. The 16 AEs are one stage in a
pipeline which consists of 17 memory modules, an input alignment
network, and an output alignmment network. The AE itself is not
pPipelined. It can perform over one hundred different operations
including a floating-point addition, subtraction and multiplica-
tion (320 ns), division (1280 ns), square root (1920 ns), among
the others. Eight registers are provided for the storage of in-
termediate wvalues and results. Modulo 3 residue arithmetic is
used for checking hardware failures.

237

238

Optimization of Vector Operations in an
Extended Fortran Compiler

Ken Kennedy

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Visiting Staff Member
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

Abstract

The advent of new versions of Fortran which recognize
vectors as computational entities gives rise to some interesting prob-
lems for the compiler designer. If the intermediate representation is
carefully chosen, the full power of scalar optimization techniques can
be brought to bear on vectors as well, resulting in significant code
improvement. Redundant subexpression elimination, constant folding,
code motion, and vector register allocation are examples of applicable
techniques. New optimizations, such as those concerned with the
management of vector temporary storage, can also be found. This
paper discusses possible designs for an optimizing vector Fortran
compiler and gives examples of some of the transformations it could
perform. The main conclusion is that vector Fortran can be translated
into excellent code, even if the target machine has no vector
instructions.

I. Introduction

There has been substantial recent interest in languages which provide vector extensions
to Fortran; examples are Vectran [Paw75,Paw78] and BSP Fortran [Bur77], This paper
discusses some preliminary ideas on the design of an optimizing compiler for such a language.
Since the additional complexity of scanning and parsing vector extensions to standard Fortran
is fairly small, concentration is on the semantic phases of the compiler — optimization, storage
allocation, and code generation.

Although much of the interest in vector languages is due to the advent of vector
machines like the Cray-1, vector notation is a convenient language feature even on a scalar
machine. In scientific applications, vectors occur naturally, and a good scientific language
should permit their use as atomic entities. Careful examination of many scientific programs
will show that the innermost loops are often just scalar encodings of vector operations. In
other words, vector extensions make sense because they are useful for specifying algorithms,
whether or not the algorithms will be run on a vector machine. 1 shall contrast the problems
of compiling for scalar versus vector machines; as it happens, the optimization phases should
be quite different.

A major consideration in designing a vector language compiler is the extent to which
code from an existing Fortran compiler can be used. Clearly, the scanner and parser will not
need much modification. If scalar optimizations can be easily upgraded to handle vectors as

well, the effort required to produce efficient code for vector extensions will be significantly
reduced. For this reason the discussion considers how best to include vectors in a classical
compiler design.

The paper is organized into six sections, including this introduction. Section II
describes classical compiler organization and presents a plausible internal format for vector
operations. Storage mappings are the subject of Section III, which describes one representa-
tion of array access functions. Section IV introduces a variety of array optimizations, discus-
ing their applicability. Section V concludes the paper by sketching the overall organization of
vector compilers for both vector and scalar machines.

I make no attempt to include a systematic discussion of automatic vectorization,
although this should be an important part of any Fortran compiler for a vector machine.
However, the usefulness of many of the optimization techniques described here is predicated
on the existence of a preliminary vectorization pass. In other words, many of the inefficiencies
that vector optimization attempts to eliminate are ones that might be introduced by vectoriza-
tion. This is another instance of the rule that optimization usually creates further opportunities
for optimization.

II. Conceptual Preliminaries

If we are to implement vectors in Fortran with a minimal effort, we must first under-
stand the structure of traditional Fortran compilers. A fairly typical organization, used in the
Fortran H compiler [LoM69], is depicted in Figure 1.

source scanner optimizer code object

parser generator

Figure 1. Classical compiler organization.

First a lexical scan and parse phase converts the source program to some intermediate code,
quadruples for example. Quadruples usually have fields specifying the operation, up to two
source operands, a result operand, and auxiliary information; the latter field is used by the
optimizer and code generator to specify which operands are found in registers, which registers
they occupy, whether the instruction should be deleted, and so on. The optimization phase
accepts quadruples as input and produces quadruples as output, but with the auxiliary informa-
tion fields filled in. The code generator translates this final intermediate code into a machine
language program.

The functioning of the semantic phases in such a compiler can be demonstrated by an
example. Consider the statement

1=1+J*K
The parser might convert this to the following quadruples

T, — J*K
I — I+T,

239

where T| is a compiler-generated temporary. Suppose that the optimizer then discovers that
J*K is a redundant subexpression, one whose value has been previously computed and stored in

temporary Then the multiplication can be eliminated.
M T*K
1 — I+T,

On further study, the optimizer might discover that T, is never used again, so all of its uses
can be replaced by :TU*K and its definition can be eliminated.

Next, a register allocator attempts to assign heavily-used quantities to CPU registers. If it
discovers that / is a loop induction variable, it will probably assign / to a register, say R3.
This would be recorded as auxiliary information.

I(R3) — I(R3) + Ty**

With optimization completed, the code generation phase assigns addresses to both / and Ty*”.
and, based on the auxiliary information, selects a code fragment to represent the quadruple.

ADD RSACTy*")

The code fragment, along with all other fragments and some initializing code, would be written
out in linkage editor format.

How is this process complicated by vectors? Keep in mind that we want to introduce
vectors at just the right time to take advantage of the scalar code already in place. One
problem with the Fortran-to-Fortran vectorizer at Los Alamos is that the output vector
operations bypass Fortran optimization, so many opportunities for code improvement are
missed [Bas78|. If vector languages are to be suitably efficient, the full power of Fortran
optimization techniques must be brought to bear on them. It seems clear then that vectors
should be introduced in a form that can be handled by the scalar optimization phase with only
slight modifications. This implies that vectors should be atoms in the language of quadruples
itself; that is, we should be able to write

A « B*C

where A, B, and C represent vectors.

There are two aspects of the use of vectors which should be treated separately in
intermediate code. When used in a computation, a vector is simply a sequence of values.
However, this value sequence may be arranged in storage in a variety of ways. Thus, I shall
draw a careful distinction between these two actions — operation on a vector and extraction of
vector values from a pattern of cells in storage. To keep this distinction in mind, [shall
consistently use the term vector to mean the value sequence and the term array to refer to the
storage pattern.

Formally, a vector is a sequence of values of a given type; the Iength of a vector is the
number of elements in the sequence. An array is a multiple value stored in program memory;
an array has four main attributes (a fifth will be discussed in the next section):

dimensionality — the number of subscripts it uses in access operations,
shape — a vector of dimension sizes, one for each dimension,

origin — the vector of starting indices, and

address - the location of the origin element in storage.

240

For each array A, all this information is encoded in a function £A called the storage
mapping function for A. In a simple array access to A(LJ), is evaluated for the address
of the desired cell. Within this model, range checking can be included, if we wish, by specify-
ing that the result of evaluating £A on illegal indices is the undefined atom ,.

Using this model we can identify three operation classes:

1) array definition
2) array-vector conversion
3) vector computation

An array definition is the specification of a new storage mapping function g from an old one.
For example, in Vectran the IDENTIFY statement gives rise to a new array definition.
Consider the statement

IDENTIFY /LLL2/ ALJ) = BJ,I*2)
which defines A as a subarray whose elements occupy the same storage as the elements of B.

No copying is to be done. The proper response is to define a new storage mapping function A
such that

/~AY) = /BJL,I*2) 1<I<L1, 1<J<L2
fA(1,1) = £2 otherwise
An array-vector conversion produces a vector of values from a storage mapping function; the
vector consists of all values in the array, in canonical order, beginning with the the one at its
origin. Thus if rA is defined as above,
V k- getvectorC/*)
produces the vector

A(L,1,AQ2,1),...,A(L1,1),A(1,2),A(2,2),...,A(L.1,L2)

in the Fortran canonical order. Often, in response to a language construct like the subscript
iterator in BSP Fortran,

X1:99:2),
the transformation to a vector consists of two steps — first the subscript mapping function for
the subarray is constructed, then the vector is extracted according to the new function.
Array-vector transformations are not limited to extraction; conversion may go in the opposite
direction, depositing a vector of values into some pattern of storage cells via the instruction

putvectorC/*V)

A vector computation applies some operator to one or more vectors to produce a vector
(or possibly scalar) result. For example,

To be legal, the operands in such a computation must either have the same length or one must
be a scalar. Two operands which meet this criterion are said to be conformable. Conformabili-

241

242

ty errors can arise in conversion from vector to array form as well; an attempt to put a vector
into an array that is either too large or too small is illegal.
To see how these three operations interact, consider the following Vectran code

RANGE /LL1/ A(100),B(100) /L.2,L.1/ C(100,100)

10 A(™) = B(¥) * CL¥)
The code generated for statement 10 must consist of these parts:

1) create a storage mapping function rcs for the subarray C(,%*),
2) check the conformability of B and fcs,

3) extract vectors based on these two storage mappings,

4) compute the product vector,

5) check for conformability with £4, and

6) save the vector according to rA

A high-level intermediate code version might look like this:

def]/C5(A:) = fc(\,k)]
conform(/CS,/g)

VB — getvector(/g)
Ve *- getvector(/C5)

v/ vc
conformfV~,/?)

putvector(/*,V*)

Note that the der operation is clearly a macro; its expansion will be discussed in the next
section. Conformity checks will usually be optimized away at compile-time; this is always
possible in Vectran, for example.

The correspondence between these operations and low-level machine code should be
obvious. Vector computations are register-to-register vector instructions, array-vector
conversions are vector register loads and stores, and array definition is dope vector computa-
tion, although the latter will usually be done at compile time without using explicit dope
vectors.

III. Representation of Storage Mappings

Conceptually, each storage mapping function will be embodied in a dope vector.
Although this dope vector may consist entirely of compile-time constants, it is useful to
envision it when trying to understand the algebra of access functions. The format described
here is adapted from one originally proposed by Kantorovich in 1956 [ErS76]. Each dope
vector will contain the following infomation about the array it describes:

1) the address P

2) dimensionality D
3) shape

4) origin (/,

5) stride (d\,...,dD)

where the stride vector contains the distances between adjacent elements along the same

dimension. Thus for the array A(5,10) of four-byte words, the dope vector would contain

1) address addr (fk(1,1))
2) dimensionality 2

3) shape (5,10)

4) origin (1,1)

5) stride (4,20)

where the stride is given in bytes. In this scheme the address of element (j.,...,j,,) is given by

the formula

fiiv—JD) P+ ~{jk lk)*dk

so in our example, A(2,3) would be located at
addr(K(\,\)) + (2-D*4 + (3-1D)*20
= addr (K(\,\)) + 44
It may be useful, for the purpose of optimization, to keep several extra fields in the dope

vector. For example, a conventional trick is to use the location of the hypothetical zeroth
element of an array in address calculations. This location is computed as follows:

=/ (0,.,0) = P + £0-TOV

k=1 k' ok
D
= P— Y.i,*d
k=1k %
Then the address computation becomes
D
f(jperdD) = + ~Jk*dk

in which a substantial number of subtractions have been eliminated. Thus, A0 will usually be
saved in the dope vector. Another useful quantity is the size of the array, the product
reduction of the shape vector, because this is exactly the length of a vector extracted from the

array.

243

Suppose we have an array A with storage mapping function f2 and an array B defined

in terms of A:

B(j\'m®']pB) ~ A(kv...,kDA)

where
*7 — ai0 + an *J\ + M + aiDB*jDB

Then to compute the dope vector for B, we apply the linear transformation given by the
equations above to the entries in the dope vector for a to yield:

DA DB
1) address P2 + X((Sa, *iB)—iA)*dA
A k=\ m=\ "rn m k k

2) dimensionality DB
3) shape (nBj,...,nBDB)
4) origin (iB v...,iBDB)
5) stride (dB v...,dBDB)

where

DA

As an example, consider the dynamic definition
IDENTIFY /LLI/ X() = YJ,2*D)

The dope vector for X should be -12345

1) address”, Px=Py+ (} — |)*dy* +2*dY?
2) dimensionality® = |

3) origin® = (1)

4) shape® = (LI)

5) stride”® 2*dy~,

as we would expect.

IV. Optimizations

Let us now consider the optimization techniques which are applicable to the extended
First, a large class of scalar optimizations carry over directly. Subsections

intermediate code.
Second some new and fairly radical optimizations are possible;

A through D describe these.
these are discussed in E and F.

244

A. Redundant Expression Elimination
The intermediate code for the expression

A*B(1:50) + A*C
is the following

— getvector(/™)
def[/g5(") = /7B(0, /=1,50]
wBS *- getvector(/fl5)
Vasg BS
v, getveotor(/c)

4o - getvector(/™)

1axc Yaz*Yc

A*B+A*C YA*B * yA*C

Clearly the second getvector on fA is redundant and can be eliminated; on a vector register

machine, this is akin to register allocation.
Complex reasoning on the part of the compiler may uncover other redundancies. For

example, suppose it determines that
fBS = £C

In other words, these two functions map to the same set of locations. Then the compiler can
reduce the intermediate code to

\4 *- getvector(/")
Ve *- getvector(/c)

Vi*c BV /VC

%*
‘éA*B+A*C 2 VA*C

a substantially more efficient code sequence.

B. Constant Folding
In its full generality, constant folding means shifting computations from run-time to

compile-time. Although the opportunities to perform operations on constant arrays will be
limited, they will crop up from time to time, particularly as initialized tables. Constant arrays

can also be computed:

DO 10 1=1,100
10 AQ) =1

This loop can be replaced by a modification of fA to reference the vector (1,2,3....,100)
initialized in the load module. If the vector is multiplied by a constant C before being used,

A = A*C

then the initialized vector can be changed to (C,2C....,100C).

Constant folding can eliminate many of the set-up operations in vector code, since
these operations depend on the primarily constant dope vectors. In the first intermediate code
example in Section II, several conformity check operations appeared. These amount to

245

246

comparing the sizes of the two arrays (recall that the size of an array is equal to the product
reduction of its shape vector). If both sizes are compile-time constants, as they often will be,
the conformity check can be eliminated.

C. Code Motion

Obviously the movement of loop-invariant array operations out of loops is just as
desirable as its scalar analog. Not so obvious, however, is whether of not it will be applicable
often enough to make it worth the effort. 1 claim that code motion will be extremely useful in
compilers that include an automatic vectorization phase, as the following example demon-
strates.

DO 201

1,N

DO 201J 1.M

B(LJ) = B(LJY) + AD*CJ)
20 CONTINUE

Assuming there are no other computations affecting A, B, C, I, or J, we can vectorize the
computation to produce

DO 201I1=1,N

B(L*) = B(,*) + A()*C(*)
DO 20J = 1M

20 CONTINUE
The array multiplication can now be removed from the outer loop.

T(C) = A()*C™)
DO 201 = I,N

BIL*) = B(L*) + T(¥)
DO 20J) = | .M

20 CONTINUE

Many other scalar optimizations have valid analogs for vectors.

D. Vector Register Allocation

On a machine like the Cray-1 with chaining of vector operations, the importance of
good local register allocation cannot be overstated. To get the maximum computational power,
the execution units must have enough operands to keep busy. Retaining vectors in registers
between operations is one way to achieve this. Many of the scalar register allocation algor-
ithms can be used for vector allocation if they are suitably adapted. However, because
chaining puts heavy requirements on vector registers and because the number of such registers
is small, the emphasis will be on local rather than global allocation. Also the similarity
between gervector operations and vector loads may leave register allocation less freedom of
choice than its scalar counterpart.

E. Temporary Management Optimizations

Some of the really interesting optimizations are essentially new, arising from the scale
of vector operations. An example is temporary management. In vector compilers, storage
comes at a premium, and the generation of too many vector intermediate quantities can quickly
lead to problems. For this reason, an extended Fortran compiler must carefully manage its
temporary storage. Temporary arrays will probably need to be allocated and deallocated
dynamically. Since vector registers may be thought of as temporaries and spillage out of them
creates a need for memory, temporary management is closely related to register allocation.

A useful machine-dependent technique for reducing temporary storage requirements is
strip mining [Lov77]. Suppose we have an array statement

A = A*B + C*D

that we wish to execute on a Cray-1. Suppose also that every array has length greater than 64
so, if each vector operation is executed through to the end, we are guaranteed to require more
temporary storage than the registers provide. However, we will not need the extra storage if
we process in groups of 64.

DO 10 K = 1,LENGTH,64

L = MIN(K +63,LENGTH)

AK:L) = A(K:L)*B(K:L) + C(K:L)*D(K:L)
10 CONTINUE

In this example, written in BSP Fortran, the temporaries generated during the computation can
now reside entirely in vector registers — at most 64 locations are needed on any iteration of the
loop. Scalar operations can be produced by strip mining with a strip width of one.

The mapping function approach to array storage, described earlier, can assist the
management of temporaries, since this scheme permits temporary arrays with different names
to occupy the same storage. This makes it possible for the optimization phase to ignore
temporary management and use as many temporaries as it needs, treating the address parts of
the storage mapping functions as variables. The storage management package will take care of
overlaying temporary space at run time.

In any case, run-time storage management is a costly feature to include in a Fortran-
based language. Two techniques may make the cost more palatable.

1) If the compiler allocates fixed-length and variable-length temporaries to different
areas, the allocation of the fixed-length area can be done at compile time, eliminating
some run-time overhead and permitting efficient code to be generated for access to
those temporaries.

2) The number of fixed-length temporaries can be increased by strip mining with a width
equal to the length of vector registers in the target machine.

247

F. Copy Avoidance

A somewhat radical approach to optimization of vector operations is based on the
technique of copy optimization in the set theoretic language SETL [Scz75], The idea is
straightforward - aviod copying arrays whenever possible. In other words, copy only when
forced to do so by the semantics of the language. Consider the following code sequence.

X(™) = A(*.K)

B(*) = 5.0%*X(%)

A copy is avoided (or at least delayed) if the compiler simply adjusts the storage mapping
function for X to reference the storage for A. Thus, instead of

defLL/~O) = /=1,L1]
getvectorC/")

putvector(/®,)

VA getvectorC/".)
v5 — S.0rVvA
putvector(/g,Vg)

it would generate

def[fx(i) =fA(i, k), /=1,LI]

+- getvectorC/*,)
Vil — 5.0°V*
putvector(/fl,Vg)

There are two dangers in this scheme. First, the compiler must be wary of stores into the
array A which may, as a side effect, change the value of X; X must be copied before any such
store is executed. Second, the compiler must be careful not to lose the storage originally
assigned to X, so it can perform copies quickly when they are forced.

It is possible to carry the idea of delayed operations quite a bit further. For example,
if the only use of the array B computed above is in the statement

Y = SUM(B)

where SUM is the sum reduction function, it would be possible to delay the multiplication by
5.0 until after the reduction.

Y = 5.0*SUM(X)

A scheme very much like this one has been proposed for APL compilers, to help eliminate
many of the storage remapping operations like rotate, transpose, and so on [GuW78|.

V. Compiler Organization

Any extended Fortran compiler will probably be adapted to several machines, including
some with no vector instructions. Thus we must consider the problems of compiling for both
machine types. Scalar machine code should be structured differently from vector code, so the
optimizers will not 'ook exactly alike. Take the array expression

A(*) = A(¥) + B()*C(M)
When expanded into vector intermediate code, this would be effectively reduced to:

T() = B(*)*C()
A() = A)+T()

Suppose that, after vector optimization, we wish to expand this to scalar code. The result
might be the following.

DO 10 1= Llength(A)
10 T = BA)*C®)

DO 20 1= Llength(A)
20 AQ) = A+TD)

The optimizing transformation known as /loop fitsion [A1C71] could now join these two loops.

DO 20 1= 1,lengthfA)
TDH = BA)*CD
20 A(D) = AM+TD)

Thereupon temporary array T could be reduced to a scalar.

If the original statement had been directly expanded, this result would have been
obvious. However, it is not wise to perform these expansions right away, even when compiling
for a scalar machine, because opportunities for redundant subexpression elimination might be
missed. When programming in a high-level language, the programmer should feel free to
concentrate on his algorithm, leaving small efficiency-related details to the compiler. In so
doing, he may introduce some redundant array subexpressions, and it is easiest to eliminate
these as early as possible.

Optimization for a vector machine will be performed on two levels. First, the interme-
diate code with vector set-up macros unexpanded will be optimized in an attempt to eliminate
as many aggregate operations as possible. This done, the macros will be expanded into
equivalent scalar form and re-optimized as scalar code. The aim of the second phase is
primarily to improve calculations involving the subscript mapping functions. The stages of the
vector compiler, then, are as follows.

0) lexical analysis and parsing

1) automatic vectorization

2) high-level optimization

3) expansion of access functions, strip mining
4) vector register allocation

5) scalar optimization

6) scalar register allocation

7) storage assignment and code generation

249

250

For a scalar machine, automatic vectorization will be skipped, and the expansion of access
functions will be beefed up to expand all vector operations. Of course, the scalar optimization
phase will follow up the expansion with extensive loop fusion. Phases of the compiler for a
scalar machine:

0) lexical analysis and parsing

1) high-level optimization

2) scalarization — expansion of vector operations
3) global scalar optimization, including loop fusion
4) register allocation

5) storage assignment and code generation

It is interesting to observe that the expansion of vector operations from the vector
intermediate code is fairly straightforward. For example

wA *- getvectorf,/A4)
VB A getvector(/g)

V - V./VB
putvectorC/*V)

could be expanded, using the template elements for f2 and B

address: P*A.P*
origin: |A,\B
shape:

stride: &A'"B
where A and B are one-dimensional, to the following pseudo-Fortran code.

J = Pfl
DO 10\ = PA, PA+n/dA,dA
@1 = @I*(g)J
J=7J]+ d
10 CONTINUE

where @1 indicates an indirect reference through the operand, a common feature of intermedi-
ate codes.

An increase in the level of language supported usually increases the burden on
optimization. More work is required to make the generated code competetive with the best
equivalent program written in a lower level language. But this should be viewed as a chal-
lenge. The state of the art in code improvement methods has been rapidly advancing over the
past few years, so | can say with some confidence that Fortran with vector extensions can be
compiled, by judicious application of these techniques, into excellent code for both vector and
scalar machines.

Acknowledgments

Much of my thinking on the representation of vectors has been influenced by a model
being developed at IBM Research by Barry Willner, John Huang, and Sandy Liles. My
concept of storage mappings was partially worked out in conversations with Bob Johnson of
LASL and Wayne Wilson of IBM. George Paul of IBM Research and Forest Baskett of LASL
have provided me with a great deal of information about vectors, vector machines, and vector
languages. To all of these people go my heartfelt thanks.

References

A1C72 F.E. Allen and J. Cocke, "A catalogue of optimizing transformations," Design and
Optimization of Compilers, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, N.J.,
1972, pp. 1-30.

Bas78 F. Baskett, private communication, 1978.

Bur77 Burroughs Corporation, '"Implementation of FORTRAN," Burroughs Scientific
Processor, 1977.

ErS76 A.P. Ershov and M.R. Shura-Bura, "Formation of programming in the USSR,"
English text edited by K. Kennedy, to appear in Proc. International Research
Conference on the History of Computing, Los Alamos, N.M., 1976.

GuW78 L.J. Guibas and D.K. Wyatt, "Compilation and delayed evaluation in APL," Fifih
Annual ACM Symposium on Principles of Programming Languages, Tuscon, Arizona,
January 1978, pp. 1-8.

Lov77 D.B. Loveman, '"Program improvement by source-to-source transformation,"
J.ACM 24, 1, January 1977, pp. 121-14S5.

LoM69 E.S. Lowry and C.W. Medlock, "Object code optimization," Comm. ACM 12, 1,
January 1969, pp. 13-22.

PaW75 G. Paul and M.W. Wilson, "The VECTRAN language: an experimental language
for vector/matrix array processing,"” Report G320-3334, IBM Palo Alto Scientific
Center, August 1975.

PaWw78 G. Paul and M.W. Wilson, "An introduction to VECTRAN and its use in scientific
applictions programming," Proc. LASL Workshop on Vector and Parallel Processors,
Los Alamos, N.M., September 1978.

Scz75 J.T. Schwartz, "Optimization of very high level languages I; value transmission and
its corollaries," J. Computer Languages, I, Pergamon Press, 1975, pp. 161-194.

251

