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Quantum Entanglement and the Communication
Complexity of the Inner Product Function

Richard Cleve'*, Wim van Dam?, Michael Niélsen3, and Alain Tapp?**

! University of Calgary*
2 University of Oxford and CWI, Amsterdam?
% Los Alamos National Laboratory and University of New Mexico¥
* Université de Montréall

Abstract. We consider the communication complexity of the binary in-
ner product function in a variation of the two-party scenario where the
parties have an a priori supply of particles in an entangled quantum
state. We prove linear lower bounds for both exact protocols, as well as
for protocols that determine the answer with bounded-error probability.
Our proofs employ a novel kind of “quantum” reduction from multibit
communication problems to the problem of computing the inner prod-
uct. The communication required for the former problem can then be
bounded by an application of Holevo’s theorem. We also give a specific
example of a probabilistic scenario where entanglement reduces the com-
munication complexity of the inner product function by one bit.

1 Introduction and Summary of Results

The communication complezity of a function f : {0,1}" x {0,1}" — {0,1} is
defined as the minimum amount of communication necessary among two parties,
" conventionally referred to as Alice and Bob, in order for, say, Alice to acquire
the value of f(z,y), where, initially, Alice is given z and Bob is given y. This
scenario was introduced by Yao [15] and has been widely studied (see [12] for a
survey). There are a number of technical choices in the model, such as: whether
the communication cost is taken as the worst-case (z,y), or the average-case
(z,y) with respect to some probability distribution; whether the protocols are
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deterministic or probabilistic (and, for probabilistic protocols, whether the par-
ties have independent random sources or a shared random source); and, what
correctness probability is required. ‘

The communication complexity of the inner product modulo two (IP) func-
tion

IP(z,y) = 2191 + Zay2 + -+ + ToYn mod 2 (1)

is fairly well understood in the above “classical” models. For worst-case inputs
and deterministic errorless protocols, the communication complexity is n and, for
randomized protocols (with either an independent or a shared random source),
uniformly distributed or worst-case inputs, and with correctness probability -;—+e
required, the communication complexity-is n — O(log(1/¢)) [6] (see also [12]).

In 1993, Yao [16] introduced a variation of the above classical communica-
tion complexity scenarios, where the parties communicate with qubits, rather
than with bits. Protocols in this model are at least as powerful as probabilistic
protocols with independent random sources. Kremer [11] showed that, in this
model, the communication complexity of IP is £2(n), whenever the required cor-
rectness probability is % + ¢ for a constant £ > 0 (Kremer attributes the proof
methodology to Yao). » »

Cleve and Buhrman [7] (see also [5]) introduced another variation of the
classical communication complexity scenario that also involves quantum infor-
mation, but in a different way. In this model, Alice and Bob have an initial
supply of particles in an entangled quantum state, such as Einstein-Podolsky-
Rosen (EPR) pairs, but the communication is still in terms of classical bits. They
showed that the entanglement enables the communication for a specific problem
to be reduced by one bit. Any protocol in Yao’s qubit model can be simulated
by a protocol in this entanglement model with at most a factor two increase
in communication: each qubit can be “teleported” [3] by sending two classical
bits in conjunction with an EPR pair of entanglement. On the other hand, we
are aware of no similar simulation of protocols in the entanglement model by
protocols in the qubit model, and, thus, the entanglement model is potentially
stronger. : . ’

_ In this paper, we consider the communication complexity of IP in two scenar-

ios: with prior entanglement and qubit communication; and with prior entangle-
ment and classical bit communication. As far as we know, the proof methodology
of the lower bound in the qubit communication model without prior entangle-
ment [11] does not carry over to either of these two models. Nevertheless, we
show £2(n) lower bounds in these models.

To state our lower bounds more precisely, we introduce the following notation.
Let f: {0,1}"x{0,1}" — {0, 1} be a communication problem. First, for the case
of ezact protocols (i.e. those where no error probability is permitted), let Q*(f)
and C*(f) denote the communication complexities in the respective settings of
qubit communication and classical bit communication (the * superscripts are
intended to highlight the fact that prior entanglement is available). Second, for
the case of bounded-error protocols, in which Alice acquires the correct answer .




with probabxhty at least & 3 +¢& for e > 0, let Q:(f) and C;(f) denote the
communication complexmes in the respective settings of qub1t communication
and classical bit communication. With this notation, our results are:

Q"(IP) = [n/2] : (2)
Q:(IP)>2*n -1 (3)
C*(IP) =n (4)
C2(IP) > 2¢* max(1, 862)n— 2 (5)

Note that all the lower bounds are £2(n) whenever ¢ is held constant. Also, these
results subsume the lower bounds in [11], since the qubit model defined by Yao
[16] differs from the bounded-error qubit model defined above only in that it
does not permit a prior entanglement.

Our lower bound proofs employ a novel kind of “quantum” reduction be-
tween protocols, which reduces the problem of communicating, say, n bits of
information to the IP problem. It is noteworthy that, in classical terms, there
is no such reduction between the two problems. The appropriate cost associated
" with communicating n bits is then lower-bounded by the following nonstandard
application of Holevo’s theorem.

Theorem 1: Suppose that Bob possesses n bits of information, and wants to
convey this information to Alice. Suppose that Alice and Bob possess an arbi-
trary prior entanglement and qubit communication in either direction is allowed.
Then, regardless of the prior entanglement and qubit communication from Alice

" to Bob, Bob must send at least [n/2] qubits to Alice. More generally, for Alice
to obtain m bits of mutual information with respect to Bob’s n bits, Bob must
send at least [m/ 2'| qubits to Alice. ,

A slight generalization of Theorem 1 is described and proven in the Appendlx

Finally, with respect to the question of whether quantum entanglement can
ever be advantageous for protocols computing IP, we present a curious proba-
bilistic scenario with n = 2 where prior entanglement enables one bit of commu-
nication to be saved. ‘

2 Bounds for Exact Qubit Protocols

In this section, we consider exact qubit protocols computing IP, and prove
Eq. (2). Note that the upper bound follows from so-called “superdense cod-
ing” [4]: by sending [n/2] qubits in conjunction with [n/2] EPR pairs, Bob can
transmit his n classical bits of input to Alice, enabling her to evaluate IP. For.
the lower bound, we consider an arbitrary exact qubit protocol that computes
IP, and convert it (in two stages) to a protocol for which Theorem 1 applies.

For convenience, we use the following notation. If an m-qubit protocol con-
sists of my qubits from Alice to Bob and my qubits from Bob to Alice then we
refer to the protocol as an (my, m3)-qubit protocol.




2.1 <Converting Exact Protocols into Clean Form

A clean protocol is a special kind of qubit protocol that follows the general spirit

. of the reversible programming paradigm in a quantum setting. Namely, one in

which all qubits incur no net change, except for one, which contains the answer.
In general, the initial state of a qubit protocol is of the form

11:1, i Zn)|0,. .. ,0)|4§13)[y1,. < yn)0;... ,0)4, , (6)
Alice’:qubits Bob’quubits

" where |®45) is the state of the entangled qubits shared by Alice and Bob, and the
[0,...,0) states can be regarded as “ancillas”. At each turn, a player performs
some transformation (which, without loss of generality, can be assumed to be
unitary) on all the qubits in his/her possession and then sends a subset of these
qubits to the other player. Note that, due to the communication, the qubits
possessed by each player varies during the execution of the protocol.

We say that a protocol which exactly computes a function f(z,y) is clean if,
_ when executed on the initial state ‘

lz)[a:l,...,zn)IO,...',O)ISPAB)]yI,...,y,',)IO,... ,0), (N
results in the final state
|z+f(z,y))|$1,...;zn)|0,...,O)IQSAB)]yl,...,yn)IO,...,0). » (8)

- The “input”, the ancilla, and initial entangled qubits will typically change states
during the execution of the protocol, but they are reset to their initial values at
the end of the protocol. '

It is straightforward to transform an exact (my,ms)-qubit protocol into a
clean (my + mg, m; + ma)-qubit protocol that computes the same function. To
reset the bits of the input, the ancilla, and the initial entanglement after the
protocol is run once, the answer is recorded and then the protocol is run in
the backwards direction to “undo the effects of the computation”. The answer is
recorded on a new qubit of Alice (with initial state |2)) which is control-negated
(with the qubit of Alice that is in the state | f(z,y)) as the control qubit). Note
that, for each qubit that Alice sends to Bob when the protocol is run forwards,
Bob sends the qubit to Alice when run in the backwards direction. Running
the protocol backwards resets all the qubits—except Alice’s new one—to their
original states. The result is an (m; + m2,m; + my)-qubit protocol that maps
state (7) to state (8). : :

2.2 Reduction from Communication Problems

We will now show how to transform a clean (m + ma, my + ma)-qubit protocol
that computes IP for inputs of size n, to an (m; + mz, my +mz)-qubit protocol
that transmits n bits of information from Bob to Alice. This is accomplished in
four stages: '




. Alice initializes her qubits indicated in Eq. (7) with 2 = land z; = -+ =
Zn, =0.

Alice performs a Hadamard transformation on each of her first n+ 1 qubits.
Alice and Bob execute the clean protocol for the inner product function.
Alice again performs a Hada.ma.rd transformation on each of her first n + 1
qubits.

Let |A;) denote the state of Alice’s first n + 1 qubits after the i*® stage. Then

hal i 0

A =Do,...,.00 . . o (9)
l2) == D (-1)%a)fbss- .., bn) - (10)

- dybyyenbn€{0,1}

|43) =4\/2—1-,.+T Z (fl)“[a+b1y1 + o0+ bnyn)lb, ... 5 bn)
a,by,...,bn€{0,1}

D DI Ve R S Y
C,bl,...,bne{o,l} :
)= D) | (12)

where, in Eq. (11), the substitution ¢ = e+b,y; +- - -+ by, has been made (and
arithmetic over bits is taken mod 2). The above transformation was msplred by
the reading of [13] on superfast quantum searching.

Since the above protocol conveys n bits of information (narnely, Y1s-e s Yn)
from Bob to Alice, by Theorem 1, we have m; + m2 > n/2. Since this protocol
can be constructed from an arbitrary exact (m,ms)-qubit protocol for IP, this
establishes the lower bound of Eq. {2).

'3 Lower Bounds for Bounded-Error Qubit Protocols

In this section we consider bounded-error qubit protocols for IP, and prove
Eq. (3). Assume that some qubit protocol P computes IP correctly with prob-
ability % + &, where ¢ > 0. Since P is not exact, the constructions from the
previous section do not work exactly. We analyze the extent by which they err.

First, the construction of Section 2.1 will not produce a protocol in clean
- form; however, it will result in a protocol which approzimates an exact clean
protocol (this type of construction was prevmusly carried out in a different con-
text by Bennett et al. 2]).

Denote the initial state as

los,..,2a)l0,. . 0)|Ban)lyr, - ,ya)l0s- ., 0). (13)

Also, assume that, in protocol P, Alice never changes the state of her input
qubits |#1,...,T,) (so the first n qubits never change). This is always possible,
since she can copy zi,...,Z, into her ancilla qubits at the beginning. After
executing P until just before the measurement occurs, the state of the qubits’
must be of the form

sz - Y)Y + Bles,...

(14)

alzy,...




where |a? > 2 +¢ and |8)® < 1 —¢. In the above, the n+ 1% qubit is the answer
qubit, z -y denotes the inner product of z and y, and T~y denotes the negation
of this inner product. In general, e, 3, |J), and |K) may depend on z and y.

Now, suppose that the procedure described in Section 2.1 for producing a
clean protocol in the exact case'is carried out for P. Since, in general, the answer
qubit is not in the state |z - y)—or even in a pure basis state—this does not
produce the final state

24z Yz, .. 22)00,...,0)|BaB)y1s- -, Yn )]0, ..., 0. (15)

However, let us consider the state that is produced instead. After introducing
the new qubit, initialized in basis state |2), and applying P, the state is

|2} (afzy,....zn)le - Y)|T) + Bz, - .. 22)[F7HK)) - (16)
After applying the controlled-NOT gate, the state is
alz +z - y)z,.. s zn)le - Y)JI) + Blz + T7Y)|z1, .. 20)[EY)IK)
= alz+z -z, 2Rz I +Blz+ 2 Yo, .. zh) [TTHK)
=Blz +z - y)lz1,....2) [T YY) K) + Blz + T P21, ..., 2a)ITY)K)
=lz+z-y) (alz,...,zn)|z - YY) + Bz, .. 20} [T THK))
+V28 (Ll +779) — Lls +2-9)) lon,- ., 2T HIK). (17)
Finally, after applying P in reverse to this state, the final state is
lz 4z y)le1s. .., 2a)0,. .., 0)|BaB)|yss - yn)l0,...,0) + V2BIM, ;. ), (18)

where :
Mays) = (Gle +779) = Zle +2-9) Pllav,... 2T RIK).  (19)

Note that the vector v28|M,,, ;) is the difference between what an exact
protocol would produce (state (15)) and what is obtained by using the inexact
(probabilistic) protocol P (state (18)). There are some useful properties of the

" |M,.y,.) states. First, as z € {0, 1}" varies, the states |M,,,.) are orthonormal,
since |zy,...,Z,) is a factor in each such state (this is where the fact that Alice
does not change her input qubits is used). Also, |[Mz y.0) = —|Mz 4,1 ), since only
the (\/L-z-lz +Z-y)—~ %lz + z - y)) factor in each such state depends on z.

Call the above protocol P. Now, apply the four stage reduction in Section
2.2, with P in place of an exact clean protocol. The difference between the state
produced by using P and using an exact clean protocol first occurs after the
third stage and is

Fm S CUVEBIM.)

Z1,e-0Tn,2€{0,1}

= d;;-+l ’ Z \/—Q_ﬁw (le,y,()) - le,y,l))‘
i ) zx,-n,znG{O,l} v X

=\/22—,. Z i :leMz,y,(l)a : . : (20)

T14eenTn €{0,1}




which has magnitude bounded above by 2\11 — & = /2 — 4¢, since, for each

z € {0,1}", |B:[* < 3 — ¢, and the |M, ;) states are orthonormal. Also, the
magnitude of this dlfference does not change when the Hadamard transform in
the fourth stage is applied. Thus, the final state is within Euclidean dlstance

V2 = 4¢ from 4 '
1My, e Um0, ... ,0)]45,43)[3/1,...‘,yn)lﬁ,... ,_0). (21)

Consider the angle § between this final state and (21). It satisfies sin® 6 + (1 —
cos9)? > 2 — 4de, from which it follows that cos@ > 2e. Therefore, if Alice
‘measures her first n +1 qubits in the standard basis, the probability of obtaining
[1,915-.. sYn) is at least ('os2 0 = 4¢2.

Now, suppose that y1, ..., y, are uniformly distributed. Then Fano’s mequa.l—
ity (see, for example, [8]) imphes that Alice’s measurement causes her uncertainty
about yi,...,y, to drop from n bits to less than (1 — 4¢2)n + h(4e?) bits, where
h(z) = —zlogz — (1 — z)log(1l — z) is the binary entropy function. Thus, the
mutual information between the result of Alice’s measurement and (y1,...,ys)
is at least 4¢?n — h(4e®) > 4e?n — 1 bits. By Theorem 1, the communication
from Bob to Alice is at least (4e?n — 1)/2 qubits, which establishes Eq. (3).

4 Lower Bounds for Bit Protocols

In this section, we consider exact and bounded-error bit protocols for IP, and
prove Egs. (4) and (5).

Recall that any m-qubit protocol can be simulated by a 2m-bit protocol using
teleportation [3] (employing EPR pairs of entanglement). Also, if the commu-
nication pattern in an m-bit protocol is such that an even number of bits is
always sent during each party’s turn then it can be simulated by an m/2-qubit
protocol by superdense coding [4] (which also employs EPR pairs). However, this
latter simulation technique cannot, in general, be applied directly, especially for
protocols where the parties take turns sending single bits.

We can nevertheless obtain a slightly weaker simulation of bit protocols by
qubit protocols for IP that is sufficient for our purposes. The result is that, given
any m-bit protocol for IP, (that is, IP instances of size n), one can construct an
m-qubit protocol for IP,,. This is accomplished by interleaving two executions of
the bit protocol for IP, to compute two independent instances of inner products
of size n. We make two observations. First, by taking the sum (mod 2) of the two
~ results, one obtains an inner product of size 2n. Second, due to the interleaving,
an even number of bits is sent at each turn, so that the above superdense coding
technique can be applied, yielding a (2m)/2 = m-qubit protocol for IPs,,. Now,
Eq. (2) implies m > n, which establishes the lower bound of Eq. (4) (and the
upper bound is tr1v1a.1) ' .

If the sa.me technique is applied to any m-bit protocol computing IP,, with
probablhty + &£, one obtains an m-qublt protocol that computes IPZn w1th
probability (1 +&)2 + (3 —¢)? = 1 +2¢% By Eq. (3), m > 2(26?)%(2n) -




l6e4n— L. Fore < 71-—, a better bound is obtained by>simply noting that C; > Q2

(sxnce qublts can always be used in place of blts) so, by Eq. (3), m > 2¢’n— {.

ThlS establishes Eq. (5).

5 An Instance where Prior Entanglement is Beneficial

Here we will show that in spite of the preceding results, it is still possible that a
protocol which uses prior entanglement outperforms all possible classical proto-
cols. This improvement is dorie in the probabilistic sense where we look at the
number of communication bits required to reach a certain reliability threshold
for the IP function. This is done in the following setting,. '

Both Alice and Bob have a 2 bit vector z,z4 and Y1y, for which they want
to ca.lculate the inner product modulo 2:

 f(z,y) = z1y1 + 22y2 mod 2 (22)

with a correctneés—probability of at least %. It will be shown that with entangle-
ment Alice and Bob can reach this ratio with 2 bits of communication, whereas
without entanglement 3 bits are necessary to obtain this success-ratio.

5.1 A Two-Bit Protocol with Prior Entanglement

Initially Alice and Bob share a joint random coin and an EPR-like pair of qubits
Qa4 and Qp:

state(QAQB \/-(IOO) + |11)) (23)

Wlth these attributes the protocol goes as follows.

First Alice and Bob determine by a joint random coin flip! who is going to be
the ‘sender’ and the ‘receiver’ in the protocol. (We continue the description of the
protocol by assuming that Alice is the sender and that Bob is the receiver.) After .
this, Alice (the sender) applies the rotation A;,,, on her part of the entangled
pair and measures this qubit Q4 in the standard basis. The result m 4 of this
measurement is then sent to Bob (the receiver) who continues the protocol.

If Bob has the input string ‘00°, he knows with certainty that the outcome
of the function f(z,y) is zero and hence he concludes the protocol by sending
- the bit 0 to Alice. Otherwise, Bob performs the rotation By, 4, on his part of the
~ entangled pair @ p and measure it in the standard basis yielding the value mp.

Now Bob finishes the protocol by sending to Alice the bit m4 + mpg mod 2.
' Using the rotations shown below and bearing in mind the randomization pro-
cess in the beginning of the protocol with the joint coin flip, this will be a protocol
that uses only 2 bits of classical communication and that gives the correct value

! Because a joint random coin flip can be simulated with an EPR-pair, we can also
assume that Alice and Bob start the protocol with two shared EPR-pa.u's and no
random coins. :




of f(z,y) with a probability of at least g— for every possiblebombina.tiot_l of 21z
and y193. :
The unitary transformations used by the sender in the protocol are:

wrjes

4 3 . /2
2 , , 5 Vit
Ago = o Ao = o
- /3 2
_.1 - - 3 H 1 4
5 s “Vie tiys \/;
(24)
4 3 : 1 ' 1 : /4
: \/; —Vis tiywm \/.3_ 1\/;
A = ~ A = )
3 5 [1 4 r 1
aefE VE
whereas the receiver uses one of the three rotations:
3 1 3 3 1 3
\/; —zt1y 3% 5 stlywm
By, = 10 =
3 3 1 3 3 ,
“z Wiw TV§ “ztl3 \/; (25)

The matrices were found by using an optimization program that suggested cer-
tain numerical values. A closer examination of these values revealed the above
analytical expressions. :

j5.2 No Two-Bit Classical Probabilistic Protocol Exists
Take the probability distribution n on the input strings z and y, defined by:

0iffz=00o0ry =00 ,
W(z,y)={§iﬂfz¢00andy;éoo, (26)
It is easily verified that for this distribution, every deterministic protocol with
only two bits of communication will have a correctness ratio of at most -;-‘. Using
Theorem 3.20 of [12], this shows that every possible randomized protocol with
the same amount of communication will have a success ratio of at most gz. (It
can also be shown that this % bound is tight but we will omit that proof here.)
This implies that in order to reach the requested ration of 43, at least three bits of
communication are required if we are not allowed to use any prior entanglement.

5.3 Two Qubits Suffice Without Prior Entanglemeht

A similar result also holds for qubit protocols without prior entanglement [16].
This can be seen by the fact that after Alice applied the rotation A, 5, and




measured her qubit @4 with the result m4 = 0, she knows the state of Bob’s
qubit Qg exactly. It is therefore also possible to envision a protocol where the
pa.rties assume the measurement outcome m4 = 0 (this can be done without
loss of generality), and for which Alice simply sends this qubit @ p to Bob, after
which Bob finishes the protocol in the same way as prescribed by the ‘prior
entanglement’-protocol. The protocol has thus become as follows.

First Alice and Bob decide by a random joint coin flip who is going to be
the sender and the receiver in protocol. (Again we assume here that Alice is the
sender.) Next, Alice (the sender) sends a qubit |Q.,z,) (according to the input
string z,z, of Alice and the table 27) to the receiver Bob who .continues the
protocol.

|Qoo) = \/§_|0> —i\/gll) : Qu) = \/EIO) + ( % +i{/_§1—6) 1)
, (27)
Quoy = /20 + (—/F +iy/3) 11 10u) = /310y -iy/E)

If Bob has the input string y1y2 = 00, he concludes the protocol by sending a zero
bit to Alice. In the other case, Bob applies the rotation B,,,, to the received
qubit, measures the qubit in the standard basis, and sends this measurement
outcome to Alice as the answer of the protocol. By doing so, the same correctness-
probability of % is reached for the IP function with two qubits of communication,
whereas the classical setting requires 3 bits of communication as shown above.
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Appendlx* Capacity Results for Commumcatlon Using
Qublts

In this appendix we present results about the quantum resources required to
transmit n classical bits between two parties, Alice and Bob. These results are
uséd in the main text in the proof of the lower bound on the communication
complexity of the inner product function. The results may also be of some mde—

pendent interest.

Theorem 2: Suppose that Alice possesses n bits of information, and wants to
convey this information to Bob. Suppose that Alice and Bob possess no prior
entanglement but qubit communication in either direction is allowed. Let nap
be the number of qubits Alice sends to Bob, and npa the number of qubits Bob




Ay

sends to Alice (nap and np4 are natural numbers). Then, Bob can acquire the
n bits if and only if the following inequalities are satisfied.

nap 2> [n/2] . (28)
nap+npa >N - (29)

More generally, Bob can acquire m bits of mutual information with respect to
Alice’s n bits if and only if the above equations hold with m substituted for n.

Note that Theorem 1 follows from Theorem 2 because, if the communication
from Bob to Alice is not counted then this can be used to set up an arbitrary
entanglement at no cost. ‘

Graphically, the capacity region for the above communication problem looks
as shown in Figure 1. Note the difference with the classical result for communi-
cation with bits, where the capacity region is given by the equations nap > n
and ngsa > 0 - that is, classically, communication from Bob to Alice doesn’t

~ help.

NAB
Capacity region

- [r/2]

[n/2]

nBA

Fig. 1. Capacity region to send n bits from Alice to Bob. n4p is the number of qubits
Alice sends to Bob, and np4 is the number of qubits Bob sends to Alice. The dashed
line indicates the bottom of the classical capacity region.

Proof of Theorem 2: Suppose nap and npa satisfy the constraints. We
assume that n4p < n, since otherwise Alice encodes the n bits into n qubits in
the obvious way. Bob prepares n —nap > 0-EPR pairs and sends half of each
pair to Alice. Note that npa > n—nap, so this is possible with Bob’s resources.
Alice does superdense coding [4] on the n—np qubits, and sends them back to
Bob, who can extract 2(n — nap) bits of information. Alice uses her remaining
allotment of n — (n —nap) = 2n4p — n > 0 qubits to transmit 2n4p — n bits
of information in the obvious way. The total information transmitted is thus
2(n — nap) + 2nap — n = n bits, as required.

- The proof that these bounds are the best possible is the more mterestmg
part. The key idea is a simple application of Holevo’s theorem [10}, which we




now review. Suppose a classical information source produces a random variable
X. Depending on the value, z, of the random variable, a state p, of a quantum
system is prepared. Suppose a measurement is made on the quantum system in
an effort to determine the value of X. This measurement results in an outcome
Y. Holevo’s theorem states that the mutual information I(X : Y) between X
and Y is bounded by the Holevo bound [10],

I(X: Y) < S P) sz (Pz), . (30)

where p, are the probabilities the d]ﬁerent: values X may take, p = Y, pzpz, and
§(+) is the von Neumann entropy function. The quantity on the right hand side of
the Holevo bound is known as the Holevo chi quantity, x = S(p) — 3, p=S(pz)-
The Holevo bound tells us that the amount of information about X that may be
deduced by observing px is bounded above by x, and it is this fact that we use to
prove our lower bounds. A key fact about the Holevo x quantity concerns the case
of a quantum system with two component, A and B. Schumacher, Westmoreland
and Wootters [14] have shown that if we consider the x quantity associated with
A, xa =S(pa) = X, P=S(pza), where ps = trp(p) and ps4 = trp(p:) are the
states which result when system B is traced out, then x4 < x. In the light of the
Holevo bound this result is intuitively plausible, since if we make a measurement
on system A alone, then we would expect to get no more information about X
than we would if we could measure the entire quantum system, AB.
_ Without loss of generality we may suppose that the quantum protocol for
the problem under consideration consists of unitary operations performed alter-
nately by Alice and Bob, interspersed with the communication of qubits from
Alice to Bob or Bob to Alice. One might imagine that measurements could be
performed in-addition to unitary operations, however the effect of any measure-
ments may be simulated using standard techniques by adding ancilla qubits to
the description of Alice or Bob’s system. The final step of the protocol consists
of a measurement performed by Bob, which has outcome Y. We aim to bound
the mutual information I{X : Y'), where X is Alice’s classical data, consisting
of n bits. In order that the protocol be reliable, it must be possible to have
I(X : Y) = n, in the case when Alice’s classical data is uniformly distributed.
One final convenience is to assume that initially Alice and Bob both start with a
system in a standard pure state. It is possible that the protocol starts with either
Alice or Bob having a mixed state, however any such protocol can be simulated
without extra cost using a purification of the mixed state. ‘
Generically, at any stage of the protocol we will use the notation p, to denote

the state of Bob’s system, given that Alice’s input data was z. We will also use
the generic notation p = ¥ pzp. and x = S(p) — >, P=ps. We will study the
behavior of Bob’s x quantity under the different actions which Alice and Bob
may perform. We denote by xo Bob’s initial ¥ quantity, and by xr, Bob’s final

x quantity. pr denotes p upon conclusion of the protocol, immediately before
the final measurement.

Note first that Bob’s state p, after zero rounds of communication cannot

depend on z, and thus xo = 0. Consider the following observations about how
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Bob’s x changes. To reduce notational clutter, we will use the notation p; to
denote the state of Bob'’s system before each of the following processes, and p/,
to denote the state of Bob’s system after each of the following processes. Similar
conventions are used for p, p’, x and x'.

1. Suppose Alice performs a unitary operation on her system. Then Ax =
AS(p) = 0 for this process, since the states p; of Bob’s system do not
change during the process.

2. Suppose Bob performs a unitary operation on his system. It is easy to verify
that Ax = AS(p) = 0 for this process, from the unitary invariance of the
entropy.

3. Suppose Alice sends a qubit to Bob. Let ¢ denote the qubit, and B Bob's
quantum system before the qubit was sent, so QB is Bob’s system after the
qubit has arrived. For an arbitrary state of QB we have the subadditivity
inequality S(Q,B) < S(Q) + S(B) < 1+ S(B), as §(Q) < 1. Thus S(p') <
S(p)+1. Also for an arbitrary state of @B we have the Araki-Lieb inequality
[1] S(Q,B) > S(B)—S(Q) > S(B) —1, from which we deduce that S(p;) >
S(pz) — 1. Thus

X = 8(p') = 3 paS(pl) < S(p) = D_paS(pz) + 2. (31)

That is, Ax < 2 for this process. Note also that AS(p) < 1 for this process.
4. Suppose Bob sends a qubit to Alice. Then p; = trg(pz), where Q is the
qubit sent to Alice. As we noted above, x’ < x, so Ax < 0 for this process.
Note also that AS(p) < 1 for this process, by the Araki-Lieb inequality {1].

' Combining the observations about Ay for these processes, we find that Ay for

" the entire communication protocol must satisfy Ax < napx2+npax0=2n4p.

But x(0) = 0, so xr < 2n4p. Suppose Bob makes a measurement on his system,
with outcome Y, and tries to infer the value of X from that measurement. Then
Holevo’s theorem tells us that I{X : Y) < xr < 2nap. But in order that Alice

~ be able to reliably transmit her n bits of information to Bob, we must have

I(X :Y) = n. Thus n < 2nap, and since nap is an integer, we must have
nap < [n/2], as we set out to prove.

Furthermore, noting that x < S(p) and S(p) = 0 initially, we can combine
the above observations about AS(p) to see that xr < S(pr) < nap + npa.
Holevo’s theorem therefore implies that n < nap + npa if Alice is to reliably
transmit n bits of classical information to Bob. QED




