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ABSTRACT

This report describes MHD equilibrium and stability studies carried out at Northrop
Grumman's Advanced Technology and Development Center during the period March 1 to
December 31, 1995. Significant progress is reported in both ideal and resistive MHD
modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of
'Advanced Tokamak' experiments at TFTR involving plasmas in which the g-profiles were

non-monotonic.
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I INTRODUCTION

This report describes work carried out at the Northrop Grumman Advanced
Technology and Development Center during the period March 1st to December 31st, 1995,
and supported by the Department of Energy Grant #DE-FG02-89ERS51124. The work
described here fulfills the program of our Research Plan for 1995, submitted during
September 1994. That Research Plan emphasized theoretical and computational support for
the continuing operation of TFTR during 1995. The intention of our research plan was to
offer assistance in interpreting the MHD equilibrium and stability properties of experimental
data from TFTR plasmas. Specifically, the program of work which we proposed was

divided among two tasks as follows:

Task 1: Transport Studies and MHD Analysis of Evolving TFTR
Equilibria

Task 2: Resistive MHD Modeling of TFTR Plasmas -

~Substantial prbgtéés is reported in each of the above topics. In particular,-we have
concentrated attention on recent experiments on TFTR where plasmas with non-monotonic
g-profiles have been studied experimentally. These have proved interesting both from
confinement physics and MHD stability points of view. It has been demonstrated in TFTR
(and elsewhere) that such 'reversed shear' configurations can result in significantly
improved confinement. Here, we shall discuss the MHD stability of such profiles where
studies of both ideal and resistive MHD studies are described. We note that part of the
work discussed here was described in two papers presented at the 1994 International
Sherwood Meeting held in Incline Village, NV. and two more papers were presented at the
1995 APS, Division of Plasma Physics Meeting held in Louisville, KY during November
1995 This work was also presented in two papers at the Workshop on MHD in Reversed
Shear Plasmas held a Princeton Plasma Physics Laboratory, December 14-15, 1995. A
Jjournal article describing our analysis of reversed shear' plasmas has been submitted for

publication. These papers are enumerated in the Appendix to this document.
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II IDEAL MHD ANALYSIS OF REVERSED SHEAR EQUILIBRIA

Recently, there has been renewed interest in a mode of tokamak operation
characterized by non-monotonic q profiles. This interest has been motivated by recent
experimental results, theoretical calculations and progress in tokamak design studies.
Initially, interest in reverse shear-profiles in tokamaks resulted from the recognition that
very small or even reversed shear permits access to the second stable region for ballooning
modes. This allows the pressure profile to be strongly peaked in the center maximizing the
achievable beta. Both DIII-D' and JET* have demonstrated experimentally that plasmas
with reversed shear q-profiles could be produced and sustained for a significant length of
time at high temperature (the g-profile evolves, however). In addition, results from these
experiments suggested that such a mode of operation could lead to significantly enhanced
confinement. Further interest in reversed shear plasmas was sparked during the design of
the TPX tokamak® which was intended as a steady state machine. A steady state tokamak
where the diffusion driven (bootstrap) current drives most of the plasma current is: a
desirable configuration since it relaxes the requirements for external current drive systems
and recirculating power. The current distribution resulting from the bootsfrap current
would naturally generate a reversed shear q profile. Theoretical studies of such
configurations have found them to be as robust, from an MHD stability standpoint, as the
more conventional monotonic current profiles.

The interest in reversed shear plasmas prompted an experimental study of this mode
of operation in TFTR. Their results have shown that reversed shear g-profiles can lead to a
new mode of enhanced confinement characterized by very low particle transport. A
characteristic feature of the experiments is that a hollow current profile is generated with -
highly reversed shear distribution which subsequently relaxes on a resistive diffusion
timescale. Both the minimum value of q and the degree of shear reversal, Aq = q0 — qmin,
decrease during the course of the experiment. When gy, drops to a value, Gy, ~ 2, a hard
stability limit, caused by a low-n MHD mode, is encountered when beta is sufficiently
large. Characterizing this stability limit is the motivation for the present study. The

purpose of this study is to parameterize the stability limits resulting from low-n(n=1, 2

'E. A. Lazarus et al., Phys. Fluids B 3, 2220 (1991).
> M. Hugon et al., Nucl. Fusion 32, 33 (1992).
sc. Kessel, J. Manickam, G. Rewoldt, and W. M. Tang, Phys. Rev. Lett. 72, 1212 (1994).
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and 3) magnetohydrodynamic modes in reverse shear TFTR plasmas. An important
advance, which improves the quality of MHD stability analysis of the experiments, is the
development of the Motional Stark Effect (MSE)** diagnostic for measuring the pitch of
the magnetic field. The corresponding q profile can then be derived from the measurements
reducing the large uncertainty involved in comparing stability computations with
experimental observation. We have made extensive use of MSE data from TFTR in the
present studies. Some uncertainty persists, however, since in TFTR plasmas the non-
thermal beam particles contribute significantly to the pressure. This contribution to the
pressure is not measured directly but obtained computationally using the TRANSP
transport analysis code.

2.1 Computational Model

Here we shall confine our interest to those equilibria characterized by q profiles
w1th a smgle minimum occurring at some location between the magnetic ax1s and plasma
edge For these profiles a region of shear reversal occurs in the central region of the
plasma The essential parameters characterlzmg the q profile are the value g on axis, the
minimum value qp,, the radial location of the minimum surface and the value ‘ege. at the
plasma surface. It is of interest to systematically study the effect of each of these
parameters when varied independently. This demands a carefully defined procedure for
prescribing the q profile when calculating MHD equilibria. Difficulties are usually
encountered in parametric stability studies where q is prescribed. The steady state
equilibria derived from experimental measurements are such that the current density is small
or zero at the plasma edge. Arbitrarily chosen q profiles, however, often result in
unrealistic current distributions in the vicinity of the boundary. A common remedy for this
problem is to specify a form of the current profile, such as <J*B>/<B*V¢> or <J,, >, that
can be tailored so that current reduces smoothly to zero at the boundary. Here <> denotes
the flux surface average. A disadvantage of using current profiles in the present context,
however, is the difficulty in exercising adequate control over all the parameters of interest.
For example, simply changing B would cause both qo and gedge to vary. Since we are
interested here in controlling several characteristics of the q profile simultaneously this
difficulty is compounded. The procedure described below, however, was found to
adequately satisfy our requirements.

* F.M. Levinton, et al., Phys. Rev. Lett., 63, 2060 (1989).
° S.P. Hirshman et al., Phys. Plasmas, 1, 2277 (1994).
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To circumvent the problem of specifying the q profile and current profile
characteristics simultaneously, we choose a hybrid method in which the safety factor
profile is prescribed but with a free parameter which controls the current density profile at
the edge. This free parameter is chosen iteratively by the equilibrium code to keep the
poloidal current density equal to zero at the boundary. Using conventional notation, the
magnetic field is givenby B=V@xVy + gV¢ where v is the poloidal flux function and
(r, ¢, z) represent a cylindrical coordinate system. The condition of zero poloidal current is
then equivalent to specifying g' = 0, where the prime denotes differentiation with respect to
V. We also choose p' = 0 at the edge which means that the toroidal current density, j¢, also

vanishes at the boundary-

Equilibria for this study were computed using the EQGRUM3 equilibrium code.
- This is a fixed boundary code which solves the Grad-Shafranov equation for the inverse
equilibria r(y, 0) and z(y, 0). The code uses a fast multigrid solver which computes high
resolution equilibria. EQGRUMS3 is also capable of computing equilibria where the
" pressure is anisotropic. This feature was not been used for thé‘study of reversed shear
plasmas described in this section. A discussion of the effects of anisotropic pressure
distributions is deferred to §2.4. The model safety profile was chosen to be as simple as
possible while possessing all the features of the reversed shear profiles measured
experimentally in TFTR. Thus, the q profile is specified in two parts - an inner and outer
portion. The inner part specifies q from the magnetic axis to the minimum q location while
the outer part prescribes q from the minimum q location to the plasma edge. The inner part

is defined by,

9(W) = do + (dmin — %)[2 -y +c0(1—21/—/ + ‘/72)]17

l//(qmin) - ‘//0
(qed e qmin)l//(quin )2
and ¢y =1+ = for w, S ¥ < y(qm)-

(Qmin —dp )[1 - W(Qnun )]2

The outer part is prescribed as

9(T) = Guin + (Guae ~ e | (1~ )7 + 7]




Y = Y( i)
Yeige — ll/(‘]mjn
Here \ is the value of y on the magnetic axis, Yeqg. is the value of y on the plasma
surface, and Y(qmin) iS ¥ at qmin. The inner and outer profiles match q, q' and q" at
W(qumn) - A comparison of the model safety factor profile as defined above with an

where ¥ = ] for y(gu,)Sw<L.

experimentally derived profile is shown in fig. 1. The value of 0 is generally found to be

in the range 3.5 to 4.75. The specification of the relative poloidal flux at which q is a
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minimum means that, as qmin and B vary, the radius at which q is a minimum will also
vary. This change, however, is acceptably small. As an example, for a case where Qedge =
6.3, qo = gmin +1, at the marginal stability point rp;,/a = 0.325 when qpi, = 1.1. When
Qmin = 2.5 then ry/a = 0.363. Examples of the <JsB>/<B*V¢> profile resulting from this
q profile specification are shown Fig. 2. As noted above, arbitrarily chosen q profiles often
have unrealistic current density profiles near the edge. For example, the value of
<JeB>/<B*V > at the edge can be substantially different from zero or <J*B>/<B*V¢>
might even become negative. As shown in Fig. 2 the prescription for q adopted here
results in <J*B>/<B*V¢> being zero at the edge. For the case gmin = 1.1 the <J*B>/<BeV
¢> profile has a region near the edge where it is slightly negative. Transport analysis of
high current supershots usually show the <J*B>/<B*V¢> to be almost zero near the outer
edge of the plasma. Our prescription for specifying the g-profile models this feature
adequately.

A simple formula for the preséure proﬁle was chosen that closely models TFTR
supershot pressure distributions. A typical supershot pressure profile is highly peaked on
axis and decays exponentially as a function of the flux, y, except, possibly, near the edge:

of the plasma. The formula

p(¥)=poe” ¥ (1-y* )2,

p - Model
. p - Exp.
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Fig. 3 Model pressure profile, p, compared with TRANSP data.




where the poloidal flux label, ¥/, is normalized to be zero at the magnetic axis and unity at
the plasma edge, is a good representation of the TFTR data. For typical supershots the
parameter (; lies in the range 2.5 < ¢; < 4. This form of the pressure profile form has two
main features. First, it is an exponentially decaying function of y over the innermost 80%
of the plasma. This usually matches supershot data very accurately. The second
component of the profile forces both p and p' to tend smoothly to zero at the plasma edge.
It also models a small increase in the pressure gradient near the boundary which is also a
feature of the experimental data. The parameter ¢, is chosen to be large, ~10. The central
pressure po is adjusted to change the value of 3 as required. A comparison with a pressure
profile computed from transport analysis of an actual experiment in TFTR is illustrated in
Fig. 3.

The equilibria for these studies were computed on a grid of 129 radial surfaces and
320 poloidal nodes. The estimated maximum truncation error due to the finite size grid is
less than 3 x 10~4 when compared with the fully converged solution. As the limiting B for
ideal MHD stability is approached fromaﬁove the radial derivatives at mode rational
surfaces tend to become very steep. -To acc:urately represent this computationally in the
stability codes a finer mesh than is used by the equilibrium solver. This is accomplished by

mapping the equilibria to a larger number of radial surfaces using a separate mapping code.

The ideal MHD stability analysis was performed using the KOSMIK low-n stability
code. This code was originally designed to compute the low n-number Kruskal-Oberman
stability. For computations described here, the code was adapted to solve the isotropic,
incompressible MHD equations. In this version of the code the MHD equations are written
in terms of a vector stream function, u such that v =V X u where v is the perturbed fluid
velocity. A gauge transformation is chosen such that uy, = 0. Although this choice of
gauge precludes the case where the toroidal mode number, n = 0, it conveniently simplifies
the matching of the vacuum solution at the plasma surface. The KOSMIK code can include
the vacuum region between the plasma and a conducting boundary. The code also has the
capability of modeling multiple, perfectly conducting surfaces. Most of the ideal MHD
computations presented here invoked a "wall at infinity" boundary condition (i.e. no
external conducting surfaces) except where otherwise noted. This boundary condition
generally results in the most pessimistic stability criteria. KOSMIK has been benchmarked
against the ARES code! and several specific reverse shear cases were compared in detail
using the two codes. When numerically converged both codes were found to be in

satisfactory agreement.



2.2 1Ideal MHD Stability Studies

The prototype for the equilibria modeled here was taken from shot #83998 at t =
2.99 seconds. This particular shot was chosen because it had good quality diagnostic data
including MSE measurements from which the q profile was derived. It did not, however,
enter the so called Enhanced Reverse Shear (ERS) mode where the particle transport is
observed to be reduced by a large factor. There was MHD activity which appeared toward
the end of the shot which ultimately terminated with a disruption, typical of those observed
on other reversed shear shots. The geometrical parameters for the equilibria in this study
are R =2.59, a =0.92 and € = 1.05. This represents a plasma which fills most of the
available cross section of TFTR and is typical of reversed shear equilibria. For shot
#83998 at t = 2.99 seconds the equilibrium had Qegee = 6.3, qo = 3.2 and g, = 2.2 with
the minimum located at W(qmin) = 0.15. The corresponding pressure profile parameters
were ¢/ =4, and o, = 20.
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Fig. 4. Normalized beta limits of low-n instabilities
as a function of the minimum q value. For
these cases dedge = 6.3, Aq =90 — qmin = 1.0,0p =4.




Fig. 5. Radial component of the perturbed velocity fora)yn =1, b)
n =2, c) n =3 for the mode with the lowest beta limit.
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Typically, qmin decreases during the course of the experiment until it reaches a
value ~ 2.0 when a low n instability appears. To gauge the effect of quj, on the beta limit,
this parameter was varied and the critical beta for marginal stability was computed for each
of the n =1, 2 and 3 modes. The result is shown in Fig. 4 which plots the normalized
beta, By = B/ (I/aB), as a function of qmin. For this calculation the difference between the
central and minimum values of q value, Aq, was kept fixed at 1 (i.e.AQ =qo — Qumin = 1)-
The location of the minimum q value, Y(qmin), and gegge Were held fixed in these
calculations. Also, the 'wall at infinity' boundary condition was invoked. The minimum
value of q was found to have an important influence on the critical beta limit. In particular,
the beta limit is reduced abruptly as q,,;» approaches rational values. For the n = 1 mode
this feature is due to an instability where the poloidal mode number m = 2 is the dominant
harmonic. The structure of the limiting instability becomes a purely internal mode as g,
approaches a rational value, as can be seen from fig. 5. On the other hand, when quip > 2
the mode has a much greater 'external' component. In contrast the n =2 and n = 3 modes
have little external compohent and were essentially 'internal' modes. Fig. 5 shows the
mode structure of the instabilities for a)yn=1,b)n =2 and c) n = 3 just inside the unstable
region at the point where BN is a minimum for each mode number. The dip in By for the n
= 1 mode near q,;, = 2 (fig. 4) correlates closely with the stability boundary that limits the
pressure in the experiment. During the course of an experiment q;, slowly decreases as
current diffuses into the center of the plasma. Near q;, =2 instability occurs leading to

disruptive loss of the plasma.

n
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Fig. 6. The normalized beta limits for the n = 1 instability
as a function of the minimum q value for different

Gedge values.




The effect of changing the value of g at the surface of the plasma, ge4q, and hence
the total current, is illustrated in Fig 6 for the n = 1 mode. The essential features of the
stability diagram, namely the lower beta limits near rational values of q.;,, remain the same.
Indeed, this feature is typical of all reversed shear equilibria. As shown in Fig 6, when the
plasma current increases the normalized beta decreases only slightly below qu, = 2. The
beta limit appears to be a beta-normal limit. Above qu,;, = 2 the difference is somewhat
larger. This is due to the broadening of the current profile which tends to decrease the
stability limit for external modes. The current profile is broadened both by the decrease in
edge and the increasing qu, which redistributes the current to the outside. For g, > 2 the
mode is a mixture of an infernal mode and an external kink mode.

The form of the pressure distribution also has a significant effect on the stability of
the infernal mode. Fig 7 shows the n = 1 stability boundaries as the pressure distribution is
broadened. Typically pressure profiles in TFTR tend to be quite peaked. As the pressure
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Fig. 7 The effect of pressure profile peaking on the

normalized beta limits for the n = 1 instability
as a function of the minimum q.
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distribution broadens the maximum normalized beta increases There appears to be a limit, -
however, to how broad the pressure profile can be and still achieve this effect. There is. -
little overall increase in the beta limit for the case 0, = 2 when compared to ¢y, = 3. Indeed, '
for the oy, = 2 case the nature of the instability that limits beta changes, becoming more an
external kink mode with the effect of the resonance at q,;,, = 2 barely detectable.

So far the stability of reversed shear profiles is similar, in many respects, to
previous studies of supershots with monotonic q profilesS. In both cases the infernal mode
causes a decrease in the beta limit when q;, (or the central value q(0) in the case of
monotonic profiles) is near a rational value. One difference is that the beta limit due to
higher n number modes (n = 2) is now higher than that computed for monotonic profiles.
Starting with a monotonic q-profile with low central shear the beta limit increases as the
central shear increases until a peak is reached and the beta limit subsequently decreases.
The question is whether the beta limit continues to decrease when central shear is reversed.
The two parameters of interest are the location of minimum shear Y(qm;in) and Aq = qo —
Qmin- The first parameter determines the radial extent of the reversed shear region and the
second parameter is a measure of the degree of shear reversal. Fig 8 demonstrates the result
of shifting the radial location of the minimum in q to larger radii. Overall the effect tends to

be stabilizing. The minimum beta limit associated with the mode rational surfaces tends to

6M. H. Hughes, M. W. Phillips, E. D. Fredrickson, Phys. Fluids B 5, 3267 (1993).
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be increased for the higher n modes compared to the n = 1 mode. Changing W(qmin) =
0.15 to Y(qmin) = 0.25 causes the relative minor radius to move out about 0.1. Fig. 9
shows the effect that changing Aq = qp — Q. has on the n = 1, 2 and 3 stability boundary.
The stability boundaries for the cases Aq = 1 and Aq = 0.1 are shown. Increasing Aq
tends to increase the normalized beta limits. As in the case of increasing the inversion
radius, increasing Aq seems to have a larger effect on the n = 2 and 3 modes then on the n
= 1 mode. Several cases were run to determine whether the effects are multiplicative.
Increasing both Aq and shear reversal radius leads to proportionally higher beta limits.
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Fig. 9. The effect of shear depth on the normalized
beta limits for the n = 1 instability as a function
of the minimum q.
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So far we have considered only cases where there was no stabilization due to a
conducting wall surrounding the plasma. Fig.10 shows the effect of a perfectly conducting
wall surrounding the plasma. The wall was located at a constant distance from the plasma
surface. As expected the wall has little effect when the mode is mainly internal as occurs
when q,;;, is near a rational value. However there is a strong stabilizing effect when gy, >

2 where the marginally stable mode has a larger external component.

2.3 Discussion of ideal MHD analysis

Equilibria with a reversed shear region have low-n stability properties similar to
those with monotonic q profiles having low central shear . In both cases the main mode of
instability limiting the achievable beta is an infernal mode. This stability boundary appears
to correlate with that found experimentally during reversed shear experiments in TFTR.
The reverse shear case differs from the monotonic q profile case in that the higher n modes
(n > 1) are more stable. The lowest beta limit is set by the n = 1 mode near:quin = 2.
More reverse shear either in the form of\ an increased AqQ = g - Qmia OF a larger reversal
radius both tend to improve the stability limits of the n = 1, 2 and 3 modes. A greater
improvement in the beta limit occurs for the higher n modes, n = 2 and 3. Thus, some
shear whether it is positive or reversed seems to be beneficial to low-n stability. If rational
values of qu;, can be avoided the beta limit for TFTR is greater than can be achieved for
monotonic profiles. In the range 1 < g, <2 reversed shear profiles have a an advantage
over monotonic profiles by raising the beta limit caused by higher n modes. Another
avenue for increased beta is to keep qmi, > 2. In this region the higher n modes are stable.
If wall stabilization is effective in stabilizing the n = 1 external kink mode further gains in
beta are possible.

2.4 The Effects of Anisotropic Pressure on Reverse Shear Stability

The discussion so far has concentrated exclusively on pressure profiles which were
 assumed isotropic. However, high P equilibria in TFTR, including those with reversed
magnetic shear, typically have anisotropic pressure distributions resulting from the intense
beam heating. The pressure anisotropy arises as a result of the difference in the slowing
down times of the neutral beam particles in the perpendicular and parallel directions. The
pressure distribution in TFTR usually has enhanced parallel pressure distribution.
Generally the pressure distribution is highly anisotropic at early times when the neutral

particle beams are first turned on and then becomes increasingly isotropic as the plasma
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evolves. The degree of pressure anisotropy also depends sensitively on the plasma density
since the rate at which the hot ions equilibrate depends on this parameter. Fig 11 shows the
relative difference in the parallel and perpendicular pressure distributions as a function of
time for TFTR shot #75963. This shot had a reversed shear g-profile that entered the so
called ERS ('Enhanced Reversed Shear') mode characterized by improved

0.7

- Shot 75963
L B L D
0.6
05 E
0.4 |

b~ Py
0.3
Py
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01 F

0,05..‘.. MNP PP IPEPETE P
20 25 30 35 40 45

t

| Fig 11 Relative difference in pressure components
for reverse shear shot # 75963

confinement. This shot had MHD activity starting around t = 4.3 seconds and a disruption
occurred shortly after. For supershots the degree of pressure anisotropy is typically in the
range 0.15 < (py — pL)/py < 0.25 with the parallel pressure dominant near the end of the
discharge. For shot # 75963 (p) — pL)/pii ~ 0.25 at the time that MHD activity started.

In previous studies of TFTR anisotropic pressure effects did not appear to be
important. This is due to a combination of factors but due mainly to the fact that TFTR has
a relatively low beta with B < 1%. The quantity (py — p.)/B2 is on the order of 0.0025
which is too small to influence the anisotropic pressure terms in the force balance equation.
The largest effect in a low beta tokamak arises from the influence of the parallel pressure

distribution on the parallel current as can be seen from the formula,

A series of computations were performed to determine the effect, if any that,
anisotropic pressure distributions have on the stability characteristics of reversed shear
TFTR equilibria. A version of the KOSMIK low-n code that implements the anisotropic
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stability problem was used. As mentioned in §2.1 the code is based on the Kruskal
Oberman energy principle. It does not, however, include the effect of adiabatic
compressibility that is part of that formalism. The adiabatic compressibility term is positive
definite and stabilizing but is somewhat difficult to compute since it involves integrals over
the pitch angle. This term is similar in order to the MHD compressibility term. It differs
from ideal MHD in that it does make a difference is in the marginal stability point.
Previous computations on ballooning modes which included this term showed its effect on
the marginally stability point to be quite small, even at high beta. For these initial
computations it was our intention to estimate the magnitude of anisotropic pressure effects.
Therefore, we initially neglected the adiabatic compressibility term. Fig 12 shows the
evolution of § in TFTR shot # 75963 as a function of time. Also depicted are the beta
limits for the isotropic case, for the case where the parallel pressure dominates and for a
third case where the perpendicular pressure was dominant. The beta limit was determined
for three equilibria taken from the TRANSP simulation of this run. To determine the beta

limit the q profile was held fixed and the pressure distribution was scaled by a constant. In. .

“ all cases the limiting instability was an infernal mode. As can be seen from Fig 2 pressure -

distributions where the parallel pressure is largest are mildly destabilizing while pressure. © * :

distributions with perpendicular anisotropy are Stabﬂizing. Overall, the effect is noticeable

but not significant.
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Fig 12 Beta as a function of time shot # 75963 and computed
n = 1 stability limits for isotropic and anisotropic
pressure distributions.

The effect of an anisotropic pressure distributions on ballooning stability was also
evaluated. A version of the STBAL code that includes anisotropic effects in the ballooning
and Mercier stability was used. A novel feature of this code is that the effect of the
perturbed anisotropic equilibria on ballooning is including allowing both the first and
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second regions of stability to be mapped out. Fig.13 shows the ballooning stability of shot
# 75963 at t =4.21. This is just before the observation of MHD activity in this shot. It is
evident from Fig.13 that an anisotropic pressure distribution has very little effect on the
ballooning stability. Interestingly, and characteristic of ERS shots, is that the central
pressure gradient reaches well into the second region of stability.

TFTR shot 75963 at t=4.21

L | Frrrr vt

Isotropic

=
.w\
o
w
1

0.0 0.2 0.4 0.6 0.8 1.0

V(V‘y’o)/A.‘l/

Fig 13 Ballooning beta at t = 4.21 sec. for shot # 75963 for
isotropic and anisotropic pressure distributions.

In summary, reverse shear shots tend to have pressure distributions where the
parallel pressure dominates. Inclusion of the effects of anisotropy on stability tends to
lower beta limits for the n = 1 mode. The effect is small due to the low beta in the device.
The effect of anisotropic pressure distributions on ballooning instability was also computed
for this shot and was also found to be even smaller.
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III RESISTIVE MHD ANALYSIS OF REVERSED SHEAR EQUILIBRIA

The previous section described in detail the ideal (infinite conductivity) stability
analysis of reversed shear' plasmas produced in TFTR. Here, those studies are extended
to include the effect of finite plasma conductivity and to consider the possible role of
resistive instabilities in these experiments. In plasmas where the current density
distribution has an off-axis maximum there can be two resonant surfaces for a mode with
given m/n. It is then possible to excite 'double tearing’ modes producing magnetic islands
which can grow at each surface with a poloidal phase difference between the two sets of
islands. It has long been believed that such instabilities may contribute to the rapid
penetration of the plasma current during the startup phase of a tokamak. The nonlinear
evolution of the double tearing mode is of particular interest since these modes can either
saturate or, alternatively, result in magnetic reconnection with disruptive changes to the
safety factor profile’ in a manner reminiscent of the 1/1 sawtooth instability. Indeed, there
is a suggestion that multiple tearing modes at,;rationAal surfaces can, with some differential
rotation, grow explosively8. - An interesting experimental observation from TFTR,
however, is that their high temperature plasmas with non-monotonic safety factor profiles
typically evolve without coherent MHD activity until such time that they encounter the ideal
MHD 8-limit.

3.1 Resistive Stability

The procedure adopted here for calculating equilibria where the safety factor has an
off-axis minimum is identical with that used for the ideal MHD studies. That is, the
pressure profiles are obtained from TRANSP analysis of the experiments and simply scaled
to alter B while a model procedure for is used to prescribe q. The g-profiles are, however,
in reasonable accord with those derived experimentally from MSE measurements of the
pitch of the magnetic field. This method (described in detail in §2.1) allows us to vary the
parameters describing the reversed shear profiles in a systematic fashion and to calculate
subsequent changes to the stability properties of the system. Here, we concentrate on
plasmas where both the location of the minimum in q and the edge value of the safety
factor, ge = 6.3, are fixed. The minimum value, qmin, of q is varied keeping the central
value, q(0) = qmin + 1. These parameters, similar to the values used in §2.1 ,are chosen

7 Carreras, B., Hicks, H.R. and Waddell, B.V., Nuc. Fusion, 19, (1979), 583 - 596.
8 Persson, M., Phys. Fluids B, 5, (1993), 3844-3846.
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to model a typical reversed shear, TFTR equilibrium. The resistive stability of these
equilibria was subsequently analyzed using a linear version of the ARES code. Initial
studies of the nonlinear evolution of the resistive double tearing modes are currently in
progress. We also note in passing that, when the resistivity is set to zero the ARES and
ideal MHD, KOSMIK, codes used in these studies yield results in agreement to within
~1%.

Using the results from the ideal MHD calculations as a guide, we have studied the
excitation of resistive instabilities in regions of parameter space where the ideal modes are
stable. Note that, all these resistive MHD calculations invoke a boundary condition of a
perfectly conducting wall in contact with the plasma periphery (unlike the discussion of
§2.3 where it is assumed that there is a vacuum region between the plasma and a perfectly
conducting wall). The main result of these linear calculations is that there is a wealth of

purely resistive MHD modes that appear at all pressures from zero to the ideal MHD limit.

‘For example, fig . 11 displays the growth rates of the resistive instabilities as a function of ‘

the minimum Value of 'q at fixed B = 0.72% and flxed Lundqu1st number (magnetlc
Reynolds number) S = 107 This value of B is chosen to be near, but on the stable side of”) i
the boundary for the most unstable ideal mode; that is, the mode with toroidal mode""
| number, n=1, at qmin = 1.85 (see fig. 10, §2.2). Note from fig 14 that as qmin
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Fig. 14 Resistive Mode Growth Rates as qmin is Varied

is reduced from large values ( > 2 ) there is a sudden onset of instability with mode
numbers m/n = 2/1 as qmin passes through 2. As qmin continues to decrease the growth

rate of the 2/1 mode quickly attains a maximum and then decreases rapidly until a 3/2
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instability appears when qmin < 1.5; subsequently a 4/3 mode is excited as qmin continues
to decrease and presumably higher order m/n modes would appear at even smaller values of
gmin. Note that, the maximum growth rates shown in this diagram have significant
magnitudes. For example, Y Tp /€= 10-3 corresponds roughly to a growth time of
100usec, assuming typical TFTR parameters.

Interestingly, the general behavior illustrated in fig 14 persists at all pressures from
zero to the marginal stability boundary for ideal modes. Fig.15 shows the variation of the
growth rate of the 3/2 mode as the pressure is varied at fixed qmin and fixed S. In these
calculations there is no significant stabilization of the instability due to finite pressure
effects® even though Bp > 1 at the highest pressures of interest. Fig. 15 shows that there is
only a modest reduction in the growth rate as the pressure is initially increased from zero
but as the pressure continues to increase the growth rate passes through a minimum and

subsequently increases significantly as the ideal MHD boundary is approached.
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Fig. 15 Variation of n=2 Resistive Mode Growth
Rates with Plasma Pressure

The apparent absence of significant pressure stabilization of the resistive (tearing)
modes is due to the fact that the character of the instability changes as we traverse the curve
shown in fig 15 Tearing modes or double tearing modes appear only when the plasma

parameters are well away from the ideal MHD stability limit. Indeed, analytic theory

9 Tacono, R., Bhattacharjee, A., Ronchi, C., Greene, J.M. and Hughes, M.H., Physics of Plasmas, 8,
(1994), 2645.
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predicts1O that when the pressure (or any other appropriate parameter) approaches the
marginal value for ideal MHD instability from the unstable side the instability becomes a
resistive mode with a growth rate scaling as S-1/3. As the pressure (or other parameter)
continues to change the mode eventually becomes a tearing mode scaling as S-3/5. This
behavior is confirmed computationally and is illustrated in fig. 16. This graph plots the
resistive mode growth rates of the n=2 mode as functions of the Lundquist number at
different pressures. The largest value of the pressure in this case corresponds to the
marginal ideal point for the n=2 instability, found using the KOSMIC code.
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Fig. 16 Variation of the Resistive Mode Growth Rates
with the Lundquist Number. This graph illustrates
how the exponent of S changes from 1/3 at the ideal
marginal stability point to 3/5 as the pressure

(in this case) is sufficiently reduced.

Thus, the tearing modes appear only when the pressure is substantially smaller than
the limiting value determined by ideal MHD. Note that this statement also holds in the case
of fig.14 where qmin is the independent variable. In this case, the pressure was
deliberately chosen to correspond to the minimum value of gy set by the 2/1 mode (fig. 10,
§2.2) but much smaller than the limiting value for higher m/n modes. Thus, the character
of the mode also changes with qmin in fig. 14. We find that, the 2/1 mode exhibits the

S-1/3 scaling of the growth rate since B is near the ideal stability limit for this mode. In

10 Coppi, B., Galvao, R.M.O., Pellat, R., Rosenbluth, M.N. and Rutherford, P.H., MATT-1271,
Princeton Plasma Physics Laboratory
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contrast, the higher m/n modes display the S-3/5 (tearing) variation since, for these modes,
B is well below the marginal point for ideal MHD instability.

A further qualitative observation regarding the tearing mode regime is as follows.
As qmin passes through a rational value from above the two surfaces of interest are initially
very close (the degenerate case is of no interest). The two tearing layers can then be
coupled resulting in the ‘double tearing’ configuration that is found computationally. As
qmin decreases further the procedure adopted here for altering q causes the two rational
surfaces to move further apart in radius and with respect to the current density profile. The
coupling of the two resonant surfaces then becomes weaker until a point is reached where
the two surfaces no longer interact. The mode then becomes a ‘regular’ tearing instability
centered at the innermost rational surface. These tearing and double tearing modes are,

indeed, influenced by finite pressure effects.

The tearing type modes, with $-3/5 scaling of the growth rates, have relatively little
harmonic structure and tend to be localized in the vicinity of the appropriate rational
“surfaces. On the other hand, the S-1/3 modes which appear at higher pressures have much -
more harmonic structure and are more ‘global’ in nature. That is, the perturbation extends
over a large fraction of the radius and are, therefore, probably more damaging. It is
unlikely that the experiment can distinguish these latter instabilities from the ideal MHD
modes which occur at slightly higher pressure. At the present time, qmin ~ 2 is the
smallest value achieved in TFTR before the ideal n=1 mode is excited and the plasma
disrupts. The resistive modes which are predicted to appear could well pose a problem in
attempts to operate at qmin < 2. The tearing and double tearing modes that are excited at
low pressure may, however, be stabilized by mechanisms not modeled here. Plasma
rotation, which decouples the resonant surfaces!! or nonlinear saturation of the mode, for
example, are both possible candidates.

1 Persson, M., Physics of Plasmas, 1, (1994), 1256-1263.
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3.2 Summary of Resistive MHD Stability Studies
In summary, the main conclusions of the section on resistive MHD are as follows:

. Resistive instabilities are predicted by MHD theory at all pressures from
zero to the infinite conductivity limit in the reversed shear plasmas studied
for TFTR plasmas with qmi, < 2.

. The double tearing mode, thought to contribute to the rapid penetration of
current when the q profile has an off-axis minimum, appears only at low
pressure. In the vicinity of the ideal MHD limit there is an S-1/3 resistive
mode.

. TFTR operation with gmin < 2 might be impaired by the excitation of

resistive tearing and double tearing modes.
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