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THE USE OF OUTER PLANET SATELLITES AND ASTEROIDS -2E 

SOURCES OF EIAW hlATEi(LZLS FOR LIFE SUPPORT SYSTEMS 

Peter H. Molton and Ted E. Divine* 

Indus t r i a l i za t ion  of space and other space a c t i v i t i e s  
\ 

depend en t i r e ly  on supply of mater ials  f rog  t h e  E=th. 
This i s  a high cost route  f o r  m t e r i a l s  supply. Spzco 
indus t r i a l i za t ion  w i l l  require  l i f e  supoort systeas  
fo r  maintenance end operation s t a f f  and these w i l l  of 
necessity be .  of a soghist icated nature.  Use of raw 
mater ials  obtained by an unmanned space s h u t t l e ,  in i -  
t i a l l y ,  and by manned s h u t t l e s  l a t e r  could s ign i f i can t ly  
reduce the  cost  of l i f e  supgort i n  space. These raw 
mater ials  c.ould be obtained frcm s n a l l  es te ro ids  and 
s a t e l l i t e s ,  and would cons is t  of pr inary nut r ien ts .  
Future .developent  of such sources. i s  diScussed, 
including food production i n  automated asteroid-based 
f a c i l i t i e s .  The l e v e l  of technclogy requizred i s  avai l -  
able  now, and should become economical within a ceatu-y. 

Examining some of the  l i t e r a t u r e  on space exgloration cur rent ly  a ~ ~ e ~ ~ i a g  

i n  various journals,  it brings . a  sense o f ~ a ~ t o n i s ~ h m e n t  t o  r e a l i z e  t h a t  it 

wzs jus t  over 20 years f r m  t h i s  da te  t h a t  Sputnik 1 was launched i n t o  

Earth orb i t .  Events i n  the  su5sequent 20 years have incluced name6 lmaz- 

l a d i n g s ,  ciose-up photographs o l  J u z i t e r  and.Mercury, and instrumented 

landings on 1421's. Closer t o  Earth, xe h&e seen s a t e l l i t e  telecommunica- 

t ims displace ucdersea cables ,  global  meteorology provide da ta  on every 

Senior Research S c i e n t i s t ,  and Technical Leader, Food and Agriculture 
Section, Chemical Technology Department, 3attelie-Nortkr~est,  S e t t e l l e  
Boulevzrd, Richland, WA 99352. 



TI s e t ,  and t h e  hegi .mings  of education i n  remote a reas  throush s a t e l l i t e s .  

Wi.th. t,he comi,ng of Skylab and t h e  space s h u t t l e ,  we a r e  now prepared f o r  

u s i n g  space on a re la t i . - fe ly  l a r g e  s ca l e .  F ive  years  ago t h e  sub jec t  o f .  

t h i s  a r t i c l e  could not have been s e r i ous ly  suggested a t  any s c i e n t i f i c  

meeting without t ak ing  a considerable  r i s k  of meeting wi th  r i d i c u l e .  Zven 

one year  ago,  t h i s  would perhaps a l s o  have been t r u e .  Today t h e r e  i s  2 

marked swing away from conservatism i n  t h e  f i e l d  of space exploration--. 

a hea l thy  swing a s  witnessed by promotional a r t i c l e s  i n  such respected 

business  magazines as ~ u s i n e s s  week.' We a r e  un l i ke ly  ever t o  reach 

t n e  s t a r s  i f  we spend all' of our time examining our f e e t .  

Current ly ,  t h e r e  a r e  a number of grandiose concepts i n  c i r c u l a t i o n  on 

such t op i c s  a s  l a r g o  space colonies  and s o l a r  power s a t e l l i t e s .  Plumbers 

a s  l a r g e  a s  100,000 people i n  a pezmsnent colcny at. t h e  1,-5 point2  and 

s i n g l e  s o l a r  power s a t e l l i t e s  de l i ve r ing  up t o  20,000 MW of power t o  t h e  

l a r t h 3  a r e  f requent ly  mentioned. Engineering on such a s c a l e  a s  t h i s  

r equ i r e s  v a s t  moun t s  of ma te r i a l s ,  o rders  of magnitude g r e a t e r  than t h e  

t o t a l  mass l i f t e d  i n t o  space from t h e  Ea r th ' s  su r face  i n  t h e  vhole of t h e  

l z s t  20 years .  Where a r e  t he se  ma te r i a l s  t o  come from? To l i f t  1 n i l l i o n  

tons  09 ma te r i a l s  from t h e  sur face  of t h e  Ear th  a t  conservat ive  space 

s h u t t l e  r a t e s  of $100/lb would cost  $200 hi  11 inn , anti this is t o  a l o ~ r  

Ear th  o r b i t  r a t h e r  than  t h e  gcosyncbronous o r  lunar  o r b i t  usua l ly  required! 

'I?!le answer, of  course, may be t o  produce metals  and o ther  s t r u c t u r a l  maze- 

i a i s  on t h e  Moon, us ing p l e a t i f d  s o l a r  eaergy, and then t o  make use  of 

t h e  Moon's l a c k  of atmosphere by us ing t h e  o ld  concspt of t h e  'e leccro-  
4 

magnetic gun' (now c a l l e d  a mass d r i ~ e r ) . ~  In  terms of energy, t r ans -  

po r t  from t h e  ?doon c o s t s  only 5% a s  much a s  from t h e  Ear th .  However, this 

concept requ i res  a p reex i s t i ng  Lunar colony, i t s e l f  no mean f e a t  a s  t h e  

m t e r i a l s  f o r  t h i s  w i l i  have t o  be l i f t e d  from t h e  Ear th .  

I n  t h i s  a r t i c l e ,  we a s s m e  t h e  exis tence of a v i ab l e  and self-su?portlng 
r 

l una r  colony, capable of expor t ing metals  t o  o ther  po in t s  i n  space. m-is 
assumption i s  bas i c  t o  t h e  L-5 colcny concept and appears t o  have been 

adopted a l s o  by t h e  propcnents of t h e  s o l a r  power s a t e l l i t e  concept. We 

f u r t h e r  zssume t h a t  t h e  'energy c r i s i s '  on t h e  S a r t h  and +he prob lem of 

atmospheric po l l u t i on  by f o s s i l  f u e l s  u i l l  make t h e  s o l a r  pouer s a t e l l i t e  



more and more a t t r a c t i v e  i n  t h e  f u t u r e ,  so  t h a t  t h e  p robab i l i t y  of a 

l a r g e  l una r  colony being constructed w i l l  improve. 

SOURCES OF RAW MATERIALS 

The moon can t h e o r e t i c a l l y  be a source of a l l  minerals  ava i l ab l e  on Ear th  

wi th  4 t h e  exception of carbon, hydrogen and ni t rbgen.  I n  add i t i on ,  oxygen 

i s  present  i n  aluminum-based mate r ia l s .  The Asteroid  b e l t  could be a 

source of carbon, hydrogen, and ni t rogen.  The Jovian s a t e l l i t e s  could 

l ikewise  be a source of m o n i a ,  pethane,  and.hydrogen. Recycling of human 

wastes of co lon i s t s  could crovide some e s s e n t i a l  minerals  bu t  nc t  i n  su f f i -  

c i e n t  q u a n t i t i e s  t o  r e l y  s o l e l y  on such sources.  These f e a t u r e s  of mate- 

r i a l s  supply i n  space a r e  discussed below. 

Ava i l ab i l i t y  of Minerals on t h e  Moon 

.The l una r  r e g o l i t h  has been extensively  analyzed, z l b e i t  from a veFJ 

l im i t ed  nunber of s i t e s .  It appears t h a t  almost a l l  of t h e  elements 

ava i l ab l e  on t h e  Ear th  w i l l  be r e a d i l y  ava i l ab l e  on t h e  Moon, wi th  t h e  

unfor tunate  e x c e ~ t i o n s  of carbon, n i t rogen ,  and hydrogen. 697 It is 

s t i l l  poss ib le  t h a t  depos i t s  of g raph i te  and water i c e ,  and even kerogen 

( t h e  highly  condensed carbonaceous chondr i t i c  m a t e r i a l )  may be found and 

mined on t h e  Moon, bu t  t h e  prospect  a t  present  i s  poor. m e r e  i s  a l s o  no 

t heo re t i c21  reason why t h e  elements C ,  H, and N should have remained on 

t h e  Moon. According t o  t h e  most widely acce?ted theory of t h e  fo rna t ion  

of t h e  Sc l a r  System, p lane t s  and t h e i r  s a t e l l i t e s  condensed from a nonhcmo- 
8 

geneous cloud of gas which was r i c h  i n  hydrogen. Thus, most elements 
- 

would have been present  i n  reduced form. In  t h e  case  of t h e  l i g h t e r  e le -  

ments, t h i s  would haye been a s  methane, ammonia, and water ( a l l  hyd r id s s ) .  

3ecause- of t h e i r  l o w  molecular weight and t h e  low luna r  g r a v i t y ,  these  
8 

would have been l o s t  s r i th in  10 . years  of t h e  Moon's formation.  Oxygen i s  

a somewhat d i f f e r e n t  case ,  a s  it w a s  present  i n  s u f f i c i e n t  excess t o  be \ 

r e t a ined  i n  hydrogen-stable s i l i c a t e s  and a lun ina t e s ,  d e s ~ i t e  t h e  l o s s  of 

some of t h e  oxygen i n t o  scace i n  t h e  form of water vapor. 
8 

The l a c k  of t he se  l i g h t e r  elements on t h e  Moon poses a problem f o r  any 

f u t u r e  coiony, s ince  It i s  j u s t  t he se  elements t h a t  a r e  v i t a i  t o  l i f e .  

V i r t ua l l y  a l l  of cur food i s  ccm~osed of compounds of carbon, n i t rogen ,  



and hydrogen. . - O t k r  i ~ o r t a n t  elements--oqgen, s u l f u r ,  and phosphoms-- 

may be obtained on t h e  Moon, but a l l  of t h e  C ,  H ,  and N w i l l  have t o  be 

l i f t e d  f r m  Ear th  a t  considerable  c o s t ,  i n  t h e  form of food. There i s  no 

weight advantage t o  be gained by de7hydration, e i t h e r ,  s i nce  t h e  water t o  

rehydrate  t h e  food would a l s o  have t o  be brought up from t h e  Earth.  

Recycling of Wastes 

Since t h e  experise of br inging food up from t h e  Ear th  w i l l  be s o  g r e a t ,  

t h e r e  i s  a g r e a t  i ncen t ive  t o  recyc le  human wastes from a lunar  colony. 

This could not be i n  t h e  form of highly  i n e f f i c i e n t  'organic gardening' 

s i nce  t h i s  l eaves  most of t h e  czrbon and n i t rogen  un-recycled i n  t h e  form 

of h m u s .  Neither could it involve any fe rnen ta t ion  process such a s  

anaerobic d ige s t i on ,  s i nce  much of t h e  organic ma te r i a l  renains  a s  z use- 

l e s s  sludge.  GraVth of ChlojPeila Is also out of the quest ion,  sirlctt resi- 

dues occur here  a l s o ,  arid t he r e  i s  a major requirement f o r  water, as wel l  

es s a l t  imbalances. 9y10 The only e f f i c i e n t  recyc le  mode would be complete 

oxidat ion of t h e  organic waste t o  water ,  carbon dioxide,  and n i t rogen ,  

conversion of t h e  nicrogefi t o  ammonia wi th  hydrogen from some of t h e  water 

(genera t ing  oxygen by-product) ,  and use  of t he se  simple ma te r i a l s  f o r  

p l an t  growth. This w i l l  almost c e r t a i n l y  be p r ac t i s ed  once a t h r i v i n g  

l u n a r  colony e x l s t s ,  but t he r e  i s  equa l ly  cer tafr i  t o  be material l o s se s  

i n t o  t h e  su r rom6ing  vacuum, and recyc le  inheren t ly  l acks  t h e  c a ~ a b i l i t y  

f o r  colony ex-pn~ion.  Support f o r  a slowly decrsas ing nmber  of co l cn i s t s  

would be a l l  t h a t  could be achieved on t h i s  ba s i s .  

Other Sources of Czrbon, Zydrogen, and Nitrogen 

Since t he r e  w i l l  be a continuing demand f o r  suppl ies  of f r e s h  food by t h e  

- members of any colony,  and s ince  t h e  only cu r r ec t  source of t h i s  i s  t h e  

Ear th ,  it i s  worth consider ing a l t e r n a t i v e  sources of t h e  necessary r a w  

ma te r i a i s  f o r  food production,  while r e e l i z i n g  f u l l y  t h a t  t he se  may be 
. 

over 2 century :n being developed. An add i t i onz l  reason f o r  doing t h i s  

i s  t h a t  space development i s  un l i ke ly  t o  s t o p  a t  a l una r  base o r  a ' l o c a l '  

space colony; bases and colonies f u r t h e r  away from Ear th  a r e  a l o g i c a l  

second s tage  development. In  p a r t i c u l a r ,  t h e  u t i l i z a t i o n  of t h e  resources 

of t h e  Asteroid b e l t  seem t o  o f f e r  great  possLb i l i t i e s .  11 



?"ne reasons f o r  not  expecting carbon, hydrogen, . . and n i t rogen  t o  be present  

on t h e  Moon have a l ready  been b ~ i e f l y  summarized. The same reasons ,  i n  

reverse ,  can be used t o  p r ed i c t  t h a t  t h e  $s te ro id  b e l t  w i l l  be r i c h  i n  

such ma te r i a l s .  The gas cloud from which t h e  So la r  System w a s  forned was 

r i c h  i n  hydrogen, reducing carbon, n i t rogen,  and oxygen t o  methane, amnonia, 

and water ,  r espec t ive ly .  The molecular weights of t he se  compounds were 

too  low t o  permit condensation o r  r e t e n t i o n  by bodies of low m a s s  c l o se  

t o  t h e  Sun, such as t h e  Moon, although t h e  Ear th  had s u f f i c i e n t  mass t o  

permit r e t e n t i o n  end t he r e fo re  t h e  evolut ion of l i f e  here .  A t  t h e  d i s t ance  

of t h e ' ~ s t e r o i d  b e l t  from t h e  p r imar j ,  some carbon, n i t rogen ,  and hydrogen 

should e x i s t  a s  condensed organic compounds formed by f u r t h e r  i n t e r -  

r e ac t i on  of methane, ammonia, and water ( ' chemical evolut ion ' ) , 12-14 

although a t  t h e  black-body temperature o f ,  f o r  example, Ceres, only water 

i c e  and ammonia hydrates would condense. ~ u r t h e r  o u t ,  a l l  t h r e e  compounds 

should e x i s t  on t h e  surfecss of t h e  Jovien s a t e l l i t e s  a s  l i q u i d s  o r  i c e s .  

T h e r e ' i s  some experimental and observat ional  evidence t h a t  t h e r e  i s  a 

s i g n i f i c a n t  amount of carbon, n i t rogen ,  and.hydrogen i n  t h e  Asteroid  b e l t .  

The methanelammonialwater condensate frcm t h e  e a r l y  per iod of formation 

of t h e  $0222" System may be t h e  same a s  t h a t  recovered and analyzed on 

Earth from carbonaceous chondri tes .  1-5-18 nis carbonaceous chondr i t i c  

mate r ia l  i s  o f ten  l oose ly  c a l l e d  'kerogen' .  An a s t e r o i d a l  o r i g i n  of t h e  

me te l r i t e s  has been suggested,19 and t h e  p o t e n t i a l  value  of t h i s  i n ~ t e r i a l  

on t h e  a s t e ro id s  f o r  space liTe-support has been noted. 2 0 

Further  out  i n  t h e  So la r  System, t h e  g i a n t  p lane t s  a r e  known t o  have a 

p l e n t i f u l  supply of methane, ammonia, hydrogen, and very probably water.  

Their g r a v i t a t i o n a l  f i e l d s  a r e  so  in tense  t h a t  recovery of t he se  n a t e r i e l s  

d i r e c t l y  from, e .g . ,  J u p i t e r ,  i s  not  ever l i k e l y  t o  be economicd.  How- 

eve r ,  t h e r e  i s  recen t  evidence t h a t  z t  l e a s t  one of t h e  primary s a t e l l i t e s ,  

10, has ammonia on i t s  surface .  This evidence i s  based on t h e  observation 

of sociium clouds on 10, gerhaps generated by ammonia r eac t i ons  wi th in  a 

tenuous atmosphere. 21-23 Loss of water from I o  and t h e  fo rna t ion  of a 

s a l t  depcs i t  from leaching of k2rogen has been suggested a s  one explanat ion 

f o r  t h e  high &bedo of t h e  s a t e l l i t e .  
24 

Thus, carbon, hydrogen, and n i t r o -  

gen appear t o  e x i s t  on t h e  surfaces  of t h e  l a r g e r  JovLan s a t e l l i t e s .  T112 

same i s  ~ r o b a b l y  t r u e  of t h e  Saturnian s a t e l l i t e s ,  where weter i c e  a t  



1eas.t 'has heen i d e n t i f i e d  hy s.i.pectra1 obseryation of t h e  surfaces  of 
25 I ape tu s ,  Rhea, Dione, and Tethys. 
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A l una r  base  would s t r i v e  t o  e s t a b l i s h  i t s e l f  a s  a se l f - sus ta in ing  manu- 

f ac tu r ing  (aluminum) and f u e l  supply (02) f a c i l i t y  f o r  subsequent pene- 

t r a t i o n  by deep space s h u t t l e  t o  t h e  Asteroid b e l t .  Kerogen mining would 

occur zs one of t h e  f i r s t  inc ius t r i a l  and co lcn iza t ion  a c t i v i t i e s  on an 

a s t e r o i d  such a s  Ceres . Ammonia and carbon dioxide could be derived from 

kerogen as t h e  b a s i c  supp l i e r  f o r  food production.  The moons of J u p i t e r  

could poss ib ly  se rve  as add i t i ona l  sources of a m o n i a ,  methane, and water 

as p a r t  of co lon i za t i on  of space t o  es ta ' s i i sh  a space economy and s e l f -  * 
su f f i c i ency  ou t s ide  of Ear th .  

Lunar. Bases 

Although not t h e  primary focus of t h i s  a r t i c l e ,  a  b r i e f  summary of probable 

l u n a r  base development i s  pe r t i nen t .  It seems l o g i c a l  t o  suppose t h a t  a t  

f i r s t  a  l una r  bzse  w i l l  be s e t  up on the '  s&e b a s i s  a s  those  i n  Antarctica-- 

suppl ied d i r e c t l y  and con t inua l ly  maintained by a f r e s h  i n f l c x  or' s u ~ p l i e s  

from Ear th ,  sometime about t h e  ye s r  2000. 26 This s i t u a t i o n  would be w-sta-  

b l e ,  ?= t l y  because of t h e  long  suggly l i n e  from E a r t h  a n d  pa.rt.1.y h ~ c r ~ i i s ~  

of t h e  g r ea t  cos t  involved. A h o s t i l e  Congress could k i l l  such a base 

wl th in  a very few years  unless  t h e r e  were some d i s t i n c t  adlizntage t o  be 

gained i n  mainteining i t .  1-Ience , tile base w o u i d  h&ve ,to become economi- 

c a l l y  o r  otherwise u se fu l .  This could be achieved by exp lora t ion  f o r  

mineral  depos i t s .  A t  t h e  same t ime,  t o  reduce the ,  dependency on suppl ies  

from Ear th ,  waste recyc le  and growth of food would be p r ac t i s ed ,  an& addi- 

t i o n a l  bu i ld ings  wouid probably be made d i r e c t l y  from t h e  lunar  rock ( f o r  

ins tance ,  us ing  foamed b a s a t ) .  Over a per iod of yes rs  t h e  base would 

gradua l ly  change from an exploratory,  dependent s t r u c t u r e  t o  a s e l f -  
1- 

sus ta in ing  colony. b o n g  t h e  major innovations which would be lrade ( a p a r t  ' 

from food product ion)  a r e  t h e  cons t ruc t ion  of s o l a r  mirrors  t o  ge3erate 

metals  from llmar minerals ,  and spacz aanufr,cturing and power generat ion 
27,28 f a c i l i t i e s .  

This scenar io  i s  no t  new, but  hzs impl icat ions  f o r  t h e  fu tu r e  d e v e l o p e n t  

of a s t e r o i d a l  resources .  A t  o resen t ,  t h e  na jo r  impl icat ion seems t o  be t h e  



generati.sn of oxygen as, a by-p.roduct .of alminum and o ther  metal  smelt ing 

by d i r e c t  decomposition of a luminos i l i ca tes  using concentrated s o l a r  ene,rgy. 

The oxjgen by-product is not only u se fu l  a s  a l i f e - suppor t  chemical, but  

a s  a rocket  fuel--one. ha l f  of t h e  ox id i ze r / fue l  combination which must be  

found i n  space t o  make t r anspo r t  economical between po in t s  which do not 

have ava i l ab l e  energy f o r  'mass d r i v e r '  forms of propulsion.  

Thus, a f t e r  a ntunber.of years  t h e  l una r  base would become a ne t  expor ter  

of aluminum, oxygen, and perhaps rough machined p a r t s  t o  Ear th  o r b i t  s t a -  

tions and o the r  space f a c i l i t i e s .  Over 95% of t h e  energy requ i red  t o  lift 

t h e  equivalent  mass from Ear th  i s  saved by t h i s  rou te .  

Kerogen Mining on t h e  Asteroids 

& ' h a s  a l ready  been mentioned, t h e  Moon c o d d  probably not become s e l f -  

s u f f i c i e n t  i n  t h e  elements carbon, hydrogen, and ni t rogen and t h e i r  ccm- 

pounds i n  any s o r t  of an expansion =ode. 5 3 6  Addit ional  food, p l a s t i c s ,  

and f e r t i l i z e r ,  would s t i l l  have t o  be shipped up from Earth a t  considerable  

c o s t ,  continuing t h e  dependence and -vulnerabi l i ty  of t h e  l una r  znd s a t e l l i t e  

bases .  Some r e l i e f  could be obtained i n  p r i n c i p l e  by mining carbonaceolls 

chondr i t i c  ma te r i a l  ( ' ke rogen ' )  from t h e  Asteroids.  I n  t e r n s  of f u e l  

expended, t h e r e  would be a s l i g h t  advantage t o  doing t h i s  i n  preference 

t o  t r anspo r t i ng  t h e  equivalent  amount of carbon, n i t rogen ,  and hydrogen 

from Earth--only 1 / 3  as  much energy would be requ i red  f o r  t h e  one-way 

journey t o  Ceres from t h e  Moon a s  f o r  t h e  journey from t h e  E a r t h ' s  su r face  

t o  t h e  Moon  able 1). 29 But t h e  two-way journey nus t  be considered.  Atno- 

spher ic  braking would be used i n  t h e  r e t u r n  journey t o  t h e  Ear th  frdm t h e  

Moon, ,while rocket  brzking wo-dd be needed i n  t h e  Ceres-Moon Journey. 

%is makes a l l  t h e  d i f fe rence ,  t h e  t o t a l  e3erg.J .involved I n  t h e  r e t u n  

Moon-Ceres journey being 85% of t h a t  requ i red  f o r  t h e  r e t u r n  Eerth-Moon 

Journey. This of course t akes  no a c c o m t  of t h e  a d d i t i o n d  f a c t o r s  of 

fcod and oxygen f o r t h e  as t ronau ts  ( ' m i n e r s ' )  during t h e  3-year r e t u r n  

journey . 30 Hence, unless  a n o n - t e r r e s t r i e l  source of r o c k e t  f u e l  can be  

fo~mfi,  a l l  add i t i ona l  carbon, n i t rogen ,  and hydrogen-containing ma te r i a i s  

w i l l  continue t o  be broaght up from Ear th  f o r  t h e  fo rseezb le  fu tu r e .  

This gloomy p i c tu r e  i s  changed completely i f  we consider t h e  chemicai cum- 

gos i t i on  of kerogen and a l s o  t h e  l i ke l i hood  of f ind ing  water I c e  and 



Table 1 

APPROXIMATE VELOCIZ'Y INCRICMENTS FOR SPACE TR!JISPORT,9TION 

Ear th  Surf  ace  ( ~ ~ n d i n g  :uses. . Cf+ . l o .  8 13.5  16.2 
(pS ) a1;lnospheric bralc- I(G! (116.6) (1c2.3)  (262.4) 

i n g  0 0.036s ~ 1 .  24 2611 

Xarth Geosynch. 
o r b i t  (I,) (NO landing)  2.9*. 0 2.7 5-11 

(a .  4) ( 0 )  (7 .3 )  (29.1) 
0.036 o . . 0.204 264 

Lunar Surface   andin in^ ) 2.4* 2.7 0 7 .4  
( L )  (5.91 (7 .3 )  ( 0 )  (54.8)  

0.24 0.204 0 264 

Ceres  steroid ( N O  l and ing)  5.0* 5.4 7.4 0 
Bel t  1 (c)  (25.0)  (29.1)  (54.8)  ( 0 )  

264 264 264 0 

Jovian S a t e l l i t e s  ( h n d i n g )  11.1% 11.5 13.5 6.1++ 
(J) (123) ( 132) (182.3) (37.2)  

531 591 591 327 

* Minimum v e l o c i t y  increment i n  km/sec 
.2 + Figures  i n  parenthzses a r e  ( v e l o c i t y  increment )I * Uses a-1;lnospheric bralring on dc~wnhll l  jowney  

E Distances i n  m i l l i o n s  of lm 
-I--t- Ceres o r b i t  -+ Jovian o r b i t .  7 s a t e l l i t e :  1.anding 



amnoniehydrates, on t h e  a s t e ro id s  i n  a minable fonn i n  a . low-gravi ty  envi-  

r o m e n t  . Pmonia  could be recopered and used as a .  rocket  f u e l  wi th  lunar-  

der ived axygen a s  t h e  oxidant.  Water and.kerogen would be mined and 

re tu rned  t o  t h e ~ o o n  t o  be. oxidized t o  carbon dioxide,  more wate r ,  and 

ni t rogen.  The ni t rogen would be r eac t ed  wi th  hydrogen t o  make m o n i a  Tor 

f e r t i l i z e r  ( t h e  hydrogen being made by e l e c t r o l y s i s  of w a t e r ) .  C h a i c a l l y  

t h e  s i t u a t i o n  would look l i k e  t h i s :  

x /2  N2 + 3x12 H2 Fe Ca ta lys t  + x NB (ammonia f e r t i l i z e r )  
3 

3x12 X20 e l e c t r o l y s i s  
+ 3x12 E2 + 3 1 4  O2 

Net change: 

+ w co, + x ISH 
b 3 

Using t h i s  system, l una r  oxygen would be trr-nsported out  t o  t h e  Asteroid 

b e l t  t o  serve a s  &i.fe-support' oxygen and oxidant;  a s t e r o i d a l  kerogen and 

water and ammonia would be re tu rned  t o  t h e  l W a r  base ,  us ing separated 

ammonia a s  t h e  p rope l lan t  ( f i l e l ) .  me kerogen would be used as a source of 

czrbon dioxide and ammonia f o r  p l an t  growth t o  generate  food f o r  a growing 

colony. Other ma te r i a l s ,  p a r t i c u l a r l y  heavf metals  such a s  n i c k e l ,  would 

a l s o  be mined i n  t h e  Asteroid b e l t  end re tu rned  t o  t h e  ~ o c n , "  us ing t h e  

same ammonia/oxfgen fue l lox idan t  system. The lunar  base would then  s t and  

i n  t h e  sane pos i t i on  reistive t o  t h e  Asteroid  b e l t  mining base as t h e  lux--zr 

base once s tood with respec t  t o  t h e  Earth--source of s u ~ p l y  and l i f e l i n e  

t o  a sinall,  completely dependent base.  

Ceres Bases 

0-fer a period of  t i m e  wemay s e e ' t h e  development or' a lunar  m a n u f a ~ t ~ i s l g  

c a p e b i l i t y  d e ~ e n d c n t  on technology t r z n s f e r  from Ear th .  Only 2 very sinail 

p a r t  of t h e  ma te r i a l s  f o r  t h i s  mznufact-uiag f e c i l i t y  x i 1 1  be physically 

t r s n s ~ o r t e d  Tram Ear th ,  because or' t h e  g r e a t  penal ty  i ccur red  i n  cos t s  i n  

oyrercoaing Ear th1  s g r a ~ r i t a t i o n a l  p o t e n t i z l .  Most oQ t h e  me te r i a l s  t h a t  

9 



c a n n ~ t  be mined on the  I?oon h i l l  come from the  Asteroid b e l t .  On the  other 
- 

hand, Earth w i l l  export information, primarily,  since t h i s  requires  no fue l .  

I n  exchange, Earth. would receive an un l in i t ed  supply of r a r e  metals and 

minerals and saace-~rocessed,  high-cost products. The lunar  base, hovever, 

would be dependent f o r  expansion on t h i s  260 mill ion km gipel ine f o r  the  

r e tu rn  of kerogen and water and ammonia from the  Asteroid b e l t .  The reason 

f o r  choosing the  Asteroid b e l t  a s  the  source of these mater ials  l i e s  ya r t ly  . 

i n  the  f a c t  t h a t  even t h e  l a rges t  a s t e ro id ,  Ceres, has a  negl igible  gravi ty 

f i e l d ,  and therefore  re turn  of mater ials  mined on Ceres would be cheap i n  

t e r n s  of energy. Flanets such a s  Mars and Venus would be r e l a t i v e l y  expen- 

s ive  s ince not only t h e  planetary gravi ta t iona l  f i e l d ,  but atmospheric 

res i s tance  and the  so la r  f i e l d  would have t o  be overcome i n  order t o  re turn  b 

mater ia l s  t o  t h e  Moon. Also, t he re  i s  unl ikely t o  be an i n  s i t u  source of 

f u e l  on e i t h e r  of these  planets .  

!There would thus be an incent ive t o  support a  permanent mining base i n  the  

Asteroid b e l t .  Ceres i s  the  l a rges t  as te ro id  and would be a l i k e l y  czndidate. 

The s i t u a t i o n  of t h i s  base would be the  reverse of tke  lunar base: Oxygen 

~rould be imported from the  Moon, kerogen would be mined l o c a l l y ,  and food 

would have t o  be e i t h e r  -ported or  grown on the  base from wastes and 

mined carbon, ni t rogen,  and hydrogen. A p w t  from the  la..ck of Lntense 

so la r  energy, t he  Ceres base would have everything t h a t  t he  lunzr  base has. 

Iln;monia, Methane, 2nd Water Minirlq u r ~  I.,k Jovian Sate l l i+eg  

It i s  unl ikely t h a t  Solar System exploi ta t ion would s top a t  t h e  Asteroid 

b e l t  f o r  two reasons: These a r e  t h a t  kerogen i s  def ic ien t  i n  hydrogen, 

and t h a t  ammonia i s  not as good a  f u e l  as methane. Hydrogen could be 

obtained from water 'oy e l ec t ro lys i s ,  but there  i s  a  lack  of  cheap sofar  

power t o  generate e l e c t r i c i t y  on Ceres. The Jovizn s a t e l l i t e s ,  while dis-  
6 

t a n t  from Ceres i n  space ( 3 3 0  x 10 km nininum), require  no more than 213 . 
. . 

as  much energy f o r  a  r e tu rn  t r i p  from Ceres as does t h e  return t r i p  t o  the  

b!oon, v i t h  landicgs a t  both ends  able 1). This tzkes i n t o  account t h e  
(.. 

grav i t a t iona l  f i e l d s  of the  s a t e l l i t e s ,  Jup i t e r ,  and the  Sun. O f  course, 

t he re  i s  a  t - h e  penalty using a  minima energy t r a ~ s f e r - - a  period of scmc 

years f o r  t h e  round t r i p   able 2 ) .  However, v i t h  p l e n t i f u l  f u e l ,  there  



Table 2 

ENERGY, COST AS A RATIO OF mTH:EAilTH ORBIT = 1 

Triu 

Es - Eo 

E - L  
s 

L - E  
0 

E ---+ C 
0 

+ 
Enerqy Cost 3a t i o .  

1 

1.56 

0.06 

0.25 

T r ip  Tine* 

% 1 day 

% 4 days 

Q 3 days 

472 days 
(1.29 yr) 

1384 days 
(3.79 yr) 

Q .472 days 
(1.29 yr) 

% 937 days 
(2.57 

nd 472 days 
(1.29 yr) 

- - 

*Based on minhum energy ( ~ o h n a n n )  t r a n s f e r  o r b i t .  7 
+ + 116.6, energy cos t  i 'ra e u t h  - Earzh o r b i t  (as f ( v " ) ) .  
Es = Earth  surface  
E, = Earth  o r b i t  (geosynchronous ) 
L = Noon sur f  ace 
C = Ceres sur face  
3 = Jovian s a t e l l i t e  surface  



is. no rezson t o  us.e the  minimun energy . . t r s j e c t o ~ ~ ,  and the  journey time 

could be s , igni f icant ly  shortened with only a r e l a t i v e l y  small addi t ional  

expenditure i n  f u e l  and oxygen. 

The Joyian s a t e l l i t e s ,  10, Europa, CKUisto, and Gany-aede could therefore 

be used t o  supplement t h e  Ceres base s u p ~ l i e s  with methane, ammonia, and 

water. A t  present ,  t he re  s e a s  no reason t o  postulate  a permanent base 

on these s a t e l l i t e s  f o r  other than exploration purposes. 

THE QlUESTION OF FOOD SUPPLY 

The technology e x i s t s  t o  maximize food production i n  a defined volume of 

space (not necessar i ly  jus t  on e two-dimensional plane as on $he Earth 's  

- s u r f a c e ) .  S o i l ,  as a source of plant  nu t r i en t s ,  i s  not e s sen t i a l  s ince a l l  

t h e  necessary nu t r i en t s  can be provided v i a  the  i r r i g a t i o n  solut ion.  Only 

a s t ruc tu re  f o r  support of t h e  plants  i s  necessary. 

C r i t i c a l  growth f ac to r s  such as  l i gh t ing ,  temperature, va r i e ty  select ion 

and s t ruc tu re  a r e  discussed i n  the  following paragraphs c u h i n a t i n g  i n  a 

sunmary of t h e  v e r t i c a l  a g r i c u t - u e  system being invest igated and demon- 

s t r a t e d  a-t Battelle-Northwest by the authors. Ver t ica l  growth surfaces 

can l e a d  t o  maximization of crop productdon i n  a three-dimensional space, 

pa r t i cu la r ly  i n  a low-gravity s i tua t ion  es would occur i n  the  gro9osed 

l i f e  support system. 

Avai lab i l i ty  of ~ i q h t  and Heat 

I n  the  r e l a t i v e l y  near  fu ture ,  there  i s  l i t t l e  prospect f o r  production of 

enimals or animal products f o r  food i n  lunar colonies.  Food w i l l  i n i t i a l l y  

'ce brought d i r e c t l y ,  from Earth, and may be dehydrated t o  preserve fresh- 

ness.  However, water f o r  rehydration would have t o  be recycled, brought 

from Earth,  o r  obtaioed from an as te ro id  base o r  from burled lunar  deposits 

of i ce .  Once the  lunar  base i s  es tabl ished,  there  would be ample l i g h t  a d  

heat  t o  provide f o r  growth of conventional f r u i t  and vegetables i n  a highly 

intensive enclosed environment. 1n' f a c t ,  the  sunlight and heat would have 

t o  be extensively reduced and h2mfub short-wave radiat ions stopced i n  order  

t o  avoid k i l l i n g  t h e  crops. 

A t  t h e  o rb i t  of Ceres (coincidental ly  named a f t e r  t he  Roman goddess of 

~ g r i c u l t u r e ) ,  the  sunl ight  would be anroximate ly  1/10 as  intense as a t  



t h e  t op  of t h e  Ea r th ' s  atmosphere. n i s  i s  more than m p l e  t o  support 

p lan t  growth. I n  f a c t ,  it hes been shown31 t h a t  i n  an a l g a l  system, 
4 2 

2 x 10 erg/cm /sec  w i l l  s a t u r a t e  t h e  photosynthet ic  system, compered t o  
2 

azz E a r t h . s w f a c e  i n t e n s i t y  of 5 x l o 5  erg/cm /sec  n f u l l  sun l i gh t ,  and a 
4 2 Ceres sun l igh t  i n t e n s i t y  of about 5 x 10  erg/cm /sec.  Thus, t h e r e  i s  no 

an t i c ipa t ed  problem i n  t h e  generat ion of food a t  an enclosed Ceres base ,  

except t h a t  once again ,  harmful short-wave r a d i a t i o n  would have t o  be 

stopped. When t h e  temperature i s  considered,  however, t h e r e  i s  a problem. 

The black-body temperature 'of  a planet  a t  t h e  o r b i t  of Ceres i s  about 

- 3 6 ' ~ ~  too  cold  f o r  any for& of grow-th. Ceres r o t a t e s  i n  9 'nr, and so t h e  

night-time temperatures would be much lower. Sunlight  must t he r e fo re  be 

concentrated and/or converted i n t o  heat  i n  a Ceres base before  any conven- 

t i o n a l  food can be grown. 

.4t J u p i t e r ' s  o r b i t  o r  on one of t h e  Jovian s a t e l l i t e s ,  t h e  problem i s  even 

more acu te .  m e r e  would be both  i n s u f f i c i e n t  l i g h t  and h e a t ,  wi th  rad ia -  

t i o n  i n t e n s i t i e s  of only 4% t h a t  a t  t h e  t o p  of t h e  Ear th ' s  atmosphere, and 

t e n ~ e r z t u r e s  of about -150°C. Both l l g h t  and hea t  would have t o  be pro- 

ducted a r t i f i c i a l l y ,  which would r equ i r e  an -- i n  s i t u  ene rp j  source %hat 

could obviously not be s o l a r .  Nuclear hea t  i s  a p o s s i b i l i t y  i n  t h i s  s i t u a t i o n .  

Su i tab le  Crops f o r  S ~ a c e  I n d u s t r i a l  Bases 

Much has been made of t h e  p o s s i b i l i t y  of p r o d u c i ~ g  enclosed ecologies  

capable of supporting human beings ,  based on t h e  recyc le  of human wastes. 

Generally such systems have involved e i t h e r  bac t e r i a .  such as Hydroger?omonas 

o r  a lgae  such is C h l ~ r e l l a . ~  There a r e  major problems i n  t h i s ,  not  only 

i n  convert ing human waste i n t o  a form s u i t a b l e  f o r  microorganism growth 

and i n  a t t a i n i n g  a good ma te r i a l  balance,  but  i n  t h e  a c t u a l  n u t r i t i o n a l  

velue of t h e  products.  Microorganisms, p a r t i c u l a r l y  s i n g l e  spec i e s ,  do 

not have t h e  co r r ec t  mineral ,  f a t ,  carbohydrate, vi tamin,  o r  p r o t e i n  com- 

pos i t i on  t o  s u s t a i n  hman l i f e  d o n e .  Ploreover, they have i n d i g e s t i b l e  

c e l l  w a l l s  and high nucle lc  ac id  contents  which cause g a s t r o i n t e s t i n a l  

d i f f i c u l t i e s  i n  anyone using them f o r  more than about 20% of t h e  d i e t .  

In  add i t ion ,  they r equ i r e  l a r g e  volunes of wattr, a sca rce  commodi*~ i n  

any space o r  s a t e l l i t e  colony. 



From t h e  goint  of v iev  of the most e f fec t ive  form of food, capable of 

being produced most in tens ive ly ,  we tun t o  the  normal vegetables grown 

on Earth. Psychologically, nu t r i t i ona l ly ,  and economically, these a re  

the  nos t  capable of sustaining l a rge  colonies r e l i a b l y  and continuously. 

Their y ie lds  pe r ' hec ta re  a r e  highest and t h e i r  n u t r i t i o n a l  values axe 

c loses t  t o  t h a t  which we know well. Thus, l i t t l e  or  no research i s  needed 

i n  t h e  n u t r i t i o n a l  z e a  before they can be used. A v a r i e t y  of crops can 

be grown together  i n  one enclosure, something which i s  r a r e l y  t r u e  of 

microorganism colonies.  The, disadvantage,. of course, i s  t h a t  space colon- 

ists  wo&d a l l  have t o  ,be vegetarians u n t i l  synthet ic  vegetable fiber-based 

meat subs t i tu t e s  could be produced or  animals grawn i n  space food f a c i l i -  

t i e s .  This would requi re  sane time, t o  achieve, but ,  here again, t h e  

tecl-inology ex i s t s .  However,,early -4mericap colonis t s  had no be t t e r .  

Ca t t l e  and f r u i t  general ly  came a f t e r  basic  vegetable crops. It w a s  so 

on t h e  Earth, so why should it de  d i f f e ren t  ip  space? 

For these reasons,  we expect space colonies t o  groTc t h e i r  own vegetables. 

I n  t h e  absence of weeds and pes ts ,  with t o t a l  environnental cont ro l ,  the  

r e l i a b i l i t y  of such farming should be far grea ter  than t h a t  which could 

be ex-pected from periodic food ' shu t t l z s  f r m  t h e  Earth,  with the  high 

probabi l i ty  on repeated missions t h a t  one load would be destroyed or  l o s t  

with po ten t i a l ly  disastr ,ous consequences f o r  t h e  t o t a l l y  dependent colony. 

i s  t r u e  t o  a grea t  extent f o r  a luoar  colony, and very t r u e  f o r  

a colony as  far out as Ceres or Jup i t e r .  

Being nore spec i f i c  abou t ' ac tua l  crops,  we would choose t o  grow those 

crops i n i t i a l l y  with t h e  highest demonstrated y ie ld  of useful  food value 

and t h e  lowest crop resiclues. A representat ive cropping combination 

might include potatoes,  soybeans and l ea f  vegetables ( cabbqe ,  sginach, 

e tc .  ) .  Potatoes would form t h e  basic  s tarch (carbohydrate) and selected . 

prote in  base. Soybeans could be processed f o r  f a t s  ( o i l ) ,  protein iso- 

l z t e s  or textured vegetable p o t e i n s  (meat subs t i tu t e s  ) , .and soymilh. In  

addi t ion they could be harvested a s  a green vegetable. Specif ic  leaf  I - 

vegetables could be produced f o r  e s sen t i a l  vitamins and selected protein 

supplement. 



The S t ruc tu re  of a S-oace 'Fern'  

Cer ta in  f ea tu r e s  of space farming a c t i v i t i e s  z r e  common t o  all such s t ruc -  

t u r e s .  For ins tance ,  they must be enlcosed and pressur ized  t o  p ro t ec t  t h e  

crops from vacuum; z near-nomal environment must be maintained,  so  t h a t  

temperature and i l lumina t ion  must be s imi l a r  t o  those  experienced on t h e  

Ea r th ' s  su r face .  The i n t e r n a l  atmosphere must conta in  carbon dioxide and 

water vapor,  and t h e  ' s o i l '  must conta in  necessary mineral  n u t r i e n t s ,  

including suppl ies  of m o n i a  and phosphorus. Beyond the se  l i m i t a t i o n s ,  

d e t a i l s  of t h e  s t r u c t u r e  a r e  widely v a r i a b l e  and depend t o  a l a r g e  ex ten t  

on t h e  l oca t i on  of t h e  ' farm1. 

i n  order  t o  present  a d e t a i l e d  de sc r ip t i on  of a space fad, a sy s t en  hzs 

been chosen i n  which we have experience and which represen ts  t h e  most h igh ly  

in tens ive  form of f a m i n g  ava i l ab l e  today. The l ocz t i on  chosen i s  on t h e  

as teqo id  Ceres, vhere black-body t e m ~ e r a t u r e s  i n  f u l l  sun l i gh t  would be 

abcut - 3 6 ' ~ ~  g r a v i t a t i o n  about 1% of Ear th  normal, i l lumina t ion  i s  approxi- 

mztely 0 .1  of t h a t  a t  t h e  t op  of e a r t h ' s  ztmosphere, and has t h e  sane 

s p e c t r a l  f e a t u r e s ,  t h e  a s t e r o i d  r o t a t e s  once every 9 h r ,  and t h e r e  i s  no 

n a t u r a l  atmosphere. - ! though highly  speculzt-ive i n  substance,  t h e  scenzr io  

?resented i s  v i t h i n  cur ren t  knowledge i n  t h e  sense t h a t  t h e  same system 

could be constructed on Earth today and would produce t h e  y i e l d s  of c ro s s  

assumed f o r  a Ceres fzm,  given t h e  same inputs  i n  t h e  form of kerogen, 

oxygen, water i c e ,  anmoniz, end minerals .  

The Environmental Control System 

"1s basic  design of t h e  farm i s  a p l a s t i c  hemispherical  dome (~ig. l), 

36 m i n  rzd ius  ( t o  enclose 0.4 hec t a r e ,  o r  one ac r e  i n  more conventional  

u n i t s ) .  Tne p l a s t i c  could be f a b r i c a t e 0  on t h e  Moon by conversion of 

kerogen by a s e r i e s  of s teps  i n t o  e thylene o r  o ther  organic pet rocheaic?l  

in termediates ,  according t o  conventional  technolog??. It would be double- 

walled honeycomb t o  se rve  t h e  dual  purpose of hea t  i n s u l a t i o n  and grotec-  

t i o n  aga in s t  acc iden ta l  blowout. The opaci ty  of t h e  dome could be can- 

t r o l l e d  by dyes i n  t h e  p l a s t i c  t o  s h i e l d  aga ins t  very sho r t  wzve rzd i s -  

t l o n  and u l t r a v i o i e t ,  although p l an t s  have sorce to le rance  TO t h i s .  In , 

order t o  provide a near Earth-nomal i l lumina t ion ,  we have a s s m e d  a 
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Fig.  1 Asteroid-3ased Mirror f o r  120-Person 
Permanent Colcny Food Supsly 
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ing w u l u s  i n t o  t h e  dome, where it would i l lumina te  t h e  crops (on ly  a 

ve r7  d i f f u s a  focus l n t o  t h e  dame i s  a s s u e d ) .  Also, chemical add i t ives  

(.e. g. , carbon b lack)  i n  t he  s o i l  would absorb sun l igh t  =nu re-Y8diatc it 

as hea t  t o  maintain the  i n t e r n a l  t eapera ture  of t h e  dome a t  a s teady 

2 5 - 3 5 ' ~ .  The r e f l e c t o r  i t s e l f  i n s i d e  t h e  dome would be aluminized g las t i c - -  

no more r e f r ac to ry  materi .al  i s  requ i red  since only a minirnzl temperature 
I i nc r ea se  above ambient i s  required dur ing 'day l igh t f .  Duricg t h e  shor t  

c i g h t ,  z slow decrease i n  temperature voulS occur. 

9 - e  s o l a r  c o l l e c t o r  cons i s t s  of an annulus aroUd t h e  dome. To produce 

a 9:1 collector/dome i l lumina t ion  r a t i o ,  t h e  annulus would have t o  be 

3.6 ha  (4 acres). i n  e r e a ,  and would t he r e fo re  be 77.6 m v ide .  To some 

exten*, t h e  a m l i g h t  bpinging  on t h e  c o l l e c t o r  wcri.11d. be converted i n t o  

h e a t ,  a s  a l ready  noted. A t  Ceres o r b i t ,  t h e r e  i s  s u f f i c i e n t  n a t u r a l  sun- 

l i g h t  t o ' p r o v i d e  f o r  ? len t  growth without enhancing i l lumina t ion .  There 



' is a s t rong  poss ib i l i . ty  t h a t  these.  fi .ga-es a r e  conservat ive ,  and t h a t  a 

much smal ler  a rea  of co l l ec to r  could he  used. The co l l ec to r  i t s e l f  woUd 

be c u v e d  t o  concentra te  sun l igh t  onto t h e  t o p  of t h e  i n s i d e  of t h e  dome, 

where it would be r e f l e c t e d  d i f f u s e l y  t o  t h e  crops below. The c o l l e c t o r  

would be made by grading t h e  annulus in t h e  sur face  of Ceres and lqying 

down a shee t  of aluminized p l a s t i c .  No g rea t  accuracy is  requ i red  i n  

t h i s ,  as: only diff 'usely concentrated sun l igh t  is requ i red .  A s  long a s  

t h e  c o l l e c t o r  d i r e c t s  most of t h e  l i g h t  h p i n g i n g  on it i n s i d e  t h e  dome 

t o  t h e  secondary r e f l e c t o r ,  no f u r t h e r  mi r ror  alignment i s  needed. I n  

f a c t ,  t oo  good a. focus would be de t r imenta l  t o  t h e  crops a t  t h e  focus! 

The dome and mirror  system i s  t h u s ' o f  a ' pass ive '  v a r i e t y ,  a l l  necessary 

environmental con t ro l  being b u i l t  i n  t o  t h e  s t r u c t u r e  of t h e  p l a s t i c s  

used. It would a l s o  be ve-ry l i g h t  and easy t o  t r anspo r t  from t h e  Moon la  

a c o l l a p e d  condi t ion,  t o  be i n f l z t e d  on a r r i v a l  a t  Ceres. 

The Enviroment 

,Mined kerogen would be oxidized t o  csrbon dioxide,  water ,  and n i t rogen  

us ing  l una r  odxygen, and. these  gases would c o n s t i t u t e  t h e  ~ tmosphe re  of t h e  

dome.. For psychological  reasons and f o r  ease  of harves t ing ,  t h e  done could 

a l s o  contain  owgen, permit t ing co lon i s t s  t o  w z l k  eroUd unprotected.  

'There i s  some i n b n i l t  f l e x i b i l i t y  i n  t h e  system, s ince  carbon, carbon dio- 

x ide ,  water ,  and hydrogen a r e  e s s e n t i a l l y  i n t e r conve r t i b l e  through a gas i -  

f i c a t i o n  cycle3* (which could a l s o  be used t o  generzte  vlooonin f ro=  n i t ro -  

gen, i f  t h i s  were ever i n  sho r t  supply) :  

Kerogen, zmmonia, water ,  and methane should a l l  b e . r e a d i l y  ava i l zb l e  from 

t h e  Ceres surface  o r  from t h e  Jovian noons, bu t  they shculd only be required 

f o r  t h e  i n i t i z l  colony s t a r t u ~  and fo r  making good production l o s se s  from 

t h e  dome, f o r  colony expansion, and f o r  ex?ort t o  t h e  Moon. ?or rou t i ne  

colcny exi.stence, non-edible carbonaceous res idues  such a s  human wastes 

and p lan t  wzstes may be t r e a t e a  i d e n t i c a l l y  t o  kerogen, ar.d burned back t o  

s h s l e  chenicels  vhich may be re-used by growi,ng c l z n t s .  



There i s  some quest ion concerning t h e  optimum done atmosphere f o r  obta ining 

maxiillurn p l an t  growth,' s ince  thi.3 is requ i red  f o r  t h e  surviva-1, and not 

merely t h e  convenience, of t h e  co lon i s t s .  For ins tance ,  hi.gher carbon 

dioxi.de l eve l s :  than  the' 0.03% present  i n  Ear th t  s  atmosphere w i l l  i n c r e ~ s e  

p l a n t  growth., oxygen is i n h i b i t o r y  in .  high. concentra t ion , t h e r e  is an 

optimum humidity at  a given temperature,  and t h e r e  w i l l  be a t  present  

unknown e f f e c t s  due t o  s o l a r  r a d i a t i o n  components not present  on Earth., 

cosmic r ays ,  and t h e  low g r a v i t a t i o n a l  a s  wel l  as  t h e  sho r t  

' d a y t .  These e f f e c t s  need t o  be i nves t i ga t ed  on Earth o r  i n  Zarth o r b i t  

be fo re  s e t t i n g  up a colony, but  they  represen t  no iaheren t  d i f f i c u l t y  i n  

r e s o l u t i o n  f o r  any given base. Also, i f  it i s  poss ib le  t o  ob ta in  maximm 
x 

p l m t  growth at  lower thzn  1 atm pressure, t h e r e  could be a considerable 

savllng i n  dome s t r u c t u r a l  mass. 

Thus, temperature,  n u t r i e n t  supply,  i l lumina t ion ,  and grokth medium would 

a l l  approximate Ear th  n o m a l  i n  t h e  fa,-, but  t h e r e  would be d i f fe rences  

due t o  day l eng th ,  grdvl ta t ior i  P'iela srrength, 2nd c u ~ ~ l p u s i l i u u  of the 

a r t i f i c i a l  atmosghere. 

The GrotrLh-Su~oortinq S t ruc tu r e  

Agr icu l tu re  i n  space i s  going t o  be very unl ike  anything normally p r ac t i s ed  

on g a r t h ,  b e c ~ i l ~ e  t r m s p o ~ t a t i o n  cuskj: L'ruru kdrCI1 V i 1 L  far exceed tllc vuluc 

on Ear th  of t h e  fcod produced. Saving made a  1 acre  farm a t  huge expense, 

every p a r t  of t h e  v a l u e  should be used t o  n b t d n  naxinum r e t u r ~  on invest -  

ment. The a i m  i s  maximum food y i e l d ,  with very l i t t l e  considerat ion being 

given t o  c o s t s  of water ,  f e r t i l i z e r ,  ha rves t ing  equipment, o r  other i t e m  

which a r e  normally paramount i n  t e r r e s t r i a l  ag r i cu l t u r e .  

Given these  parameters, t h e  obvious ccnclusloc  i s  t h a t  hor izon ta l  f a m i n g  

as p r a c t i s e d  on Earth i s  not t h e  most e f f i c i e n t  way of f a m i n g  i n  spec=, 

where t h e  e n t i r e  volume of enclosed and con t ro l led  environments shuuld be 
1 

used. V e ~ t i c e l  agricultm-e i s  e l o g i c a l  cx t rapo ls t ion  cf' t h e  requiremen* 
L 

f o r  maximum space u i t l i z a t i o n .  Our concept of a Ceres l -ac re  f a m  using 

v e r t i c a l  agr i .cul ture  i s  shok% i n  Fig. 2 ,  and consi .sts  of c a r a l l e l  rows of 

v e r t i c z l  cylbders  of v a r i ~ b l e  height  [ increasing towards t h e  c sn t e r  of 

t h e  dome). This concept i s  cu r r en t l y  imder intensilre development i n  o ~ r  

l a b o r a t o r i e s  f o r  food ~ r o d u c t i o n  i n  highly  mowtainous e rees  Of t h e  Tcorld 



Fig. 2 Ar;istls Impression of the Interior of a 
Verliical Agriculture Ceres Base Cmplex 



where these i s  a high population density. It is  called the 'Pullulator '  

system, meaning ' t o  grow upwaxds profusely1. An experimentd prototype is 

shown growing miniature Chinese cabbage i n  Fig. 3. hLLulators fo r  the 

Ceres base food supply may be able t o  achieve 10-20 times conventional 

crop yields new obtained with Earth's intensive horizontal farming, and 

do this  on a year-round basis. The system also permits isolat ion Of vari- 

ous crops, arrangement according t o  optinnan required illumination and heat, 

easy h m e s t i n g  (part icularly i n  low gravity conditions), and leaves a 

signif icant  proportion of the  ground area f ree  of crops so tha t  it can be 

used f o r  heat generation from sunlight by absorption on carbon black. Any 

disease tha t  could occur c&n quickly be isolated by removal of the ent i re  

Pullulator from the dome. Finally, the non-crop ground area would serve as - . 

a park fo r  the  colonists ,  relieving them of the  drab monotony of the inside 

of a work area. The disadvantages of the Pullulator on Earth--high cost of 

a ve r t i ca l  system due t o  a requirement fo r  high s t ructura l  strength t o  

maintain crops against Earth's gravity f i e ld ,  and sensi t iv i ty  t o  wind, are 

e i t he r  helpful or  i rrelevant  i n  the  Ceres environment. Our impression of 

the  inside of the Ceres dome is shown i n  Fig. 4. We calculate that  one 
such dome should eas i ly  be capable of supporting 100 colonists on a per- 

manent, year-round basis ,  providing them with a variety of foods which is 

simply not possible on any l e s s  ef f ic ient  system. Additional colonists 

could be supported simply by using more domes. I f  it ever became possible 

t o  r a i s e  meat animals and goultry, Pullulators would be idea3 because the 

crops could be raised out of reach of the animals, which would be fed on 

the  uneatable roughage ! 
- -  

Dealing with the far %me, we can speculate that Ceres could become a net 

exporter of food t o  the Moon, i n  exchange f o r  supplies of oxygen and fabri- 

cated products, thus fully justif'ying the naming of t h i s  asteroid aZter the 

Roman 'goddess of Agriculture'! In f ac t ,  energetically, it would be grac- 

t i cab le  even t o  ship food t o  other points i n  space from Ceres rather than 

f r o m  the Earth. Shipping food t o  Earth i t s e l f  i s  unlikeLy except on a 

s t r i c t l y  oneway basis ,  using a non-returnable spacecraft she l l  f i l l e d  with 

dehydrated food grown on Ceres from readily available carbonaceous acd 

nitrogenous resources, and thrown towards the Earth l i ke  a stone from a 

slingshot, t o  land by atmospheric braking. Only t h i s  way could food ever 



Fig. 3 Battelle-Northwest ' s Experimental Pullulator 
Vertical Growth System Shown with Mature 
Miniature Chinese Cabbage . 



Fig. 4 Artist's Impression ~f the Ceres Base Food Reduction System 
(not to scale) 
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be exported t o  Ear th ,  and even so  it i s  l i k e l y  t o  be e x t r a e l y  expensive. 

This go in t  i s  mentioned i n  case  anyone f e e l s  t h a t  t e r r e s t r i a l  food problems 

can be solved us ing space resources--in f a c t ,  t h e  Ear th  w i l l  have t o  so lve  

i t s  own food.and population groblems f o r  a  very long the t o  come. Bowever, 

with t h i s  exception,  Ceres could became t h e  breakbasket of our Sol= S y s t m  

ou ts ide  of Earth.  

RESOURCE ECONOMIC CONSDDATIOMS 

The cos t  of food and ma te r i a l  t r anspo r t a t i on  w i l l  be t h e  overr iding f a c t o r  

i n  cos t  of operat ions  i n  in tercolony t r ade .  I n  add i t i on ,  a  long- 

c a p i t a l i z a t i o n  per iod (og up t o  5 decades) should c c c w  t o  provide reso=ces 

and "domestic" food suap l ies  f o r  colonies  i n  Ear th  o r b i t ,  t h e  lunzs. su r f ace ,  

Ceres, and on a  Jovian s a t e l l i t e .  Following a per iod of c a p i t a l i z a t i o n ,  a 
- 

se l f - sus ta in ing  i n d u s t r i a l  economic a c t i v i t y  might occur a t  a  l e v e l  of mate- 

r i a l s  flow and t r a n s g o r t  t o ' b e  a b l e  t o  e f f e c t i v e l y  se rve  marketglace Ear th  

with needed items of high valuz  manufacture. 

Tr-e 3a s i c  Cost of Transpor tz t ion 

To t r a n s f e r  a pound of ma te r i a l  from one point  on t h e  Ear th  t o  another ,  t h e  

t r anspo r t a t i on  c o s t  i s  usua l ly  a s ~ l l  f r e c t i o n  of t h e  t o t d  product value. '  

(Present r u l e -o f - t hub  values  f o r  t m ~ c k  t r anspo r t a t i on  i n  t h e  U.S. i s  

5-7$/ton-mile.) Ir space,  t h e  s i t u a t i o n  i s  completely d i f f e r e n t .  Trans- 

s o r t a t i o n  cos t s  a r e  expected "; be so high a s  t o  be many t i n e s  t h e  t o t z l  

value of t h e  groduct,  wi th  t h e  pos s ib l e  exception of r a r e  metals  2nd h igh ly  

soph i s t i c a t ed  n a t e r i z l s  such as.enzymes. %lus t h e r e  i s  a  ' l e ~ r e l i n g  e f f e c t ' ,  

meaning t h a t  f o r  most s i t u a t i o n s  a  pound of v a t e r  v i l l  have t h e  same vz lue  

a s  a  pound of s t e e l .  This f a c t o r  p ro foundy  a f f e c t s  t h e  f - d t u e  economics 

of space i n d u s t r i a l  d e v e l o ~ e n t  . 
A ~ h r t h e r  f a c t o r  which i s  l i k e l y  t o  have g r e a t  s i gn i f i c znce  i n  r e l a t i o n  t o  

t h e  eccnamics of sgace processing i s  t h a t  of t h e  expected l i f e t k u e  of En 

automatic,  m a n n e d  space s h u t t l e  compmed t o  t h a t  of a mznned s h u t t l e  

on a regu la r  Earth-to-orbit t r i p .  I n  t he  one case ,  a  per iod of two or t h r e e  

years  may e lapse  wi th  t h e  s h u t t l e  i n  a  powered-down node while t r z v e l i n s  

betveen d i s t a a t  po in t s  i n  t h e  So la r  S y s t a  ( l o r  i c s t ance ,  between Czres 



and t h e  Jovian system).  A t  both ends of t h e  journey, r e l a t i v e l y  mild 

acce l e r a t i ons  would be used f o r  landing. and takeoff .  I n  t h e  o the r  case ,  

pe r iods  of weeks a t  most would occur between highly  s t r e s s x U  and energe t ic  

t akeo f f  and landing on Earth.  While t h e  l i f e t i m e  of t h e  s h u t t l e  i n  Ezrth- 

t o -o r3 i t  journeys i s  es t imated t o  be about 100 t r i p s  l a s t i n g  over a ~ e r i o d  . 

of .a few yea r s ,  it i s  conceivable t h a t  t h e  l i f e t i m e  of t h e  unmanned deep 

space s h u t t l e  could be i n  terms of  a century o r  more. What f a i r  accounting . 

pe r iod  could be chosen f o r  amort izat ion of t h e  i n i t i a l  c o s t  of such a 

s h u t t l e ?  

I n  any case ,  t o  ob t a in  t h e  elements carbon, hydrogen, and n i t rogen  from 

sources  o ther  thzn t h e  Ear th ,  rand i n  z more economical manner, it, i s  neces- - 4 

saxy t h a t  t h e  e n e r g  cos t  f o r  t r anspo r t a t i on  from these  o ther  sources be 

l e s s  than t h e  competi t ive cos t  of  t r ansyo r t z t i on  from t h e  Ea r th ' s  su r face ,  
i 

s i n c e  t r a m p o r t a t i o n  cos t  f o r  almost all conceivable mate r ia l s  u se fu l  i n  

space g r e z t l y  exceeds t h e i r  value  a t  t h e  sur face  of the  Earth.  Tra.nsporte- 

t i o n  cos t  c u r r e n t l y  has been s e t  by NASA at $20,000,000 f o r  a 65,000 lb 

p w l o a d  ($300/ lb)  on t h e  space s h u t t l e  t o  Earth o r b i t .  I f  a s s m e  a I 

future minimum cos t  of gayloads t o  a geosynchronous o r b i t  of $ i00 / lb ,  we 

a r e  not  being unduly pess imis t i c  ( t h i s  g ives  a generous allowance of 

2 .8  lan/sec i n  t e rmina l  ve loc i t y  of t h e  ~ a y l o a d  as Well as d iv id ing  t h e  i n i -  

t i a l  cos t  by 3! ) .  For a b e t t e r  understanding of t h e  s i t u a t i o c  regarding 

t r a s s p o r t z t i o n  c o s t s  i n  terms of e n e r a ,  Fig .  5 shows ~ . p p r ~ x i m ~ t e  v e l a c i t y  

increments requ i red  f o r  t r a n s f e r  of payloads between var ious  po in t s  i n  t h e  

i nne r  So la r  Sys t sa ,  us ing t h e  ' g r av i t y  we l l1  conceot. The g r a v i t a t i m a l  

f i e l d  of t h e  Sun may be neglected f o r  2 f i r s t  approximstion i n  t r a n s f e r r i n g  

ma te r i a l s  between t h e  Ear th  and t h e  Moon, but  becomes s i g n i f i c a n t  when 

j ~ u r n e y s  t o  t h e  Asteroid  b e l t  e r e  conzenplated, being zgproxiaate ly  5 km/sec. 

S imi l z r l g ,  f o r  a journey t o  zhe moons of J u p i t e r ,  both t h e  g r a v i t a t i o n a l  

f l e l d s  of J u p i t e r  and t h e  Sun t ake  add i t i ona l  increments of energy beyond t 

t h a t  requ i red  t o  t a k e  o f f  from t h e  Earth and land on a s a t e l l i t e .  I n  f s c t ,  

f o r  t h i s  journey, about 22 km/sec a r e  required.  Since ve loc i t y  incremect L- 

i s  a mezsure of energy requizelcent i n  t e r n s  of f u e l  eqended  [ e n e r a  = 
3 

f ( v - ) ] ,  a d  most of t h e  recur r ing  cos t s  of a ssace  s h u t t l e  journey a r e  f u e l  

c o s t s  r a t h e r  than  amort izat ion o r  maintenance c o s t s ,  we have chosen t o  

e q u i l i b r a t e  c o s t s  f o r  var ious  t r u l s f 2 r s  of mate r ia l s  wi th in  t h e  So la r  System 
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d i r e c t l y  t o  t h e  t o t a l  ve loc i t y  increment squared. m e  f i g x e s  were pre- 

v ious ly  shown i n  Table 1. ( ~ o t e  t h a t  these  f i gu re s  a t  c l o s e s t  promixity 

of t h e  t r a n s f e r  go in t s  t o  de s t i na t i on  po in t s ,  were cz l cu l a t ed  on t h e  

assumption t h a t  minimum energy (~o'nmara) t r a n s f e r  e l l i p s e s  wculd be used, 

and take  no zccount of perturbations by o ther  ~ l ~ e t s ,  ' s l ingshot  e f f e c t s  ' , 
etoc. They are t he r e fo re  vs ry  qp rox ima te  ) . 

A s  an example of t h e  importance of ~"ue l  c o s t s  ia  determining t h e  econ~mics  

of space t r m s p o r t a t i o n  of mate r ia l s  between d i s t a n t  po in t s  h i t h i n  t h e  

So la r  System, it has been clkimedl1 t h z t  t h e  t r a n s f e r  t o  Earth of a 1 h 

diameter n ickel- i ron a s t e ro id  would supoly $5 t r i l l i o n  ( $ 5  x l 0 l 2 )  i n  
' 2  .c. metal  value  a t  cur ren t  p r i ce s .  (We ca l cu l a t e  a vzlue of $17 x 10' L O ?  

pure n i cke l  a t  $2.00/ lb) .  Xowever, t h e  mode of t r m s p c r t a t i c n  t o  t h e  
- 

Earth i s  importznt. i f  f u e l  f o r  t h i s  can be derived from t h e  z s t e r o i d  

b e l t  i t s e l f ,  t h e 2  the  economics a r e  someldhat d i f f e r a t  from those  ass-m- 

ing  t h a t  f u e l  has t o  be c a r r i e d  ur, from t h e  Earth. I n  t t e  l a t t e r  case ,  

assunixg a cos t  or" $100/lb/10 kidsac  iinpulse, t h e  -hpulse  requ i red  t o  b r ing  

t h i s  volune of e s t e r o i d  a t  a m e z n  dens i ty  of 8.5 back t o  t h e  E s t h  by 

atmospheric braking w01.11d he abcut 21,2 'km/sec, ( a s s m i n g  zero i acu lae  



1 

f o r  landing on ~ a r t h ) .  The cost  would then be about $4 quadr i l l ion  

($4 x 1015)! The economics a re  obviously i?npossible u r l e s s  a viable  

self-supporting base at  the Asteroid b e l t  i s  assumed, and t h z t  it i s  

f u r t h e r  assumed t h a t  t h e  necessary f u e l  t o  provide the  impulse can a l so  

be obtained from t h i s  region. It cannot be argued t h a t  the  cost  of f u e l  

from Earth w i l l  decrease by the  necessary fac tor  of l o 3 ,  as  t h i s  i s  l i k e l y  

t o  increase r a the r  than decrease unless some exot ic  propulsion method i s  

discovered. Current f u e l s  include kerosene, hydrogen, o r  other  hydro- 

carbcns and a re  generated e i t h e r  d i r e c t l y  from petroleum o r  ind i rec t ly  

v i a  e l e c t r i c i t y .  Nuclear fue l s  a r e  210s r i s i n g  i n  pr ice  and a re  i n  any 

case unl ikely t o  be permitted f o r  use within Earth 's  atmosphere. 

From the  discussion already gresentea i n  t h i s  a r t i c l e ,  it should be 

a p ~ a r e n t  t h a t  i f  f u e l s  can be derived from low gravi ty as te ro ids  o r  

s a t e l l i t e s  f a r  out i n  t h e  Solar Systen, then we f e e l  t h a t  t he  economics 

of space t rznspor ta t ion  of mater ials  become faz more favor2.bl.e t,h;l.n if 

we assume t h a t  a l l  f u e l  mxst be ra i sed  from Earth. It i s  per t inent  t o  

consider more comprehecsive engineering economics now, based on an assumed 

h i s t o r i c a l  development of Solar Systeln exgloration, colonization, exploita- 

t i o n ,  and processing. 

4. Method of Colony Resource Caoital izet ion 

All complex o rpa i sms  grow znd develop f r o a  an i n i t i a l  c a p i t a l  stock cf 

rescurces whether this be p l an t s  stsfii.ng from seed (a storehouse of Lni- 

t i a l  energy, nu t r i en t s ,  and genetic information) o r  human colonies i n  space. 

Propagation of a specie occurs a s  surrounding resources a re  converted and 

consmed i n  the  grow%h cycle of the  organism ( energy 2nd m a t e r i a  ) . Nev, 

adaptive space indus t r i z l i za t ion  colonies shculd not occur any d i f f e ren t ly ,  
1' once . t h e  f i r s t  one i s  capi tal izedt '  and brought in to  existence with "seedt' 

resources from the  Earth (people, ene rm,  life-supgort systens,  industrial .  
f i  

technolopj,  space t ranspor t ,  e t c . ) .  

A combination of  goal s e t t i n g  (projected "pull" decis ions)  and e ~ p i r l c d ,  

adhptive growth (decisions beseci on kncwn "pusht' information) irili nost 

l i k e l y  occur during colonization. 26 For purToses of i l l u s t r z t i o n ,  l e t  us 

s e l e c t  a goal of establ ishing a self-sustaining L u a r  colony of 100,000 

people within a spec i f ied  time, say f i v e  decades from now. What must be 

done t o  achieve (and economiczlly j u s t i ~ ~ j )  t h i s  goal? 
26 



F i r s t ,  a  goa l  of a 100,000 populat icn Lur i s r  i n d u s t r i a l  colony f i v e  decades 

hence will r equ i r e  mu l t i p l i c a t i on  of population I n  space by a f a c t o r  of 

10 each decade s t a r t i n g  now with  a  populs t ion of 10 zs t ronaut-colonis ts  

i n  Ear th  o r b i t .  This magnitude of gopulat ion growth via  zdu l t  en ig r a t i on  

from Ear th  poses l i t t l e  t r ansgo r t a t i on  d i f f i c u l t y  over t h e  s e l e c t e d  50-year 

plaoning ger iod.  ( n i s  i s ,  on average, 166.7 persons per  month shot  i n t o  

space once a  month f o r  50 yesrs--hardly a good 747 load! ) . For present  

purposes no "throwbacks1' a r e  permitted.  

A colonization/bootstrapping sequence i s  ~ r o j e c t e d  i n  Table 3 t o  character-  

i z e  t h i s  poss ib le  s i t u a t i o n  over a  50-yew period.  No s ign i f i c an t  i m ~ a c t  

on Ea r th ' s  s i t u a t i o n  i s  an t i c ipa t ed ,  i . e . ,  E s gopulat ion = *. 

TaSle 3 

COLONY POPULATIOIT GOALS 

End 
o  f  Colony E E .  

0 L s C 
Decade s  s Jo' 

Market EID&D Mining Agr i c  P4ining 
. 5 bTFG 

The philosoghy of growth i s  t h a t  es tab l i sbxen t  or' ul Earth o r S l t ,  Eo, s ' q l z b  

with z permmeat p o p a l ~ t i o n  of 10 wi th in  t h e  f i r s t  decade from p ro j ec t  t ime 0  

would permit s u f f i c i e n t  mowledge and e x ~ e r i e n c e  t o  be a c c ~ ~ i l u l a t e d  so  t h a t  

a L-unzr colony o l  LOO could be e f f e c t i v e l y  supported =d macaged by t h e  end 

of t h e  second deczde, together  wi th  mowth t o  100 of t h e  Eo colorry. 

Skylab n igh t  rapresent  t h e  s t a r t  of t h i s  growth process.  Subsequent 

technology, resource  zccwnuiation, e t c . ,  with t h e  Lunar colony znd t h e  

Ezrth o r b i t  colony n igh t  g e m i t  a  second order  of magnitude j u m ~  i n  apace 



colonization s k i l l s  so t h a t  by t h e  end of the  t h i r d  decade a food yroduction 

( l i f e  supgort resource) colony of 1,000 population might be i n  place on 

Ceres. Lik?wise, t he  fourth decade might see a 1,000 population mining 

indus t ry  colony come i n t o  being on a Jovian s a t e l l i t e ,  as  mentioned e a r l i e r .  

This would provide the  c a p i t a l  resource base of four s-pace colonies as  a 

se l f - su f f i c i en t  economy so t h a t  by the  end of the  f i f t h  decade, the  

100,000 population. i n d u s t r i a l  colony on the moon would be a producing 

r e z l i t y ,  ready t o  penetrate  market Earth with advanced manufactured ~ r o d u c t s  

o r  new mater ia l  resources. Note t h a t  our thinking has been i n  decades, not 

years.  Also, note t h e  "functional" i n d u s t r i a l  a c t i v i t i e s  excected t o  domin- 

a t e  o r  chwzc te r i ze  each colony. (see Table 3 ) .  * 

Life  Support Reqtlirements 

Food ( p l a n t )  requirements f o r  astronauts  being sustzined i n  Earth o rb i t  f o r  6 

Decade 1 a r e  es t ina ted  t o  require  a?:roximately 1,500 g/person/day (adul t  

male 1. Ten astronauts ,  on average, over a ten-year period would require  

about 55,000 kg (55 metric tons)  of food mater ial ,  t o t a l ,  delivered over 

t h i s  period. Drinking water requirenent s add another 2.5 kg/person/day or  

%91,000 kg (91  metric tons )  aelivereci over t en  years (assuming no recyl ing)  . 
Oxygen consm>tion i s  estimated a t  0.862 kg/astronaut/day or %32,000 kg 

(32 metric tons )  i n  t e n  years.  35  These basic  l i f e  su?qort supply require- 

ments a re  therefore  about 178 metric tons/decade or  $18 metric tons/yezr 

f o r  the  ten-astronaut space s tn t ion  i n  Earth o rb i t  ( E ~ ) .  This i s  rounded 

up t o  20 metric-tons/year/ten astron2uts f o r  conservatism and conceptual 

convenience i n  the  renarks t o  follow. 

T3e next decade a t  Eo w, i t h  100 astronaut- i r i iustr ia l  technici=s would 

requi re  a t  l e a s t  10 times t h i s  amount or  $200 metric tons/year (2,000 metric 

tons/decade). A s imi lar  supply l i n e  would have t o  5e mzintained f o r  a 

Lunar surface colony, Ls of 100 oogulation, also.  Extrapolation from these 

f i g u e s  f o r  i n i t i a l  1,000 population colonies on the  surface of Cerzs and 

a Jovian moon provides a t o t a l  requirement ~ n d  araual t r m s p o r t  require- 

ment l o r  our space colony i n d u s t r i a l  conplex fo r  the next f ive  decades as 

l i s t e d  in  Table 4 .  
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These object ive da ta  are the  inflow food and water requirements f o r  the  

f ive-decade colonizat ion project  assuming no recycle of waste product (but 

perhaps storage, f o r  accumulative pur-poses or conversion t o  t s ~ e c i a l t y  

chemicals. ) 

Now, if the  assumption i s  relaxed t h a t  z l l  food requirements a re  t o  be 

t ransgorted t o  these colonies from Earth '  s surf  ace (E~ 1 , and ins tead  assume 

t h a t  by th.e end of the  f i f t h  decade all food and water supplies or ig ina te  

from Ceres and a l l  oxygen supplies or ig ina te  from e i t h e r  Ceres (from i c e )  

o r  t h e  Lunar surface (from aluminum manufactura) , then an annual flow 

pat te rn  fo r  l i f e  support and mater ial  supplies might occur as i l l u s t r a t e d  i n  

Figu-e 6 by the  f i f t h  ,decade. 

Fig. 6 Nater ials  and Msnufacturing 
&change Setween sases  



Let ' s  put t h i s  250,000,000 kg/year of food, water,  t he  oxygen productior. 

and t ransport  requirement i n  perspective.  I f  y i e ld  fzc tors  of 20 over 

conventional Earth surface z g r i c d t u r e  c u l  be achieved i n  space using 

v e r t i c a l  agr icu l ture  Pul lu la tor  techniques, t h i s  means Chat one horizontal  

hectare of surface a e a  producing..70 metric tons of f resh  food on Earth 

would 'oe czpable of 20 x 70 or  140 metric tons of product on, s q ,  Ceres, 

as  i l l u s t r a t e d  e a r l i e r .  This implies t h a t  only 1,800 ha of surface area 

would be required t o  be under cover on Ceres t o  e f f e c t i v e u  feed the  com- 

plex of space-industry colonies i n  Earth o r b i t ,  on the  Lmar surface,  on 

Ceres ' i t s e l f  and on a Jovian s a t e l l i t e .  . 

In2us t r i a l  Material Rea-uirement s 

Let us assume t h a t  it takes 8 metric tons of mater ials  annually t o  effec- 

t i v e l y  employ our i c d u s t r i d  cq lonls t s  (i. e. , the  productivity of each 

colonis t  i s  such t h a t  each must annually produce the  equivalent by .weight 

on Earth, of 4-to-5 la rge  American-made automobiles). I f  t he  Jovi= 

s a t e l l i t e  mines produce raw mater ial  which i s  converted a t  50% y ie ld  t o  

mater ial  used i n  marketable product from the Lmar  cclony, 2nd aE addi- 

t i o n a l  50% i s  mined and converted frcm Lunar resources,  then the  t ranspor t -  

able  tonnage from Jovizn sources would.be about the  same as  the desired 

t ransportable  toilnages frcm the  moon t o  the  Earth 's  surfece (nerke t )  a t  

800,000 metric tons/year. Other p laus ib le  mater ial  znd/or product flows 

a r e  a l so  i l l u s t r a t e d  i n  Figure 6 f o r  t h i s  s i tua t ion  and the  cther  space 

colorif es. 

I n  t o t a l ,  2 b i l l i o n  kgs of mater ial  flows must occur mong the  space 

i n d u s t r i z l  comglex a t  z t o t a l  t r ansso r t  energy' value of zbout 180 x 10 
9 

2 
1/2nv energy uniSs (SI) as zccumulated i z  Ta'cLe 5. For s imolif icat ion 

purposes, l e t s  zssume it "costs" 100 eoerg.J un i t s  t o  produce and t ~ u l s p o r t  

1 kg of mater ia l  flow i n  our space network. . 

Cost of O ~ e r a t i o n s  

Siace t ranspor t  costs  Ere expected t o  exceed mater izl  vzlues m d  m=ufactur- 

ing value-added by s igni f icant  mounts ,  again l e t ' s  simplify by szying t h a t  

t ranspor t  energy cost represents t o t a l  mmui'actured and delivered product 

cost i n  t h i s  spece colony economic s y s t m .  This czn be assmed t o  be" 
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"operating cost" i n  t h e  c l a s s i c a l  engineering economics sense. This would '. 

include a deprecia t ion component f o r  amortization of c a p i t a l  investment i n  

p l an t ,  f a c i l i t i e s  and t ranspor ta t ion  equipment and an a t t r a c t i v e  rate-of- 

r e tu rn  on t h i s  c a p i t a l ' i n d u s t r y  i n f r a s t ruc tu r e .  

Returning t o  our e ~ r l i e r  resource  exanple,  assume t h a t  . the 'colony e q o r t  

product t o  Ear th  market i s  t h e  equivalent  of pure n i cke l  a t  $b.bl/kg 

($2.00/ lb)  de l ivered  at  t h e  Ear th ' s  surface .  Then, an 800,000 metr ic  t c n  

output of t h e  Lunar indus.kria1 colony would be worth $3.53 b i l l i o n  on t h e  

Ea r th ' s  surface .  This ''market value" must not only cover t h e  cos t  'of 

ogerat ions  but  a l s o  t h e  cost -of-capi ta l  ( including a 'retturn-on-the inves t -  

nea t  above t h e  cos t  of c s p i t a l )  and amort izat ion ( r e c c v e ~ j )  of t h i s  c a p i t a l  

investment over an acceptable  period.  

CapitaJ Investment 

L e t ' s  assume t h a t  an a t t r a c t i v e  annual r a t e  of r e t u r n  on inves ted  c a p i t a l  

i n  .a p ro j ec t  such as t h i s  i s  20%. Le t ' s  a l s o  assume .z pro j ec t  l i f e t i m e  of 

50 gears  ( f i v e  decades) a f t e r  f u l l  i ndus t r ' i a l  cagaci ty  i s  reached i s  

acceptsble .  This leaves  unanswered t h e  quest ion of how much c a p i t z l  mate- 

rial (from ~ a r t h )  must be t ranspor ted  i n t o  space t o  boots t rap  t h e  proposed 

i n d u s t r i d  c o ~ o n i z a t i o n .  

Rather thaq d o l l a r s ,  l e t ' s  d i scuss  c a ? i t a l  investment i n  n e t r i c  tons  of 

mate r ia l s .  F i r s t ,  we will make a br3ad a s s u m ~ t i o n  t h a t  it w i l l  r e q c i r e  

a s  much i n i t i a l  s tock of ma te r i a l  i n  p l an t  and equipment a s  t h e  volume of 

annual output from t h a t  same p lan t  and equipment. That i s ,  i n  order  t o  

produce 800,000 metr ic  tons  a m a l l y  we must have ~ O O , C ) O O  metr ic  tons  of 

manufacturing f a c i l i t i e s  i n  place.  Thus t o  begin shippirig 800,000 met r ic  

tons  of mate r ia l s  from t h e  Lunar sur face  t o  t h e  Ea r th ' s  su r face  50 y e w s  

from now would r equ i r e  t h a t  a manufacturing c a p a b i l i t y  c ~ m p r i s i n g  

800,000 metr ic  tpns  be i n  place  by t h e  end of year  50. 

Now, i f  it i s ' a s suned  t h a t  during t h e  oreceding 50-year co lon iza t ion  per iod ,  

t h e  c o l o ~ i s s  'were'2=ole t o  accunulate t h i s  c a ~ i t a l . f a c i l i t y  through t h e i r  

explorat ion e f f o r t s  s t a r t i n g  wi th  10% of t h i s  amount of ma te r i a l  shipped 

from Earth between years 0-50, only 275 metric tons need'be l i f t e d  i n t o  space 

annually from year 0 through year 50 and ne t  f a c i l i t y  increase  (from space 



sources) occur a t  only a growth r a t e  of 6% znnually f o r  50 years.  I f ,  on 
- 

t h e  average, growth r a t e s  of exploration and e-uploitation occur i n  space 

'similar t o  these  simplying conditions,  then the  magnitude of the  undertak- 

ing  comes i n t o  focus with g r a c t i c a l  ( a d  possible)  economics. 

Returns t o  Invested Capital  

The competitive market value of mater ial  delivered t o  the  Ear th ' s  sur- 

face  from t h e  L u n a  i n d u s t r i a l  colony i s  $4.41/kg ($2.00/lb) s t a r t i n g  i n  

year  51. Thus, 800,000 metric tons delivered annually t o  Earth would have 

2 value 02 $3.53 b i l l i o n  as  noted ' in  Table 6. This amount would represent 

e q o r t  s a l e s  o r  revenues of the  i n d u s t r i a  complex. It would need t o  cover 

normal r a t e s  of p r o f i t ,  depreciation, i n t e r e s t ,  cost  of mater ials ,  l abor ,  

t ranspor ta t ion ,  e t c . ,  i n  the  usual engineering economics sense. 

We previously mentioned t h a t  the  cost of t r w s g o r t a t i o n  ( a t  present)  i s  c 

expected t o  f a r  outweigh the  cost  of mater ials .  However, t h e  energy 

requirement t o  t ranspor t  mzter iai  from the  Lunar surface t o  the  Ear th ' s  

surface i s  only about 1/30 t h a t  of the  opgosite tra?s?ort  d i rec t ion .  Thus, 

present projected costs  of $220/hg f o r  a (E ---t zO) t r i p  might be c loser  
S 

t o  $7.j0/kg f o r  a ( L ~  4 Zs )  t r i p .  For 800,000 metric tonslyear t h i s  

would represent a f r e i g h t  b i l l  f o r  the  colony of $5.84 b ib l ioc - - s t i l l  too 

high t o  be competitive on de l ive r j .  

Now, if t ranspor t  energy cos ts  a r e  based on space-derived f u e l  sources, 

cos t s  become r e l a t i v e  so  t h a t  f u e l  costs  on Earth do not necessar i ly  

d i c t a t e  f u e l  cos ts  on the  Lunar surface.  'i?lus, it might be conceivable 

t h a t  costs  of t ranspor t  i n  space could be equivalent t o  or  l e s s  than costs  

of t ranspor t  on t h e  Ear th ' s  surface (%20$/kg). I f  t h i s  order of magnitude 

change were t o  occur, t h e  f re ight  b i l l  fo r  the Lunar colony might be only 

$0.16 s i l l i o n  annually. If the  value of the  mater ial  on the Lunar surface 

p r io r  t o  shipment i s  pegged a t  the  present pr ice  of aluminum a t  50$/lb 

($l.lO/kg) then the  assigned mater ial  'value f o r  800,000 metric tons would 

-be only $0.88 b i l l i o n  annually. Total annual operating costs could then 

be $1.04 b i l l i on .  

Continuing t h i s  s i tua t ion  fo r  50 years a t  20% r a t e  of return,  annual pro- 

rats cap i t a l  recovery would occur with the  residual  amount of $2.49 b i l l i o n .  3 7 



Table 6 

CAPITAL RECOVERY OF SPACE INDUSTRIAL COLONIZATION 

Annual Assigned Assigned T o t a l  Value 
h o j e c t e d  Transport  Mate r i a l  of Transport '  

Payload Cost Value Energy + Mater ia l  
(metr ic  t o n s )  ( $  b i l l i o n s )  ( $  b i l l i o n s  ) ( $ b i l l i o n s  ) 

Annualized Present  Value ( T i % )  . 
(years  0-50)(cal  ' d 3 9 )  ,182 ' 0.011 n e g l i g i b l e  0.04 

(E  * E ~ )  12.45 
s 

Capita1 ( ~ e s o u r c e )  Accumulated 80,000 --- 
(end of year  50) (ES + L) 

Annualized Cap i ta l  Recovery ( a ,  d --- 
LJ 
V, iyea r s  51-100) 

Annual. Operabing Cost,s (b 1 
( years 51-1-00) 800, 000 

( c )  
3 

Tota l  Annual Cost (iievenues ) 

l lni t  Costs 

( a )  50-year c a p i t a l  recovery p e r i o d - a t  20% r a t e .  of r e t u r n ,  c r f  = 0.20002 
( b )  Delivery of 800,000 metr ic  tons;yegr of N i  equivalent  m a t e r i a l  t o  E a r t h ' s  surface  from t h e  

inckxstr ial  colony complex. 
( c )  Revenues include an opera t ing  p r o f i t  corrlponent s u f f i c i e n t  t o  provide , for  recovery of c a p i t a l  

over a 50-year per iod p lus  20% ~ n n u a l  r e t u r n  on t h i s  investment. 
( d )  Does not include c a p i t a l  recovery on space-produced c a p i t a l  f a c i l i t i e s ,  only t h e  . Earth  . debt.  



Using a 50-year/20% c a p i t a l  recovery f a c t o r ,  t h i s  equ i l i b r a t e s  t o  a t o t a l  

Earth investment i n  t h e  space colony a t  t h e  s t a r t  of t h e  mate r ia l  flow of 

$12.45 b i l l i o n .  The present value.  of t h i s  $12.45 b i l l i o n  discounted from 

50 years ,  hence, t o  t h e  present time a t  t y p i c a l  i n s t i t u t i o n a l  f i n a n c i a l  

r a t e s  ("municipals") o f  6% i s  $0.04 b i l l i o n .  Thus, a t  $100/lb ($220/kg) 

t ranspor t  c o s t ,  we could only a f ford  t o  l i f t  about 182 metric tons  annually 

i n t o  Earth o r b i t  a s  an i n i t i a l  c a p i t a l  investment i n  space over t h e  next 

50 years .  This i s  t h e  equivalent of six-to-seven 65,000/lb space s h u t t l e  

payloads annually f o r  50 years.  ( ~ l s o  , 182 .tons/yr increased 'at  7+% i s  

80,000 tons i n  year  50) .  

This i s  t h e  same order of magnitude a s  t h e  275 metric tons  a r r i ved  a t  by 

t h e  previous discounting methods. Thus, t h e  magnitudes of mate r ia l s  flow 

f o r  physical  f e a s i b i l i t y  a r e  tending t o  coverage with current  econouic 

f e a s i b i l i t y  values  under these  assumptions. 

Costs of L i fe  Support Versus I f idust r ia l  Materials  Supply 

The $4.41/kg t r anspo r t  cost  e l l oca t i on  includes all t r anspor t  co s t s  

incurred i n  g e t t i n g  t h e  manufactured mate r ia l  t o  t h e  Ear th ' s  surface .  'For 

example, t h e  cost .  of t ranspor t  of food, water,  oxygen, e t c .  between Ceres 

and t h e  moon would a l s o  absorb a por t ion of t h i s  cos t .  Thus, cos t  of t h e  

l i f e  support subsystem f o r  t h e  space colony complex i s  a l s o  accounted f o r  

i n  t h i s  re la t ionsh ip .  I n  a c t u e l i t y  i s  expected t o  absorb no l a rge r  a 

share  of t h e  t o t a l  cconomic c c t i v i t y  than does t h e  "food do l l a r f '  i n  t h e  

economy here on Earth a t  present.  This presumes t h a t  a concentrated 

highly  productive,  completely control led environment a g r i c u l t u r a l  system, 

such a s  t h e  Battelle-conceived Pu l lu l a to r  v e r t i c a l  growth system, i s  proven 

e f f ec t i ve  i n  a space-colony environment. 

There a r e  two keys t o  t h i s  convergence of physical  f e a s i b i l i t y  and economic 

f e a s i b i l i t y .  These a r e  t h a t ,  f i r s t ,  l i f e  support systems can 'be  created 

i n  t h e  space i n d u s t r i a l  complex t h a t  represent  no more than about 20% of 

ma te r i a l  flows i n  t h e  complex and second, t h a t  t r anspor t  energy cos t s  

wi thin  t h e  space complex need not be t i e d  t c  t h e  Ear th ' s  values f o r  Earth 

sur face  t o  ea r th  o r b i t  mate r ia l  t r anspo r t .  A s  discussed previously,  we 

be l i eve  t h a t  both of these  condit ions can be met with current  or  soon-to- 

be-achieved technology provided t h a t  an in tegra ted  approach i s  taken t o  
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space i n d u s t r i a l i z a t i o n ,  wi th  concurrent  d e v e l o p e n t  of lunar  base,  

Ceres farms, and o ther  a s t e r o i d a l  and s z t e l l i t e  resources .  Thus, every- 

t h ing  discussed i n  t h i s  paper could become 2n economic and p r a c t i c a l  

r e a l i t y  by t h e  en& of t h e  twenty- f i r s t  century.  
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