

DOE/BC/14831--19-Vol.3

VOLUME III

**CHARACTERIZATION OF REPRESENTATIVE RESERVOIRS - SOUTH
MARSH ISLAND 73, B35K AND B65G RESERVOIRS**

Mark A. Young, S. Philip Salamy*, T.K. Reeves*, W. Clay Kimbrell**, Walter K. Sawyer****

RECEIVED

JUL 28 1998

OSTI

MASTER
JAC

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

***BDM-Oklahoma, Inc.
220 North Virginia Ave.
Bartlesville, Oklahoma 74003**

****Department of Petroleum Engineering
Louisiana State University
Baton Rouge, Louisiana 70803**

*****Mathematical & Computer Services, Inc.
325 Seminole Trail
Danville, VA 24540**

**CLEARED BY
PATENT COUNSEL**

**SOUTH MARSH ISLAND BLOCK 73 FIELD
RESERVOIR SIMULATION STUDY**

B-35 SAND, RESERVOIR K

B-65 SAND, RESERVOIR G

**Assist in the Recovery of Bypassed Oil
From Reservoirs in the Gulf of Mexico**

Contract Number DE-AC22-92BC14831

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

ABSTRACT

EXECUTIVE SUMMARY

I. INTRODUCTION

II. FIELD INFORMATION

II.1 Data

II.2 Field History

II.3 Field and Reservoir Geology

III. RESERVOIR INFORMATION

III.1 B-35K Reservoir

III.1a Reservoir Characteristics

III.1b Reservoir Production and Injection History

III.1c Original Oil-in-Place Calculations

III.1d Summary

III.2 B-65G Reservoir

III.2a Reservoir Characteristics

III.2b Reservoir Production and Injection History

III.2c Original Oil-in-Place Calculations

III.2d Summary

IV. BOAST3-PC BLACK OIL SIMULATOR

IV.1 Introduction

IV.2 General Model Input Data Analysis

IV.2a Relative Permeability Curves

IV.2b PVT Data Analysis

IV.2c Productivity Index (PID) Calculations

IV.2d Water-Oil Ratio and Gas-Oil Ratio Constraints

V. SIMULATION

V.1 B-35K Reservoir

V.1a Reservoir Model Grid Dimensions and Geometry

V.1b Porosity, Water Saturation, and Permeability Distribution

V.1c Relative Permeability Curves

V.1d PVT Data Analysis

V.1e Aquifer Model

V.1f Productivity Index Calculations (PID)

V.1g Water-Oil Ratio and Gas-Oil Ratio Constraints

- V.1h Recurrent Data*
- V.1i Additional Reservoir Simulation Assumptions*
- V.1j History Match*
- V.1k Gas Injection Sensitivity Studies*
- V.1l Injection Rate Sensitivity Study*
- V.1m Post-Injection Shut-in Time Sensitivity Study*
- V.1n Injection Volume Sensitivity Study*
- V.1o Injection Volume Staging Sensitivity Study*
- V.2 B-65G Reservoir**
 - V.2a Porosity, Water Saturation and Permeability Distribution*
 - V.2b Relative Permeability Curves*
 - V.2c PVT Data Analysis*
 - V.2d Material Balance and Water Influx Analysis*
 - V.2e Reservoir Model Grid Dimensions and Geometry*
 - V.1f Productivity Index (PID) Calculations*
 - V.2g Recurrent Data*
 - V.2h History Matching*
 - V.2i Prediction Runs*

VI CONCLUSIONS

- VI.1 B-35K Reservoir**
- VI.2 B-65G Reservoir**

BIBLIOGRAPHY

LIST OF FIGURES

- 1 *Location of South Marsh Island Block 737 Field in the Gulf of Mexico*
- 2 *Structure Map on the Top of Salt for South Marsh Island 73 Field*
- 3 *South Marsh Island 73 Field Production Statistics*
- 4 *South Marsh Island 73 Field Production History*
- 5 *South Marsh Island 73 Field B-35 Sand Structure Map*
- 6 *B-35K Reservoir Net Sand Isopachous Map*
- 7 *Pressure History for the B-35K Reservoir*
- 8 *Daily Production Rates for B-35K Reservoir*
- 9 *Production History for SMI 73, Well A-1*
- 10 *Production History for SMI 73, Well A-3D/A-3*
- 11 *Production History for SMI 73, Well A-6D*
- 12 *Structure Map of B-65G Reservoir*
- 13 *Production History for SMI 73, Well B-12, B-65G Reservoir*
- 14 *Production History for SMI 73, Well B-1, B-65G Reservoir*
- 15 *Production History for SMI 73, Well B-10, B-65G Reservoir*
- 16 *Production History for SMI 73, Well B-7, B-65G Reservoir*
- 17 *Overview of BOAST3 Model Features*
- 18 *Relative Permeability Curves*
- 19 *Reservoir Simulation Grid Scheme*
- 20 *Reservoir Simulation Layers and Data*
- 21 *Correlation of Porosity Versus Permeability*
- 22 *Modified Relative Permeability Curves for B-35K Reservoir*
- 23 *Reservoir Voidage Versus Pressure for B-35K Reservoir*
- 24 *Summary of Water Influx Calculations*
- 25 *Additional Reservoir Simulation Assumption*
- 26 *Comparison of Cumulative Water Production for History Match Runs 1 and 2*
- 27 *Comparison of Cumulative Water Production for History Match Runs 3, 4, and 5*
- 28 *Final History Match Results, Cumulative Oil Production Versus Time*
- 29 *Final History Match Results, Pressure Versus Time*
- 30 *Final History Match Results, Cumulative Gas Production Versus Time*
- 31 *Final History Match Results, Cumulative Water Production Versus Time*
- 32 *Gas Injection Rate Sensitivity Analysis Results*
- 33 *Post-Injection Sheet-In Time Sensitivity Analysis Results*
- 34 *Gas Injection Volume Sensitivity Analysis Results*
- 35 *Injection Volume Staging Sensitivity Analysis Results (Oil)*
- 36 *Injection Volume Staging Sensitivity Analysis Results (Water)*
- 37 *Unmodified Relative Permeability Curves, B65-G Reservoir*
- 38 *Modified Relative Permeability Curves, B65-G Reservoir*
- 39 *Havlena & Odeh Material Balance Graph for B-65G Reservoir (Assuming No Gas Cap and No Water Drive)*
- 40 *Havlena & Odeh Material Balance Graph for B-65G Reservoir (Assuming Gas Cap and Water Drive)*
- 41 *Grid Layout of B-65G Reservoir*

42 *Type Log of B-65G Reservoir With Layering*
43 *Run AA of B-65G Reservoir; Gas and Water Production Comparison*
44 *Run AA of B-65G Reservoir; Bottom Hole Pressure Comparison*
45 *Run AT (final match) of B-65G Reservoir; Gas and Water Production Comparison*
46 *Run AT (final match) of B-65G Reservoir; Bottom Hole Pressure Comparison*

LIST OF TABLES

1 *Cumulative Production for the B-35K Reservoir*
2 *B-35K Reservoir Gas Injection History Summary*
3 *Summary of Original Oil-In-Place Calculations for the B-35K Reservoir*
4 *South Marsh Island Block 73 Field B-65G Reservoir Characteristics*
5 *Cumulative Production and Gas Injection, B-65G Reservoir*
6 *PVT Data Summary Table*
7 *Summary of Calculated PI Values by Layer for Each Well for B-35K Reservoir*
8 *Summary of Oil Production for Various Gas Injection Prediction Sensitivity Analyses for B-35K Reservoir*
9 *Spreadsheet of Empirically Generated PVT Data for B-65G Reservoir*
10 *Spreadsheet Illustrating Havlena and Odeh Straight Line Material Balance Analysis for B-65G Reservoir*
11 *Summary of Calculated PI Values for Each Perforated Layer in Each Well for B-35K Reservoir*

ABSTRACT

This report documents the results of a detailed study of two Gulf of Mexico salt dome related reservoirs and the application of a publicly available PC-based black oil simulator to model the performances of gas injection processes to recover attic oil. This work was performed by BDM Federal, Inc. and Louisiana State University in support of the Louisiana State University's Bypassed Oil Study, which is funded by the U.S. Department of Energy (DOE contract number DE-AC22-92BC14831). The overall objective of the LSU research project is to assess the oil reserve potential that could result from the application of proven technologies to recover bypassed oil from reservoirs surrounding piercement salt domes in the Gulf of Mexico.

The objective of these reservoir simulation studies was to develop detailed calibration cases for use by the project team in the assessment of the oil recovery potential for Gulf of Mexico salt dome reservoirs. The specific study objective was to simulate the primary recovery and attic gas injection performance of the two subject reservoirs to: 1) validate the BOAST model; 2) quantify the attic volume; and 3) predict the attic oil recovery potential that could result from additional updip gas injection.

The simulation studies were performed on the B-35K Reservoir and the B-65G Reservoir in the South Marsh Island Block 73 Field using data provided by one of the field operators, Taylor Energy, a New Orleans based independent operator. Detailed studies were conducted on the reservoirs to define the parameters required to simulate the reservoirs' performance. A modified PC-version of the BOAST II model was used to match the production and injection performances of these reservoirs in which numerous gas injection cycles had been conducted to recover attic oil. The historical performances of the gas injection cycles performed on both the B-35 K Reservoir and B-65G Reservoir were accurately matched, and numerous predictive runs were made to define additional potential for attic oil recovery using gas injection. Predictive sensitivities were conducted to examine the impact of gas injection rate, injection volume, post-injection shut-in time, and the staging of gas injection cycles on oil recovery.

EXECUTIVE SUMMARY

This report documents the results of a detailed study of two Gulf of Mexico salt dome related reservoirs and the application of a publicly available PC-based black oil simulator to model the performances of gas injection processes to recover attic oil. The overall objective of the LSU research project is to assess the oil reserve potential that could result from the application of proven technologies to recover bypassed oil from reservoirs surrounding piercement salt domes in the Gulf of Mexico.

The objective of these reservoir simulation studies was to develop detailed calibration cases for use by the project team in the assessment of the oil recovery potential for Gulf of Mexico salt dome reservoirs. The specific study objective was to simulate the primary recovery and attic gas injection performance of the two subject reservoirs to:

- 1) validate the BOAST model;
- 2) quantify the attic volume; and
- 3) predict the attic oil recovery potential that could result from additional updip gas injection.

South Marsh Island 73 Field

The South Marsh Island Block 73 (SMI 73) Field is located approximately 77 miles south of Intercoastal City, LA in 135 feet of water in the Gulf of Mexico. Production from the field was initiated in 1964, and over time, a total of eight platforms were set and over 100 development wells were drilled. Taylor Energy Company purchased Exxon's interest in SMI Blocks 69, 72, and 73 in 1993 and assumed operatorship.

The field is predominantly oil productive and production peaked in 1971 at a rate of 16,900 BOPD and 68 MMCFD. The field is currently producing almost 2,000 BOPD, 5 MMCFD and 2,600 BWPD. The productive zones have been established at depths between 5,000 feet and 11,500 feet. The cumulative production from the field as of January 92 totaled 67 million barrels of oil (MMBO), 276 billion cubic feet of gas (BCF), and 46 million barrels of water (MMBW).

The SMI 73 Field is established by the simple piercement salt dome structure. The dome is relatively circular in shape, with a small area of overhang at the southeast corner. The current top-of-salt is approximately 364 feet below mean sea level. Drilling has been concentrated on the northern, eastern and southeastern portions of the structure, with twenty-five Miocene and Pliocene aged sands being productive from more than sixty reservoirs around those sides of the dome.

B-35K Reservoir

One of the two reservoirs in this study is the B-35 K Reservoir. The B-35 is a typical sand for the SMI 73 Field. The B-35 sand is relatively widespread around the southeastern flank of the dome, with a thickness, downdip, of 40 feet or more. Toward the salt, the sand begins to steepen, eventually pinching out to shale near the salt. Numerous faults radiate out from the salt, cutting the sand into discreet reservoirs.

Production from the B-35K Reservoir was initiated in October 1966 from the A-1 Well and the short-string completion of the dually completed A-3 Well (Well A-3D). Well A-3D produced until July 1971 when the well was reworked and put on production as a single completion in the B-35K Reservoir. Well A-3 produced from March 1972 through November 1982, when the well was shut-in due to sanding problems. In June 1983, the B-35K completion in the A-3 Well was abandoned, and the well was sidetracked and completed as a producer in the deeper D-5 Sand. The cumulative Well A-3D/A3 production from the B-35K Reservoir totaled 1.2 MMBO, 530 MMCF, and 69,000 BW. Well A-1, which is located downdip of Well A-3 in the B-35K Reservoir, watered out in October 1971, with cumulative production of 394,000 BO, 193 MMCF, and 43,000 BW. Well A-6D produced from the B-35K Reservoir from October 1966 through May 1976 when the well watered out and was recompleted as a single producer in the deeper D-5 Sand. Cumulative production from Well A-6D totaled 1.4 MMBO, 739 MMCF and 86,000 BW. The cumulative production for the B-35K Reservoir totals 3.0 MMBO, 1.5 BCF and 198,000 BW.

In 1992, the A-6 well was recompleted and tested in the B-35K zone, which came on initially with 100% oil and immediately went to water. During the productive life of the B-35K Reservoir, five attic gas injection cycles were conducted in the A-3D/A-3 Well to improve the oil recovery from the reservoir. The injection of gas into the attic of the reservoir resulted in the recovery of additional oil by causing the oil-water contact to move downdip, away from the

producing wellbores. Water-free production was realized until the oil-water contact moved back up to the producing wells. The success of these gas injection cycles is readily apparent from the data, although wellbore mechanical problems influenced the results of some of the gas cycles.

The South Marsh Island B-35K Reservoir appears to be a candidate for additional gas injection cycles to recover attic oil that could not otherwise be recovered. The highest structural well has watered out due to the active water drive. The updip, or attic oil volume, which is the volume above the highest well, is unknown, as is the location of the original oil-water contact. Previous gas injection cycles have successfully recovered attic oil. The remaining question is whether additional attic oil can be recovered through gas injection. The development of the numerical simulation, which will be discussed later, that accurately matches the historical performance of the B-35K Reservoir, provided reasonable predictions of the performance which could be achieved through additional gas injection cycles.

B-65G Reservoir

The B-65G Reservoir is a long, north-south trending, steeply dipping sandstone, which pinches out just before encountering the piercement salt dome on its southeastern flank. Structure and trapping are all results of the piercement salt dome.

Overall it is a clean sand that averages 66 feet in gross thickness and 53 feet in net sand thickness. Material balance calculations indicated that the reservoir was originally at its bubble point with a small gas cap and contained about 12 MMSTB of oil. Its original reservoir pressure was 3457 psi at 7351 feet subsea.

The reservoir has produced 6.2 MMSTB of oil, 3.4 BCF of gas (which also accounts for all gas injected back into reservoir) and 820 MBBLS of water over a period of 27 years. Four wells produced from the reservoir; three injected 2 BCF of gas and one well injected no gas. A fifth downdip well, served as a primary gas injector and injected an additional 732 MMCF of gas.

The B-65G sand reservoir began production in October 1966 when the #B-1, #B-7, and #B-10D wells were put on line. The #B-12 was put on line in February 1967. The #B-11A (July 1974), #B-9D (April 1967), and #B-17 (April 1971) were all drilled south of the B-65G Reservoir and produced from the B-65GS Reservoir, which has been interpreted to be separated from the B-65G Reservoir by a sealing fault. Presently, the #B-12 and #B-1 wells are active in the B-65G Reservoir. The B-1 well is currently going through a gas injection stage.

The reservoir consists of approximately 10,100 acre-feet or an average net pay thickness of 38 feet over 267 acres. Porosity averages 28.5% and the original oil saturation was estimated at 73%, with an initial formation volume factor (FVF) of 1.3 res bbls/STB. Estimated volumetrically, the original in-place-oil is 12.6 MMSTB. Therefore, through March 1995, 49.8% of the original oil-in-place had been produced.

Conclusions

The results of this study have offered a set of technically feasible solutions to help improve the oil recovery from these reservoirs through additional attic gas injection cycles. For the B-35K Reservoir, the recommendations and conclusions are as follows:

1. The injection rate sensitivities indicate that relatively low injection rates accelerate the

production response from additional gas injection cycles due to improved segregation of the gas in the attic. The ultimate incremental recovery is improved only slightly at lower gas injection rates. An injection rate of about 500 MCFD appears to be optimum for recovery for this reservoir.

2. The injection volume sensitivities show that production is slightly accelerated at higher injection volumes and that incremental oil recovery tends to be higher, but there is a point of diminishing returns. The optimum gas injection volume appears to be between 150 and 300 million cubic feet.
3. The post-injection shut-in time sensitivity indicates that a three month shut-in time yields an optimum incremental oil recovery.
4. The injection volume staging sensitivity indicates that higher incremental recovery can be achieved by dividing the total injection cycle into two stages, with a short production stage between. This improved recovery is most likely due to better segregation of the injected gas in the attic.

In addition to the technical solutions, the results of the sensitivity cases could be analyzed from an economic point of view to determine the optimum injection volume, injection rate, and shut-in period, based on operating conditions and costs.

The study of the B-65G reservoir indicates that BOAST III is able to accurately describe the history of a steeply dipping reservoir with a past gas injection project. Through history matching and predictive simulation runs, it has been shown that the gas injection cycles were very successful in moving attic oil down to be produced by the downdip wells in the B-65G reservoir in South Marsh Island Block 73 Field. Recommendations to the operator, based upon this study, would be to recover the remaining reserves of 400 MSTB of oil available from the B-12 well and then blowdown the gas cap, which is estimated to contain 1.0 BCF of gas

I. INTRODUCTION

Secondary recovery by downdip gas injection in steeply dipping oil reservoirs has been used successfully since the 1950s. The technique is used primarily around piercement salt dome reservoirs. Most of the reservoirs, some with gas caps and some without, around these piercement salt domes have active water drives. Reservoirs with both an active water drive and a gas cap will have higher natural recoveries than reservoirs without a gas cap. Because of this, operators in the 1950s began experimenting with creating artificial gas caps to increase their recoveries in both reservoirs with no natural gas cap and those with small natural gas caps.

Because older processed seismic data does not provide the clarity that recent 3-dimensional and newly processed or reprocessed 2-dimensional seismic data provide, operators, in the past, gave themselves plenty of room away from the salt dome in locating wells. This was in order not to penetrate the salt which created drilling and completion problems and in some cases resulted in dry holes. However, because of this safety factor in the location of the wells, all or a portion of the upstructure portion of the reservoir cannot be drained. Because these upstructure volumes are usually insufficient to support the drilling of an additional well updip, these volumes become bypassed reserves.

If a reservoir has reasonable permeability and dip, gas injected into a lower structural position will migrate upward and create an artificial gas cap. This artificial gas cap works just as a

natural gas cap would. As the reservoir is produced and the reservoir pressure declines (assuming that the reservoir is not steady state), the gas cap expands and pushes the oil downward toward the downdip well. Methane and nitrogen have been the primary gases used. To illustrate present day situations or reservoirs that may have up dip oil reserve potential, two reservoirs in the South Marsh Island Block 73 Field in the Gulf of Mexico were analyzed. This report presents the results of the simulation studies of the Taylor Energy B-35K and B-65G reservoirs in the South Marsh Island Block 73 Field.

II. FIELD INFORMATION

II.1 Data

All necessary and available data were collected from Taylor Energy, which purchased the field from Exxon in 1993. All well logs, core analysis, historical, production and injection histories were available. Measured pressure-volume-temperature (PVT) data was calculated.

II.2 Field History

The South Marsh Island Block 73 (SMI 73) Field is located approximately 77 miles south of Intercoastal City, LA in 135 feet of water in the Gulf of Mexico (see Figure 1). The field was discovered in 1963 by Exxon when the #1 Well SMI 69 was drilled. Several other exploratory wells were drilled by Exxon and Shell on this block and the surrounding blocks (see Figure 2). The field was subsequently developed by Shell (SMI 57 and 58) and Exxon (SMI 69, 72, and 73). Production from the field was initiated in 1964, and over time, a total of eight platforms were set and over 100 development wells were drilled. Taylor purchased the Exxon interest in SMI Blocks 69, 72, and 73 in 1993 and assumed operatorship (see Figure 3).

The field is predominantly oil productive and production peaked in 1971 at a rate of 16,900 BOPD and 68 MMCFD. The field is currently producing almost 2,000 BOPD, 5 MMCFD and 2,600 BWPD (see Figure 4). The productive zones have been established at depths between 5,000 feet and 11,500 feet. The cumulative production from the field as of January 92 totaled 67 million barrels of oil (MMBO), 276 billion cubic feet of gas (BCF), and 46 million barrels of water (MMBW). The gas from the field has not been sold; rather, it has been used for fuel or reinjected to improve oil recovery. The cumulative production from the Taylor blocks total 45 MMBO and 36 BCF.

II.3 Field and Reservoir Geology

The SMI 73 Field is established by the simple piercement salt dome structure, as shown in Figure 2. The dome is relatively circular in shape, with a small area of overhang at the southeast corner. The current top-of-salt is approximately 364 feet below mean sea level. This dome formed in relatively shallow water, with salt movement having been initiated prior to the deposition of many of the key reservoir units. Sedimentation continued during the movement of the salt. The source for the main reservoir sands was apparently predominantly from the north and east. Drilling has been concentrated on the northern, eastern and southeastern portions of the structure, with twenty-five Miocene and Pliocene aged sands being productive from more than

LOCATION OF SMI BLOCK 73 FIELD IN THE GULF OF MEXICO

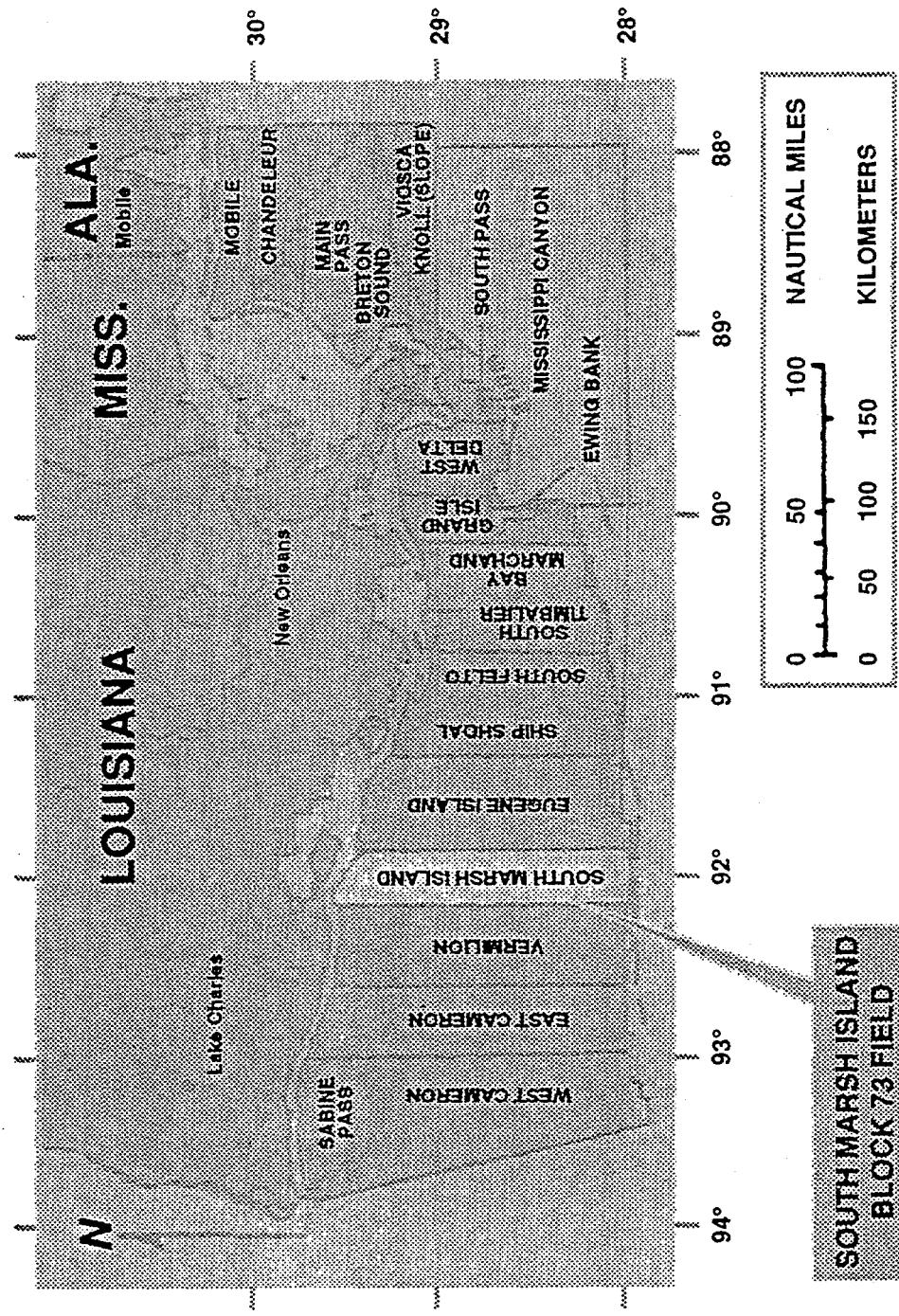
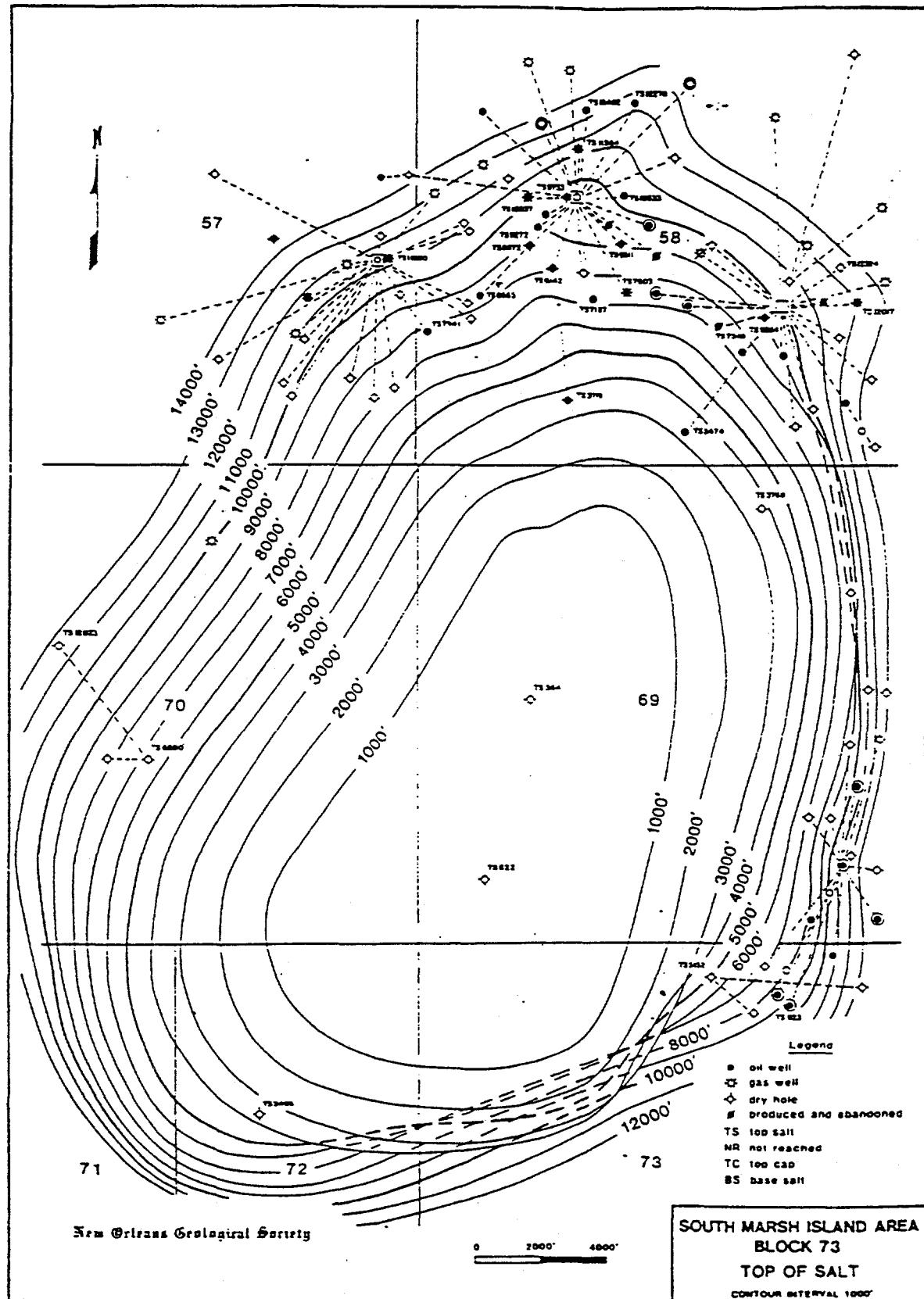



Figure 1

Location of South Marsh Island Block 73 Field in the Gulf of Mexico

Waguespack, S.J., "Salt Domes of South Louisiana," The New Orleans Geological Society, Volume III, 1983, pp. 58-59.

Figure2 Structure Map on the Top of Salt for South Marsh Island 73 Field

SMI BLOCK 73 FIELD PRODUCTION STATISTICS

Discovery:	1964	(Exxon SMI 69 #1)
Ownership:	Taylor Shell	(SMI 69, 72, 73) (SMI 57, 58)
Initial Production:	1964	
Peak Production (1971):	16,900 BOPD	68 million scfd
Current (1/92):	1800 BOPD	4.6 million scfd
Cumulative Production (1/92) Field:	67 276 46	million Bbl Oil billion scf Gas million Bbl Water
Taylor Blocks:	45 36	million Bbl Oil million scf Gas

Figure3

South Marsh 73 Field Production Statistics

SMI 73 FIELD PRODUCTION HISTORY

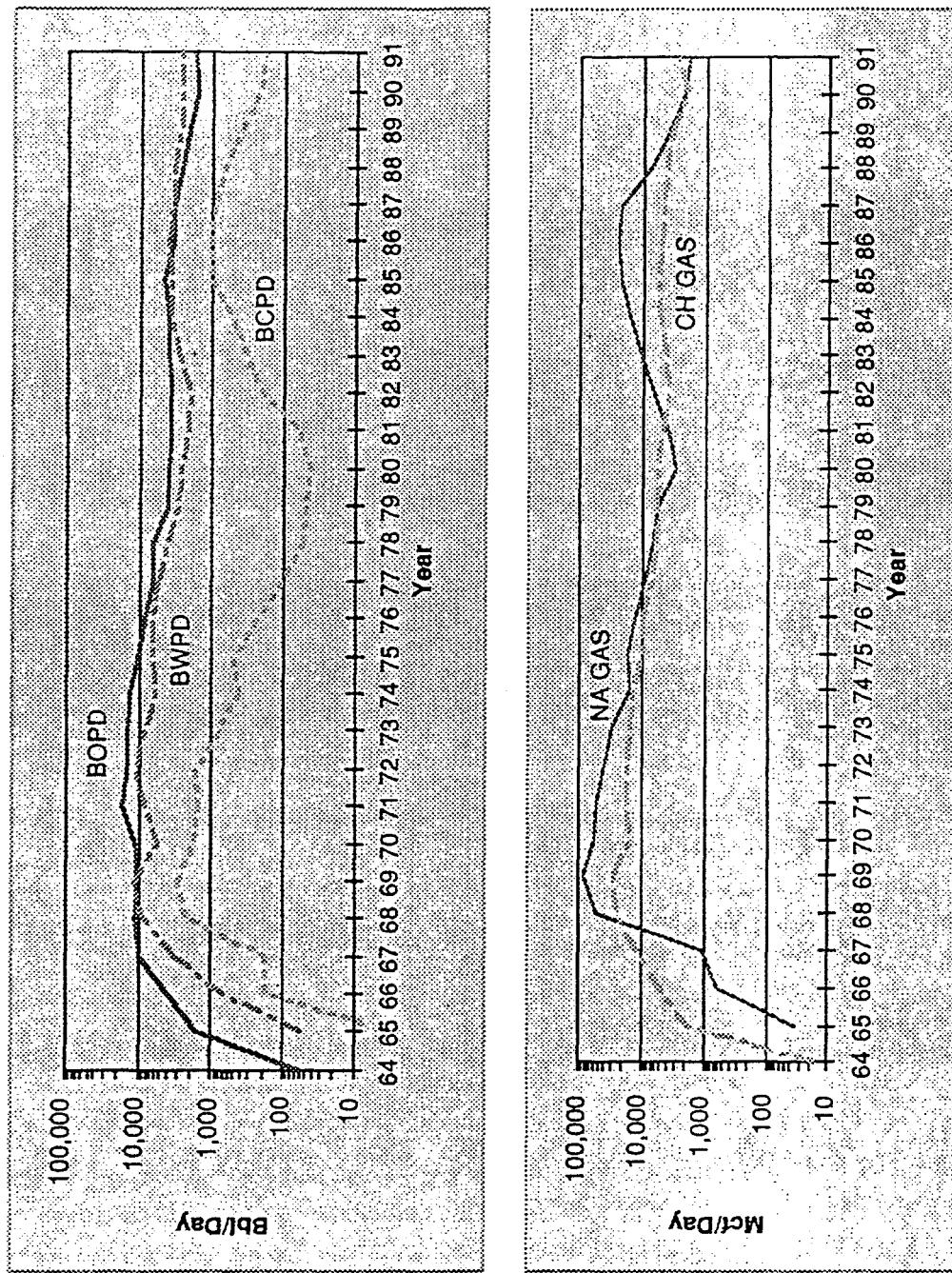


Figure4 South Marsh Island 73 Field Production History

sixty reservoirs around those sides of the dome. Exploratory drilling on the western side of the structure indicates that area was on the lee side during deposition and was sheltered from most of the sand-laden currents. The rate of sediment influx appears to have been low and the material was very fine-grained during the deposition of most of the key reservoirs, with sands having been limited to deeper-water areas around the growing dome, and shale having been deposited atop the structure in a more-or-less starved environment. This helps to account for the facts that many of the reservoirs pinch out updip, toward the salt, and that most of the dome is wrapped in a shale sheath.

Both reservoir sands, B35K and B65G, in the South Marsh Island area were deposited well offshore, in an open marine environment, in moderately deep water. The region had a hummocky, irregular bottom at the time of deposition, which controlled the flow of oceanfloor currents through the area. Salt movement took place concurrently with deposition of the reservoir sands and the enclosing shales. The syndepositional growth of the salt domes created a number of highs on the seafloor as sediments accumulated in the area.

Coarser-grained sediments were carried into the region by density currents, which spread out across the area, following channels along the deeper portions of the seafloor. Fine-grained sands were deposited in these deep areas between the domes, while shale and mud accumulated on the upslope areas and crests of the highs. The growing domes shielded some deeper portions of the seafloor from the density currents, with little sand reaching the lee side of the highs. Thus, sands and shale interfinger in a highly complex manner around the flanks of the domes, marking a period of sand pulses and density flows, alternating with periods of quiet deposition on the exposed side of the structure, and starved-basin conditions with fine-grained sediments on the sheltered side of the dome.

III. RESERVOIR INFORMATION

III.1 B-35K Reservoir

III.1a Reservoir Characteristics

One of the two reservoirs in this study is the B-35 K Reservoir, shown in Figure 5. The B-35 is a typical sand for the SMI 73 Field. The B-35 sand is relatively widespread around the southeastern flank of the dome, with a thickness, downdip, of 40 feet or more. Toward the salt, the sand begins to steepen, eventually pinching out to shale near the salt. Numerous faults radiate out from the salt, cutting the sands into discreet reservoirs. The study area is isolated on the east and west ends by two sealing faults, each with 150 to 200 feet of throw. Exxon had initially identified and interpreted the geology of this block using a series of older 2-D seismic lines. The B-35 K Reservoir was originally developed with a series of five wells. This gave limited control for a geologic interpretation. Four wells from the "A" platform cut the sand and provided isopach data. The C-6 well penetrated the projected sand updip from the other wells and encountered shale at the position of the B-35 zone.

Based on the seismic data and a conservative interpretation of the shale-out position, Exxon developed a reservoir model for the B-35 K Reservoir. The position of the shale-out against the salt has previously been inferred as half way between the estimated position of the salt and the most updip well control. The position of the shale-out was adjusted during the simulation

SMI BLOCK 73 FIELD: B-35 SAND STRUCTURE MAP

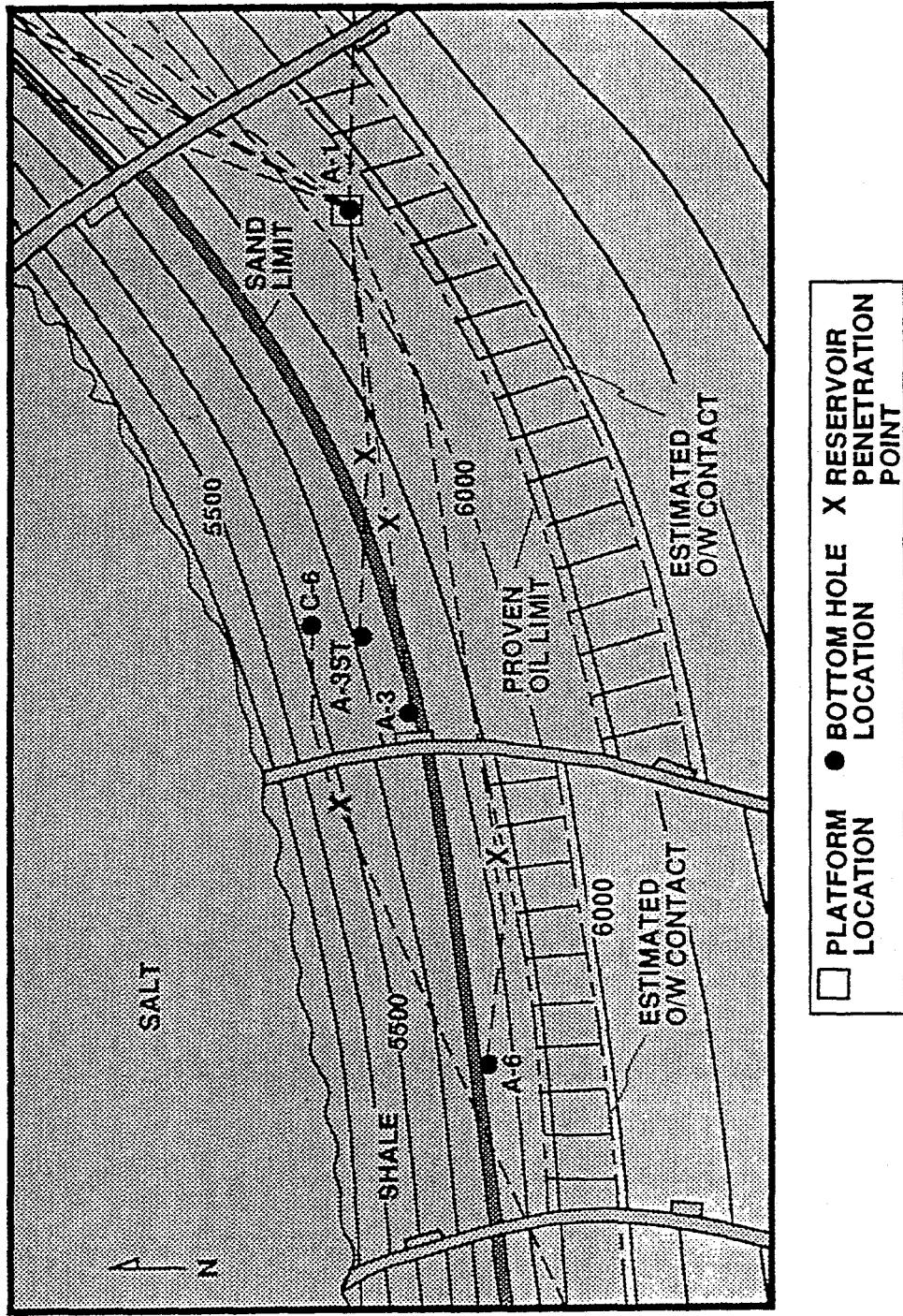
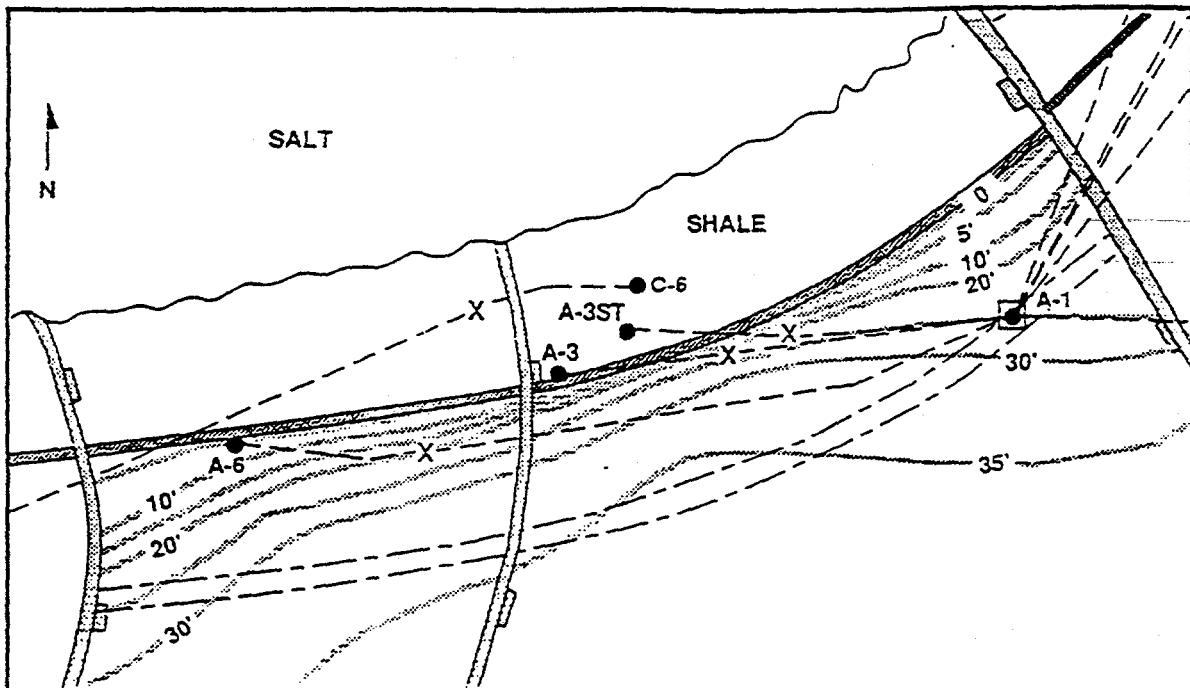


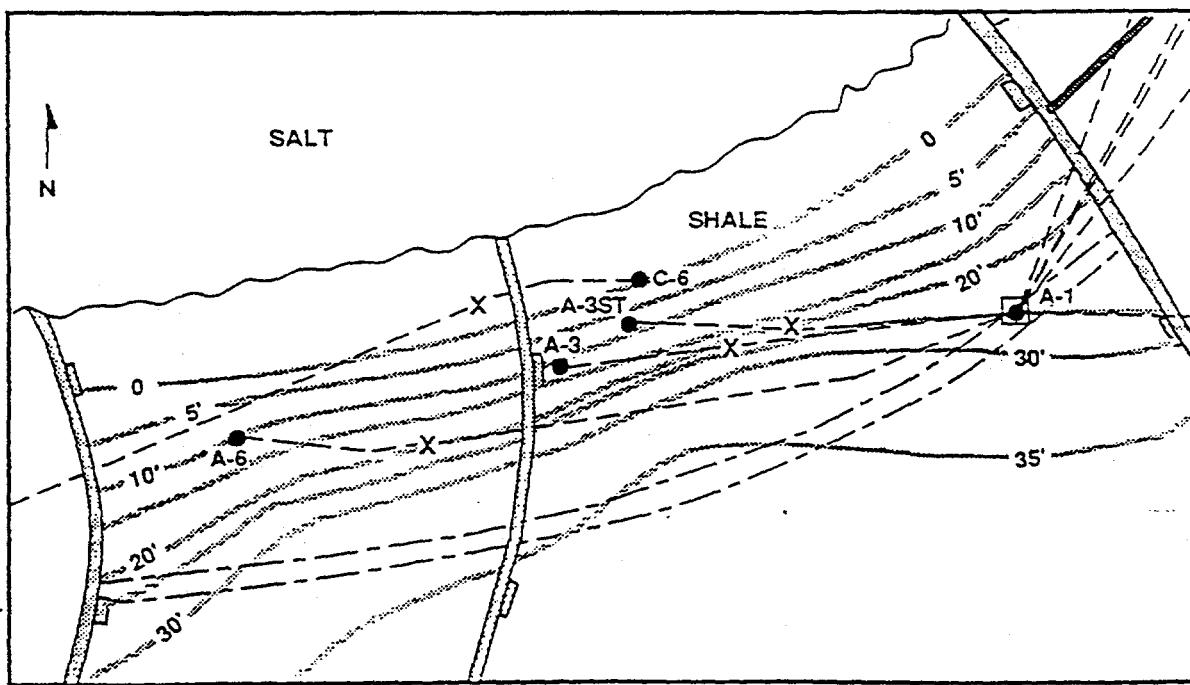
Figure 5 South Marsh Island 73 Field B-35 Sand Structure Map

of the reservoir in order to obtain a history match. As will be discussed later, simulation of the reservoir actually indicated that the shale was closer to the position of the salt face, thus making the reservoir larger than previously thought. This is a good example of where 3-dimensional seismic might confirm adjusted positions of both the salt interface and the shale-out of this and other sands.

To determine the downdip oil limit, Exxon used an arbitrary 100-feet-below-the-lowest-proven-oil standard to set a hypothetical oil-water contact. Exxon also mapped a small fault that seemed to show up on the 2-D seismic data, thus compartmentalizing the B-35 K into two separate reservoirs. The fault was assumed to be sealing.


Figure 6a shows the B-35K Reservoir net sand isopach contours, the internal fault, and the shale-out line, as mapped by Exxon. A detailed analysis of the production histories of the wells and of the reservoir pressure over time were conducted. The data and analyses did not support the concept of an internal fault in the center of the block. No direct evidence for the fault could be found. The original seismic data was not available and the well logs did not show the sort of missing or duplicated geologic sections that would be expected in wells that penetrate fault zones.

Based on the actual reservoir performance, the geologic model was reinterpreted (Figure 6b). Primarily, the internal fault was removed. If such a fault exists, offsets appear to be minor and the fault is apparently not sealing, making it irrelevant, in terms of the modeling. The updip limit of the sand was extremely conservative originally, and required an unnatural pinching together of the contours in the updip area. This left a large reservoir volume above the original shale-out line, which could help to explain the overproduction from this reservoir. Moving the pinchout line updip, closer to the C-6 control point, made the thinning rate of the sand appear to be much more normal and to fit the production model quite well. In the downdip direction, the oil-water contact was analyzed, and adjusted slightly to fit the actual well production histories better.


The geologic interpretation and reservoir engineering analysis were used synergistically to identify a model that fits the evidence and available data better and that provides a closer fit to the actual production information for the B-35K Reservoir.

The B-35K Reservoir is located at a depth of about 5,800 feet subsea. The average net thickness of the oil column is approximately 22 feet, and the sand shales out in the updip direction and thickens in the down-dip direction. The average porosity in the reservoir is 29.5%, the water saturation is 16.5 %, and the permeability is 1,150 millidarcies. The reservoir exhibits an active natural water drive and is believed to have been initially at saturated conditions with no initial gas cap. The initial reservoir pressure was estimated to be 2,712 psia, and the pressure history is shown in Figure 7. This pressure performance indicates the presence of a strong water drive in the reservoir.

None of the development wells that penetrated the B-35K Reservoir encountered an oil-water contact, so the exact location of the contact is unknown. The A-1 Well encountered oil at the lowest structural point in the reservoir, and the down-dip A-6 (#2 Sidetrack) was wet in this zone, as shown in Figure 5. Therefore, the location of the oil-water contact is somewhere between these two structural levels. Likewise, the exact updip limit of the reservoir is unknown. The A-3 (Sidetrack) encountered oil at the highest structural position in the reservoir, but at the updip location of Well C-6, the sand is completely shaled out. Thus, the updip limit of the reservoir lies somewhere between these two structural points (see Figure 6a and 6b).

a) Original interpretation

m93-5276-32

b) Revised interpretation with Attic volume addition

□	PLATFORM LOCATION	●	BOTTOM HOLE LOCATION	×	RESERVOIR PENETRATION POINT
---	----------------------	---	-------------------------	---	-----------------------------------

Figure 6. B-35K Reservoir Net Sand Isopachous Map

Pressure History For B-35K Reservoir

Pressure Versus Time

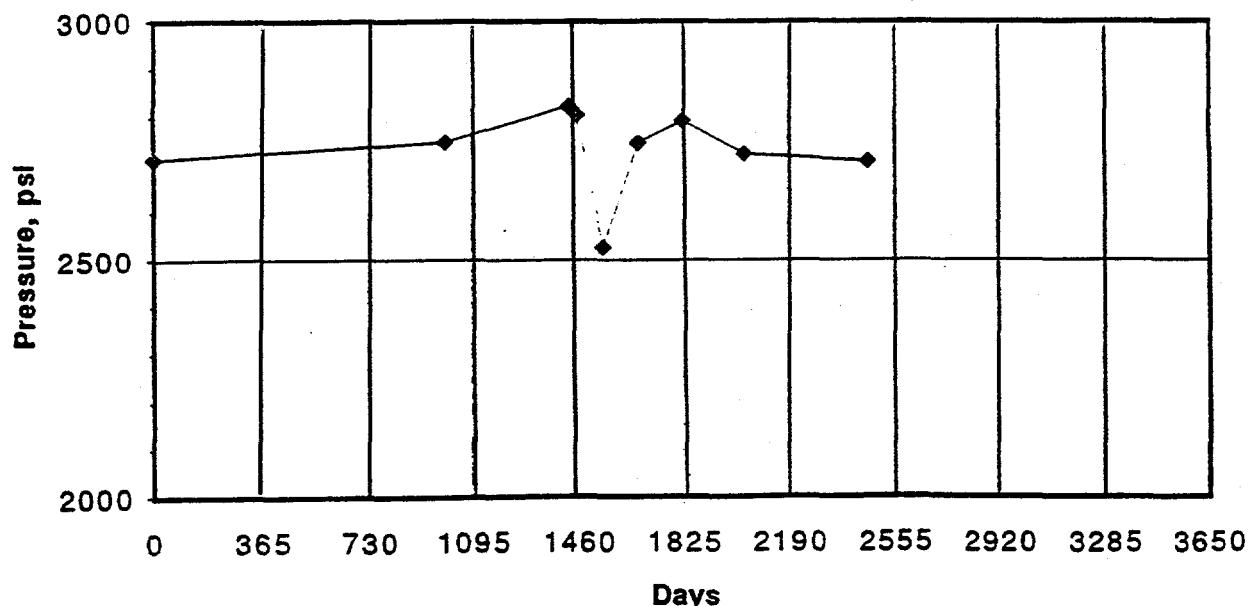


Figure 7 - Pressure History for the B-35 Reservoir

III.1b Reservoir Production and Injection History

Production from the B-35K Reservoir was initiated in October 1966 from the A-1 Well and the short-string completion of the dually completed A-3 Well (Well A-3D). Well A-3D produced until July 1971 when the well was reworked and put on production as a single completion in the B-35K Reservoir. Well A-3 produced from March 1972 through November 1982, when the well was shut-in due to sanding problems. In June 1983, the B-35K completion in the A-3 Well was abandoned, and the well was sidetracked and completed as a producer in the deeper D-5 Sand. The cumulative Well A-3D/A3 production from the B-35K Reservoir totaled 1.2 MMBO, 530 MMCF, and 69,000 BW. Well A-1, which is located downdip of Well A-3 in the B-35K Reservoir, watered out in October 1971, with cumulative production of 394,000 BO, 193 MMCF, and 43,000 BW. Well A-6D produced from the B-35K Reservoir from October 1966 through May 1976 when the well watered out and was recompleted as a single producer in the deeper D-5 Sand. Cumulative production from Well A-6D totaled 1.4 MMBO, 739 MMCF and 86,000 BW. The cumulative production for the B-35K Reservoir totals 3.0 MMBO, 1.5 BCF and 198,000 BW. The B-35K Reservoir production history is displayed in Figure 8 and the production history for the individual wells are displayed in Figures 9 through 11. The cumulative production data are shown in Table 1.

In 1992, the A-6 well was recompleted and tested in the B-35K zone, which came on initially with 100% oil and immediately went to water. Taylor is tentatively planning to inject gas into this well and produce the additional attic oil.

During the productive life of the B-35K Reservoir, five attic gas injection cycles were conducted in the A-3D/A-3 Well to improve the oil recovery from the reservoir. The injection of gas into the attic of the reservoir resulted in the recovery of additional oil by causing the oil-water

DAILY PRODUCTION RATES FOR B-35K RESERVOIR

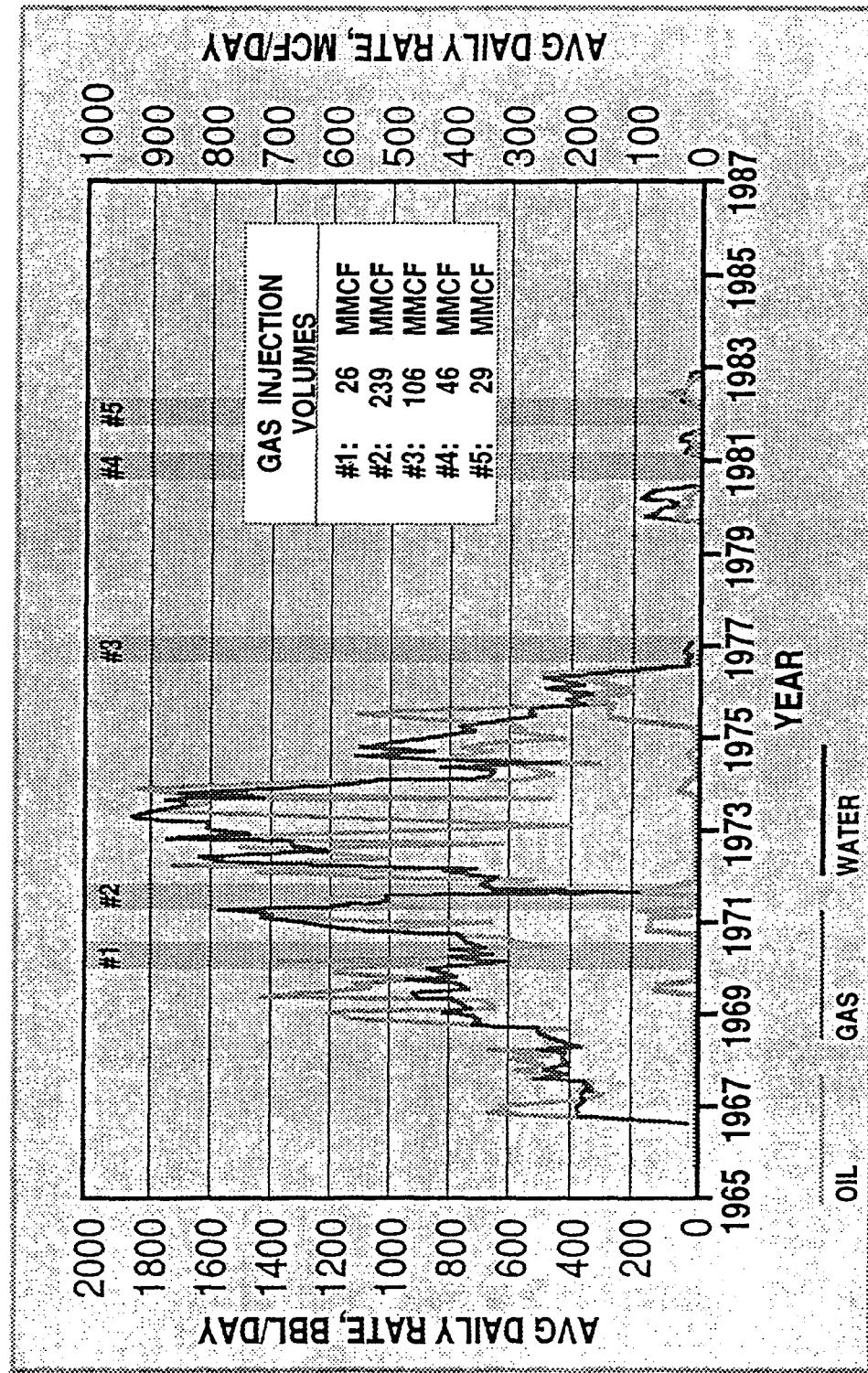


Figure 8

Daily Production Rates for B-35K Reservoir

DAILY PRODUCTION RATES FOR WELL A-1
B-35 SAND

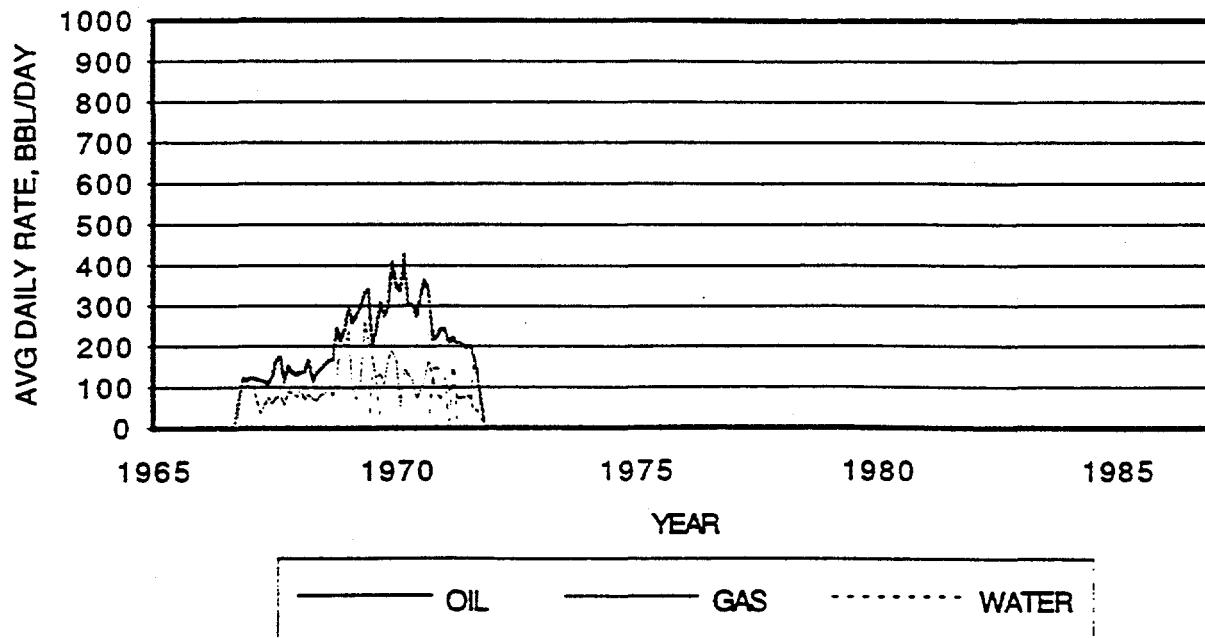


Figure 9 - Production History for SMI 73, Well A-1

DAILY PROD. RATES FOR WELL A-3D/A-3
B-35 SAND

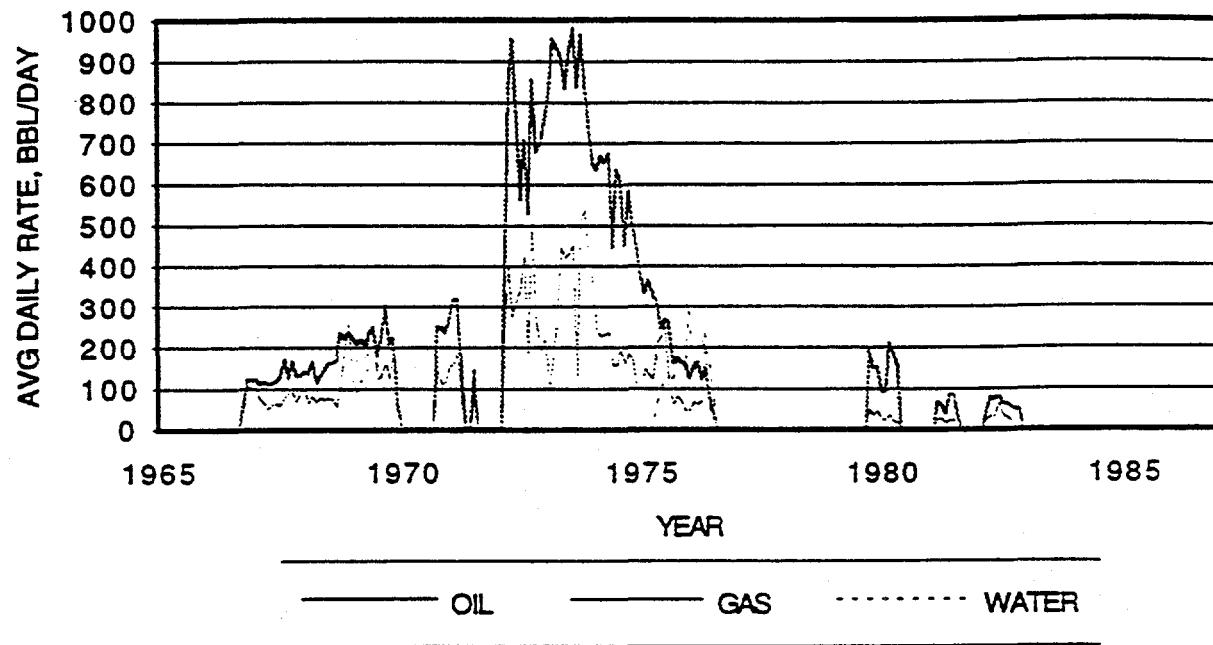


Figure 10 - Production History for SMI 73, Well A-3D/A-3

DAILY PRODUCTION RATES FOR WELL A-6D
B-35 SAND

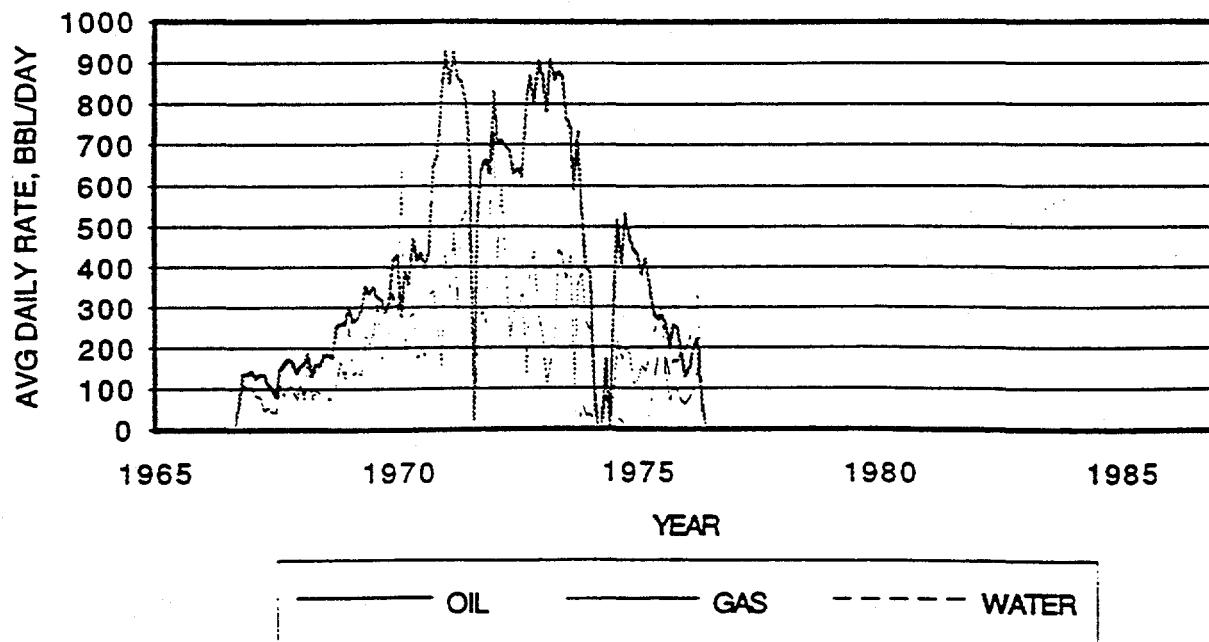


Figure 11 - Production History for SMI 73, Well A-6D

CUMULATIVE PRODUCTION
FOR B-35K RESERVOIR

Well	Oil (1000 Bbl)	Gas (million scf)	Water (1000 Bbl)	Gas Injection (million scf)
A-1	394	193	43	—
A-3D, A-3	1,184	530	69	446
A-6D	1,446	739	86	—
Total	3,024	1,462	198	446

Table 1 - Cumulative Production for the B-35K Reservoir

contact to move downdip, away from the producing wellbores. Water-free production was realized until the oil-water contact moved back up to the producing wells. The success of these gas injection cycles is readily apparent from the data, although wellbore mechanical problems influenced the results of some of the gas cycles. A total of 452 MMCF of gas was reinjected into the reservoir, which resulted in the incremental recovery of 1.2 MMBO, or 2,191 BO/MMCF. The results of the gas injection cycles are indicated in Figure 8 and are summarized in Table 2. The results of the attic gas injection cycles were generally favorable and additional cycles would undoubtedly be beneficial.

GAS INJECTION DATES	INJECTION VOLUME (MMCF)	INCREMENTAL OIL RECOVERY (1,000 BO)	RECOVERY PER MMCF (BO/MMCF)
12/69 - 05/70	32	59	1,845
04/71 - 07/71	239	866	3,264
08/76 - 11/76	106	38	353
09/80 - 11/80	46	11	241
09/81 - 11/81	29	17	580
TOTAL	452	1,184	2,191

Table 2 - B-35K Reservoir Gas Injection History Summary

III.1c Original Oil-In-Place Calculations

The average reservoir properties were used, along with the net pay isopachous maps, to calculate three volumetric oil-in-place (OOIP) values for the B-35K Reservoir, as summarized in Table 3. The first OOIP calculation is the "Proven Oil Limit" case, which assumes that the shale-out is above the highest take point in the reservoir and that the oil-water contact is just below the lowest take point. This conservative case yields an OOIP of 3.5 MMBO, which means that recovery to date equals 86% of the OOIP. This recovery value is unreasonably large, meaning that the OOIP must be higher. If the oil-water contact is assumed to be 100 feet below the low proven point, then the OOIP increases to 7.3 MMBO, and the percent recovery decreases to 41% of the OOIP. If the sand is assumed to gradually thin in the updip direction to a zero value at the C-6 well, then the OOIP increases by 1.3 MMBO to 8.6 MMBO, reducing the recovery value to 35% of the OOIP. Also shown in this table is the original oil-in-place for the final model history match case, where the original oil-water contact was assumed to be at 6,176 feet subsea. The OOIP for this case is 6.3 MMBO and the recovery value is 48% of the OOIP.

ORIGINAL OIL IN PLACE CALCULATIONS

	Acre-Feet	OOIP Million BO	Percent Recovery
Proven Oil Limit	2,396	3.5	86%
With Estimated O/W Contact	4,961	7.3	41%
With Estimated O/W Contact and Updip Potential	5,807	8.6	35%

Assumptions:

Porosity	= 29.5%
Water Saturation	= 16.5%
Oil Formation Volume Factor	= 1.29 STB/Bbl
Initial Pressure	= 2,712 psia
Oil in Place per AF	= 1,481 B/AF

Table3

Summary of Original Oil-In-Place Calculations For the B-35K Reservoir

III.1d Summary

The South Marsh Island B-35K Reservoir appears to be a candidate for additional gas injection cycles to recover attic oil that could not otherwise be recovered. The highest structural well has watered out due to the active water drive. The updip, or attic oil volume, which is the volume above the highest well, is unknown, as is the location of the original oil-water contact. Previous gas injection cycles have successfully recovered attic oil. The remaining question is whether additional attic oil can be recovered through gas injection. The development of the numerical simulation, which will be discussed later, that accurately matches the historical performance of the B-35K Reservoir, provided reasonable predictions of the performance which could be achieved through additional gas injection cycles.

III.2 B-65G Reservoir

III.2a Reservoir Characteristics

The B-65G Reservoir is a long, north-south trending, steeply dipping sandstone, which pinches out just before encountering the piercement salt dome on its southeastern flank, as illustrated by the structure map of the sand in Figure 12. Its dip rate averages 19 degrees. Structure and trapping are all results of the piercement salt dome. The location of the pinch-out of the sand along the salt face was the portion of the reservoir for which there was the least control. This parameter is the one for which major modifications were made for a history match during computer simulation. The position of the shale-out against the salt has previously been inferred as half way between the estimated position of the salt and the most updip well control. The position of the shale-out was adjusted during the simulation of the reservoir in order to obtain a history match. Unlike the adjustments made for the B-35K reservoir, where the shale-out was moved closer to the salt face, the adjustments for the shale-out of the B-65G varied. In some locations it was necessary to move the shale-out into the reservoir, effectively making the volume of the reservoir smaller. However, at some locations it was necessary to move the shale-out closer to the salt face as was done for the B-35K reservoir. These adjustments will be discussed in detail later.

Numerous faults radiate out from the salt and isolate the sand into several reservoirs, including two that are adjacent to the B-65-G reservoir. These two adjacent reservoirs are believed to be isolated from the B-65-G reservoir by faulting because of differences observed in the bottomhole pressure histories of producing wells.

Overall it is a clean sand that averages 66 feet in gross thickness and 53 feet in net sand thickness. Material balance calculations indicated that the reservoir was originally at its bubble point with a small gas cap and contained about 12 MMSTB of oil. Its original reservoir pressure was 3457 psi at 7351 feet subsea. Simulation work assumed that this original reservoir pressure was the bubble point. The reservoir exhibits strong water drive support. These and other reservoir characteristics have been summarized in Table 4.

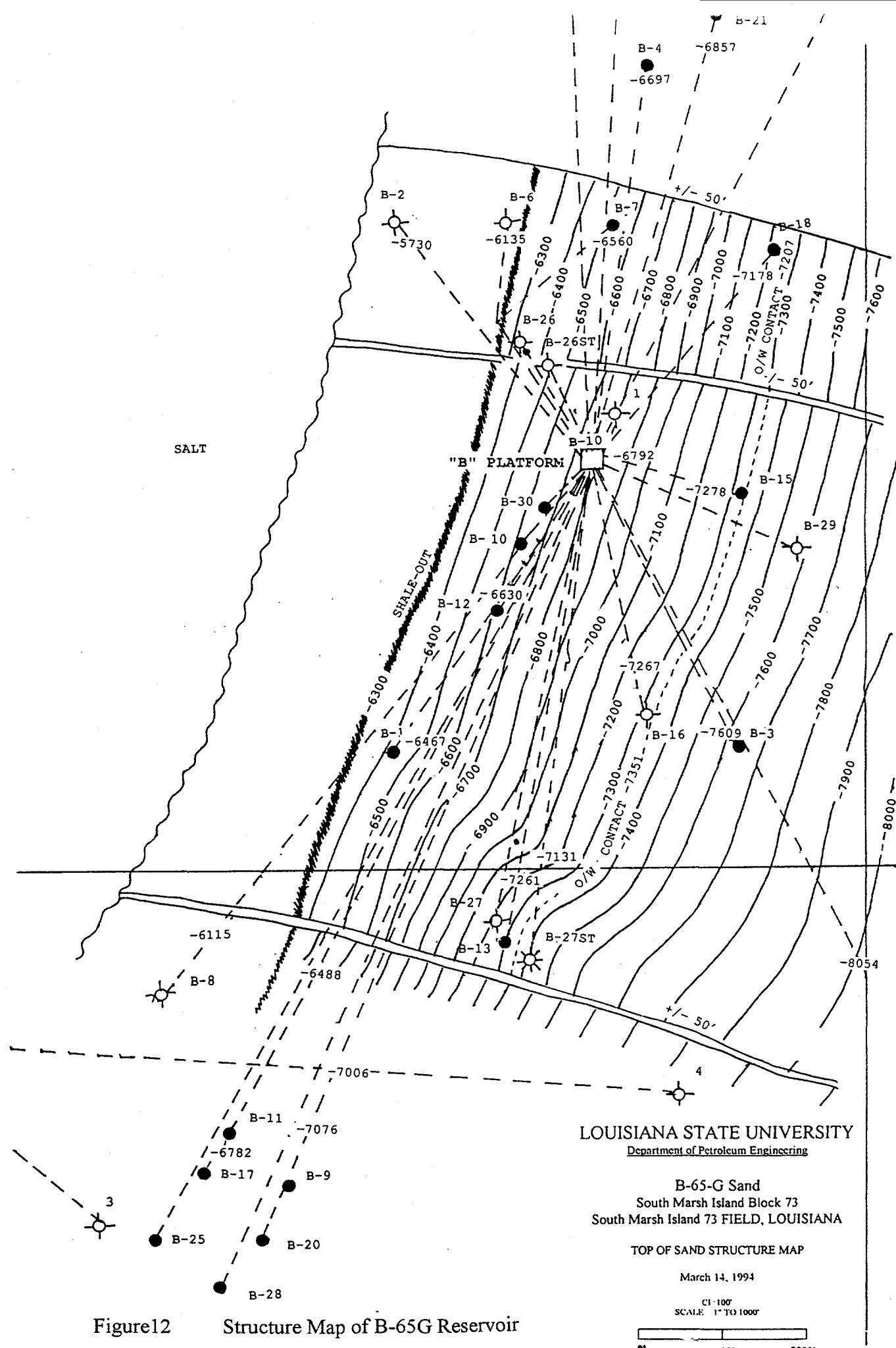


Figure 12 Structure Map of B-65G Reservoir

Table 4
South Marsh Island Block 73 Field
B-65-G Reservoir Characteristics

Original Reservoir Pressure	3457 psi
Datum	7351 feet subsea
Average Porosity	28.5%
Original Water Saturation	23%
Average Thickness	37 feet
Areal Extent	267 acres
Average Horizontal Permeability	620 md
Average Horizontal/Vertical Permeability Ratio	0.1
Initial Gas-Oil Ratio	867 SCF/STB
Initial FVF	1.3 Res bbl/STB

III.2b Reservoir Production and Injection History

The reservoir has produced 6.2 MMSTB of oil, 3.4 BCF of gas (which also accounts for all gas injected back into reservoir) and 820 MBBLS of water over a period of 27 years. Four wells produced from the reservoir; three injected 2 BCF of gas and one well injected no gas. A fifth downdip well, served as a primary gas injector and injected an additional 732 MMCF of gas.

The B-65G sand reservoir began production in October 1966 when the #B-1, #B-7, and #B-10D wells were put on line. The #B-12 was put on line in February 1967. Production from these wells is shown graphically in Figures 13 through 16. The #B-11A (July 1974), #B-9D (April 1967), and #B-17 (April 1971) were all drilled south of the B-65G Reservoir and produced from the B-65GS Reservoir, which has been interpreted to be separated from the B-65G Reservoir by a sealing fault. Presently, the #B-12 and #B-1 wells are active in the B-65G Reservoir. The B-1 well is currently going through a gas injection stage. Table 5 shows the cumulative production and gas injection values through March 1995.

III.2c Original Oil-in-place Calculations

The reservoir consists of approximately 10,100 acre-feet or an average net pay thickness of 38 feet over 267 acres. Porosity averages 28.5% and the original oil saturation was estimated at 73%, with an initial formation volume factor (FVF) of 1.3 res bbls/STB. Estimated volumetrically, the original in-place-oil is 12.6 MMSTB. Therefore, through March 1995, 49.8% of the original oil-in-place had been produced. In later documentation, material balance methods confirm this amount.

**SOUTH MARSH BLOCK 73
B65-G RESERVOIR - B12 WELL**

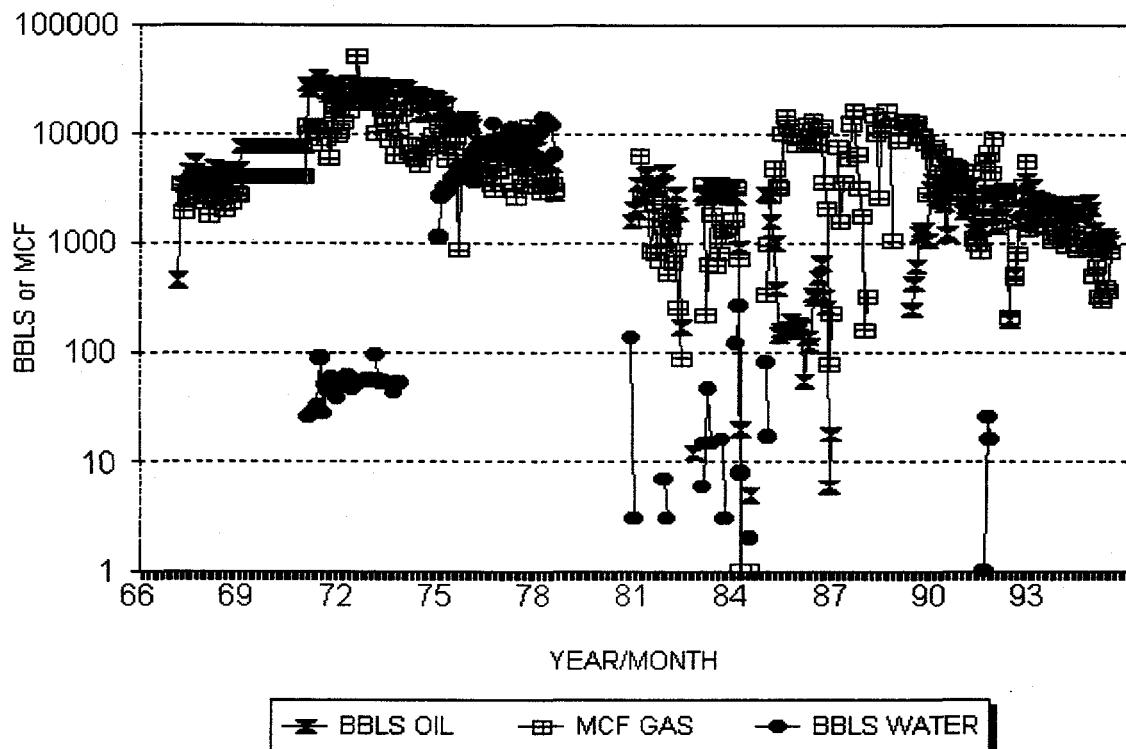


Figure 13 - Production History for SMI 73, Well B-12, B-65G Reservoir

**SOUTH MARSH BLOCK 73
B65-G RESERVOIR - B1 WELL**

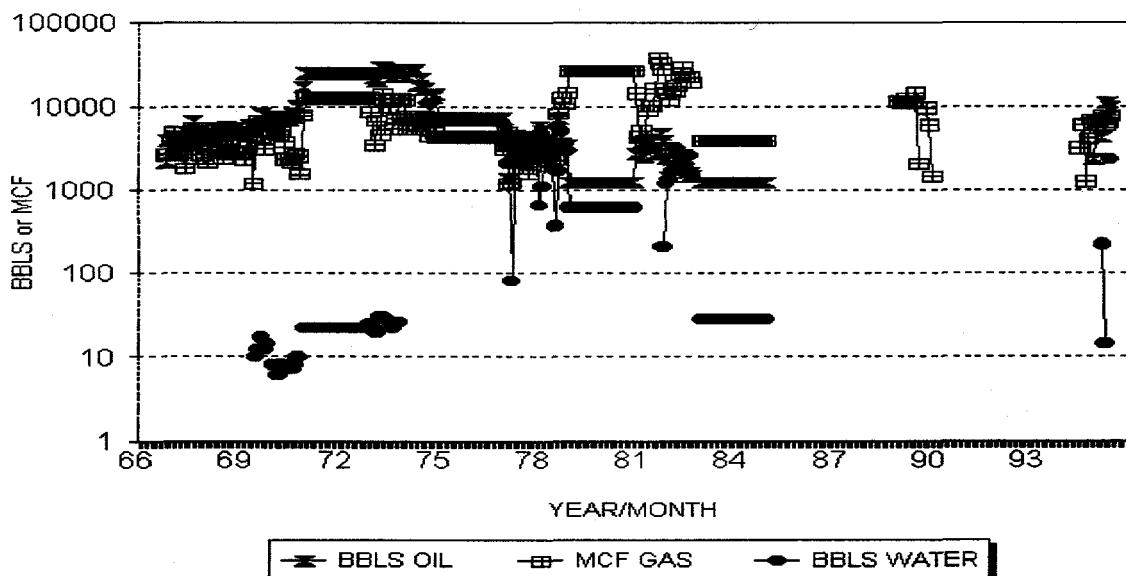


Figure 14 - Production History for SMI 73, Well B-1, B-65G Reservoir

**SOUTH MARSH BLOCK 73
B65-G RESERVOIR - B10D WELL**

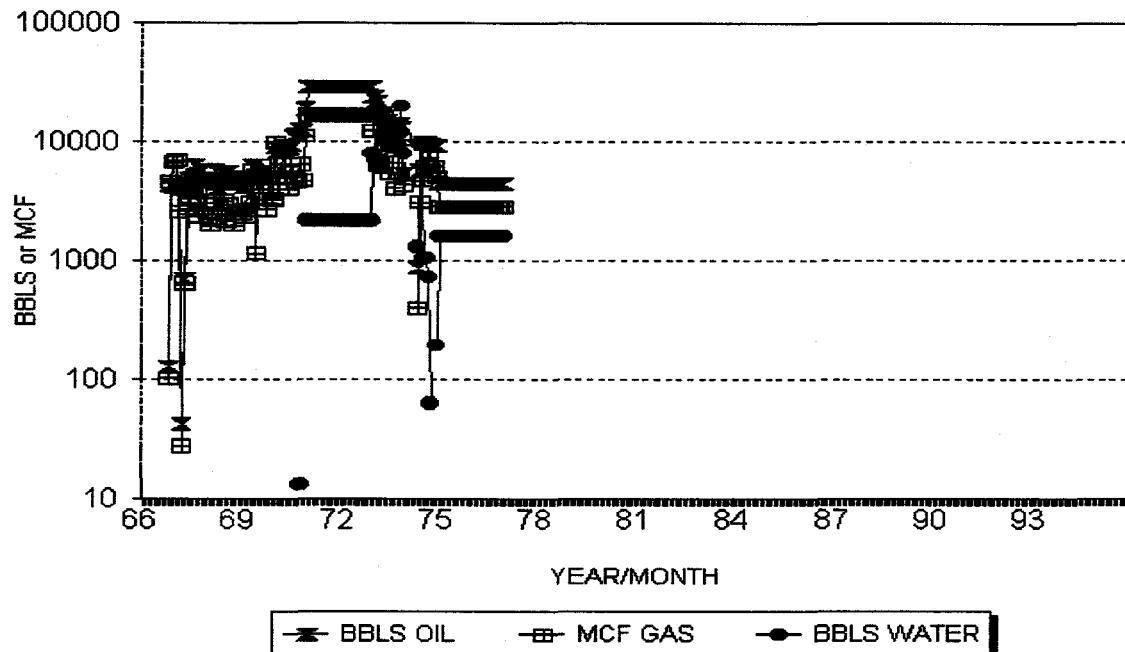


Figure 15 - Production History for SMI 73, Well B-10D, B-65G Reservoir

**SOUTH MARSH BLOCK 73
B65-G RESERVOIR - B7 WELL**

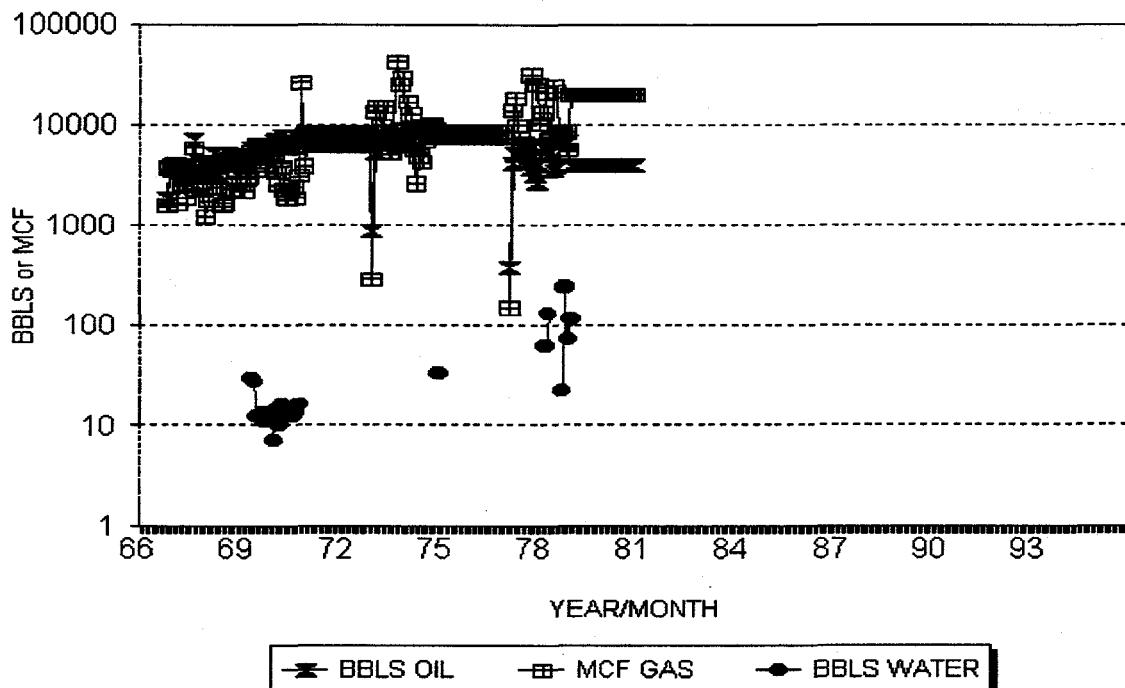


Figure 16 - Production History for SMI 73, Well B-7, B-65G Reservoir

TABLE 5
Cumulative Production and Gas Injection, B-65G Reservoir

WELL OIL-MSTB	GAS-MMCF	WATER-MBBLS	GASINJ-MMCF
B-1	1827	2115	259
B-7	1020	1576	1
B-10D	1325	792	220
B-12	2108	3980	341
B-15	0	0	0
TOTAL	6280	8463	821
			2763

III.2d Summary

The B-65G Reservoir structural interpretation was inadequate. The exact placement of the southernmost fault was in question, and the northernmost fault's sealing properties were also in question. The updip, or attic oil, volume is unknown. Previous gas injection cycles have successfully recovered attic oil. The remaining questions are: Can additional attic oil be recovered through gas injection, and, if so, how much? The development of the numerical simulation, which will be discussed later, that accurately matches the historical performance of the B-65G Reservoir, provided reasonable predictions of the performance that could be achieved through additional gas injection cycles.

IV. BOAST3-PC BLACK OIL SIMULATOR

IV.1 Introduction

BOAST3-PC¹ is a Black Oil Applied Simulation Tool used routinely for performing evaluation and design work in modern petroleum reservoir engineering. In 1982 the U.S. Department of Energy released the original black oil model called BOAST². BOAST II³, released in 1987, was designed to provide more flexibility and to overcome some of the limitations of the original BOAST. Many features were added to improve the versatility of the model.

BOAST3, a modified, PC-version of BOAST II, is more efficient than its predecessor and is designed to run in a 386/486 PC-based environment. Streamlined code and use of a 32-bit Fortran compiler makes BOAST3 3.7 times faster than BOAST II.

¹ Sawyer, W. K., "BOAST3-A Modified Version of Handbook for Personal Version of BOAST II: A Three-Dimensional, Three-Phase Black Oil Applied Simulation Tool," Department of Energy Report Contract Number DE-AC22-92BC14831: 1996

² Franchi, J.R., Harpole, K.J., and Bujnowski, S.W., "BOAST: A Three-Dimensional, Three-Phase Black Oil Applied Simulation Tool," U.S. Department of Energy Report Contract Number DOE/BC/1033-3, Volumes 1 and 2: 1982.

³ Franchi, J.R., Kennedy, J.E., and Dauben, D.L., "BOAST II: A Three-Dimensional, Three-Phase Black Oil Applied Simulation Tool," U.S. Department of Energy Report Contract Number DOE/BC-88/2/SP: 1987.

BOAST3 simulates isothermal, darcy flow in three dimensions. It assumes that reservoir fluids can be described by three fluid phases (oil, gas, and water) of constant composition with physical properties that depend on pressure only. This PC version of BOAST is limited by a maximum grid dimension of 30x28x7 or 30x7x28 in the X, Y, and Z directions.

BOAST3 has a wide range of applicability. It can simulate oil and/or gas recovery by fluid expansion, displacement, gravity drainage, and capillary imbibition mechanisms. Some of the typical field production problems that can be handled by BOAST3 include but are not limited to:

- Primary depletion studies;
- Pressure maintenance by water and/or gas injection; and
- Evaluation of waterflooding, operations.

BOAST3 is a finite-difference, implicit pressure/explicit saturation (IMPES) numerical simulator. It includes options for both direct and iterative solution techniques for solving systems of algebraic equations. The main features of BOAST3 are exhibited in Figure 17. Some of the features and options of the BOAST3 model include:

- An option for simulating steeply dipping reservoirs;
- Allowances for multiple rock and PVT regions;
- A bubble point tracking scheme;
- An automatic time step control method;
- Material balance check on solution stability;
- Allowances for multiple wells per grid block; and
- An option for rate or pressure constraints on well performance.

In addition, BOAST3 includes two post processors: B3PLOT and COLORGRID. B3PLOT is a line graphics package used to plot data, such as production, pressure, and saturation, versus time. The package has two modes: (1) Plotting simulated data, allowing comparison of the results from up to five different simulation runs; and (2) History matching, using oil, water, or gas production data, GOR, or WOR; the average reservoir pressure or bottomhole well pressure can also be matched.

COLORGRID is used to view the finite difference grid on the screen as either a plan or elevation. The range of the parameter selected determines the color of the grid. Various arrays (maps) of input or output data may be represented by a 12 band color legend. An annotation option, which displays the numerical values of the parameter selected within each grid block, is provided. Any portion of the grid may be expanded to fill the entire screen.

IV.2 General Model Input Data Analysis

Extensive data were required to perform the modeling study using BOAST3-PC. Most of the data were provided by Taylor Energy (as discussed previously) and included reservoir pressure data and production histories (oil, gas, and water production) over the lives of the reservoirs.

Geophysical well logs were provided and analyzed for porosity and water saturation values and were used as input values for the models. In addition, core data were analyzed to predict the permeability of the different zones/layers within the two reservoirs.

OVERVIEW OF BOAST3 MODEL

- Designed to run in a 386/486 PC-based environment (3.7 times faster than BOAST II)
- Three dimensional, three phase flow model with a wide range of applicability to simulate oil and/or gas recovery by:
 - Fluid expansion
 - Displacement
 - Gravity drainage
 - Capillary imbibition
- BOAST3 is a finite-difference, implicit pressure/explicit saturation (IMPESS) numerical simulator
- Multiple rock and PVT regions can be defined
- Three different aquifer models are available as options
- Maximum grid dimension limits: 20x20x21

Figure17 Overview of BOAST3 Model Features

The following sections will focus upon the analysis of the different reservoir input parameters and will discuss the basis for the assumptions made in order to perform the simulation study. Because Taylor Energy's field data set was incomplete in terms of the requirements for modeling the reservoir, several assumptions based on similar producing reservoirs, field histories, and published data were made to meet the model requirements.

IV.2a Relative Permeability Curves

BOAST3-PC requires relative permeability curves as part of the input data set to simulate the three-phase flow of oil, gas, and water in the reservoir. Because measured relative permeability data were not available from the Taylor field, published data representing similar reservoirs derived from Strickland and Morse (1979) were used. Figure 18 exhibits the relative permeability curves derived from this publication. Early history match simulation runs for each reservoir indicated the need to modify the relative permeability data, as will be shown later.

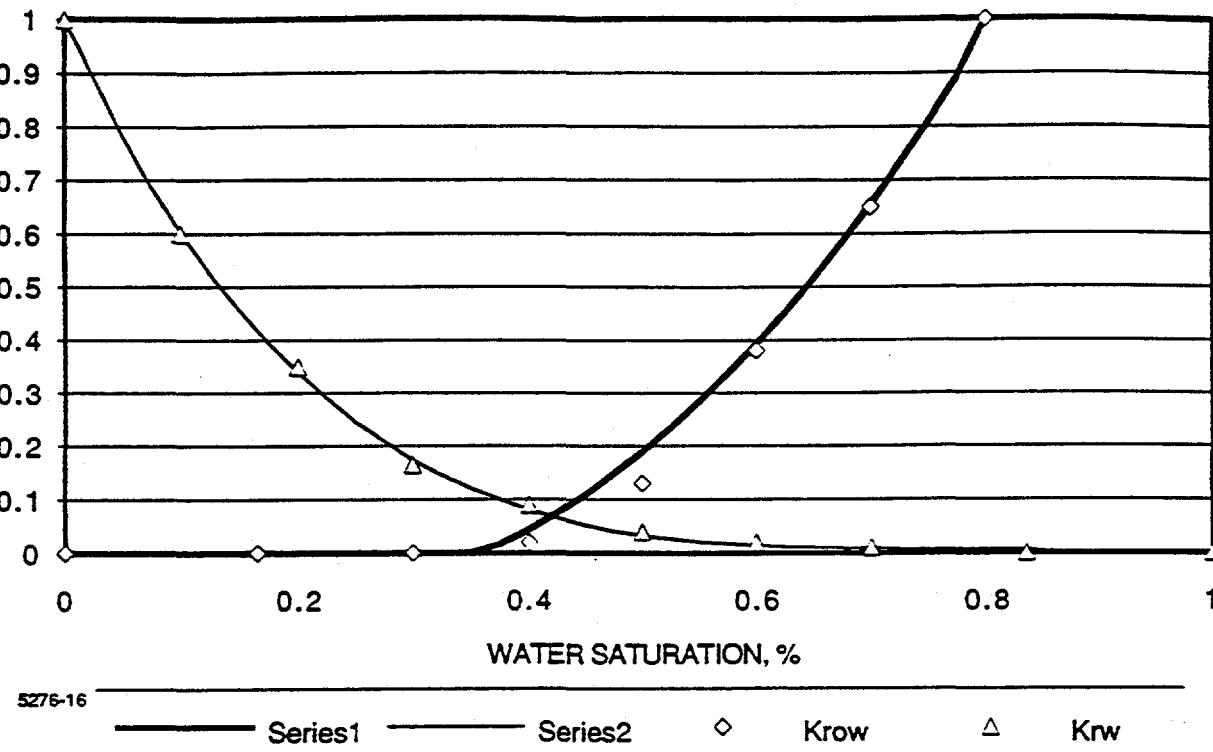


Figure 18 - Relative Permeability Curves

IV.2b PVT Data Analysis

The input data set required to run BOAST3 and simulate oil recovery includes a set of PVT (Pressure, Volume, Temperature) data representative of the fluid properties that reflect the inter-relationship among the various reservoir/fluid properties.

In the case of the Taylor field study, PVT data were not available for modeling, history matching, and predicting of the reservoirs' performance. However, certain initial reservoir and fluid properties were recorded in the early life of the two reservoirs.

The need to derive a set of PVT data using initial reservoir conditions required the evaluation of several empirical PVT correlations for application in the Gulf of Mexico (Sutton and Farshad, 1990). These correlations were used to determine values for bubble point pressure, solution gas-oil ratio, formation volume factor, and viscosity. The various correlation techniques were reviewed and tested.

V.2c Productivity Index (PID) Calculations

A value of the layer flow index, PID, can be estimated as follows:

$$PID = \frac{0.00708kh}{0.121(dx dy)^{1/2}} \ln \frac{r_w}{r_w} + S \quad (4)$$

Where, k = Layer absolute permeability, md

h = Layer thickness, ft

dx = X-direction grid block thickness, ft

dy = Y-direction grid block thickness, ft

r = wellbore radius, ft

S = Layer skin factor

In principle, the layer flow index could be related to measured values. In practice, however, the terms r , S , and $k_{ro}/m_o B_o$ are seldom known, especially for a multiphase flowing well. For expediency, therefore, an estimate of the equivalent radius (r) and productivity index (PI) are often used for an initial estimate to model the fluid flow from the reservoir to the wellbore.

The equivalent radius, r_0 , depends upon the block geometry and permeability anisotropy. The following equations were used to estimate r_0 and PI for non-fractured wells in the study area:

$$PI = \frac{0.00708k_{avg}ds}{\ln(r_0/r_w) + S} \quad (5)$$

For vertical wells:

$$ds = dz = h$$

$S = 0$ (assumed for this calculation)

$$k_{avg} = (k_x k_y)^{1/2}$$

$$r_0 = \frac{0.28(R^{1/2}d_{12} - R^{-1/2}d_{22})^{1/2}}{R^{1/4} + R^{-1/4}}$$

Where, $R = k_y/k_x$

$$d_1 = dx$$

$$d_2 = dy$$

⁴ Peaceman, D.W.; "Interpretation of Well-Block Pressures in Numerical Simulation", Society of Petroleum Engineer's Journal, (1978) pp. 183-194.

⁵ Ibid, 183-194.

V.2d Water-Oil Ratio and Gas-Oil Ratio Constraints

Maximum gas/oil (GOR) and water/oil (WOR) ratios are input by the user and apply to every oil production well. WOR is defined as total water production divided by total oil production for all active well completion intervals. If WOR for the well exceeds WORMAX, then the completion interval (layer) with the highest WOR will be shut-in. If more than one layer has the same maximum WOR, the deepest layer will be shut-in first. This same concept applies to the GOR, where the maximum GOR controls the performance of the reservoir.

V. SIMULATION

V.1 B-35K Reservoir

V.1a Reservoir Model Grid Dimensions and Geometry

A 14x11x3 grid was generated and superimposed on the structural map for elevation readings and on the isopach map for reading thickness values for each of the grid blocks. The elevation values were read at the midpoint of each grid block. Using the elevation values, an angle of inclination (Alpha) greater than zero for downward dip in the x-direction was computed by the simulator. Figure 19 exhibits the grid used for simulating the B-35 Reservoir. The option of reading a depth value for each grid block in layer one (part of the input data set) was used. The elevations to the midpoints of the grid blocks in layers two and three were computed by the simulator using the elevations of the grid blocks in layer one and the thickness values for layers two and three.

V.1b Porosity, Water Saturation, and Permeability Distribution

Geophysical well logs and sidewall core data were provided by Taylor to assist in evaluating the reservoir parameters in terms of porosity, water saturation, and permeability. A review of the geology and core data indicated that a three-layer model described the B-35 Reservoir adequately. The top and bottom layers had high permeability values and were separated by a shaley streak with a much lower permeability. An evaluation of the geophysical well logs revealed porosity and water saturation values that are comparable with other Gulf of Mexico reservoirs. Figure 20, which illustrates a representative log, summarizes the results of the log analysis and lists the estimated thickness, porosity and water saturation for each layer.

The core analysis performed on well A-3D/A-3/A-3ST generated a list of permeability versus porosity values at different depths. A plot of these data was generated using a best-fit curve, as shown in Figure 21. A value of average permeability for each layer was read from Figure 21 for each porosity value determined from the geophysical well log interpretations. As Figure 20 illustrates, both layer one and layer three were separated by a thin, lower permeability layer. Using this geological interpretation, a constant thickness per block of five and six feet for layers two and three, respectively, was assumed. The thickness of each grid block in layer one was calculated by subtracting the sum of the thicknesses of layers two and three from the value of total net thickness values obtained from the modified isopach.

RESERVOIR SIMULATION GRID SCHEME

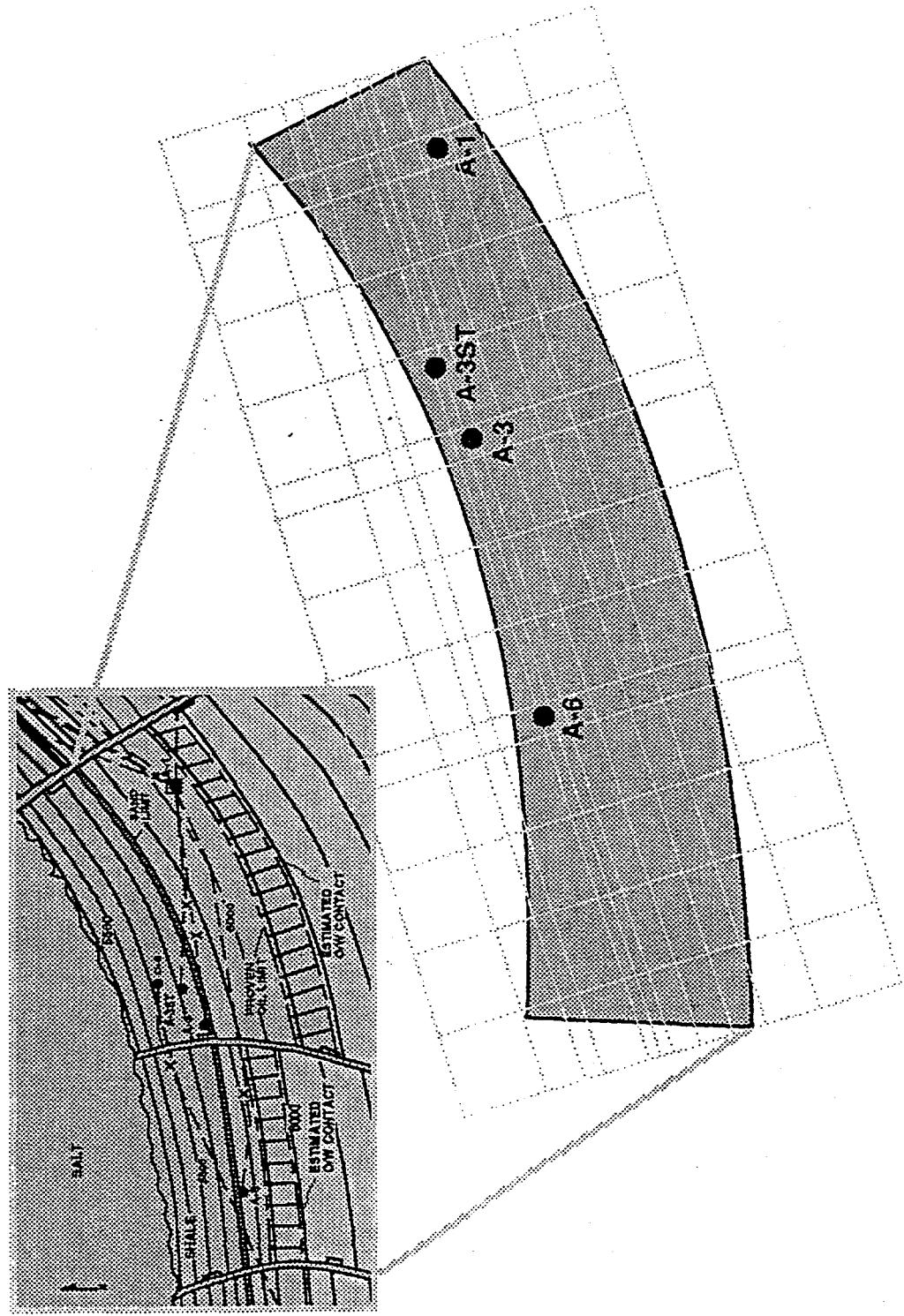


Figure19 Reservoir Simulation Grid Scheme

RESERVOIR SIMULATION LAYERS AND DATA

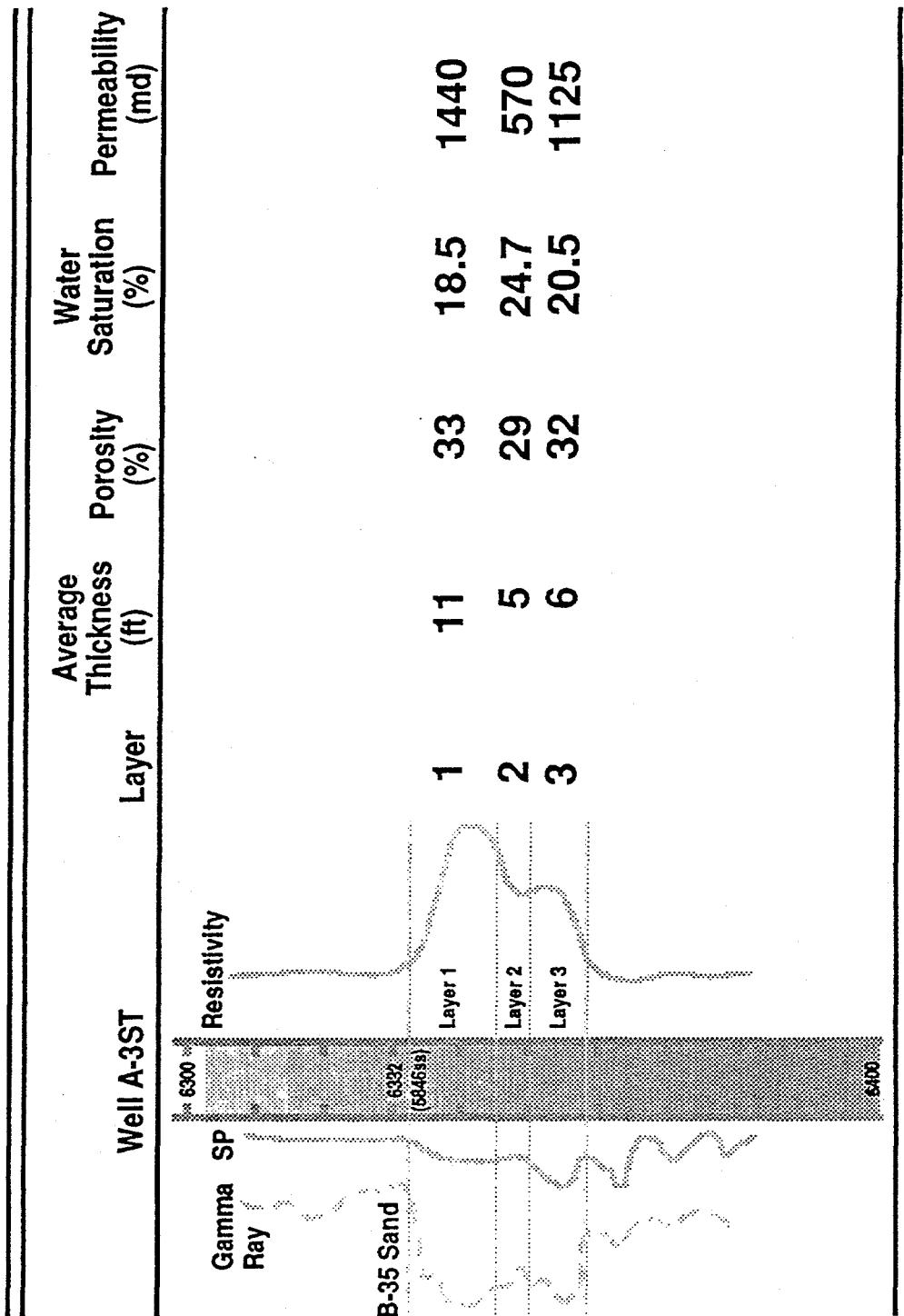


Figure20 Reservoir Simulation Layers and Data

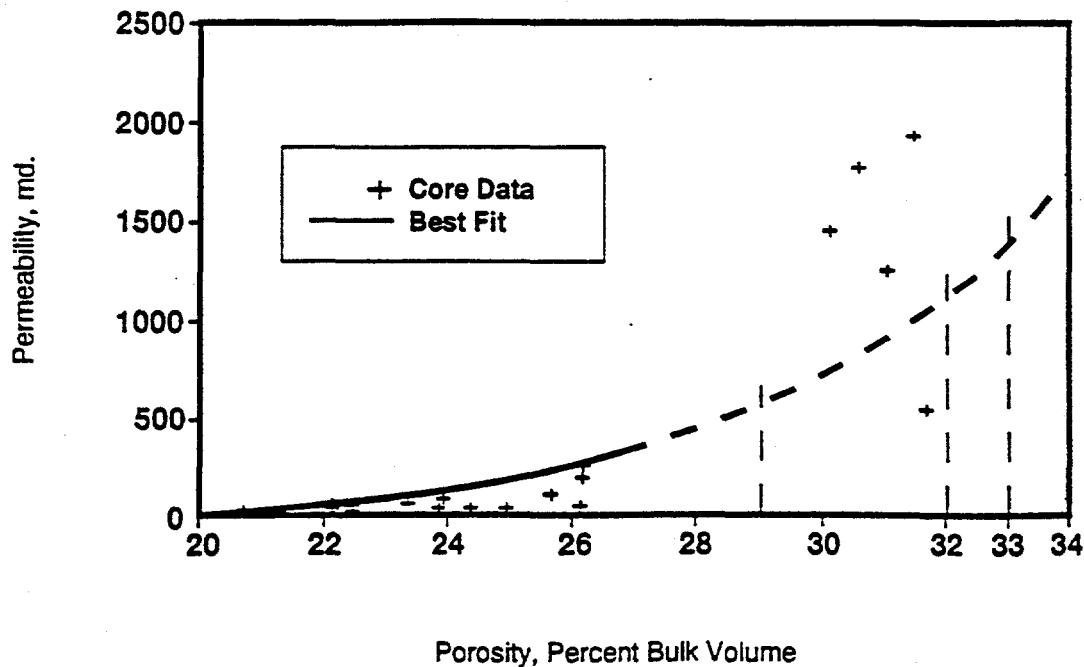


Figure 21 - Correlation of Porosity versus Permeability

V.1c Relative Permeability Curves

Figure 22 illustrates the modified relative permeability curves used to arrive at a final history match of the actual pressure and production data for the B-35K Reservoir. The results of the early simulation runs indicated that the relative permeability curves are critical data elements in terms of impact on simulation performance. Unfortunately, relative permeability curves are often among the missing, or poorer quality, data. Relative permeability data are affected significantly by alterations in wettability conditions in the core. In principle, three-phase relative permeabilities should be used when oil, water, and gas are flowing simultaneously. As a practical matter, the difficulty of accurately measuring three-phase relative permeabilities often makes their use meaningless. It is often sufficient to work with two-phase relative permeability curves only. For these studies, BOAST3 computed a three-phase oil relative permeability curve using water-oil and gas-oil relative permeability curves.

V.1d PVT Data Analysis

The bubble point pressure of the B-35K Reservoir was estimated by constructing a plot of reservoir voidage versus reservoir pressure, as shown in Figure 23. From this plot, the bubble point pressure was estimated to be 2,723 psig.

Glaso's method was used for calculating bubble point pressure, oil formation volume factor, and solution gas-oil ratio and dead oil viscosity correlations. The Calhoun correlation was determined to explain most accurately the oil compressibility, which is dependent on the bubble point pressure estimate. The Vasquez and Beggs correlation was used to derive the viscosity of the undersaturated oil. Table 6 tabulates the results of the empirically derived PVT data using the different correlation methods.

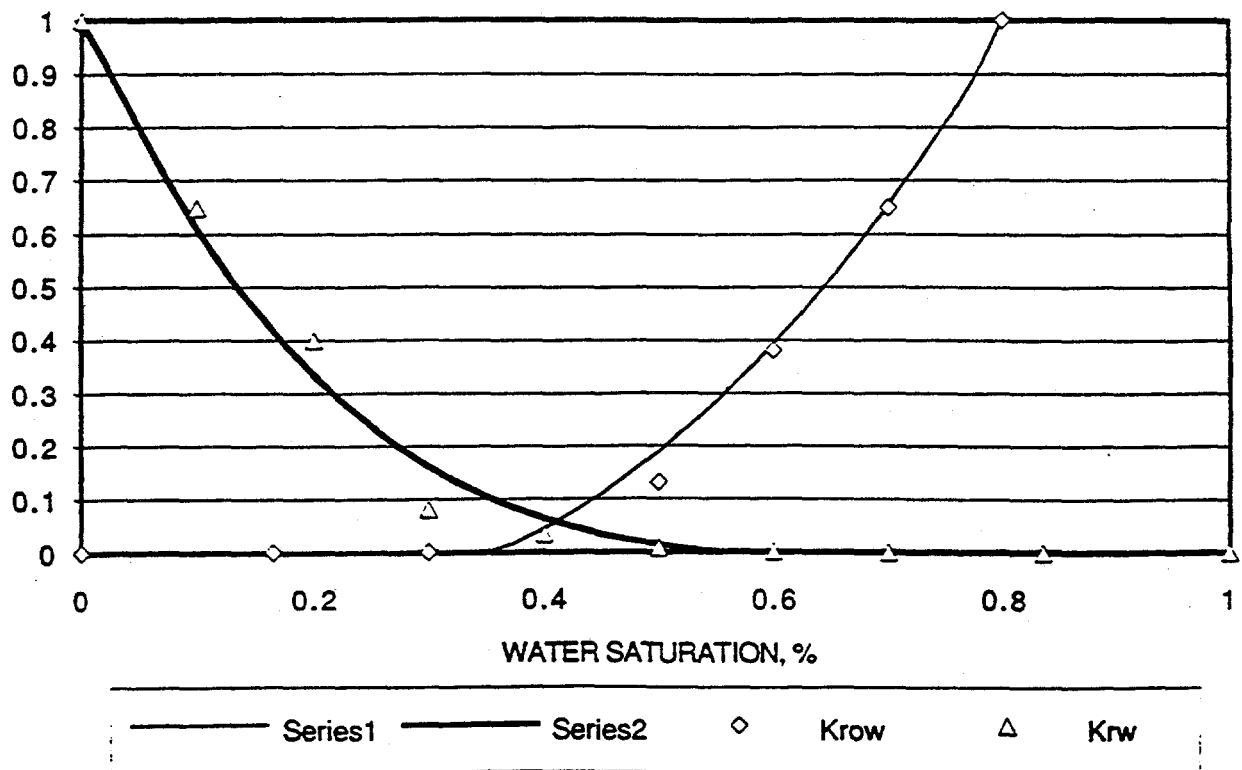


Figure 22 - Modified Relative Permeability Curves for B-35K Reservoir

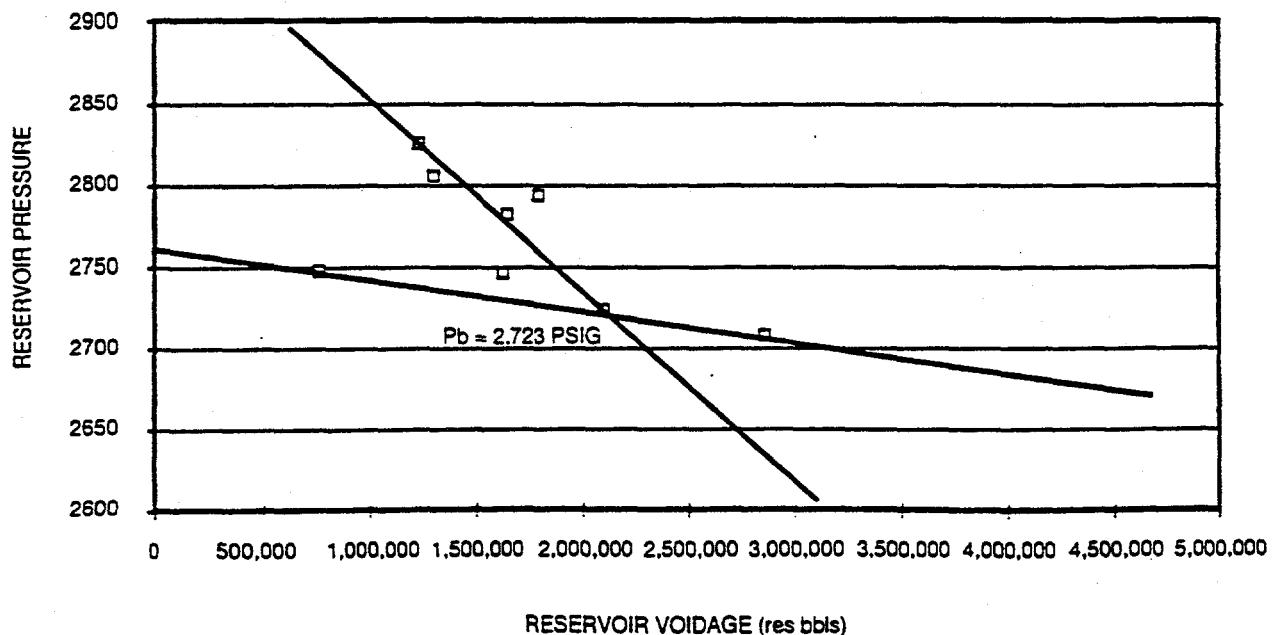


Figure 23 - Reservoir Voidage versus Pressure for B-35K Reservoir

TABLE 6. PVT DATA SUMMARY TABLE B-35K RESERVOIR

SOLUTION GOR & BUBBLE POINT PRESSURE CORRELATION (GLASO'S)
(GLASO'S)

<i>Pb, psig</i>	<i>Pb*</i>	<i>Rs</i>	<i>Rs</i>	<i>Bob'</i>	<i>Bob</i>
3000.00	17.85	546.08	480.00	540.23	1 510
2900.00	17.25	523.70	PRESS, PSI	Bo	
2800.00	16.65	501.69	2808.00		1.2035
2700.00	16.07	480.06	2800.00		1.2024
2600.00	15.48	458.79	2700.00		1.51038
2500.00	14.91	437.89	2600.00		1.2053
2400.00	14.33	417.34	2500.00		1.2067
2300.00	13.76	397.14	2400.00		1.51082
2200.00	13.20	377.28	2300.00		1.51096
2100.00	12.64	357.76	2200.00		1.2111
2000.00	12.08	338.57	2100.00		1.2125
1900.00	11.53	319.72	2000.00		1.2140

COMPRESSIBILITY CORRELATION (CALHOUN)

Gob *Pb* COMPRES
0.71 2723.00 1.20E-05

DEAD OIL VISCOSITY CORRELATION (GLASCO'S)

TEMP, °F API VISC, cp
146.00 34.30 2.588

GAS SATURATED OIL VISCOSITY (BEGGS & ROBINSON)

Rs *mod* *a* *b* *Mob*
480.00 2.588 0.404 0.616 0.726

UNDERSATURATED OIL VISCOSITY (VASQUEZ & BEGGS)

<i>Mob</i> = 0.726	<i>Pob</i> = 2723.00	<i>PRESS</i>	<i>m</i>	<i>MO</i>
		3000.00	0.27	0.745
		2900.00	0.26	0.738
		2800.00	0.25	0.731
		2700.00	0.24	0.725
		2600.00	0.23	0.718
		2500.00	0.22	0.712
		2400.00	0.22	0.707
		2300.00	0.21	0.701
		2200.00	0.20	0.696
		2100.00	0.19	0.691
		2000.00	0.18	0.687

Key: *Pb* = Bubble point pressure (psig)

Pb' = Correlating number for *Pb* calculation

Rs = Soluton gas-oil ratio (scf/STB)

Bob = Oil formation volume factor at *Pb* (Bbl/STB)

*Bob** = Correlating number for *Bob* calculation

Bo = Oil formation volume factor

Gob = Correlation of isothermal oil compressibility (g/cc)

COMPRESS = Oil compressibility

Mod = Viscosity of dead oil (cp)

a,*b*,*m* = Correlation constants

Mob = Viscosity of gas saturated oil (cp)

Mo = Viscosity of undersaturated oil (cp)

V.1e Aquifer Model

Modeling the actual reservoir behavior required the simulation of the aquifer that was contributing to the production performance of each of the producing wells in the reservoir. To simplify the solution methods and to account for the aquifer strength in terms of the water influx, the aquifer was assumed to be steady-state in order to maintain an essentially constant reservoir pressure.

A spreadsheet was developed to compute the water influx (W_e) for an undersaturated oil reservoir with a water drive using initial reservoir conditions and parameters. The spreadsheet was generated using Slider's method for computing the water influx. Figure 24 lists the required input data and shows the results of Slider's method for calculating the water influx.

The model's steady-state aquifer option allowed the following model equation to be used to simulate the rate of influx:

$$q_{wss} = SSAQ (P_c - P_{n+1}) \quad (6)$$

Where, q_{wss} = Water influx rate for steady state flow. scf/d

$SSAQ$ = Model constant, scf/day/psi

P_0 = Initial grid block pressure, psi

P_{n+1} = grid block pressure at a future time, psi

From the above generated spreadsheet (*Figure 24*):

$$W_e = \frac{BOw(P_0 - P_{n+1})}{2.0} \quad (7)$$

Simplifying equation 7 and dividing by time value t :

$$\frac{W_e}{t} = \frac{BOw(P_0 - P_{n+1})}{2.0t}$$

$$q_{wss} = \frac{BOw(P_0 - P_{n+1})}{2.0t} \quad (8)$$

Where, q_{wss} = Water influx rate for steady state flow, bpd (Slider)

To convert q_{wss} to scf/day, which satisfies the model requirements by assuming that:

$$SSAQ = \frac{BOtD}{11.23t} \quad (9)$$

$$q_{wss} = \frac{BOtD(P_0 - P_{n+1})}{11.23t} \quad (10)$$

⁶ Ibid, 183-194.

⁷ Ibid, 183-194

⁸ Ibid, 183-194.

⁹ Ibid, 183-194.

¹⁰ Ibid, 183-194.

Initial Data

Initial Reservoir Pressure	2712 psi	Porosity, \emptyset	29.5 %
Saturation Pressure	2712 psi	Permeability, k	1.275 Darcy
Reservoir External Radius	1224 ft	Water compressibility	3E-6 psi^{-1}
Aquifer External Radius	20000 ft	Oil compressibility	7.7E-6 psi^{-1}
Reservoir Thickness, h	22 ft	Formation Compressibility	4E-6 psi^{-1}
Water Viscosity, μ_w	0.56 cp	Init. Oil Form. Vol. Factor	1/29 bbl/stb
Connate Water Sat., S_w	16.5 %	Production Rate, q_o	250 bbl/day

Water Influx Calculations at Time = 1027 days

$$B = 1.12\emptyset hcr^2 = 76.23$$

$$\text{diffusivity, } \eta = \frac{6.33k}{\Phi\mu C} = 6,979,202.70$$

$$D_{(1027 \text{ days})} = \frac{\eta t}{r^2} = 4,784.25$$

$$r_{D_e} = \frac{r_{\text{aquifer}}}{r_{\text{reservoir}}} = 16.34$$

$$Q_{D(4,784)} \text{ from Table 3.2 (Slider, p. 110)} = 1,146.68$$

$$B_{op} = B_{oi} + C_o(p_i - p)B_{oi} = 1.31699$$

$$N = \frac{\Pi r^2 h \emptyset (1 - S_w)}{5.615 B} = 3,500,000 \text{ bbls}$$

$$B \left(\frac{p_{n-1} - p_{1027 \text{ days}}}{2} \right) Q_{tb} = N_p B_o + W_p - N(B_o - B_{oi}) + (C_f + C_w S_w) \left[\frac{\Delta p B_{oi} N}{(1 - S_w)} \right]$$

$$p_{1027 \text{ days}} = 2705 \text{ psi}$$

$$W_{e(1027 \text{ days})} = \left[\frac{B Q_{tb} (p_i - p_{1027 \text{ days}})}{2} \right] = 271,318.75 \text{ bbls}$$

Figure24 Summary of Water Influx Calculations

Equation (10) is equal to equation (6) and, therefore, the SSAQ value can be calculated.

To calculate SSAQ for the model, use the generated data from the spreadsheet at t=1027 days.

$$\text{SSAQ} = \frac{1146.68 * 76.23}{11.23 * 1027} = 7.58$$

Finally, the above SSAQ value was used as an initial value to history match the reservoir pressure and production and quantify/model the aquifer.

V.1f Productivity Index Calculations (PID)

The following Table 7 summarizes the results of the PI calculations per well required for simulating the B-35 sand reservoir.

TABLE 7
SUMMARY OF CALCULATED PI VALUES BY LAYER FOR EACH WELL
PI VALUES

WELL#	LAYER 1	LAYER 2	LAYER 3
A-1	29.60	4.50	10.67
A-3D/A-3	28.18	4.85	11.49
A-6	20.40	4.76	11.27

V.1g Water-Oil Ratio and Gas-Oil Ratio Constraints

In this study the WOR was the controlling factor in terms of the wells shut-in schedule. Using the available field data, the pressure and production histories were matched using a WORMAX of 2.0 as the cut-off point. If WOR exceeds the WORMAX of 2.0, then the well is shut-in.

When simulating and predicting the reservoir performance due to future gas injections a WORMAX of 1.5 was used as the cut-off point. Based on this assumption, the results of these predictions were conservative in nature.

V.1h Recurrent Data

In an attempt to simulate the actual production and pressure history of the reservoir, several solution methods were reviewed and tested to determine the optimum setup of the data leading to accurate results. After reviewing the data, it was determined that using oil production rates with an implicit rate calculation option should result in accurate predictions of the reservoir performance when simulating the actual history. Since the oil rate per well was specified, the reservoir's pressure, gas production, and water were simulated and compared to actual reservoir pressure and production values. Average oil rates were computed over specified time periods

with each average oil rate represented by a recurrent data set. Small initial time steps and time increments were used to control any computational errors associated with the time step size.

When simulating/projecting the reservoir performance due to future gas injection cycles, pressure and productivity index constants were used to simulate the additional oil, gas, and water production using the implicit pressure calculation option.

Appendix A provides a listing of the input data set used for history matching the actual pressure and production data, and for simulating the performance of the reservoir due to future injection cycles. It is worth noting that in the history matching stage, the four injection cycles that were performed during, the life of the reservoir were simulated using gas injection rate specified option using implicit rate calculation.

In terms of the model's solution method, the Line Successive Over-Relaxation (LSOR) option with z-direction tridiagonal algorithm was recommended and used as the optimum solution method for solving two or three dimensional problems. The LSOR solution method in the z-direction will account for the flow between the different layers and thereby model the actual performance of the reservoir. Certain parameters associated with the LSOR-Z solution method are listed in the BOAST3-PC manual and their values are exhibited in the input data set (Appendix A).

V.Ii Additional Reservoir Simulation Assumptions

In addition to the available input parameters for the model that were used and discussed above in simulating the B-35K Reservoir, additional parameters were assumed and estimated based on geologic and engineering data (See Figure 25).

An initial reservoir pressure of 2,712 psig measured at a datum point of 5,846 feet was used as a model input parameter. This pressure value was measured in the early life of the reservoir. Additional reservoir shut-in measurements were not available to provide the basis for a pressure build-up analysis in order to estimate the initial reservoir pressure.

Permeability anisotropy was another input parameter required by the model. Based on the provided geologic data, the permeability values in the X and Y- directions were assumed equal, whereas the permeability in the Z - direction was different ($K_X = K_Y + K_Z$).

Based on the available and assumed reservoir parameters a model representing this reservoir was developed to simulate the actual reservoir performance as detailed in the following sections.

V.Ij History Match

History matching the production performance of the B-35K Reservoir was refined by modifying the water-oil relative permeability curve, the down-dip location of the estimated oil-water contact, and the estimated attic volume of the reservoir. The final values for these variables in the model were used to accurately match the primary performance of the reservoir as well as the performance of the reservoir as a result of the five attic gas injection cycles. The gas production, oil production, and pressure data were relatively easy to match. However, a match of the water production history, necessitated modifying the water-oil relative permeability curves, the oil-water contact location, and the attic oil volume. The details of five of the most significant history match cases are presented in detail in Appendix B.

ADDITIONAL RESERVOIR SIMULATION ASSUMPTIONS

- Initial reservoir pressure = 2,712 psig
Reservoir datum = 5,846 ft
- Estimated PVT data based on values at initial conditions
- Estimated/modified relative permeability curves taken from
"Gas Injection for Upstructure Oil Drainage," Strickland and
Morse, JPT October 1979, pp 1323-1331
- $K_x - K_y \neq K_z$
- Wells producing from three different layers with variable
formation properties
- Initially, used proven oil limit with "water-oil contact" at
6,076 ft
- Wells producing at historical average oil production rates

Figure25

Additional Reservoir Simulation Assumption

The location of the oil-water contact had a significant impact on the production performance indicated by the simulator. Since the sand thickens in the down-dip direction (see Figure 6), the original oil-in-place in the reservoir increases significantly as the oil-water contact is pushed down-dip. If the water-oil contact is assumed to be at the proven oil limit of 6,076 feet subsea, as defined by Well A-1, the original oil-in-place is estimated at 3.5 million barrels of oil. By moving the water-oil contact 100 feet downdip to 6,176 feet subsea, the original oil-in-place more than doubles to 7.3 million barrels of oil. (This case is Run 2, included in Appendix B.) The downward movement of the oil-water contact in the simulator significantly impacts the water production rate since the water level is moved away from the production well take points. Comparison of the simulated cumulative water production from these two cases illustrates the impact of the water-oil contact movement, as shown in Figure 26. The producing well waters out much too soon in Run 1 and too late in Run 2, as compared to the actual data. The optimum match of water production performance was achieved in the final history match by assuming that the water-oil contact was approximately 60 feet below the proven oil limit (Run 5).

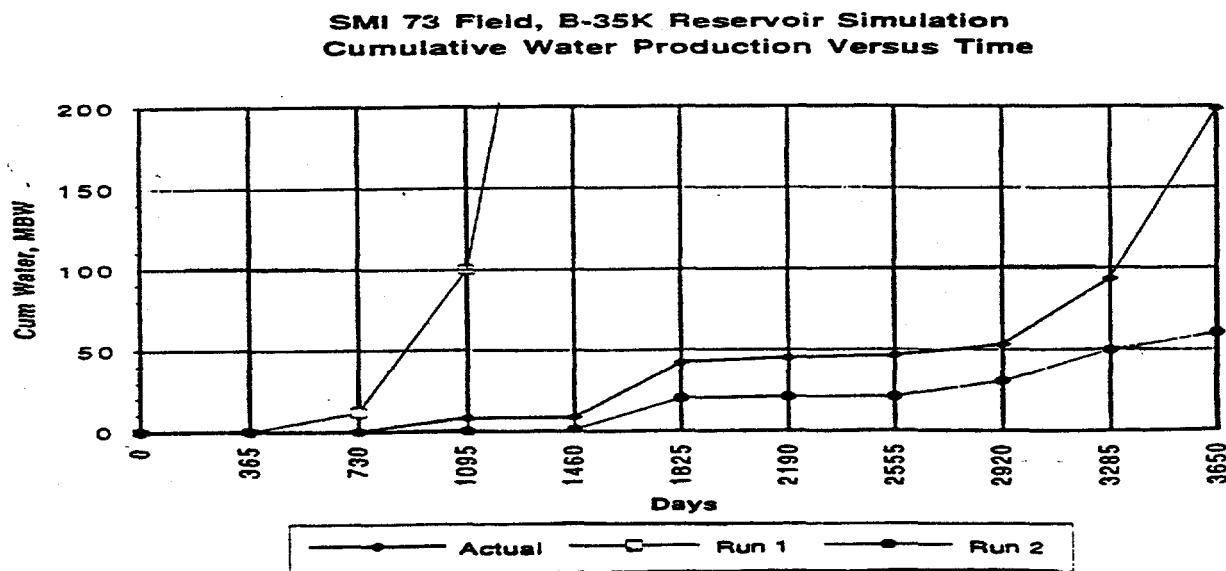


Figure 26 - Comparison of Cumulative Water Production for History Match Runs 1 and 2

The addition of an attic oil volume also impacted the simulated reservoir performance. The original oil-in-place is not significantly impacted since the sand appears to thin in the up-dip direction (see Figure 6), but the production performance is impacted. By moving the sand limit up-dip approximately 200 feet structurally, the original oil-in-place in the reservoir increases from 7.3 to 8.6 million barrels of oil, so the assumed attic volume is approximately 1.3 million barrels of oil. The impact of the addition of the attic oil volume is illustrated in Figure 27 by comparing the cumulative water production values from Run 3 and Run 4. The results of Run 3 match the actual water data fairly well, until the later time frame, at which point water production is too low. When the attic oil volume is added, Run 4, the water production falls below the actual data. This problem was solved in Run 5, the final history match case, by assuming that the oil-water contact was at an elevation of 6,137 feet subsea, or approximately 60 feet below the proven oil

SMI 73 Field, B-35K Reservoir Simulation
Cumulative Water Production Versus Time

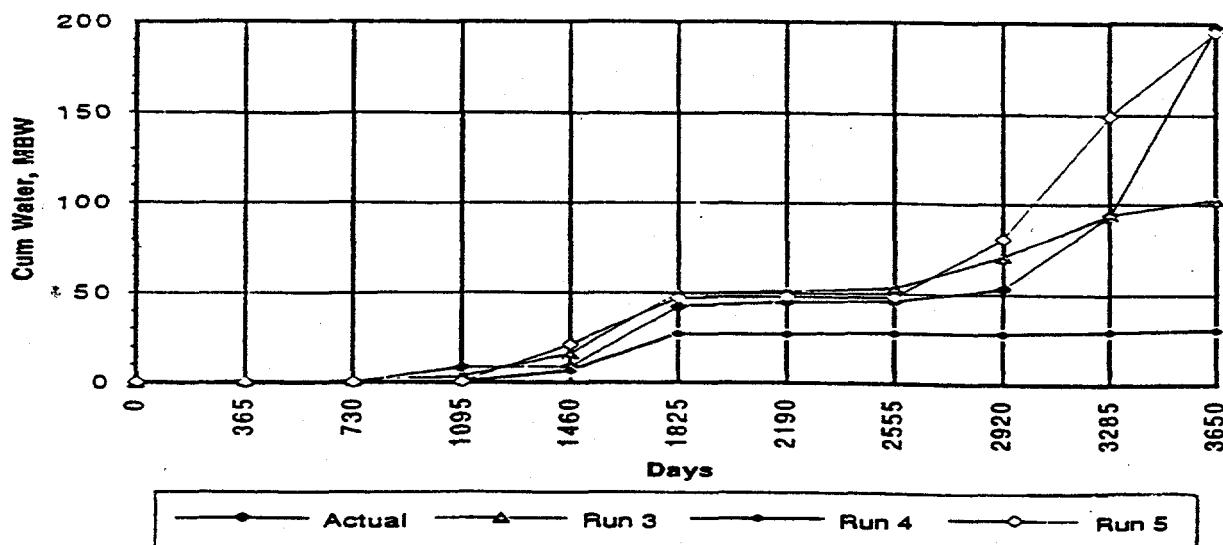


Figure 27 - Comparison of Cumulative Water Production for History Match Runs 3, 4, and 5

limit. The work indicates that an attic volume is probably necessary to obtain the best match, but the exact volume is difficult to define since both the up-dip and down-dip limits are unknown. In other words, multiple combinations of oil-water contact and attic volume will yield a reasonable history match.

The results of the final history match, which are excellent, are displayed in Figures 28 through 31, which illustrate the actual reservoir pressure, oil production, gas production, and water production data versus the simulation results. These results are also included in Appendix B, Run 5. Using the final history match assumptions, the volumetric original oil-in-place for the reservoir is calculated at 6.3 million barrels of oil, which indicates that 48% recovery has been realized to date.

V.1k Gas Injection Sensitivities

The final history match assumptions were used to test various model sensitivities and to examine the results of additional gas injection into the reservoir through Well A-6. The sensitivity tests were conducted to evaluate the impact of gas injection rate, post-injection shut-in period, gas injection volume, and gas injection cycle staging. The incremental oil recovery results of these sensitivity cases are presented in Table 8 and Figures 32 through 36, as discussed below. Detailed results of the sensitivity cases are presented in Appendix C.

V.1l Injection Rate Sensitivity

The first sensitivity case performed was to evaluate the impact of the gas injection rate on the incremental oil recovery. Figure 32 compares the results of injecting 300 million cubic feet of gas in one stage at three different injection rates, 250, 500, and 1,000 MCFD, followed by a three month shut-in period. The data indicate that lower injection rates improve the performance of the gas injection cycle by accelerating the production response after the shut-in period. In addition, the incremental recovery is higher for the lower injection rates. These effects could be attributed to reduced gas fingering and a higher segregation rate.

Cumulative Oil Production Versus Time

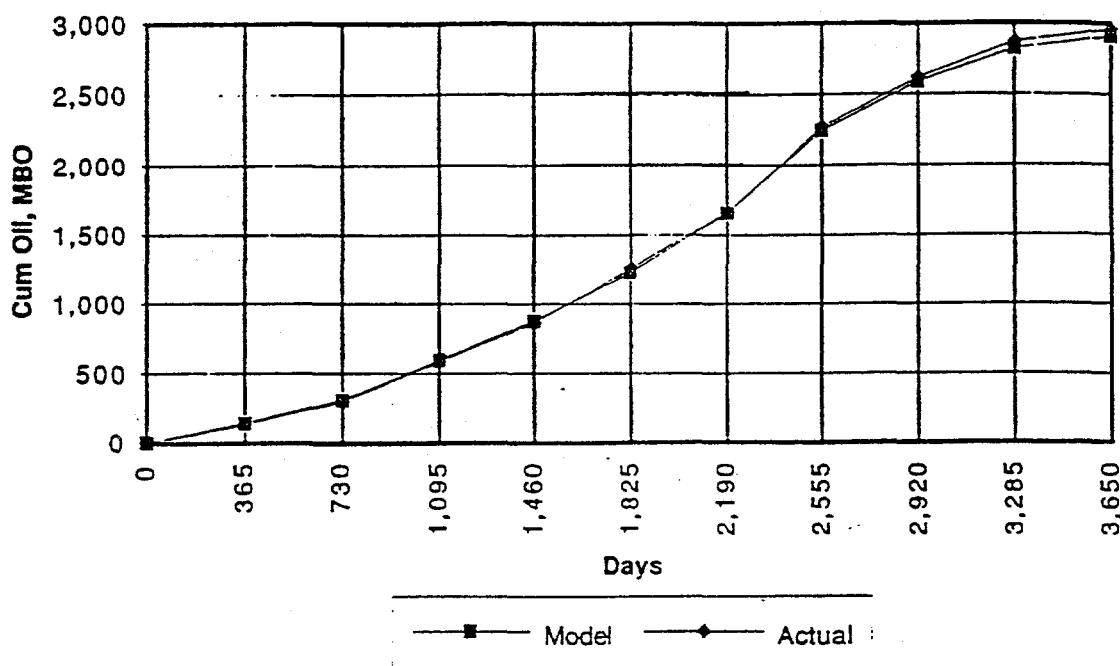


Figure 28 - Final History Match Results - Cumulative Oil Production versus Time

Pressure Versus Time

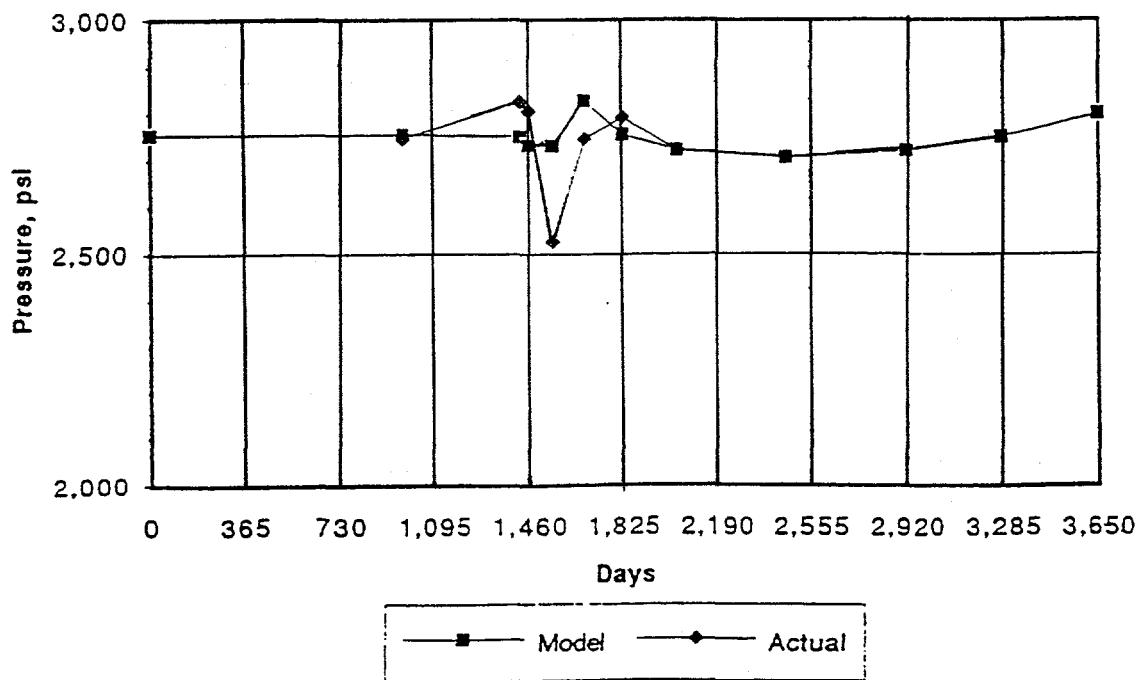


Figure 29 - Final History Match Results - Pressure versus Time

Cumulative Gas Production Versus Time

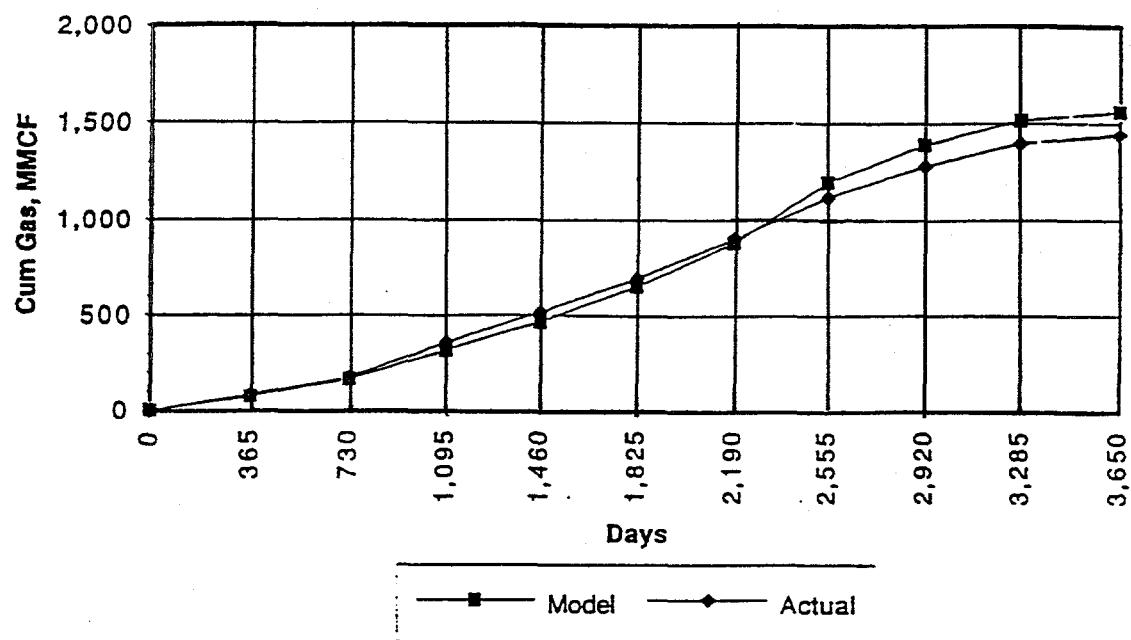


Figure 30 - Final History Match Results - Cumulative Gas Production versus Time

Cumulative Water Production Versus Time

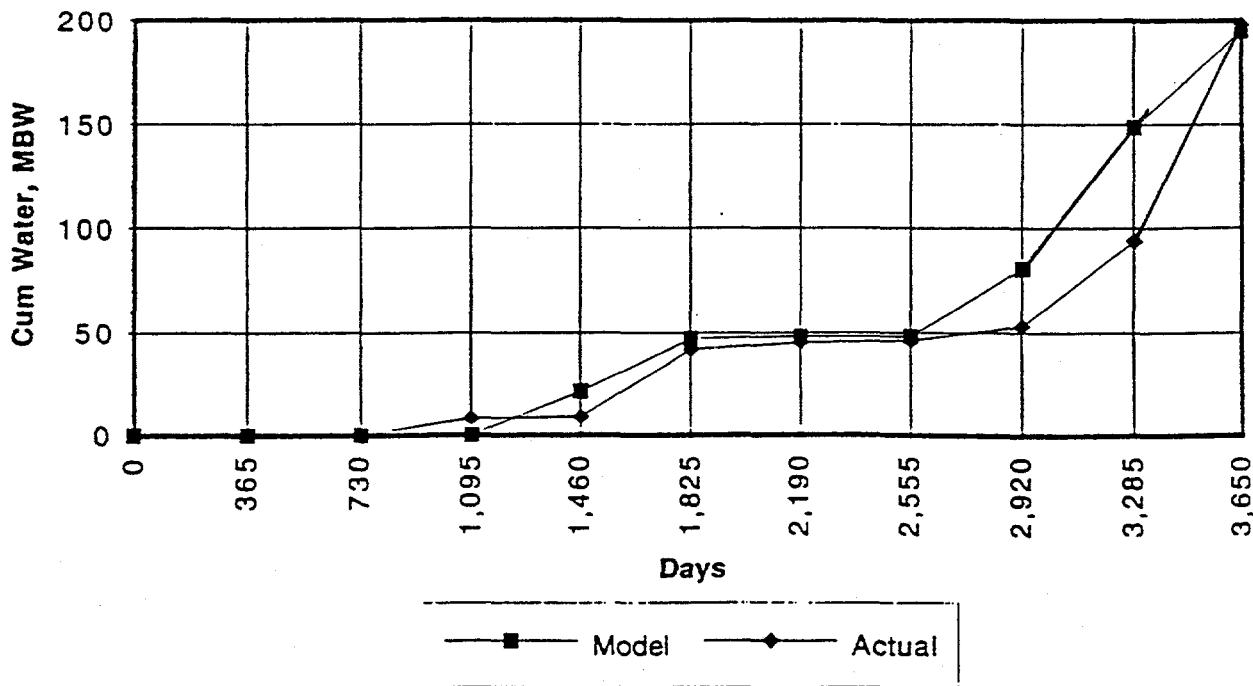
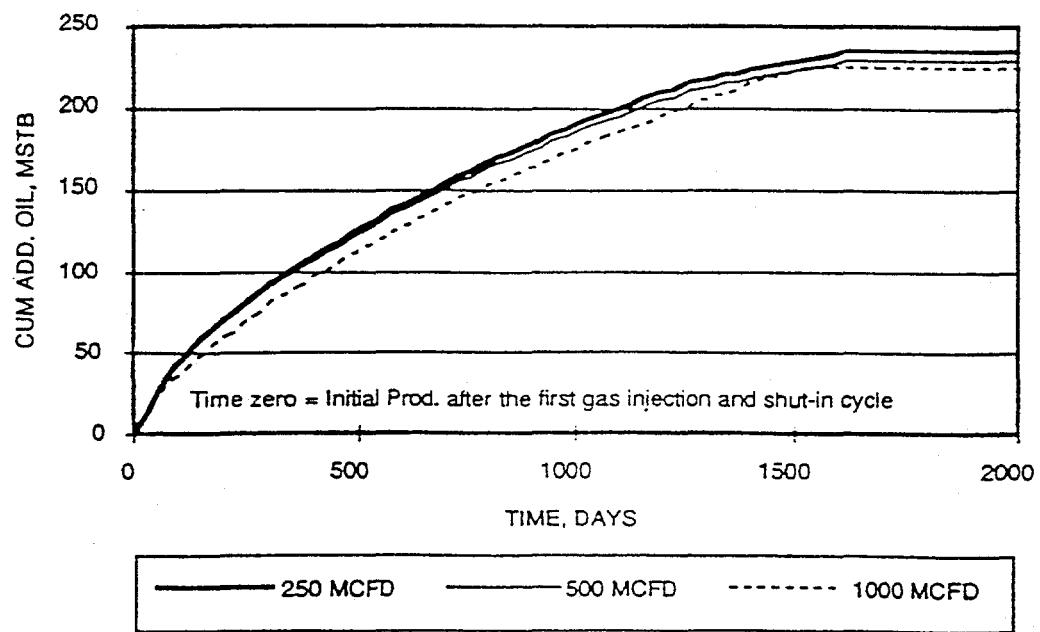


Figure 31 - Final History Match Results - Cumulative Water Production versus Time

**Simulation Results of Additional Oil Recovery Due to Injecting Different Gas Volumes at Different Rates With Different Shut-in Periods (WOR = 1.5)
(MSTB OF OIL)**

Shut-in Time (Months)	Injection Volumes (mmcf)					
	75		150		300	
	Rate (mcf/d)	Rate (mcf/d)	Rate (mcf/d)	Rate (mcf/d)	Rate (mcf/d)	Rate (mcf/d)
Zero	250	500	250	500	250	500
Three				213		
1 Stage	203	212		219	236	227
2 Stage			225	238		228
3 Stage				230		260
Six				220		


One Stage: Inject total volume at a specified rate, shut-in for 3 months then produced to a WOR = 1.5.

Two Stage: Inject half the volume at a specified rate, shut-in for 3 months, produced for 6 months, then inject the remaining volume at the same rate, shut-in for 3 months then produced to a WOR = 1.5.

Three Stage: Inject a third of the volume at a specified rate, shut-in for 3 months, produced for 6 months; Inject another third, shut-in for 3 months, produce for 6 months; Inject the remaining volume, shut-in for 3 months then produce to a WOR of 1.5.

Table 8 - Summary of Oil Production for Various Gas Injection Prediction Sensitivities for B-35K Reservoir

**GAS INJECTION RATE SENSITIVITY ANALYSIS
(300 MMCF, 3 MO SHUT-IN, 1 STAGE)**

Figure 32 - Gas Injection Rate Sensitivity Analysis Results

POST-INJECTION SHUT-IN TIME SENSITIVITY
(150 MMCF @ 500 MCFD, 1 STAGE)

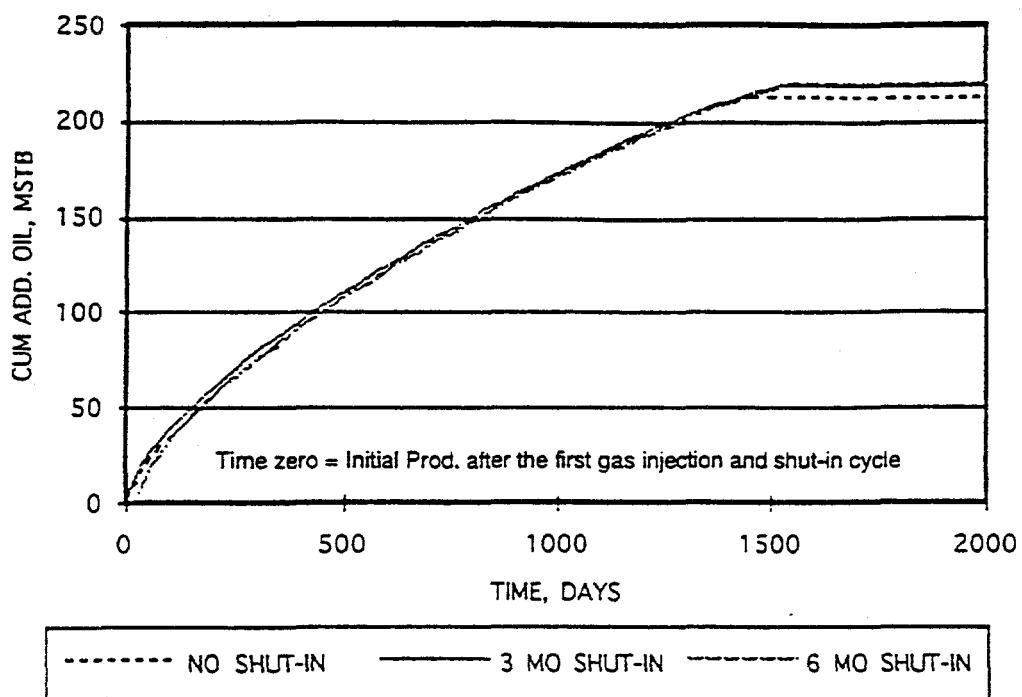


Figure 33 - Post Injection Sheet-In Time Sensitivity Analysis Results

INCREMENTAL OIL PROD DUE TO GAS INJECT
(500 MCFD, 3 MOS SHUT-IN, 1 STAGE)

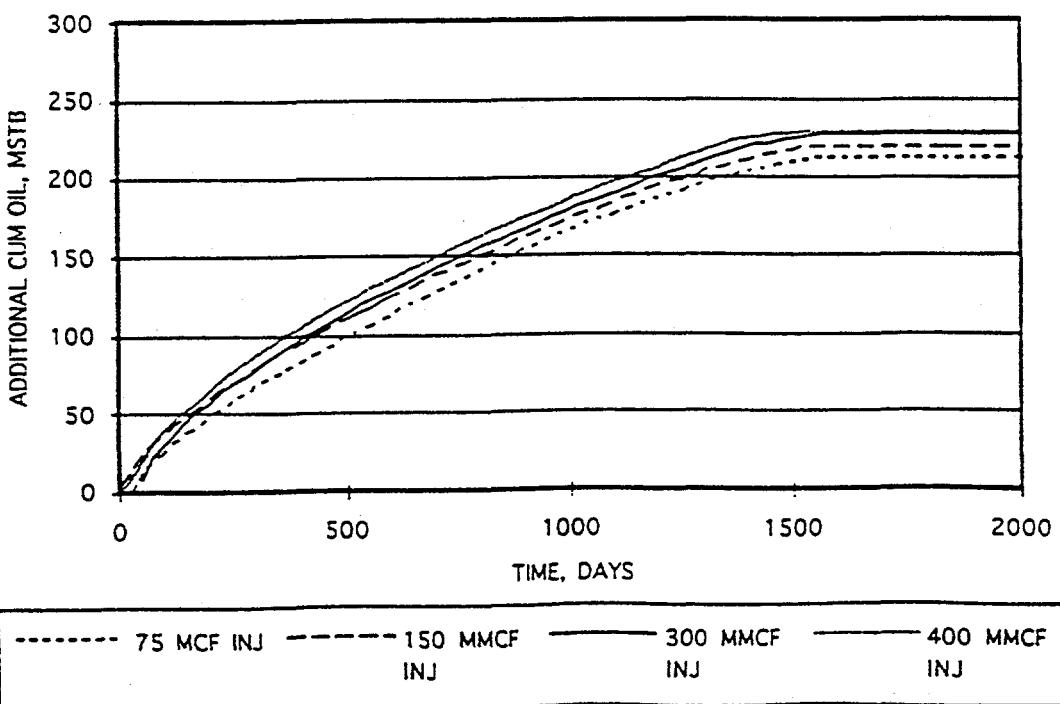


Figure 34 - Gas Injection Volume Sensitivity Analysis Results

INJ. VOLUME STAGING SENSITIVITY ON OIL
(150 MMCF @ 500 MCFD, 3 MONTH SHUT-IN)

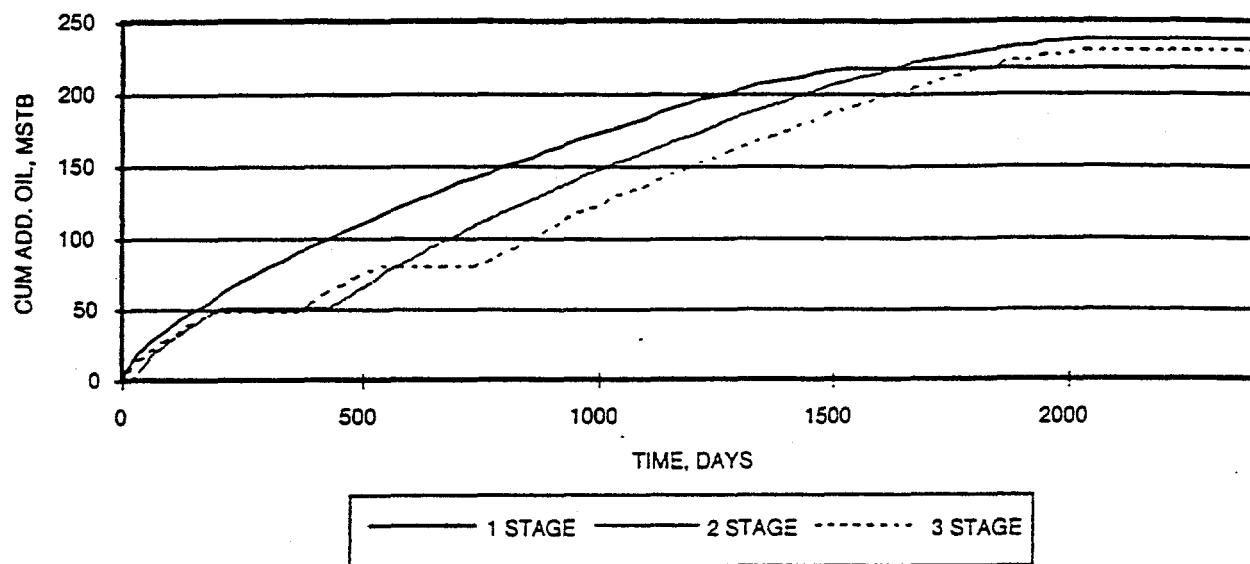


Figure 35 - Injection Volume Staging Sensitivity Analysis - Oil

INJ. VOLUME STAGING SENSITIVITY ON H2O
(150 MMCF @ 500 MCFD, 3 MONTH SHUT-IN)

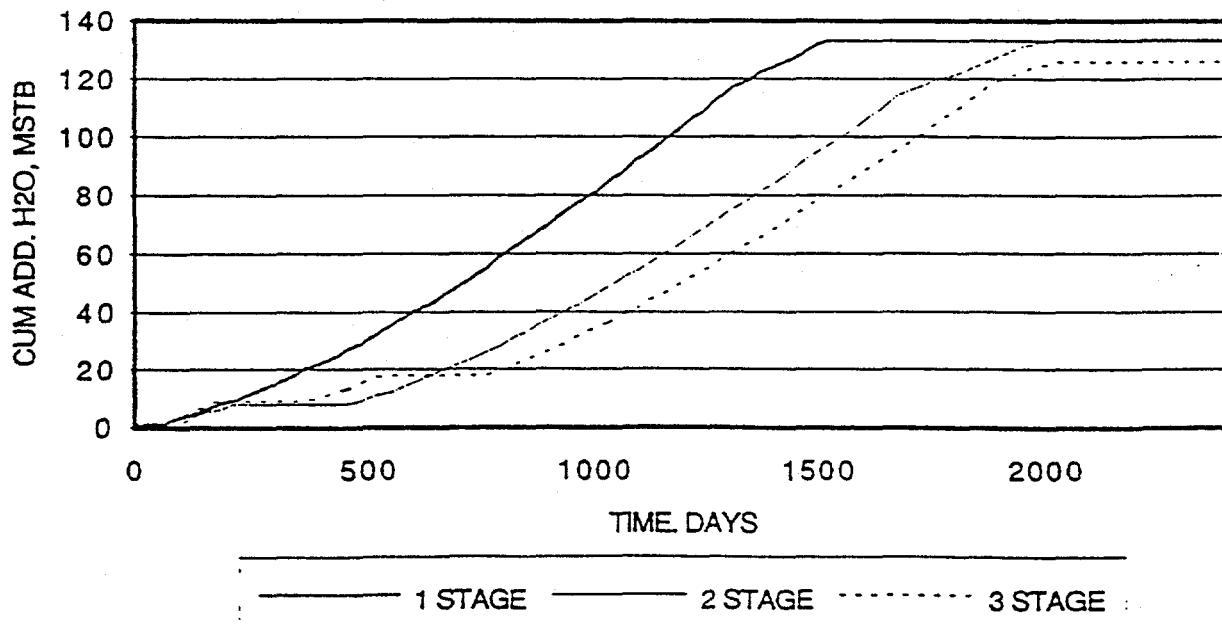


Figure 36 - Injection Volume Staging Sensitivity Analysis - Water

V.1m Post-Injection Shut-In Time Sensitivity

The impact of the post injection shut-in time was also evaluated. The cases evaluated used a total injection volume of 150 million cubic feet of gas at 500 MCFD in one stage, and the shut-in period varied between zero and six months. As shown in Figure 33, the best predictive performance of the reservoir was achieved using the three month shut-in period. Although the results of the three cases are similar, the three month shut-in case yields slightly accelerated oil production, and the six month shut-in case has slightly higher incremental recovery. Economic analysis of the results will probably indicate that the three month shut-in case is economically optimum.

V.1n Injection Volume Sensitivity

Figure 34 illustrates the incremental recovery over time for gas injection volumes between 75 and 400 million cubic feet. Comparison of the four cases shown on this figure shows that production is slightly accelerated at higher injection volumes and that incremental oil recovery tends to be higher for the larger injection volumes. However, a point of diminishing returns is apparent and very little difference exists between the 300 and 400 million cubic foot cases. The optimum gas injection volume is probably in the range of 150 to 300 million cubic feet of gas.

V.1o Injection Volume Staging Sensitivity

An additional sensitivity was conducted to investigate the results of gas injection cycle staging. The effects of two and three injection stages were compared to the 150-million-cubic-foot injection volume case where the injection rate was 500 MCFD and the shut-in period after injection was three months. The two stage injection occurs thus: first half of the gas is injected, then a three month shut-in period was followed by six months of production, then the other half of the gas was injected with production initiated after a three month shut-in period. The three stage injection was performed with similar shut-in and production stages in between.

Figures 35 and 36 exhibit the results of injecting gas in stages, and compare a single stage case with two- and three-stage injection cases. Figure 9 indicates that the two-stage injection case produces more oil than the one stage or three stage injection cases. Figure 10 indicates that the water production is held off by staging the gas injection. A two- stage injection scenario is probably an optimum because the production duration between the first and the second stage was only six months. This relatively short duration contributes to the gas segregation phenomena and thereby enhances the oil recovery by lowering the associated water production rate than for one stage.

V.2 B-65G Reservoir

V.2a Porosity, Water Saturation, and Permeability Distribution

Geophysical well logs and sidewall core data were provided by Taylor to assist in evaluating the reservoir parameters in terms of porosity, water saturation, and permeability. A review of the geology and core data determined that a three layer model could also describe the B-65G Reservoir. The top and middle layers had high permeability values, averaging 680 md and 1056 md respectively, while the bottom layer averaged 125 md. In some areas of the reservoir, the three layers are separated by shales. The geophysical well logs, when evaluated, revealed porosity and water saturation values that are comparable to Gulf of Mexico reservoirs and averaged 28.5% and 23%, respectively. These values were modified slightly, as will be explained in detail later, to obtain a history match.

V.2b Relative Permeability Curves

Figure 38 illustrates the modified relative permeability curves that were used to arrive at a final history match of the actual pressure and production data for the B-65G Reservoir. The unmodified relative permeability curves were the same as those unmodified curves used for the beginning simulation runs for the B-35K Reservoir.

Again, the results of the early simulation runs illustrated that the relative permeability curves are critical data elements in terms of impact on simulation performance. For this simulation, as in the B-35K Reservoir simulation, BOAST3 exercised the option for computing a three-phase oil relative permeability curve by using water-oil and gas-oil relative permeability curves.

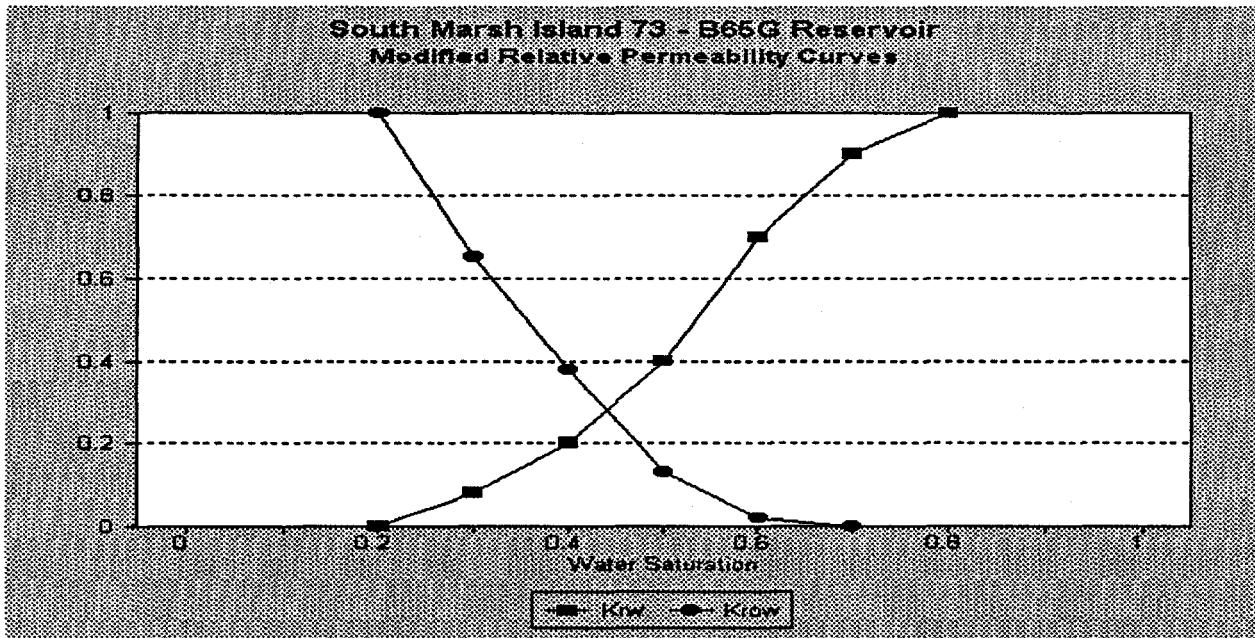


FIGURE 38

VI.2c PVT Data Analysis

PVT data was generated empirically using the techniques and formulas described by Glasco, Beggs, Robinson, Sutton and Farshad.¹¹ Historical production, injection and pressure data were input. From this information the producing gas-oil ratios (Rp), gas compressibility factors (z), oil formation volume factors and gas formation factors were calculated. The saturated oil viscosity, solution gas-oil ratio (Rs) were also calculated. The bubble point pressure of the B-65G Reservoir was estimated to be the initial reservoir pressure of 3457 psia.

Glaso's correlations were used for calculating oil formation volume factor, solution gas-oil ratio and dead oil viscosity. The Calhoun correlation was determined to offer the best explanation for the oil compressibility which is dependent on the bubble point pressure estimate. The Vasquez and Beggs correlation was used to derive the viscosity of the undersaturated oil. Table 9 tabulates the results of the empirically derived PVT data.

VI.2d Material Balance and Water Influx Analysis

Material balance studies of this reservoir followed, using the techniques described by Havlena and Odeh.¹² A spreadsheet of these calculations has been presented in Table 10. From these studies, the water influx was calculated to be 7.8 million barrels after 9125 days of production. This calculation agreed very closely with the final computer simulation history match, which arrived at a value of 6.8 million barrels of water influx, or 87% of that value calculated from material balance. The 6.8 million barrels of water influx calculated by computer simulation was generated after many modifications and fine-tuning of the reservoir characteristics used to obtain a history match.

However, as a starting point, the reservoir was assumed to have no gas cap and no water drive. As follows:

$$F = N_p * \{B_t + \{B_g * (R_p - R_s)\} + W_p - W_i - (G_i * B_{gi})\} \quad (13)$$

where

- F = Net production in reservoir barrels
- N_p = Net production in stock tank barrels
- B_t = Total formation volume factor in reservoir
- B_g = Gas formation volume factor in reservoir
- R_p = Producing gas-oil ratio in standard cubic
- R_s = Solution gas-oil ratio in standard cubic feet
- W_p = Produced water in barrels
- W_i = Injected water in barrels
- G_i = Injected gas in standard cubic feet
- B_{gi} = Injected gas formation volume factor in

¹¹ Sutton, R.P. and Farshad, F., "Evaluation of Empirically Derived PVT Properties for Gulf of Mexico Crude Oils," SPE Reservoir Engineering, February, 1990, pp. 79-86.

¹² Havlena, D. and Odeh, A.S., "The Material Balance as an Equation of a Straight Line," Journal of Petroleum Technology, August, 1963, pp 896-900.

¹³ Havlena, D. and Odeh, A.S., "The Material Balance as an Equation of a Straight Line-Part II, Field Cases," Journal of Petroleum Technology, July, 1964, pp 815-822.

SOUTH MARSH ISLAND - B-65G RESERVOIR
PVT DATA ANALYSIS

B= 92.88
PORE= 0.285
C= 8E-06
Rw= PSI-1
K= 1862 FEET

DAY	MONTH	YEAR	BHP	dP	CUM OIL	CUM GAS	CUM WATER	CUM WATER(SCF)	CUM GAS INJ	CORR	CUM GAS	GAS FVF(bbl/SCF)	TOTAL FVF	GAS FVF(cPSCF)	GAS FVF(bbl/SCF)	Gaso Bo	Gaso VISC	Rs	Beggs & Robinson
0	1	66	3457		0	0	0	0	0	0.845	1.316978	0.0041074919583454	0.00073176931113682	1.376978	0.47594	718			
578	7	67	3162	97.5	122813	105918	0	0	0	0.845	1.4167369	0.0043530348559166	0.000775151416390913	1.3771856	0.495454	667			
1065	12	68	3106	175.5	301109	0	0	0	0	0.835	72.4	0.00084827601416613	0.5172344	627					
1183	4	69	3058	102	502121	0	1291	0	0	0.831	1.3802666	0.000845719896402878	0.0008145201439849	1.304131	0.517717	615			
1520	3	70	3089	8.5	785127	5.49196	230	1381	11201	0.832	1.3890552	0.0015261069342829	0.00080634777892846	1.3116458	0.514564	622			
1550	4	70	3080	-11	811843	566166	246	1510	11201	0.832	1.39066534	0.0045393325714286	0.00080634777892846	1.3114104	0.51546	620			
1580	5	70	3077	6	8436	58365	269	2297	11201	0.832	69.6	0.000849246616833	0.00080949246616833	1.3079576	0.515909	619			
1763	11	70	2867	106.5	1038193	672316	409	2297	11201	0.832	1.3809784	0.00482338724897105	0.000859387768059321	1.2927203	0.540303	568			
1795	12	70	2919	79	107514	708987	409	51377	11201	0.832	65.9	0.00494054470709	0.00084612949640288	1.2892097	0.534289	580			
1945	5	71	2627	120	1485167	922037	9150	10115	11201	0.832	1.4650315	0.005245334297678	0.00093448161409837	1.2715938	0.571543	511			
2095	9	71	2595	162	188015	1101832	18008	113518	11201	0.832	59.6	0.0009630769716066752	0.00098253	1.2576321	0.5303				
2095	10	71	2663	-18	1932148	1142974	2017	126001	11201	0.832	1.4623164	0.00531001664473988	0.0009218487420208	1.2584076	0.56869	519			
2125	11	71	2594	0.5	2022775	1194339	22440	482160	11201	0.832	1.381538	0.0049218487420208	0.00094436977640709	1.258866	0.576321	503			
2125	11	71	2594	0.5	2022775	1194339	22440	5870	11201	0.832	1.4216784	0.00492138724897105	0.00093948840413118	1.259544	0.573919	507			
2760	5	72	2613	22.5	2414117	2145164	85870	1167291	1597505	0.832	1.4039755	0.00494054470709	0.00094612949640288	1.271551	0.582445	493			
3065	6	73	2549	22.5	4407968	266625	201888	5476539	2071926	0.832	1.48822436	0.0034634340659241	0.00090630769716066752	1.261571	0.560805	530			
3710	3	73	2708	-47.5	5220874	3165596	436151	479804	656778	0.832	1.4139986	0.0030884391432792	0.00090632998322895	1.274106	0.534783	579			
4715	12	77	2915	-183	5807450	3827906	854640	4816064	744090	0.832	1.3918794	0.0047559216415094	0.000984729566303774	1.277274	0.547553	554			
4745	1	78	2805	-90.5	5817711	3843207	857714	4893905	744090	0.832	1.4220593	0.004954799572802	0.0009017393492346031	1.277274	0.547553	554			
5415	10	79	2705	105	5926486	4874101	871577	4901710	1241139	0.832	1.4220593	0.004954799572802	0.0009017393492346031	1.277274	0.547553	554			
5780	10	80	2911	-51	6009961	5132103	872967	5016531	2091662	0.832	1.5339218	0.00471624577464789	0.000984831548765201	1.4151381	0.535279	578			
6145	10	81	3003	-149	6048263	5358103	893416	5018490	2091662	0.832	1.4047004	0.0046434340659241	0.000987744615384615	1.3078892	0.524179	601			
6480	9	82	3090	-89.5	6087300	5406205	893765	5022578	2091662	0.832	1.4091245	0.0045246421747573	0.00098623454603592	1.33252462	0.514118	623			
6845	9	83	3007	-2	6114837	5461623	894493	5023395	2223888	0.832	1.4273328	0.00463357698703	0.00098623454603592	1.3314867	0.523711	602			
7180	8	85	3114	-12	6127848	5523808	894674	5023395	2468037	0.832	1.4083573	0.0045395992485549	0.0009862759838150289	1.3369118	0.511462	629			
7300	1	86	3089	-41	6128529	5526393	894674	5023395	2468037	0.832	1.4255387	0.0045261069342829	0.00098634777892846	1.3481294	0.514564	622			
9125	12	90	3122	-4	6176318	62444125	894674	5023395	2745312	0.8335	1.4910431	0.0044944129083921	0.000986007134529148	1.420814	0.511023	630			

days = Actual days of production from reservoir from day 1
min and year = date of test

chip = measured pressure from test
cum oil = cumulative oil produced STB

cum Bas = cumulative Bas produced MCF

cum water = cumulative water produced Bbls

cum gas inj = cumulative gas injected MCF

Cum gas = cum gas - cum gas inj

GOR (R_p) = cumulative produced gas-oil ratio

Z = gas z factor

(Marshall B. Standring and Donald L. Katz, "Density of Natural Gases," Trans. AIME, (1942), 146, 144.)

Total FVF = (R_pRs) B₀ + Bo

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (R_pRs) = [0.018392 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SCF) = [0.00504 z T^{0.5}(degrees R)]/BHP

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 24.)

Gas FVF (bbl/SC

DEAD OIL V#	1.85	F	Td	Q(t)	CUM Q(t)	SUM dp	F/Eo	q/eo	Eo	We	delta We	dW/dT	P-P	bpd/psi	m	Er	F/Et	EdPQ(dT)/E
0	0	18779.97928519	1866.3079429	503	503	49042.5	97.5	4722118.543	123498.953	0.0397589	0	-411555	172805.280049537	299	195	1.533191	0.1	0.047944375
578712.21423405	3325.425634	832	1335	364455	273	11694.48371.2	73648230.65	0.01649486	345612	3846332.41569158	790	351	2.250141	0.1	0.01864802	31.033.440	19,543,88	
6790082.20595084	3661.51384218	905	2240	840000	375	62438532.36	76926314.64	0.0110488	357710	199394.55604338	1662	399	4.164469	0.1	0.026572166	25,970,491	31,612,035	
1106675.3980961	4810.567155	1132	4526	1685935	372.5	80865520.46	12123296.1	0.0136884	744401	198756.796332646	593	368	1.612239	0.1	0.02606792	41,062,370	49,646,356	
1147511.8426863	4899.3991477	1171	5697	2156314.5	378.5	10319226.59	1939273915.2	0.0111194	755224	40881.262824142	1363	377	3.614612	0.1	0.028114306	39,363,431	59,967,138	
4831031.7633099	7442.514607	1238	6935	3363475	485	31441384.46	75379321.47	0.0446594	826164	-10456.2450858	-3484	380	-9.167214	0.1	0.025696628	44,656,126	83,914,300	
1458716.8280536	5374.6157678	1271	8206	4628184	564	50282795.57	59616150.7	0.028995	546211	-3830.5118601145	-21	590	-0.035478	0.1	0.0568613567	20,460,688	49,020,533	
2048399.5300485	5444.1429074	1285	9491	6491844	684	23264264.02	73726144.72	0.0880535	818303	-41676.447749542	-1302	538	-2.420797	0.1	0.056466528	28,891,901	91,707,811	
249911.7588711	5732.11086663	1344	10835	9166410	846	29284741.06	107412340.6	0.0853384	462838	54229.701193524	362	830	0.43558	0.1	0.126142656	16,239,547	51,464,304	
278908.2034549	5808.6613031	1379	13596	11217	10115676	828	39655927.35	155919639.5	0.0648775	926962	4212.97082981	3543	862	0.12559233	0.1	0.125592523	19,898,142	72,933,743
4831031.7633099	7442.514607	1694	15290	13050015	853.5	32675372.88	131965975.4	0.0853535	1313176	113829.31664543	3794	794	4.778729	0.1	0.100590276	25,576,799	100,563,160	
5823166.2638877	8418.5007676	1890	17180	15049680	876	53773865.42	1355159297.9	0.1112653	1154621	948978.8242214	31633	863	36.65461	0.1	0.125682975	22,191,456	89,634,597	
5820786.076305	2318	19498	16154093	131001509.1	828.5	131006156.3	29360616.3	0.0350206	3211152	133006.0344265	2446	844	2.598074	0.1	0.11982906	40,316,037	108,905,261	
801423.3892977	14104.671239	22492	14518386	645.5	5378310632	974310939.2	0.0149016	38269150	1866637.6182706	2894	749	3.653813	0.1	0.154733612	38,667,538	97,261,867		
866846.557411	20693.973034	23440	15136800	595	18779528.29	347004570.6	0.0436213	7553398	803954.33643596	800	542	1.475931	0.1	0.08781778	82,044.856	183,878,934		
8479752.3598078	224579257	4538	49086	1449258	408.5	17213117.3	36138696.8	0.0503648	7299059	-438802.43615139	-4627	648	-22.57214	0.1	0.07032054	116,493,497	215,233,032	
8579952.5655324	22955.624704	4585	53671	19080040.5	396.5	269207834	62023.6938.1	0.0312793	66776383	-262226.7812455	-391	752	-0.520448	0.1	0.2427056	82,725,157	40,316,037	
9354787.721395	28366.106325	5643	59314	20848871	351.5	176584919.5	392910747.9	0.0483607	7798122	-9370.1649398806	-506	368	-1.375688	0.1	0.062546442	137,177,301	305,033,949	
0	0	18779.97928519	1866.3079429	503	503	49042.5	97.5	4722118.543	123498.953	0.0397589	0	0	0	0	0	0	0	

F - Cum oil [(Bt+BigxRp- R_{air})] + cumwater - (Ginj x Bb)

Havlena and Odeh, "The Material Balance as an Equation of a Straight Line," Journal of Petroleum Technology, August, 1963, pp 896-900.

Td - Dimensionless time - 6.323x10power-3 x (K/(poro x visc x ex x twpower2))

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 218.)

Q - dimensionless influx - "Infinite Aquifer Values of Dimensionless Water Influx for Values of Dimensionless Time"

(B.C. Craft and M.F. Hawkins, "Applied Petroleum Engineering," 1959, pp 212.)

CUM Q(t) - cumulative Q(t)

Delta Q(t) - Cumulative deltaQ(t) + cumulative Q(t)

Sum dp - Cumulative dp

Eo - B-Bi

q/Eo - DeltaPQxQ(t) / Eo

We - Water influx - (CumOil x [Bt + ((Rp-Rs) x Bg)]) - (N x Eo) + Cum Water + (Ginj'Bg)

delta (We - 1/2 x (We x We))

dW/dT - Delta We / dtime

Pt-P - Initial pressure - present pressure

ln(pdp) - barrels of water influx per day per psi drop in pressure

Table10 Spreadsheets Illustrating Havlena & Odeh Straight Line Material Balance Analysis
For B-65G Reservoir

versus

$$E_o = B_t - B_{ti} \quad (14)$$

where

E_o = the expansion of oil reservoir barrels per

B_t = Present total formation volume factor in

B_{ti} = Initial total formation volume factor in

If this calculation had generated a straight line on the plot, a reservoir without a water drive and without a gas cap would have been confirmed. However, the plot did not result in a straight line, as shown in Figure 39, indicating that the reservoir's drive mechanisms included water and/or a gas cap.

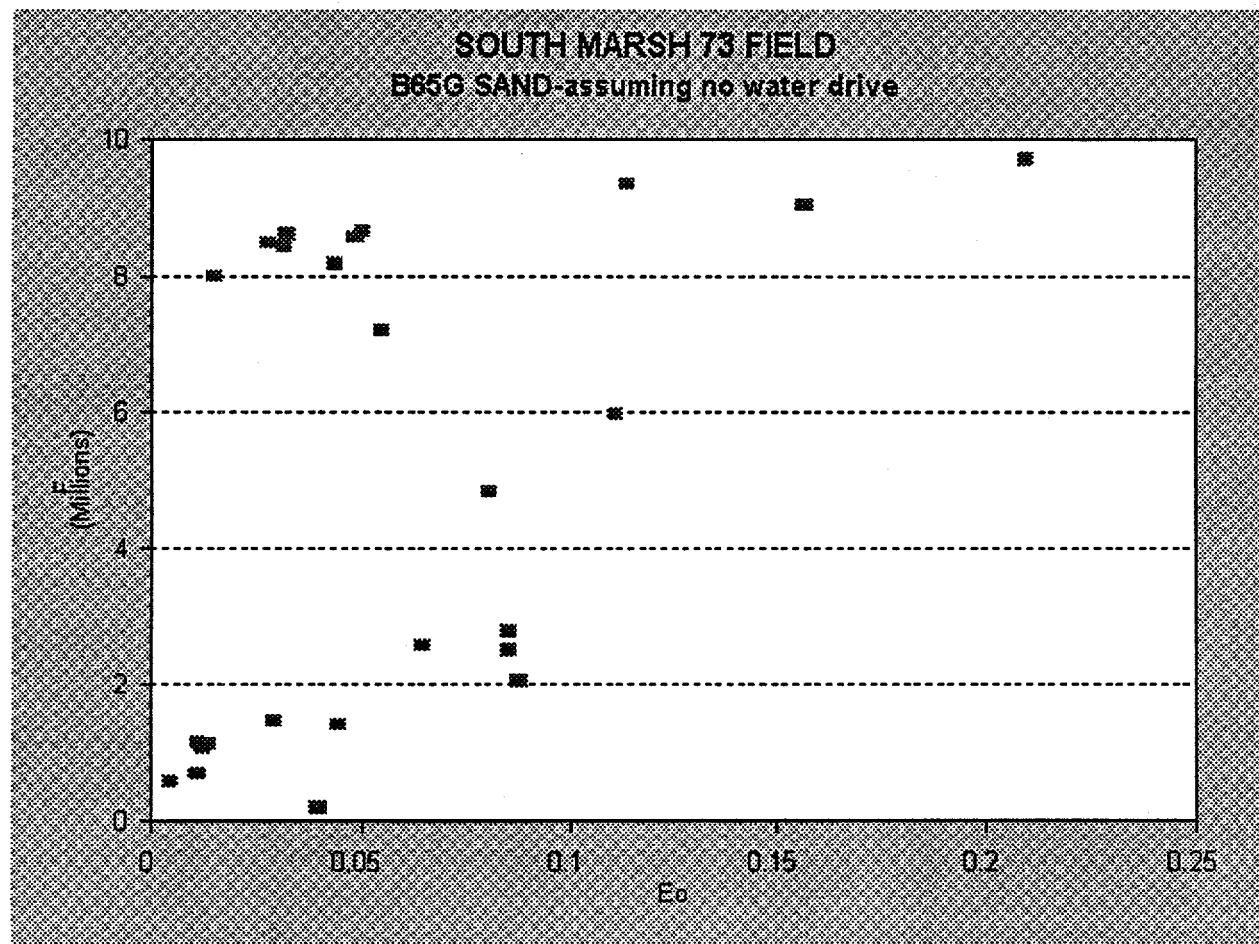


Figure 39

¹⁴ Ibid: 815-822.

At this point, the reservoir was assumed to have a small gas cap and water drive. Again, following the outline given by Havlena and Odeh, another plot was constructed as follows:

$$F/Et \quad (15)$$

where

$$\begin{aligned} F &= \text{Net production in reservoir barrels} \\ Et &= [m * Bti * (Bgi - Bgi) / Bgi] + Bt - Bti \end{aligned}$$

where $m =$ ratio of gas cap volume versus oil volume (assumed to be 0.1)
 $\Delta p =$ reservoir pressure change

versus

$$\text{Sum of } \Delta p * Q(\Delta tD) / Et \quad (16)$$

where

$$Q(\Delta tD) = \text{van Everdingen-Hurst function}$$

This plot resulted in a straight line (Figure 40) and confirmed the assumption of a gas cap and water drive reservoir. The y-intercept of this plot defined the original oil in-place of the reservoir as approximately 12 million stock tank barrels. This agreed very well with the estimate for oil-in-place that was generated by volumetric methods explained earlier.

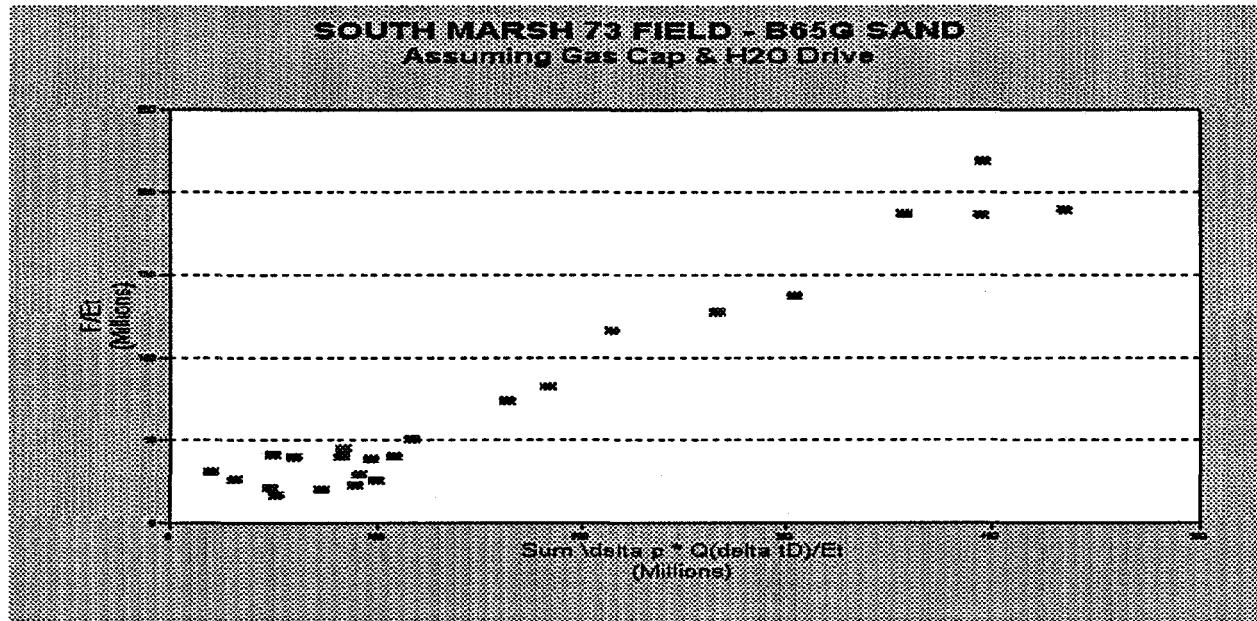


FIGURE 40

¹⁵ Ibid: 815-822.

¹⁶ Ibid: 815-822.

VI.2e Reservoir Model Grid Dimensions and Geometry

Once the material balance work had indicated a reservoir with a water drive and a small gas cap, the computer simulation of this reservoir was performed. The reservoir model was developed by integrating geologic and engineering data.

The model consisted of 12 rows and 12 columns, oriented northeast-southwest over the reservoir, as illustrated in Figure 41. Grid block lengths averaged 425 feet and grid block widths averaged 224 feet. Grid block dimensions around well bores were about 150 feet by 150 feet.

The sand was subdivided into three flow-unit layers. These flow-unit layers were defined by alternating layers of low and high permeability (alternating sand-shale sequences) as observed on electric logs and as illustrated in Figure 42. Average values for porosity and permeability were assigned to each layer initially. Vertical permeability was taken to be 1/10 of the horizontal permeability. Detailed modifications were made to these values as the history match was obtained. On average, the layers were 22 feet in gross thickness and 10 feet in net thickness.

VI.1f Productivity Index Calculations (PID)

Table 11 summarizes the results of the PI calculations per well required for simulating the B-65G Reservoir.

TABLE 11
SUMMARY OF CALCULATED PI VALUES BY LAYER PERFORATED FOR EACH
WELL

WELL#	PI VALUES		
	LAYER 1	LAYER 2	LAYER 3
B1	not perfed	not perfed	14.7
B7	24.98	not perfed	not perfed
B10D	not perfed	not perfed	6.1
B12	25.0	not perfed	not perfed

VI.2g Recurrent Data

As in the simulation of the B-35K Reservoir, using oil production rates with an implicit rate calculation option was determined to result in accurate predictions of the reservoir performance when simulating the actual history. Since the oil rate per well was specified, the reservoir's pressure, gas production, and water were simulated and compared to actual reservoir pressure and production values. Average oil rates were computed over specified time periods with each average oil rate represented by a recurrent data set. Appendix D includes a listing of the input data set used for the final history matching of the actual pressure and production data.

Just as in the case of the B-35K Reservoir, in terms of the model's solution method, the Line Successive Over-Relaxation (LSOR) option with a z-direction tridiagonal algorithm was used as the optimum solution method for solving two- or three-dimensional problems.

X <MAX 16>

Y <MAX 15>

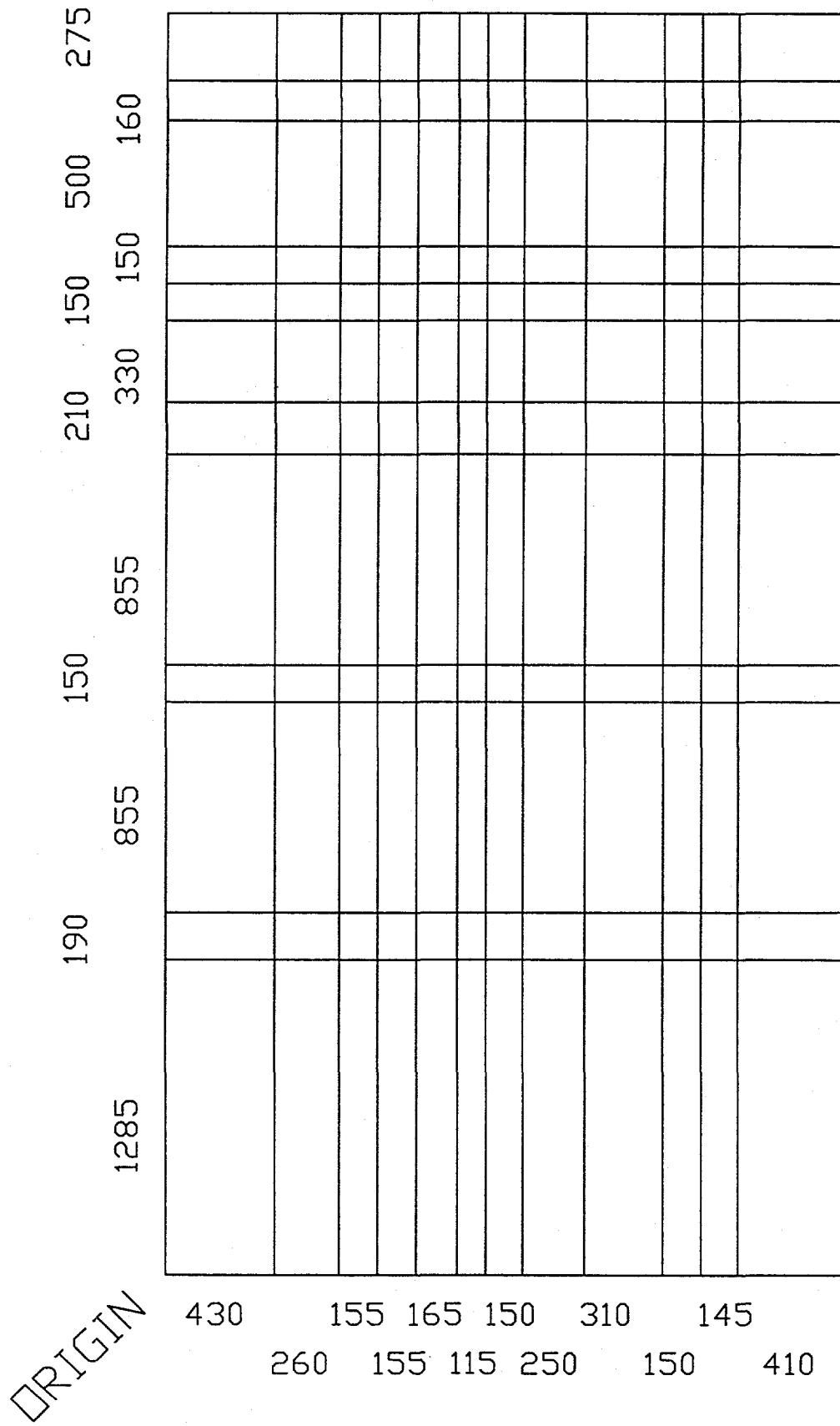


Figure41 Grid Layout of B-65G Reservoir

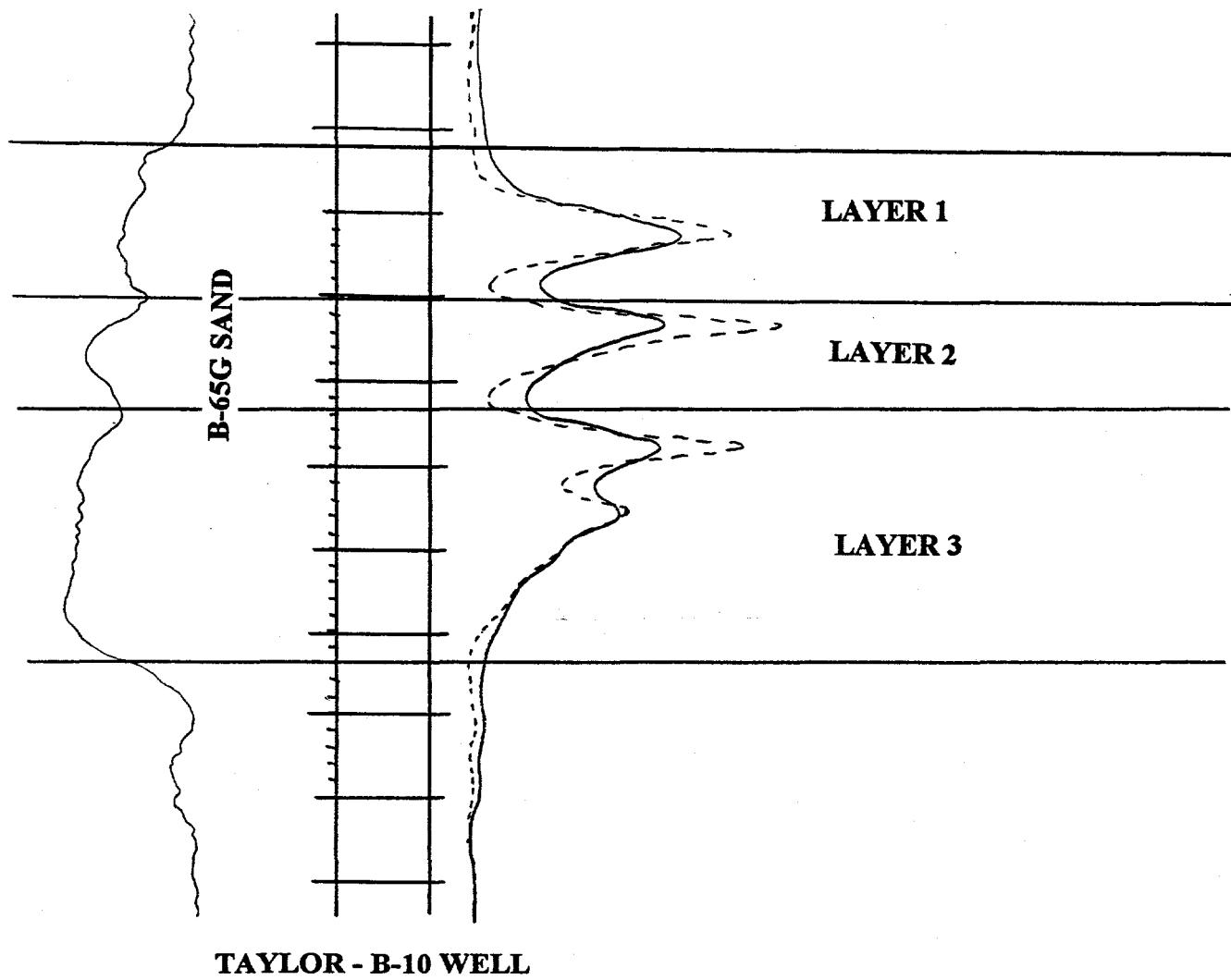


Figure 42 - Type Log of B-65G Reservoir Illustrating Simulator Layering

VI.2h History Matching

Approximately 30 runs were made from start to finish for this reservoir before an adequate history match was obtained. Primary modifications to the original data set included adjustments to the gas cap size, adjustments to the position of the updip pinchout, relative permeability curve modifications, localized net sand thickness variations, localized permeability variations, variations in strength and location of water influx and overall oil saturation.

The reservoir characterization for the initial run AA, in which oil production data were entered, included a very weak water drive and no gas cap. The strength of the water drive was the most important factor. The simulation reservoir pressure fell drastically in comparison to the actual, which stayed nearly the same. Also the overall simulated gas production was much higher than actual, and the simulated water production was much lower than actual. These comparisons are shown in Figures 43 and 44.

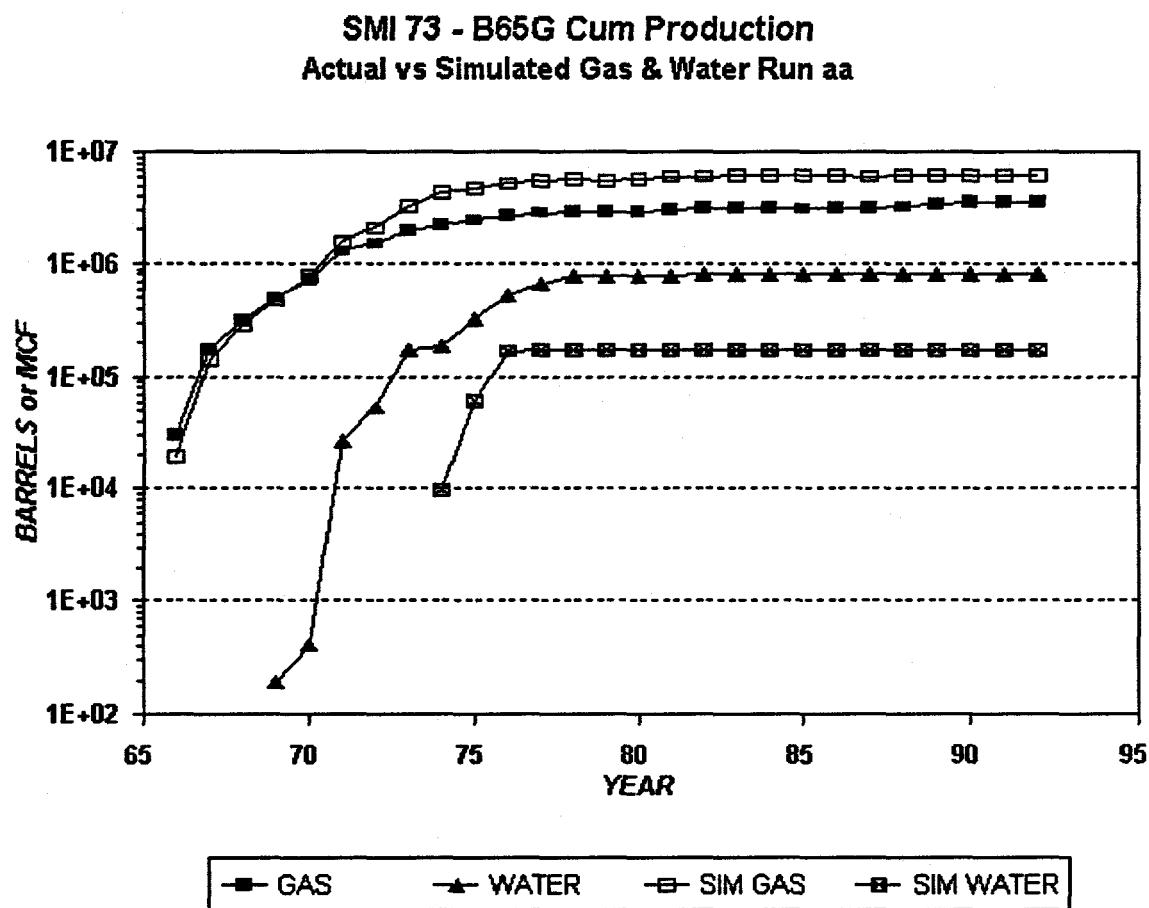


FIGURE 43

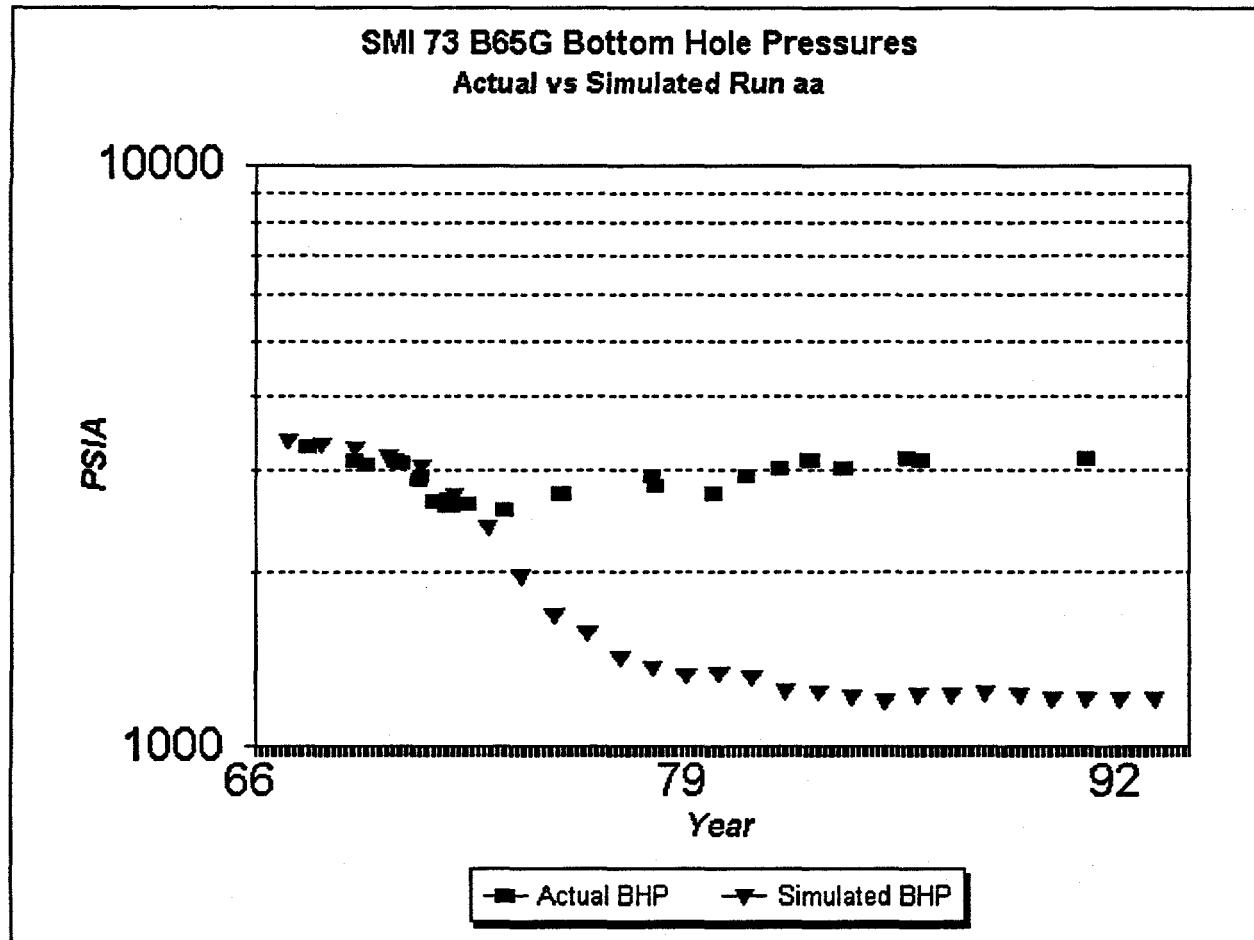


FIGURE 44

The results from run AA indicated that there was not sufficient material to replace the voidage created by the production, therefore several modifications were made for the next run AB. The detailed modifications are included in Appendix E.

The simulation reservoir pressure for run AB was higher than actual before mid-life and was lower than actual after mid-life. Overall, however, the pressure match was an improvement over run AA. The overall simulated gas production was lower than actual and the simulated water production was much lower than actual. Therefore, the gas match flip-flopped from run AA, while the water match remained about the same. Since the pressure match improved, the overall material balance was much closer. The following modifications were made from run AB to run AC are included in Appendix E.

Gas and water production from run AC were still much lower than actual, especially from the B-12 and B-1 wells. Pressures remained essentially unchanged from run AB. The detailed modifications were made from run AC to run AD are included in Appendix E.

The overall simulated gas and water production in run AD matched much better with actual figures than that of previous runs. Pressures were much lower than before, however. This difference was believed to indicate insufficient oil volume, so the only modification from run AD

through run AG (runs AE and AF failed) was to increase the original oil saturation from 77% to 78%.

Run AG resulted in a good overall history match. The focus of the testing shifted to individual well matches at this point, resulting in run AT, which is the final history match. Numerous runs were made between run AG and run AT, but only slight modifications resulted. Modifications made from run AG to run AT are included in Appendix E.

Graphs of the comparisons of actual production and pressures versus the simulated production and pressures are illustrated in Figures 45 and 46. Data input sets for the initial run AA and the final run AT have been included in Appendix D.

SMI 73 B-65G Cum Production Actual vs Simulated Gas & Water Run t

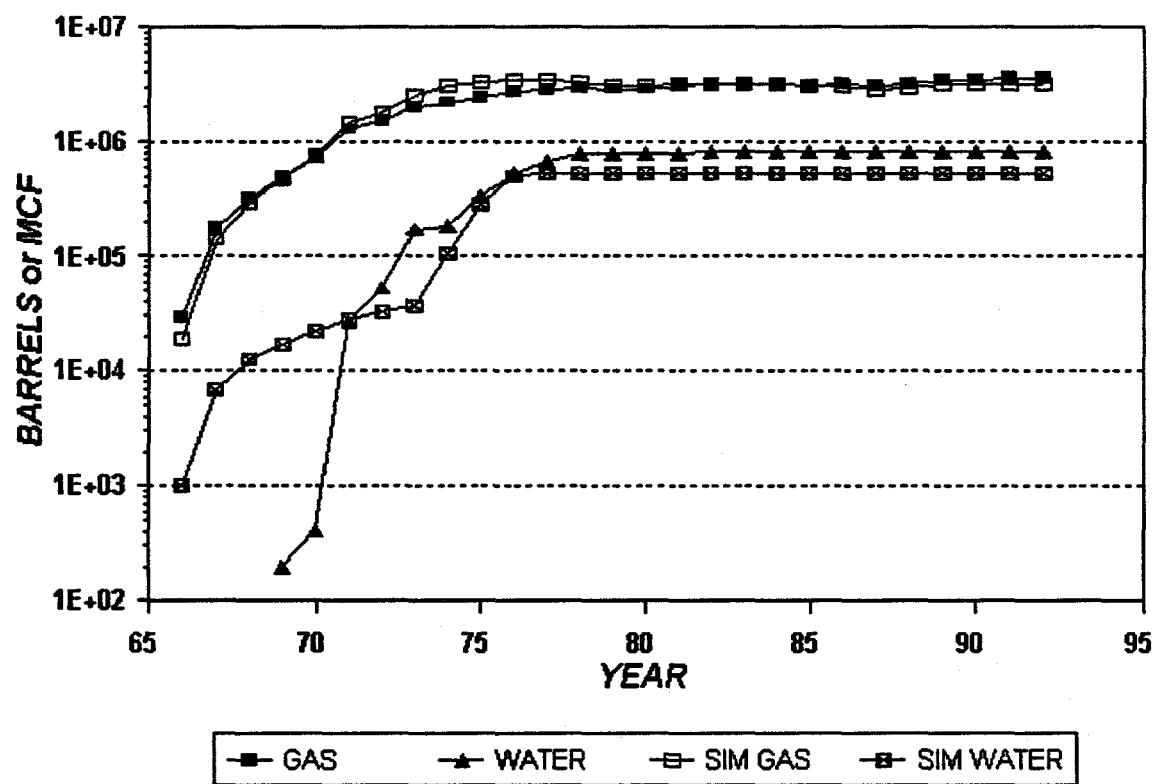


FIGURE 45

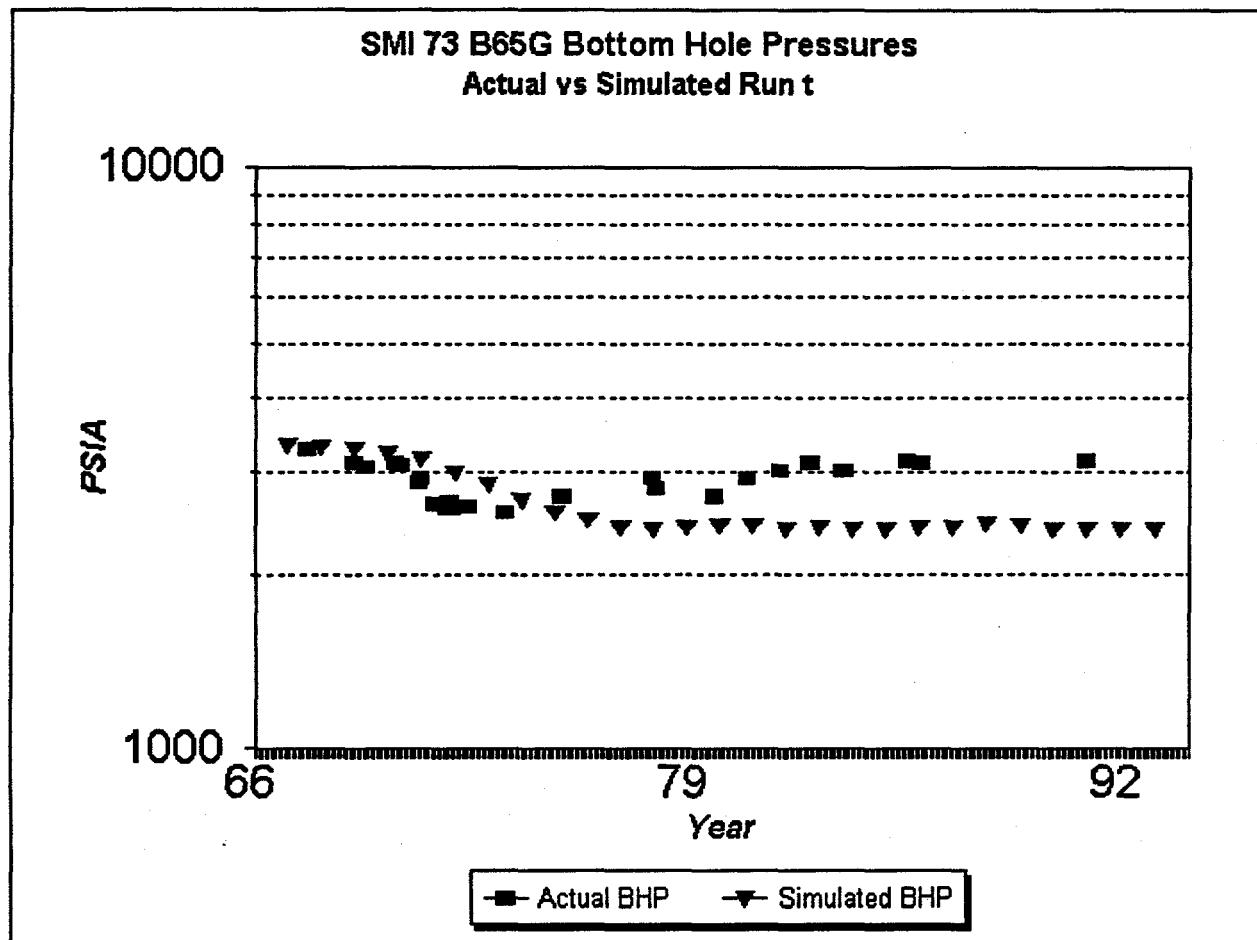


FIGURE 46

VI.2i Prediction Runs

Because the reservoir initially had a gas cap in place, because the amount of gas injection that took place and because of the performance of the wells, limited bypassed oil reserves were anticipated. Based on several predictive runs under varying scenarios the limited remaining oil reserves are approximately 400 MSTB. After this, only the gas cap, of approximately 1 BCF of gas remains to be blown down. Oil reserves which remain should be produced from the B-12 well, which was producing 72 BOPD of 32.6 degree API gravity, 0 BWPD, 50 MCFD on a 14/64" choke at 100 psi flowing tubing pressure, as of July 14, 1994.

VI. CONCLUSIONS

The reservoir simulation studies which are documented in this report provided the LSU Bypassed Oil Study team with calibration cases for use in the evaluation of the oil recovery potential of Gulf of Mexico salt dome reservoirs. The BOAST3 model used in this study can

accurately simulate the performance of gas injection projects for recovering attic oil and provide reasonable predictive results.

VL1 B-35K Reservoir

The results of this study have offered a set of technically feasible solutions to help improve the oil recovery from this reservoir through additional attic gas injection cycles as follows:

- 1 The injection rate sensitivity studies indicate that relatively low injection rates will accelerate the production response from additional gas injection cycles due to improved segregation of the gas in the attic. The ultimate incremental recovery is improved only slightly at lower gas injection rates. An injection rate of about 500 MCFD appears to be optimum for recovery for this reservoir.
- 2 The injection volume sensitivity studies show that production is slightly accelerated at higher injection volumes and that incremental oil recovery tends to be higher, but there is a point of diminishing returns. The optimum gas injection volume appears to be between 150 and 300 million cubic feet.
- 3 The post-injection shut-in time sensitivity study indicates that a three month shut-in time yields an optimum incremental oil recovery.
- 4 The injection volume staging sensitivity study indicates that higher incremental recovery can be achieved by dividing the total injection cycle into two stages, with a short production stage between. This improved recovery is most likely due to better segregation of the injected gas in the attic.

In addition to the technical solutions, the results of the sensitivity cases could be analyzed from an economic point of view to determine the optimum injection volume, injection rate, and shut-in period, based on operating conditions and costs.

VL2 B-65G Reservoir

Primarily, the study of this reservoir indicates that BOAST III is able to accurately describe the history of a steeply dipping reservoir with a past gas injection project.

History matching and predictive simulation runs have shown that the gas injection cycles were very successful in moving attic oil down to be produced by the downdip wells in the B-65G reservoir in South Marsh Island Block 73 Field. Recommendations to the operator, based upon this study, would be to recover the remaining reserves of 400 MSTB of oil available from the B-12 well and then blowdown the gas cap, which is estimated to contain 1.0 BCF of gas

REFERENCES

1. Broom, J.C. and Dawsey, A.L. Jr., "Gas Injection for Attic Oil Recovery," Petroleum Engineer, February, 1959, pp. B19-B22.
2. Beggs, H.D. and Robinson, J.R., "Estimating the Viscosity of Crude Oil Systems," Journal of Petroleum Technology, September, 1975, pp. 1140-1141.
3. Bleakley, W.B., "Engineering, Geology Hike Black Bayou Reserves," The Oil and Gas Journal, January 4, 1971, pp. 71-74.
4. Bourdarot G. and Daviau F., "Vertical Permeability: Field Cases," SPE 19777, 64th Annual Technical Conference and Exhibition, October 8-11, 1989.
5. Bleakley, W.B., "Chevron's Attic Oil Recovery in South Louisiana Looks Good," The Oil and Gas Journal, November 13, 1967, pp. 132-134.
6. Combs, G.D. and Knezek, R.B., "Gas Injection for Upstructure Drainage," Journal of Petroleum Technology, March, 1971, pp. 361-372.
7. Craft B.C. and Hawkins M.F., Applied Petroleum Reservoir Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1959.
8. Dake L.P., Fundamentals of Reservoir Engineering, Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1978.
9. Duckett, M., Banks, R and Limb, D, "Using Nitrogen to Enhance Oil and Gas Recovery," World Oil, July, 1983, pp. 125-130.
10. Franklin, L.O., Koederitz, W.A. and Walker, D., "First Report on Field Performance in Recovering Attic Oil," The Oil and Gas Journal, July 24, 1961, pp 65-70.
11. Glasco, O, "Generalized Pressure-Volume-Temperature Correlations," Journal of Petroleum Technology, May, 1980, pp. 785-795.
12. Godbold, F.S., "Inert Gas Helps Recover Attic Oil," Oil and Gas Journal, April, 1963.
13. Godbold, F.S., "Humble Recovers Attic Oil With Unique Inert Gas System," World Oil, May, 1965, pp. 151-154.
14. Havlena, D. and Odeh, A.S., "The Material Balance as an Equation of a Straight Line," Journal of Petroleum Technology, August, 1963, pp 896-900.
15. Havlena, D. and Odeh, A.S., "The Material Balance as an Equation of a Straight Line-Part II, Field Cases," Journal of Petroleum Technology, July, 1964, pp 815-822.
16. Harvey, A. Herbert, "A Comparison of Nitrogen and Methane Injection for Attic Oil Recovery," Unsolicited SPE Paper #18603, November, 1988.

17. Morrow, R.M., "Updip Oil Recovery By Downdip Gas Injection," The Petroleum Engineer, April, 1957, pp. B28-B32.
18. Peaceman, D.W.; "Interpretation of Well-Block Pressures in Numerical Simulation", Society of Petroleum Engineer's Journal, (1978) pp. 183-194.
19. Slider, H.C., Practical Petroleum Reservoir Engineering Methods: An Energy Conservation Science, Petroleum Publishing Company, Tulsa, Oklahoma, 1976
20. Sawyer, W. K., "BOAST3-A Modified Version of Handbook for Personal Version of BOAST II: A Three-Dimensional, Three-Phase Black Oil Applied Simulation Tool," Department of Energy Report Contract Number DE-AC22-92BC14831: 1996
21. Franchi, J.R., Harpole, K.J., and Bujnowski, S.W., "BOAST: A Three-Dimensional, Three-Phase Black Oil Applied Simulation Tool," U.S. Department of Energy Report Contract Number DOE/BC/1033-3, Volumes 1 and 2: 1982.
22. Franchi, J.R., Kennedy, J.E., and Dauben, D.L., "BOAST II: A Three-Dimensional, Three-Phase Black Oil Applied Simulation Tool," U.S. Department of Energy Report Contract Number DOE/BC-88/2/SP: 1987.
23. Stapp, L.G. and Allison, E.C., "Handbook for Personal Version of BOAST II: A Three-Dimensional, Three-Phase Black Oil Applied Simulation Tool," Department of Energy Report: December, 1989.
24. Strickland, R.F., "Numerical Simulation of Gas Injection for Upstructure Drainage," Dissertation, Texas A&M University, December, 1976.
25. Strickland R.F. and Morse R.A., "Gas Injection for Upstructure Oil Drainage," Journal of Petroleum Technology, October, 1979, pp 1323-1331.
26. Sutton, R.P. and Farshad, F., "Evaluation of Empirically Derived PVT Properties for Gulf of Mexico Crude Oils," SPE Reservoir Engineering, February, 1990, pp. 79-86.
27. Sutton, R.P. and Farshad, F., "Evaluation of Empirically Derived PVT Properties for Gulf of Mexico Crude Oils," SPE 13172, 59th Annual Technical Conference and Exhibition, September, 16-19, 1984.
28. Waguespack, S.J., "Salt Domes of South Louisiana," The New Orleans Geological Society, Volume III, 1983, pp. 58-59.

**APPENDIX A
B-35K RESERVOIR
MODEL INPUT DATA**

SMI 73 Simulation
B-35 K Reservoir Input Data

NOTE: See BOAST User's Manual for definitions of the keywords which are used in the input dataset.

ID1: LSU PROJECT- ACTUAL FIELD STUDY TAYLOR ENERGY-BOAST III (04/05/93)

ID2:ACTUAL RESERVOIR WITH 3-WELLSIREPRS:0-->1

ID3:A-1, A-3, AND A-6 (b) DIP = 27 degrees down!

ID4:modified Krw (mod #5N, USING CASE 13N),MODIFIED KRG (MOD#4), WOC @ 6137 FT
AND ATTIC RESOVOIR

ID5: SMI 73 BLOCK, 3-layer set up, thickness by grid block, well producing @ constant rate
RESTART AND POST-RUN CODES

-10

GRID DATA: NUMBER OF GRID BLOCKS X, Y, Z

14 11 3

GRID BLOCK LENGTHS: dimensions in feet, with thickness varied by grid block

0 0 1 1

375.500.500.500.125.594.500.500.125.406.500.500.125.563.

250. 250. 125. 125. 62.5 31.25 125. 125. 204. 250. 500.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

1. 1.5 3. 1.5 0. 0. 0. 0. 0. 0. 0. 1. 1.5 2.5

3 4.5 6. 6. 5.5 4.5 5. 5. 4.5 4.5 5. 5. 5.5 5.5

5. 6.5 8. 7. 7. 6. 7. 7.5 7.5 6.5 6.5 6.5 7.5

6.5 8. 10. 9. 8.5 8.0 8.5 8.5 8.5 8.5 8.0 8.0 9.0

7.0 9.0 11.5 11.5 9.5 8.5 10. 11. 11.5 9.0 9.0 11.5 8.5 9.5

9.0 11.0 14. 14.5 14. 13. 15. 16.5 16.5 16. 12.5 14. 10.5 11.

12.5 14. 19. 18.5 18. 18. 19. 20. 20. 20. 19. 14. 13. 13.5

16.5 19. 21. 21.5 21. 21. 21.5 21.5 21.5 21. 19. 16.5 17.

21. 22. 23. 24. 24. 23. 23. 23. 23. 22.5 21.5 20.5 20.

25.5 26. 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26. 26.5 24. 23. 23.

5. 5. 0. 0. 0. 0. 0. 0. 0. 0. 4. 5. 5.

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 5.

6. 6. 6. 6. 5. 1. 0. 2.5 5. 5. 5. 6. 6. 6.

6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.

6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.

6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.

6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.

SMI 73 Simulation
B-35 K Reservoir Input Data
(Continued)

6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.

6022.6058.6093.6140.

6113.6108.6104.6087.6082.6083.6065.6060.6068.6078.6093.6132.6160.6200.

6207.6192.6175.6160.6158.6154.6160.6167.6175.6187.6215.6244.6274.6308.

POROSITY AND PERMEABILITY DISTRIBUTIONS

1 0 0

0.066 0.314 0.165 0.033 0.0 0.0 0.0 0.0 0.0 0.0 0.132 0.297 0.33 0.165 0.06 0.33 0.33 0.33

0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.264

0.132 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.297

0.198 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.297

0.198 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.314

0.231 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

0.264 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

0.297 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.231

0.33 0.264 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.281 0.33 0.33

0.33 0.33 0.33 0.33 0.33 0.264 0.297 0.314 0.297 0.264 0.33 0.33 0.33 0.33 0.33

0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

0.058 0.276 0.145 0.029 0.0 0.0 0.0 0.0 0.0 0.0 0.116 0.261 0.29 0.145

0.058 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.032

0.116 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.261

0.116 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.261

0.174 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.276

0.203 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

0.232 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

0.261 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.203

0.290 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

0.064 0.304 0.16 0.032 0.0 0.0 0.0 0.0 0.0 0.0 0.128 0.288 0.320 0.16

0.064 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.256

0.128 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.288

0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.288

0.192 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.304

0.224 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.320

0.256 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

0.288 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.224

0.32 0.256 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

1440. 570. 1125.

1440. 570. 1125.

14.4 5.7 11.25

POROSITY AND PERMEABILITY MODIFICATIONS

0 0 0 0 0 0 0 0

SMI 73 Simulation
B-35 K Reservoir Input Data
(Continued)

TRANSMISSIBILITY MODIFICATIONS

0 0 0 1

ROCK PVT: number of rock regions and PVT data sets

1 1

| SAT | KROW | KRW | KRG | KROG | PCOW | PCGO |
|-------|------|--------|-------|------|------|-----------------------|
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | relative perm data |
| 0.165 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | and capillary |
| 0.30 | 0.00 | 0.0035 | 0.035 | 0.00 | 0.00 | 0.00 pressure values. |
| 0.40 | 0.02 | 0.0055 | 0.09 | 0.00 | 0.00 | 0.00 |
| 0.50 | 0.13 | 0.01 | 0.18 | 0.01 | 0.00 | 0.00 |
| 0.60 | 0.38 | 0.05 | 0.32 | 0.04 | 0.00 | 0.00 |
| 0.70 | 0.65 | 0.09 | 0.42 | 0.12 | 0.00 | 0.00 |
| 0.80 | 1.00 | 0.48 | 0.64 | 0.26 | 0.00 | 0.00 |
| 0.90 | 1.00 | 0.65 | 0.85 | 0.60 | 0.00 | 0.00 |
| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 |

ITHREE SWR

1.165

PBO PBODAT PBGRAD: bubble point pressure and datum at which that value was measured

2870.0 6324. 0.000

VSLOPE BSLOPE RSLOPE PMAX REPRS

.000046 -.0000232 0. 3000. 0 <-- "ON"

P MUO BO RSO

| | | | | |
|-------|--------|-------|--------|---------------------------------------|
| 2000. | 0.6869 | 1.215 | 338.75 | PVT data for the three phases oil, |
| 2100. | 0.6914 | 1.213 | 357.76 | gas, and water. It includes viscosity |
| 2200. | 0.6962 | 1.212 | 377.28 | solution GOR, formation volume |
| 2000. | 0.7013 | 1.211 | 397.14 | factors, and density values. |

2400. 0.7067 1.209 417.34

2500. 0.7124 1.208 437.89

2600. 0.7184 1.206 458.79

2700. 0.7247 1.205 480.06

2800. 0.7313 1.204 501.69

2900. 0.7381 1.203 523.69

3000. 0.7452 1.202 546.08

P MUW BW RSW

100. 0.56 1.000 0.00

3000. 0.56 0.9228 0.00

GAS AND ROCK PROP

0

P MUG BG PSI CR

100. .0163 .13729 0. 0.000003

200. .0164 .06381 0. 0.000003

300. .0165 .04014 0. 0.000003

400. .0168 .02884 0. 0.000003

500. .0171 .02222 0. 0.000003

SMI 73 Simulation
B-35 K Reservoir Input Data
(Continued)

0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795
0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795
0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.675
0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.397 0.079
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
INITIALIZE WATER SATURATION (water saturation per grid block for each layer)
0.185 0.185 0.185 0.185 0.00 0.00 0.00 0.00 0.00 0.185 0.185 0.185 0.185
0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185
0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185
0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185
0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185
0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185
0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185
0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185
0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.307
0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.247 0.247 0.247 0.247 0.00 0.00 0.00 0.00 0.00 0.247 0.247 0.247 0.247
0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247
0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247
00247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247
0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247
0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247
0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247
0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247
0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.360
0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.624 0.925
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.205 0.205 0.205 0.205 0.00 0.00 0.00 0.00 0.00 0.205 0.205 0.205 0.205
0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205
0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205
0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205
0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205
0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205
0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.325
0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.603 0.921
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
KSN1 KSM1 KCO1 KCOF KSKIP KOUT (print control codes)
0 0 0 0 1 0

NMAX FACT1 FACT2 TMAX WORMAX GORMAX PAMIN PAMAX (Model control codes)
9999 1.25 0.5 1500. 2.00 500000 150. 5000.

KSOL MITR OMEGA TOL TOLI DSMAX DP MAX

4 250 1.7 .020 0.00 .025 150.0

SMI 73 Simulation
B-35 K Reservoir Input Data
(Continued)

NUMDIS IRK THRUIN

0 0 .6

AQUIFER DATA

2

2

1 9 11 11 1 3 7.58

10 14 11 11 1 3 7.58

WELL AND NODE DATA

TAYLOR FIELD PRODUCING WELLS

3

WELL NUMBER AND NODE

1 3 PROD1

2 3 PROD3

3 3 PROD6

WELL NODE AND DIRECTION

1 13 8 1 1

1 13 8 2 1

1 13 8 3 1

2 9 6 1 1

2 9 6 2 1

2 9 6 3 1

3 5 5 1 1

3 5 5 2 1

3 5 5 3 1

RECURRENT DATA: control the production performance of each well with time.

C=====DATA SET1=====

0 2 1 [ICHANG IOMETH IWLCNG-> NOTE: ICHANG not used if IOMETH>0]

1.0 30.2 [Times for output - IOMETH values]

1 1 1 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IBPMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP,KRWMP,KRGMP,IRSOMP,PCOWMAP,PCOGMAP,PHIMAP]

0.01 0.01 15.0 [DT,DTMIN,DTMAX]

HEADER-> Beginning of data read by NODES-if IWLCNG=1]

3 0 [NWELLN= No. of new wells,NWELLO= No. of old wells]

--NEW WELLS--

PROD 1 13 8 1 3 [FORMATTED:A5,S13 - WELLID, IDWELL, I,J,PERF1,NLAYER,]

29.6 4.50 10.67

0.00 0.00 0.000

PROD 1 1 109.6 0.00 0.00 0.000. [FORMATTED: A5,2I3,4F10.0]

PROD 3 9 6 1 3 [FORMATTED: A5,S13 - WELLID, IDWELL, I,J,PERF1,NLAYER]

28.18 4.85 11.49

0.00 0.00 0.000

PROD 3 1 12.03 0. 0000. 000. [FORMATTED: A5,S13,4F10.0]

PROD 6 5 5 1 3 [FORMATTED: A5,S13 - WELLID, IDWEE, I,J,PERF1,NLAYER]

SMI 73 Simulation
B-35 K Reservoir Input Data
(Continued)

20.5 4.76 11.27

0.00 0.00 0.000

PROD 6 1 93.6 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C=====DATA SET=====

0 7 1 [ICHANG IOMETH IWLCNG-> NOTE: ICHANG not used if IOMETH>0]

30.5 31.0 35.0 60.0 90.0 182.0 213.0 [Times for output - IOMETH values]

1 1 1 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.01 0.01 15.0 [DT,DTMAX,DTMIN]

HEADER -> Beginning of data read by NODES - if IWLCNG = 1]

3 0 [NWELLN=No. of new wells,NWELLO=No. of old wells]

---NEW WELLS---

PROD 1 13 8 1 3 [FORMATTED: AS,S13 - WELLID, IDWELL, I, J, PERFI, NLAYER]

29.60 4.50 10.67

0.00 0.00 0.000

PROD 1 1 109.6 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

PROD 3 9 6 1 3 [FORMATTED: A5,S13 - WELLID, IDWELL, I, J, PER1, NLAYER]

28.18 4.85 11.49

0.00 0.00 0.000

PROD 3 1 133.33 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

PROD 6 5 5 1 3 [FORMATTED: A5,S13 - WELLID, IDWELL, I, J, NLAYER]

20.5 4.76 11.27

0.00 0.00 0.000

PROD 6 1 139.72 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C=====DATA SET=====

0 8 1 [ICHANG IOMETH IWLCNG-> NOTE: ICHANG not used if IOMETH>0]

214.0 215. 220. 240. 300. 365. 426 517. [Times for output-IOMETH values]

1 1 1 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.01 0.01 30.0 [DT,DTMIN,DTMAX]

HEADER -> Beginning of data read by NODES - if IWLCNG = 1]

3 0 [NWELLN=No. of new wells,NWELLO=No. of old wells]

---NEW WELLS---

PROD 1 13 8 1 3 [FORMATTED: A5,5I3, IDWELI, I, J, PERFI, NLAYER]

29.6 4.50 10.67

0.00 0. 0.000

PROD 1 1 138.7 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

PROD 3 9 6 1 3 [FORMATTED: A5,5I3-WELLID, IDWELL, I, J, PERFI, NLAYER]

28.18 4.85 11.49

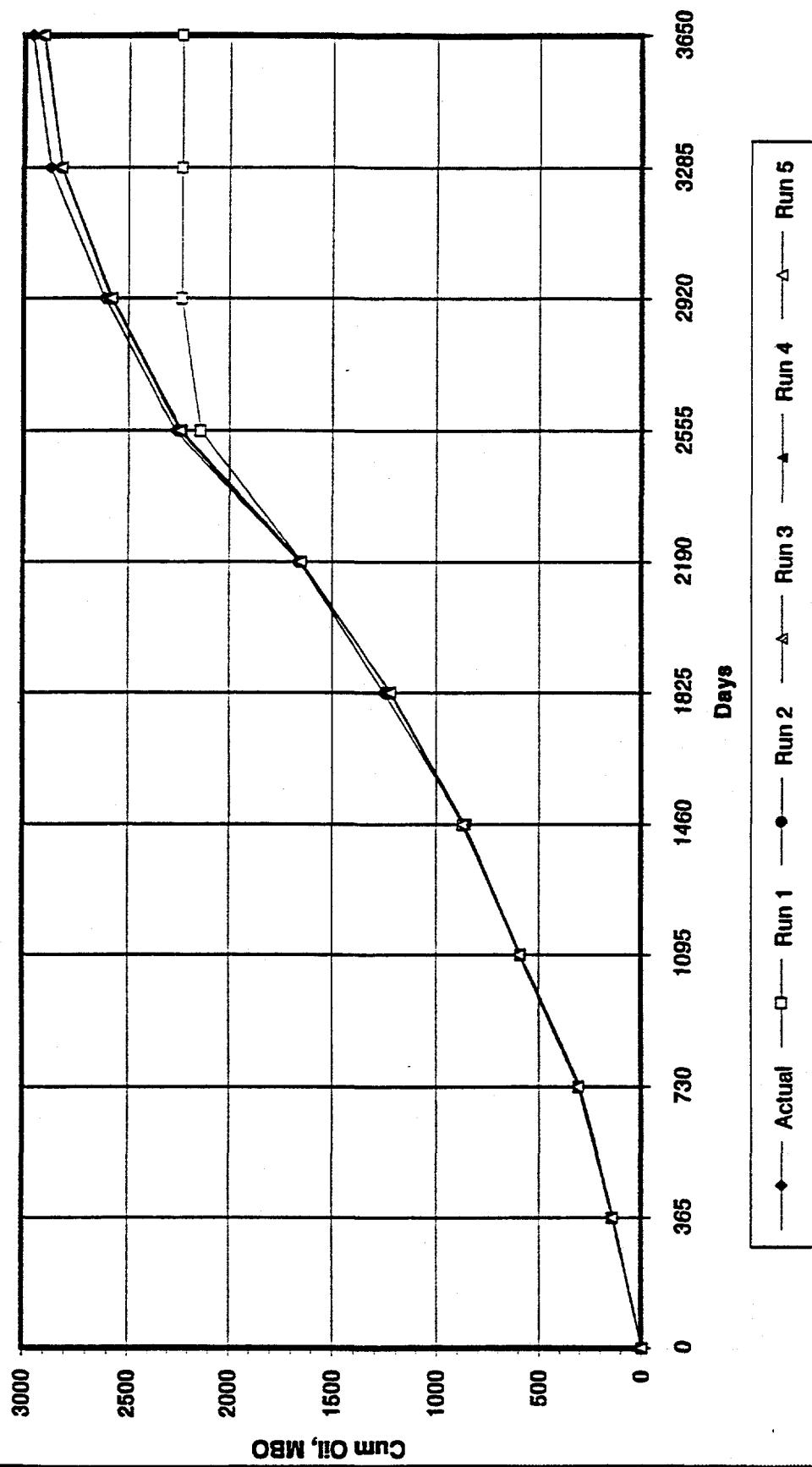
0.00 0.00 0.000

PROD 3 1 133.33 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

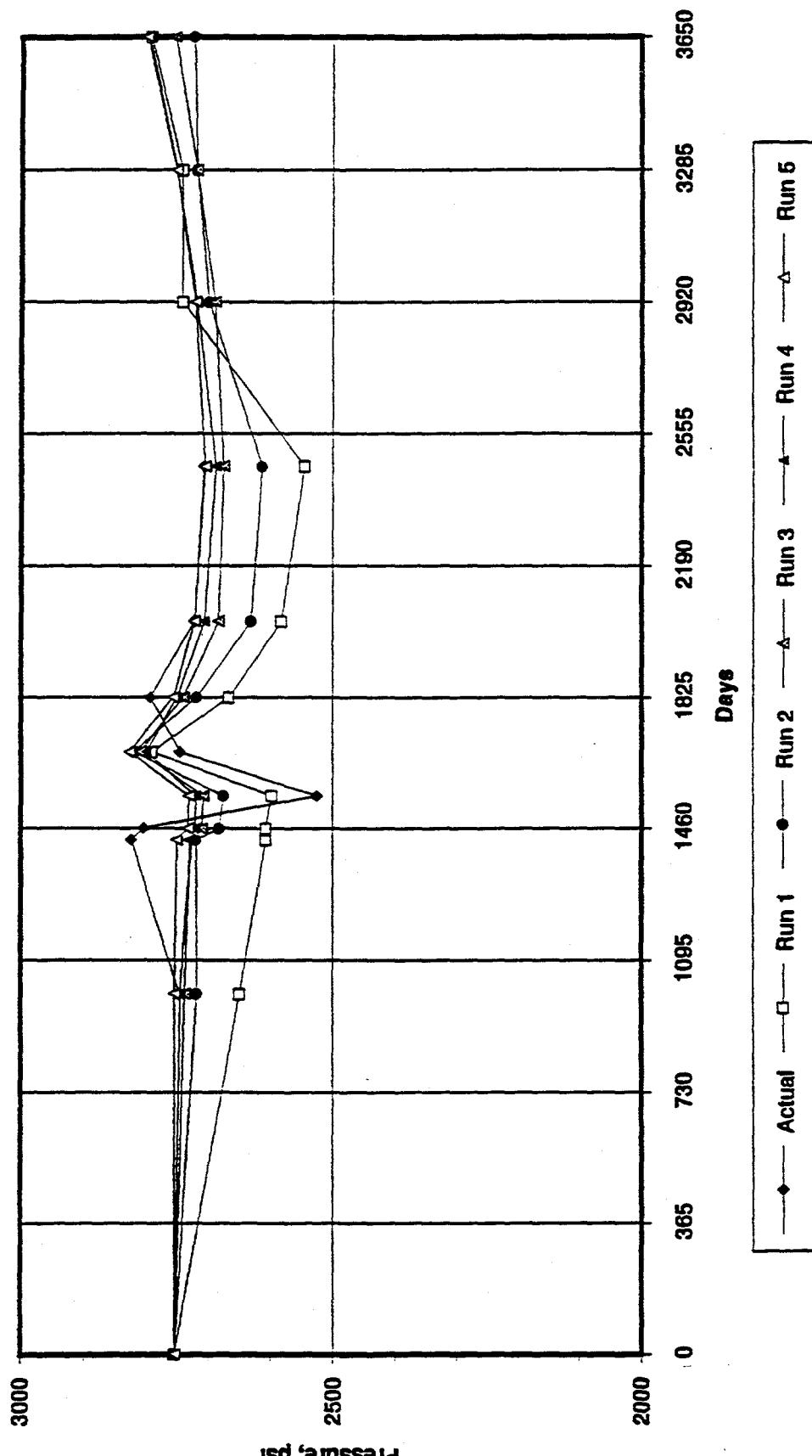
PROD 6 5 5 1 3 [FORMATTED: A5,5I3-WELLID, IDWELL, I, J, PERFI, NLAYER]

20.5 4.76 11.27

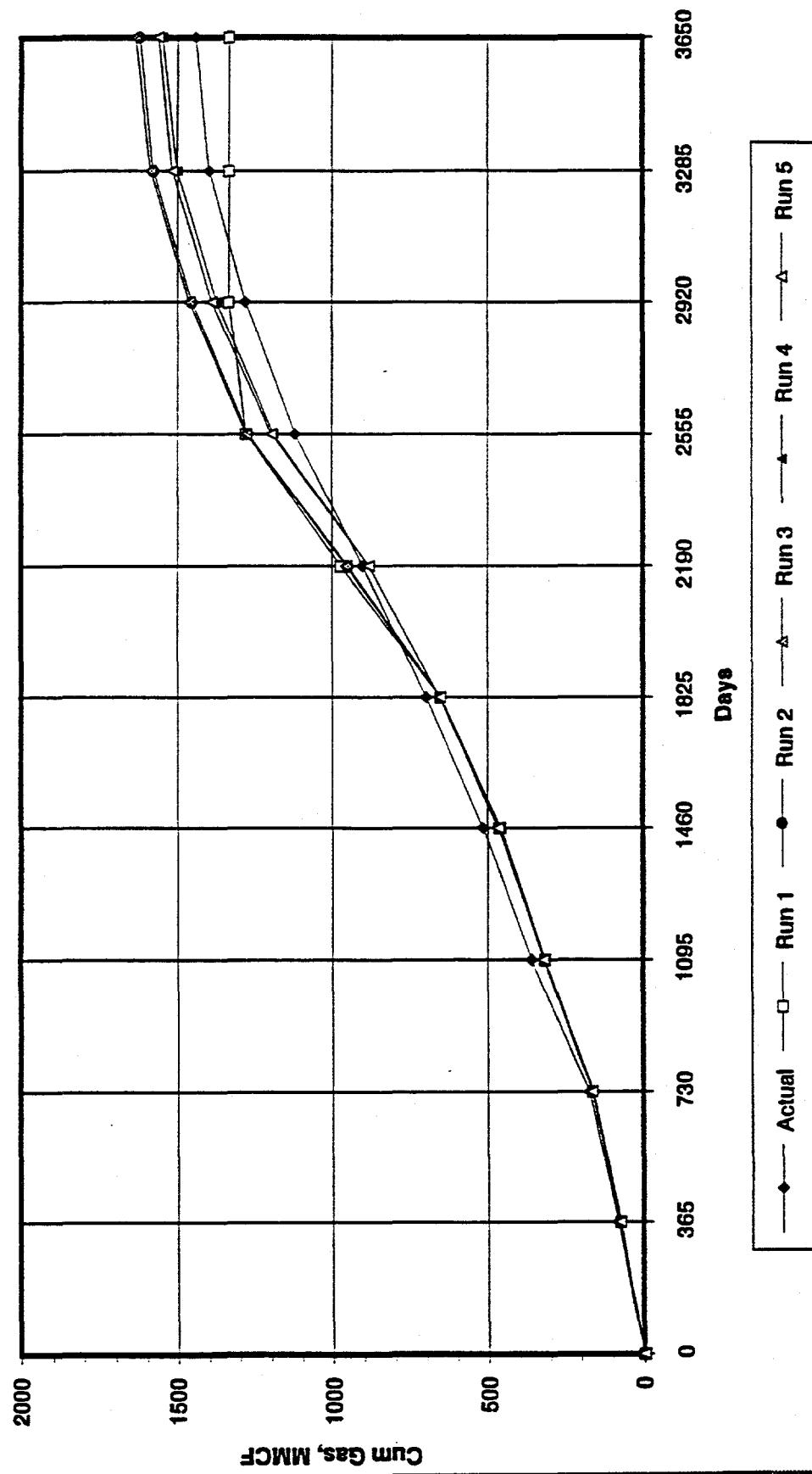
0.00 0.00 0.000

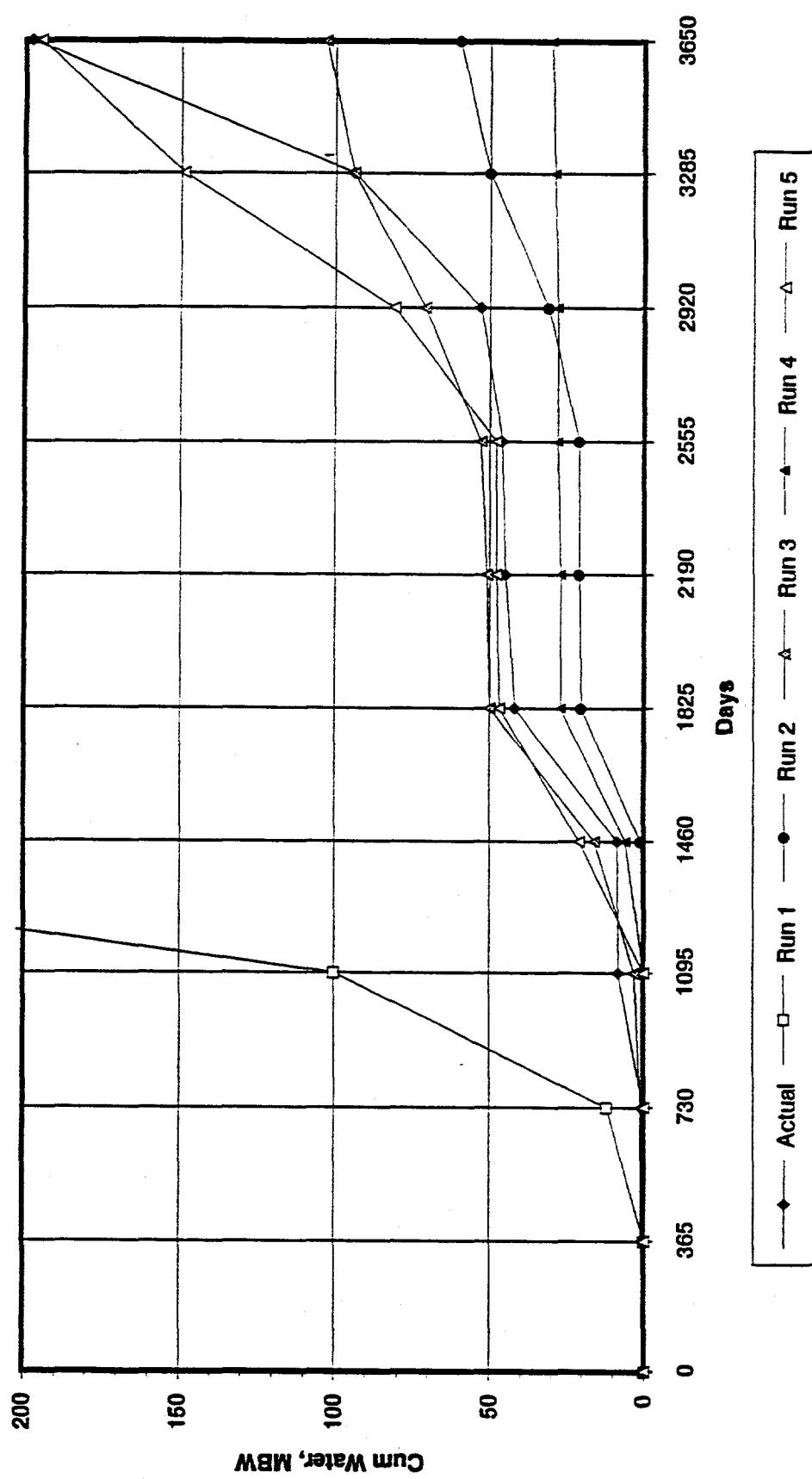

PROD 6 1 139.72 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

**APPENDIX B
B-35K RESERVOIR
HISTORY MATCH RESULTS**


SMI 73 Simulation Results
Summary of History Match Cases

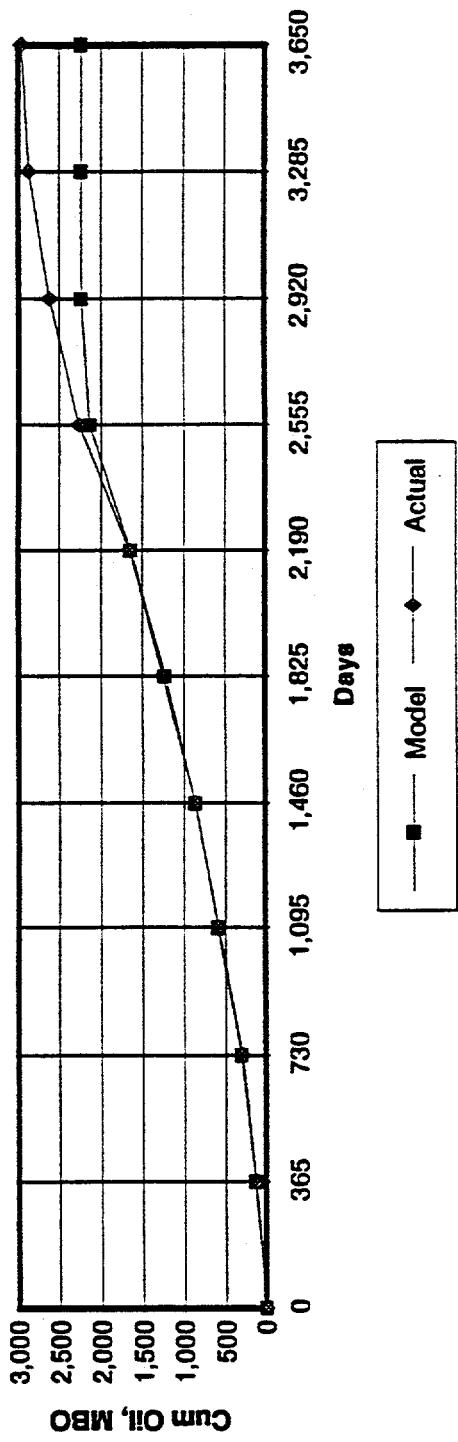
| RUN | CASE NAME | CASE DESCRIPTION |
|------------|----------------------------|--|
| Run 1 | Proven Oil Case | Assumes that the original oil-water contact is at -6,076 feet subsea as defined by Well A-1 |
| Run 2 | Estimated O/W Contact Case | Assumes that the original oil-water contact is at -6,176 feet subsea, or 100 feet below the proven limit |
| Run 3 | Modified Krw Case | This is the same case as Run 2 with a modified water-oil relative permeability curve. |
| Run 4 | Attic Oil Volume Case | This is the same case as Run 3 with an additional attic oil volume of 1.3 MMBO. |
| Run 5 | Final History Match Case | This is the same case as Run 4 with the original oil-water contact at -6,137 feet subsea |


SMI 73 Field, B-35K Reservoir Simulation
Cumulative Oil Production Versus Time

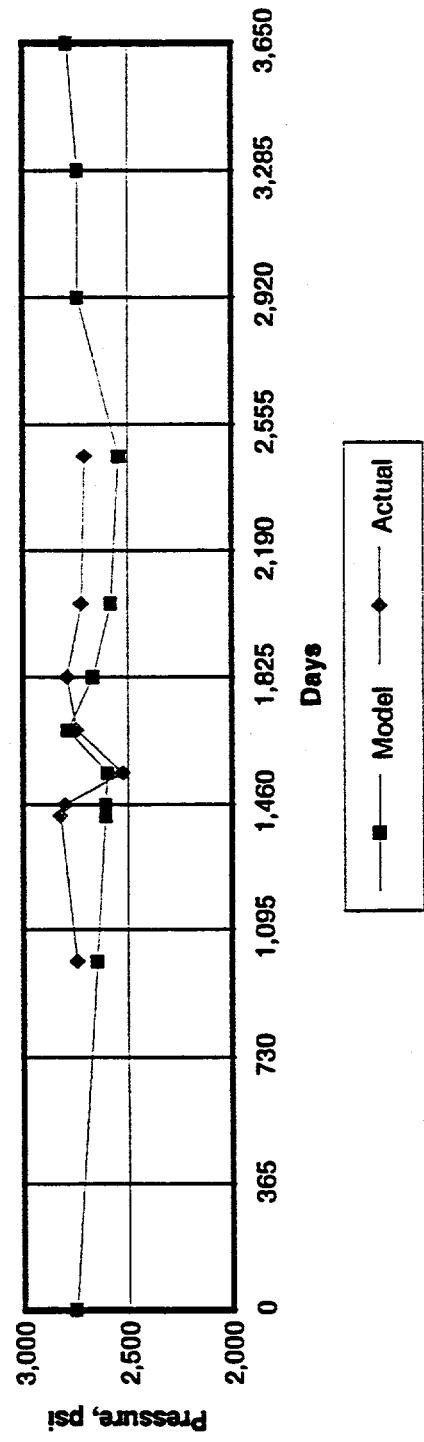

SMI 73 Field, B-35K Reservoir Simulation
Pressure Versus Time

SMI 73 Field, B-35K Reservoir Simulation
Cumulative Gas Production Versus Time

SMI 73 Field, B-35K Reservoir Simulation
Cumulative Water Production Versus Time

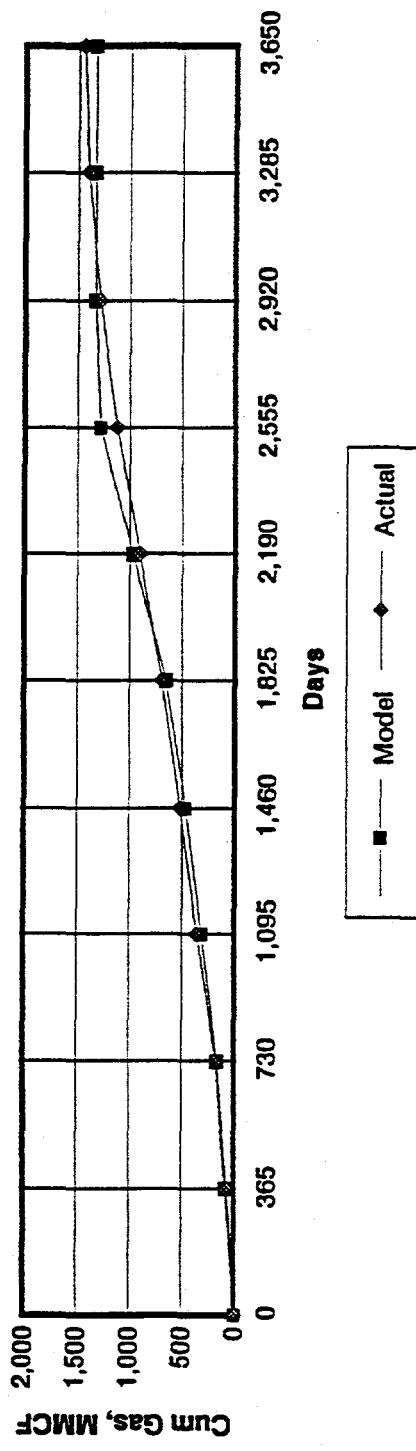


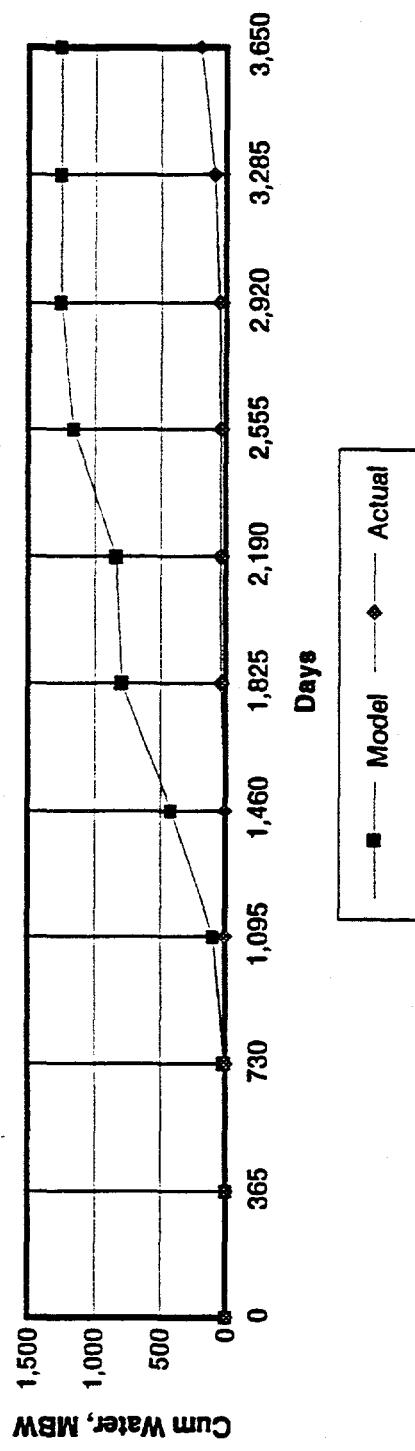
B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
PROVEN OIL LIMIT CASE - RUN 1


| Time
(Days) | HISTORY MATCH DATA | | | ACTUAL FIELD DATA | | |
|----------------|--------------------|--------------------|---------------------|-------------------|--------------------|---------------------|
| | Cum Oil
(MBO) | Cum Gas
(MMSCF) | Cum Water
(MSTB) | Cum Oil
(MBO) | Cum Gas
(MMSCF) | Cum Water
(MSTB) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 365 | 139 | 74 | 0 | 131 | 83 | 0 |
| 730 | 307 | 164 | 0 | 296 | 175 | 0 |
| 1,095 | 589 | 315 | 100 | 587 | 359 | 8 |
| 1,460 | 870 | 463 | 419 | 863 | 516 | 9 |
| 1,825 | 1,226 | 653 | 796 | 1,257 | 698 | 42 |
| 2,190 | 1,646 | 973 | 838 | 1,656 | 902 | 45 |
| 2,555 | 2,140 | 1,279 | 1,164 | 2,266 | 1,120 | 46 |
| 2,920 | 2,231 | 1,335 | 1,262 | 2,616 | 1,281 | 53 |
| 3,285 | 2,231 | 1,335 | 1,262 | 2,875 | 1,400 | 94 |
| 3,650 | 2,231 | 1,335 | 1,262 | 2,960 | 1,443 | 198 |

| Time
(Days) | Model | | | Actual | | |
|----------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|
| | Pressure
(psi) | Cum Oil
(MBO) | Pressure
(psi) | Cum Oil
(MBO) | Pressure
(psi) | Cum Oil
(MBO) |
| 0 | 2,755 | 0 | 2,747 | 863 | 863 | 863 |
| 1,003 | 2,650 | 791 | 2,825 | 897 | 897 | 897 |
| 1,428 | 2,608 | 1,226 | 2,805 | 1,015 | 1,015 | 1,015 |
| 1,460 | 2,608 | 1,240 | 2,526 | | | |
| 1,551 | 2,598 | 1,301 | | | | |
| 1,673 | 2,791 | 1,470 | 2,746 | 1,171 | 1,171 | 1,171 |
| 1,825 | 2,667 | 1,692 | 2,793 | 1,279 | 1,279 | 1,279 |
| 2,038 | 2,582 | 2,036 | 2,723 | 1,496 | 1,496 | 1,496 |
| 2,464 | 2,545 | 2,231 | 2,708 | 2,170 | 2,170 | 2,170 |
| 2,920 | 2,742 | | | | | |
| 3,285 | 2,742 | | | | | |
| 3,650 | 2,793 | | | | | |

CUMULATIVE OIL PRODUCTION VERSUS TIME

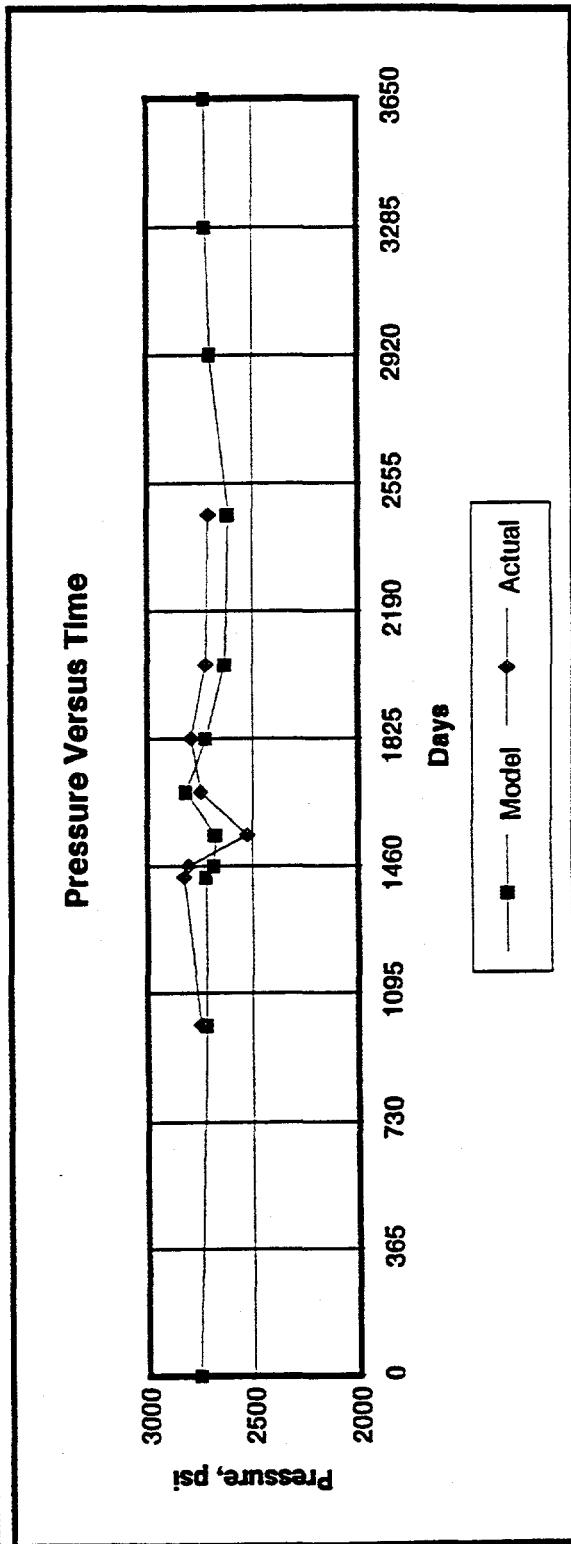

PRESSURE VERSUS TIME


B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
PROVEN OIL LIMIT CASE - RUN 1

BDM FEDERAL, INC.

Cumulative Gas Production Versus Time

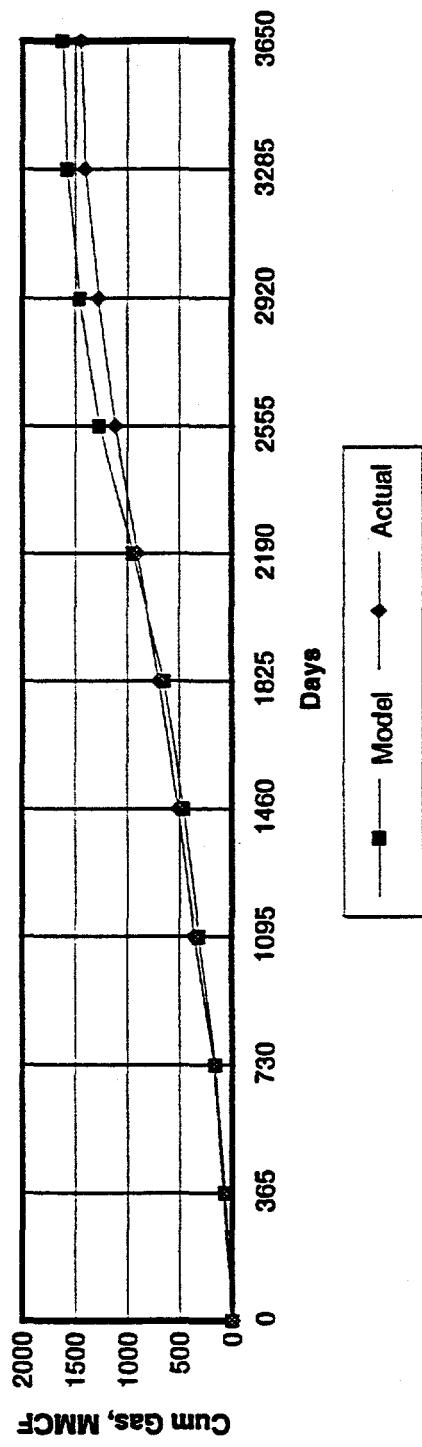
Cumulative Water Production Versus Time

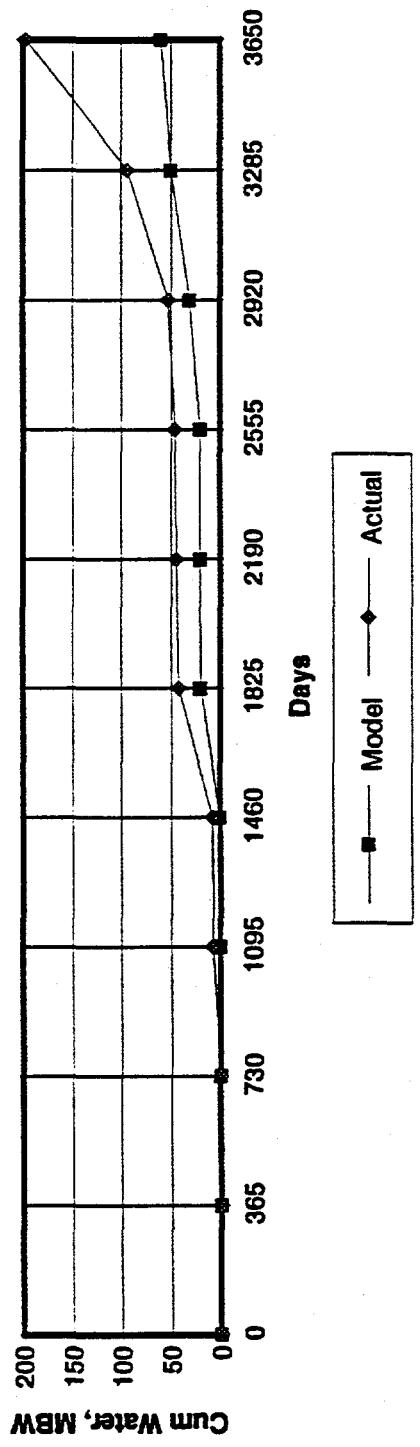


B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
ESTIMATED OIL/WATER CONTACT CASE - RUN 2

| HISTORY MATCH DATA | | | | ACTUAL FIELD DATA | | |
|--------------------|------------------|--------------------|---------------------|-------------------|--------------------|---------------------|
| Time
(Days) | Cum Oil
(MBO) | Cum Gas
(MMSCF) | Cum Water
(MSTB) | Cum Oil
(MBO) | Cum Gas
(MMSCF) | Cum Water
(MSTB) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 365 | 139 | 74 | 0 | 131 | 83 | 0 |
| 730 | 301 | 161 | 0 | 296 | 175 | 0 |
| 1,095 | 589 | 315 | 0 | 587 | 359 | 8 |
| 1,460 | 859 | 459 | 1 | 863 | 516 | 9 |
| 1,825 | 1,220 | 650 | 20 | 1,257 | 698 | 42 |
| 2,190 | 1,662 | 950 | 21 | 1,656 | 902 | 45 |
| 2,555 | 2,245 | 1,274 | 21 | 2,266 | 1,120 | 46 |
| 2,920 | 2,587 | 1,455 | 31 | 2,616 | 1,281 | 53 |
| 3,285 | 2,822 | 1,579 | 50 | 2,875 | 1,400 | 94 |
| 3,650 | 2,905 | 1,623 | 60 | 2,960 | 1,443 | 198 |

| Actual | | | | |
|----------------|----------------------------|------------------|-------------------|------------------|
| Time
(Days) | Model
Pressure
(psi) | Cum Oil
(MBO) | Pressure
(psi) | Cum Oil
(MBO) |
| 0 | 2,755 | 0 | 2,747 | 863 |
| 1,003 | 2,719 | 791 | 2,805 | 863 |
| 1,428 | 2,720 | 1,226 | 2,825 | |
| 1,460 | 2,683 | 1,240 | | 897 |
| 1,551 | 2,676 | 1,301 | 2,526 | 1,015 |
| 1,673 | 2,820 | 1,470 | 2,746 | 1,171 |
| 1,825 | 2,719 | 1,692 | 2,793 | 1,279 |
| 2,038 | 2,632 | 2,036 | 2,723 | 1,496 |
| 2,464 | 2,614 | 2,231 | 2,708 | 2,170 |
| 2,920 | 2,700 | | | |
| 3,285 | 2,719 | | | |
| 3,650 | 2,725 | | | |

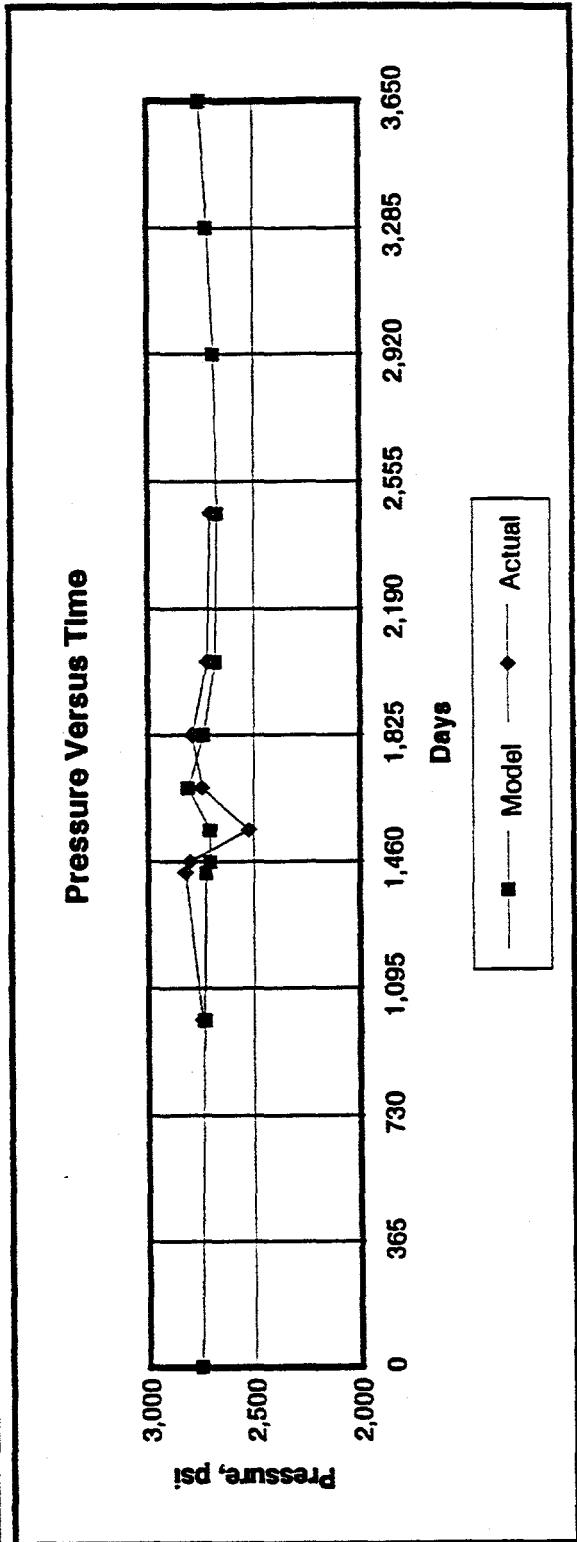
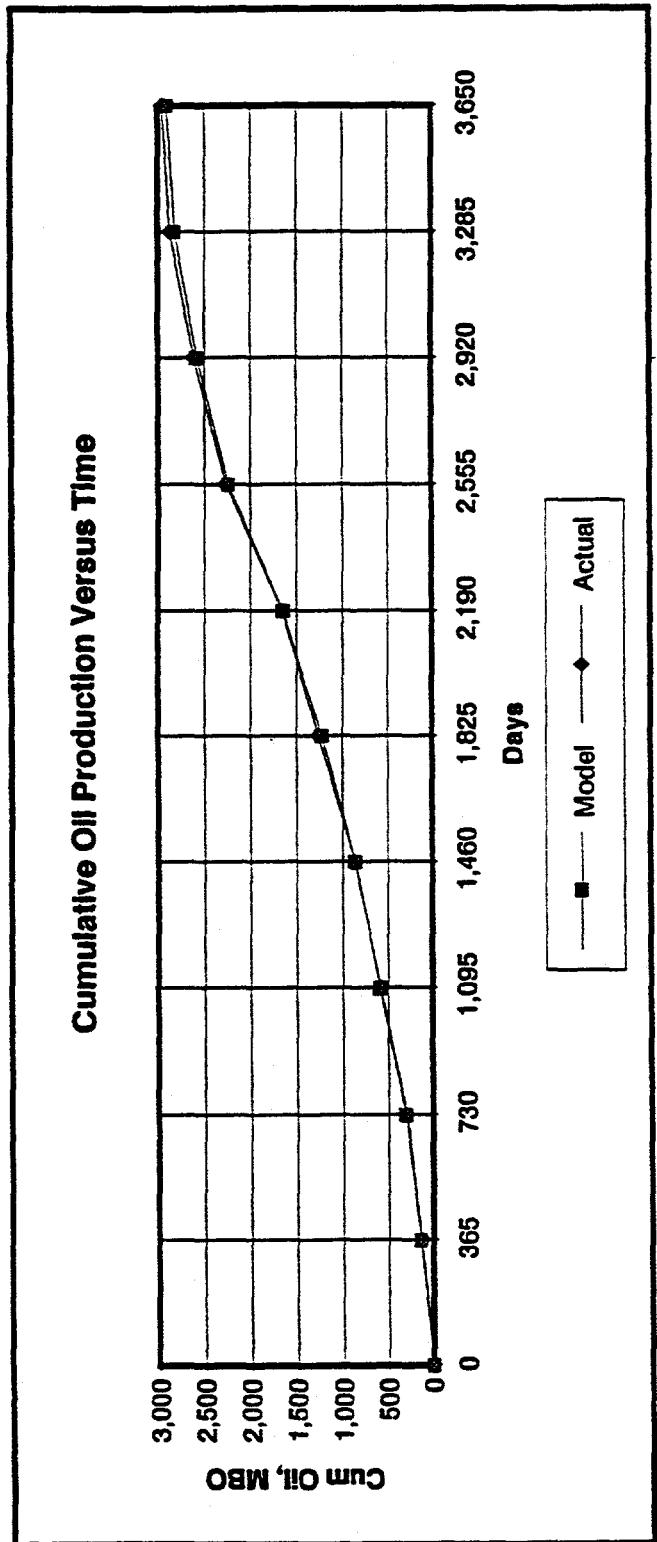

B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
ESTIMATED OIL/WATER CONTACT CASE - RUN 2


B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
ESTIMATED OIL/WATER CONTACT CASE - RUN 2

BDM FEDERAL, INC.

Cumulative Gas Production Versus Time

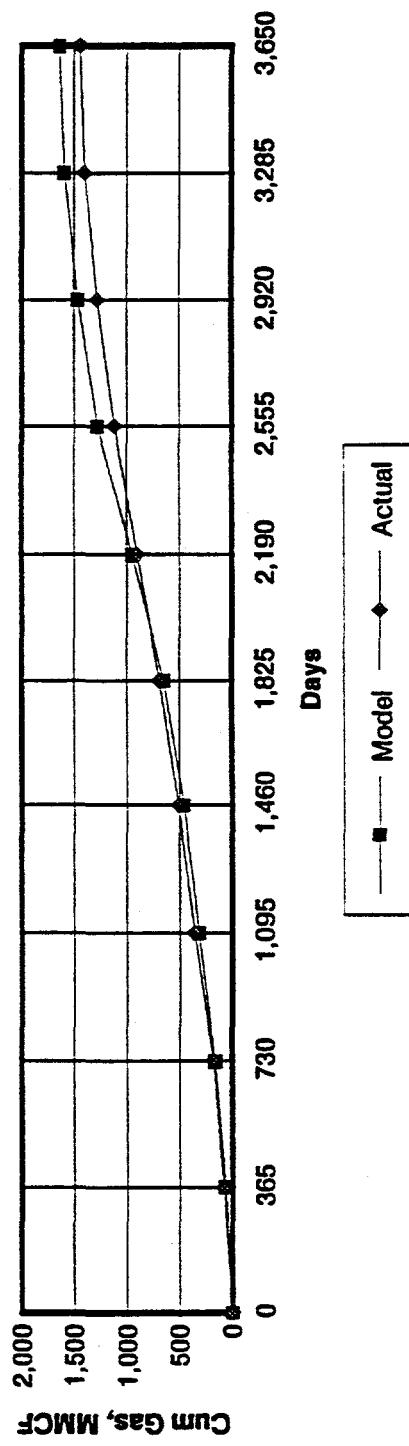
Cumulative Water Production Versus Time

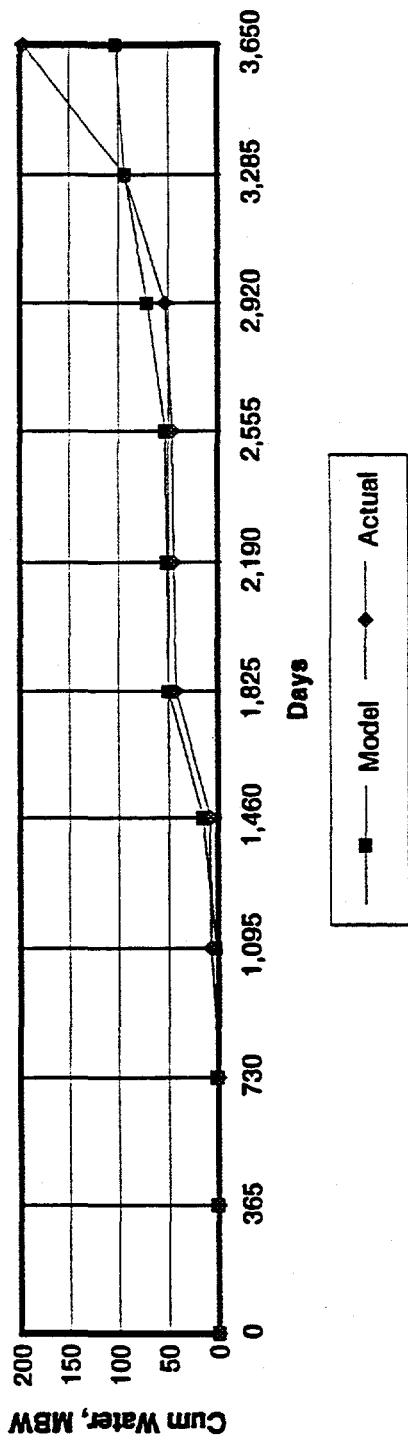



B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
MODIFIED Krw CASE - RUN 3

| HISTORY MATCH DATA | | | | ACTUAL FIELD DATA | | |
|--------------------|------------------|--------------------|---------------------|-------------------|--------------------|---------------------|
| Time
(Days) | Cum Oil
(MBO) | Cum Gas
(MMSCF) | Cum Water
(MSTB) | Cum Oil
(MBO) | Cum Gas
(MMSCF) | Cum Water
(MSTB) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 365 | 139 | 74 | 1 | 131 | 83 | 0 |
| 730 | 310 | 165 | 1 | 296 | 175 | 0 |
| 1,095 | 590 | 315 | 3 | 587 | 359 | 8 |
| 1,460 | 860 | 460 | 16 | 863 | 516 | 9 |
| 1,825 | 1,227 | 654 | 50 | 1,257 | 698 | 42 |
| 2,190 | 1,646 | 954 | 51 | 1,656 | 902 | 45 |
| 2,555 | 2,236 | 1,279 | 53 | 2,266 | 1,120 | 46 |
| 2,920 | 2,580 | 1,463 | 71 | 2,616 | 1,281 | 53 |
| 3,285 | 2,822 | 1,589 | 94 | 2,875 | 1,400 | 94 |
| 3,650 | 2,910 | 1,637 | 103 | 2,960 | 1,449 | 198 |

| Actual | | | |
|----------------|-------|-------------------|------------------|
| Time
(Days) | Model | Pressure
(psi) | Cum Oil
(MBO) |
| 0 | 2,765 | 0 | |
| 1,003 | 2,738 | 791 | 2,747 |
| 1,428 | 2,730 | 1,226 | 2,825 |
| 1,460 | 2,711 | 1,240 | 2,805 |
| 1,551 | 2,709 | 1,301 | 2,526 |
| 1,673 | 2,810 | 1,470 | 2,746 |
| 1,825 | 2,740 | 1,692 | 2,793 |
| 2,038 | 2,684 | 2,036 | 2,723 |
| 2,464 | 2,676 | 2,231 | 2,708 |
| 2,920 | 2,690 | | 2,170 |
| 3285 | 2719 | | |
| 3650 | 2755 | | |


B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
MODIFIED KRW CASE - RUN 3

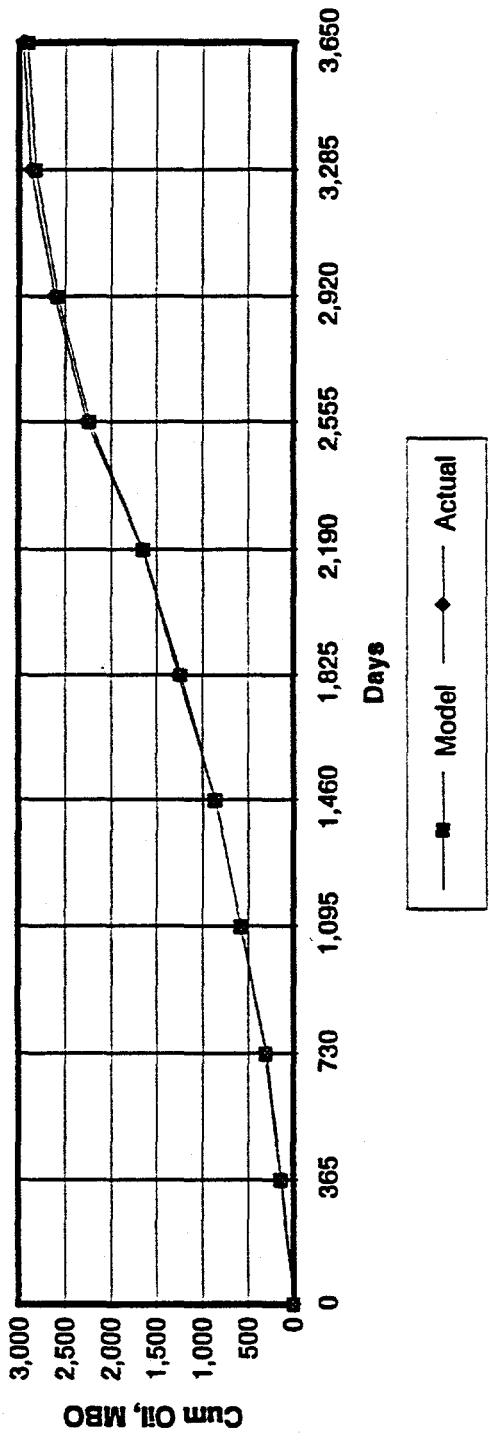

B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
MODIFIED Krw CASE - RUN 3

BDM FEDERAL, INC.

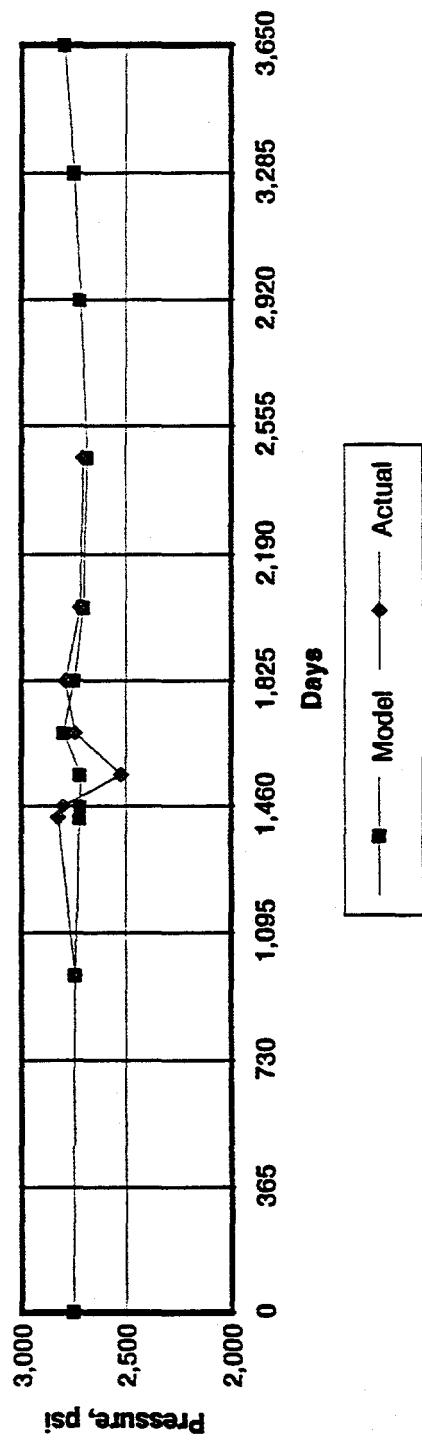
Cumulative Gas Production Versus Time

Cumulative Water Production Versus Time

B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
ATTIC VOLUME CASE - RUN 4

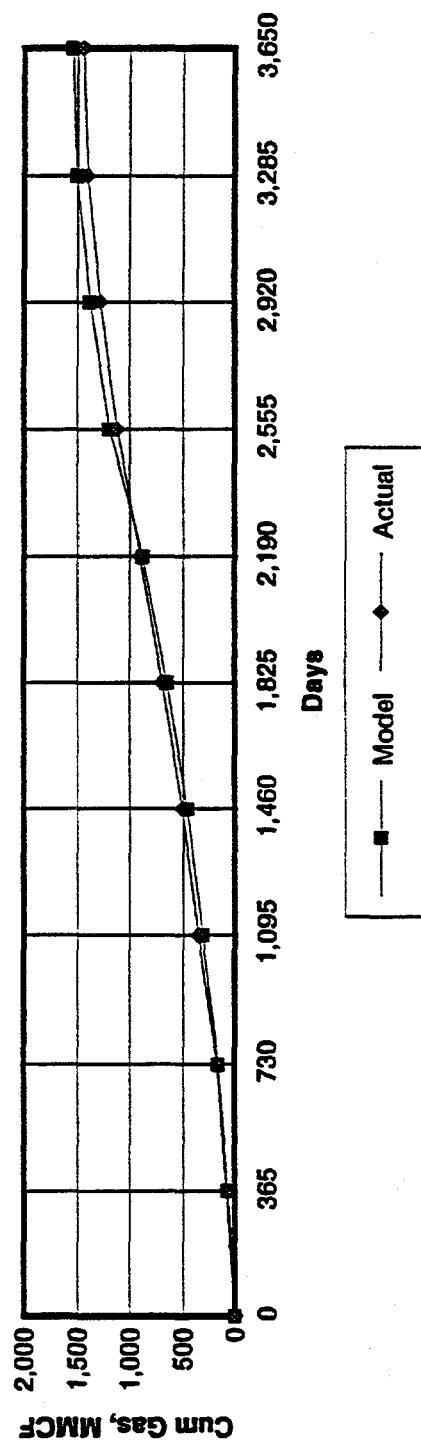

| HISTORY MATCH DATA | | | | ACTUAL FIELD DATA | | |
|--------------------|------------------|--------------------|---------------------|-------------------|--------------------|---------------------|
| Time
(Days) | Cum Oil
(MBO) | Cum Gas
(MMSCF) | Cum Water
(MSTB) | Cum Oil
(MBO) | Cum Gas
(MMSCF) | Cum Water
(MSTB) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 365 | 139 | 74 | 0 | 131 | 83 | 0 |
| 730 | 310 | 165 | 0 | 296 | 175 | 0 |
| 1,095 | 587 | 314 | 0 | 587 | 359 | 8 |
| 1,460 | 866 | 463 | 6 | 863 | 516 | 9 |
| 1,825 | 1,229 | 656 | 27 | 1,257 | 698 | 42 |
| 2,190 | 1,646 | 880 | 27 | 1,656 | 902 | 45 |
| 2,555 | 2,232 | 1,191 | 28 | 2,266 | 1,120 | 46 |
| 2,920 | 2,580 | 1,375 | 28 | 2,616 | 1,281 | 53 |
| 3,285 | 2,821 | 1,503 | 29 | 2,875 | 1,400 | 94 |
| 3,650 | 2,910 | 1,550 | 30 | 2,960 | 1,443 | 198 |

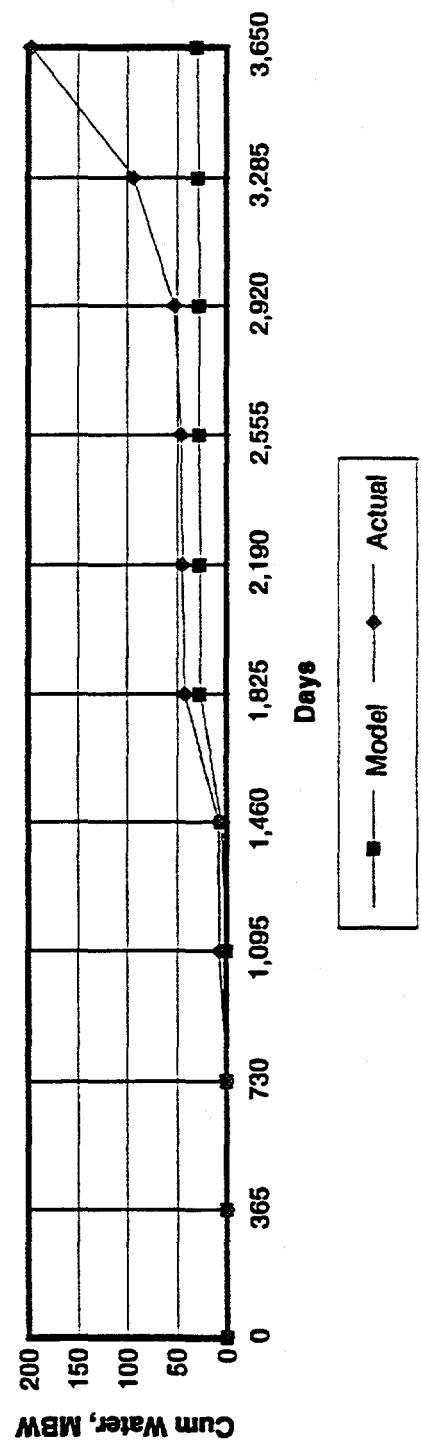
| Actual | | | |
|----------------|----------------------------|------------------|-------------------|
| Time
(Days) | Model
Pressure
(psi) | Cum Oil
(MBO) | Pressure
(psi) |
| 0 | 2,755 | 0 | 2,747 |
| 974 | 2,746 | 791 | 2,825 |
| 1,428 | 2,727 | 1,226 | 2,805 |
| 1,460 | 2,722 | 1,240 | 897 |
| 1,551 | 2,721 | 1,301 | 2,526 |
| 1,673 | 2,800 | 1,470 | 1,015 |
| 1,825 | 2,750 | 1,692 | 2,746 |
| 2,038 | 2,707 | 2,036 | 1,171 |
| 2,464 | 2,688 | 2,231 | 2,793 |
| 2,920 | 2,719 | 2,708 | 1,279 |
| 3,285 | 2,751 | 2,170 | 1,496 |
| 3,650 | 2,797 | | |


B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
ATTIC VOLUME CASE - RUN 4

BDM FEDERAL, INC.

Cumulative Oil Production Versus Time


Pressure Versus Time

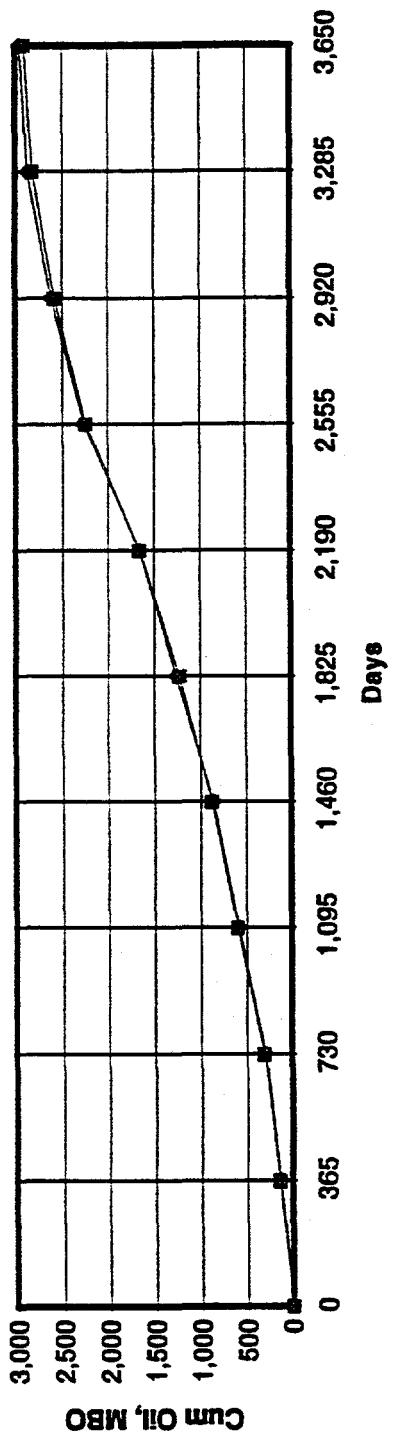

B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
ATTIC VOLUME CASE - RUN 4

BDM FEDERAL, INC.

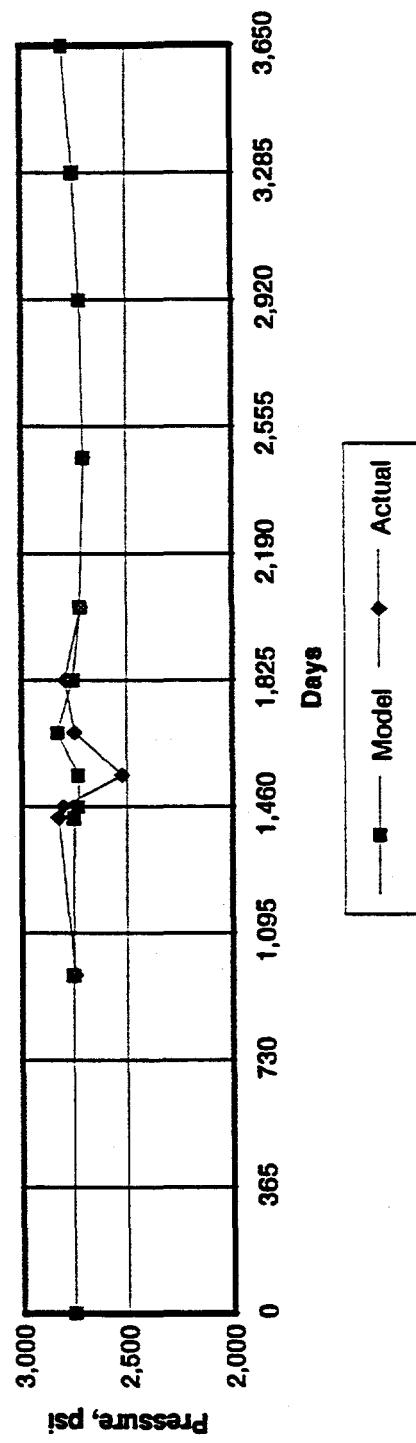
Cumulative Gas Production Versus Time

Cumulative Water Production Versus Time

B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
FINAL HISTORY MATCH - RUN 5

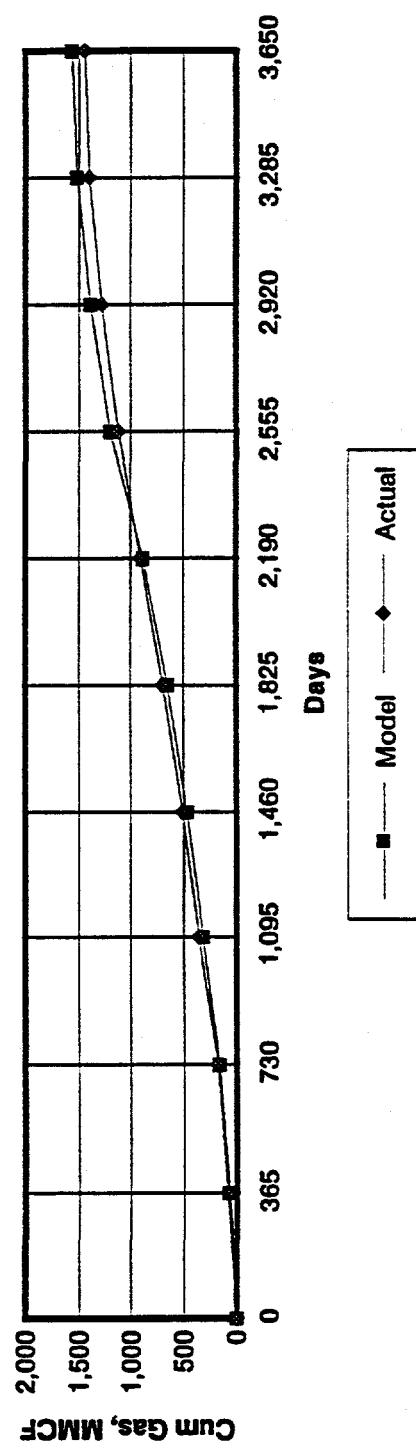

| Time
(Days) | HISTORY MATCH DATA | | | ACTUAL FIELD DATA | | |
|----------------|--------------------|--------------------|---------------------|-------------------|--------------------|---------------------|
| | Cum Oil
(MBO) | Cum Gas
(MMSCF) | Cum Water
(MSTB) | Cum Oil
(MBO) | Cum Gas
(MMSCF) | Cum Water
(MSTB) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 365 | 139 | 75 | 0 | 131 | 83 | 0 |
| 730 | 310 | 166 | 0 | 296 | 175 | 0 |
| 1,095 | 598 | 320 | 0 | 587 | 359 | 8 |
| 1,460 | 877 | 469 | 21 | 863 | 516 | 9 |
| 1,825 | 1,226 | 655 | 47 | 1,257 | 698 | 42 |
| 2,190 | 1,652 | 883 | 48 | 1,656 | 902 | 45 |
| 2,555 | 2,242 | 1,198 | 48 | 2,266 | 1,120 | 46 |
| 2,920 | 2,584 | 1,390 | 81 | 2,616 | 1,281 | 53 |
| 3,285 | 2,823 | 1,518 | 149 | 2,875 | 1,400 | 94 |
| 3,650 | 2,910 | 1,564 | 195 | 2,960 | 1,443 | 198 |

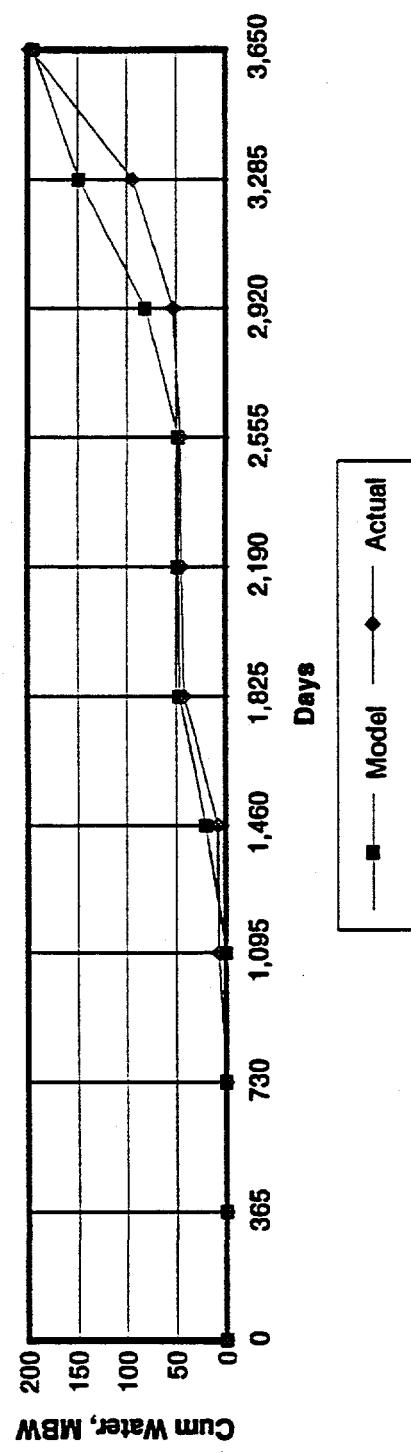
| Time
(Days) | Model | | | Actual | | |
|----------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|
| | Pressure
(psi) | Cum Oil
(MBO) | Pressure
(psi) | Cum Oil
(MBO) | Pressure
(psi) | Cum Oil
(MBO) |
| 0 | 2,755 | 0 | 2,747 | 863 | 863 | 863 |
| 974 | 2,755 | 791 | 2,825 | 863 | 863 | 863 |
| 1,428 | 2,751 | 1,226 | 2,805 | 897 | 897 | 897 |
| 1,460 | 2,733 | 1,240 | 2,526 | 1,015 | 1,015 | 1,015 |
| 1,551 | 2,732 | 1,301 | 2,746 | 1,171 | 1,171 | 1,171 |
| 1,673 | 2,828 | 1,470 | 1,692 | 2,793 | 1,279 | 1,279 |
| 1,825 | 2,756 | 1,692 | 2,036 | 2,723 | 1,496 | 1,496 |
| 2,038 | 2,723 | 2,036 | 2,231 | 2,708 | 2,170 | 2,170 |
| 2,464 | 2,706 | 2,231 | 2,800 | | | |
| 2,920 | 2,722 | | | | | |
| 3,285 | 2,752 | | | | | |
| 3,650 | 2,800 | | | | | |


B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
FINAL HISTORY MATCH - RUN 5

BDM FEDERAL, INC.

Cumulative Oil Production Versus Time


Pressure Versus Time


B-35K RESERVOIR SIMULATION HISTORY MATCH RESULTS
FINAL HISTORY MATCH - RUN 5

BDM FEDERAL, INC.

Cumulative Gas Production Versus Time

Cumulative Water Production Versus Time

APPENDIX C
B-35K RESERVOIR
PREDICTION RESULTS

SMI 73 Simulation Results
Summary of Prediction Sensitivity Cases

| Text Reference | Sensitivity Name | Case Name | Case Description |
|-----------------------|-------------------------------|------------------------|---|
| Figure 27 | Injection Rate | 500 MMCFD Rate | Inject 300 MMCF @ 500 MCFD, Shut-In For 3 Months |
| | | 1000 MMCFD Rate | Inject 300 MMCF @ 500 MCFD, Shut-In For 3 Months |
| | | 250 MMCFD Rate | Inject 300 MMCF @ 250 MCFD, Shut-In For 3 Months |
| Figure 28 | Post-Injection Shut-In Period | 3 Month Shut-In Period | Inject 150 MMCF @ 500 MCFD, Shut-In For 3 Months |
| | | No Shut-In Period | Inject 150 MMCF @ 500 MCFD, No Shut-In Period |
| | | 6 Month Shut-In Period | Inject 150 MMCF @ 500 MCFD, Shut-In For 3 Months |
| Figure 29 | Injection Volume | 150 MMCF Injection | Inject 150 MMCF @ 500 MCFD, Shut-In For 3 Months |
| | | 300 MMCF Injection | Inject 300 MMCF @ 500 MCFD, Shut-In For 3 Months |
| | | 75 MMCF Injection | Inject 75 MMCF @ 500 MCFD, Shut-In For 3 Months |
| | | 400 MMCF Injection | Inject 400 MMCF @ 500 MCFD, Shut-In For 3 Months |
| Figure 30,31 | Injection Volume Staging | Single Stage | Inject 150 MMCF @ 500 MCFD, Shut-In For 3 Months |
| | | Two Stage | Stage 1: Inject 75 MMCF @ 500 MCFD, Shut-In For 3 Months, Produce for 6 Months
Stage 2: Inject 75 MMCF @ 500 MCFD, Shut-In For 3 Months, Produce for 6 Months |
| | | Three Stage | Stage 1: Inject 75 MMCF @ 500 MCFD, Shut-In For 3 Months, Produce for 6 Months
Stage 2: Inject 75 MMCF @ 500 MCFD, Shut-In For 3 Months, Produce for 6 Months
Stage 3: Inject 75 MMCF @ 500 MCFD, Shut-In For 3 Months, |

SMI 73 SIMULATION RESULTS
INJECTION RATE SENSITIVITY ANALYSIS RESULTS

500 MMCFD CASE**INJECT 300 MMCF @ 500 MCFD, SHUT-IN FOR 3 MOS****1000 MMCFD CASE****INJECT 300 MMCF @ 1000 MCFD, SHUT-IN FOR 3 MOS****250 MMCFD CASE****INJECT 300 MMCF @ 250 MCFD, SHUT-IN FOR 3 MOS**

| Time Step (Days) | 500 MMCFD Case | | | 1000 MMCFD Case | | | 250 MMCFD Case | | |
|------------------|-----------------------|------------|--------------|-----------------------|------------|--------------|-----------------------|------------|--------------|
| | Cumulative Production | | | Cumulative Production | | | Cumulative Production | | |
| | Oil (MBO) | Gas (MMCF) | Water (MBBL) | Oil (MBO) | Gas (MMCF) | Water (MBBL) | Oil (MBO) | Gas (MMCF) | Water (MBBL) |
| 13 | 8 | 10 | 0 | 0 | 3 | 7 | 0 | 0 | 0 |
| 45 | 23 | 31 | 1 | 32 | 16 | 33 | 1 | 15 | 15 |
| 73 | 33 | 44 | 1 | 61 | 26 | 47 | 1 | 29 | 31 |
| 104 | 42 | 53 | 2 | 92 | 34 | 57 | 1 | 41 | 42 |
| 134 | 50 | 60 | 3 | 122 | 42 | 65 | 3 | 50 | 49 |
| 164 | 57 | 66 | 4 | 154 | 49 | 72 | 4 | 58 | 55 |
| 195 | 65 | 72 | 6 | 184 | 56 | 78 | 5 | 66 | 60 |
| 225 | 71 | 78 | 7 | 214 | 62 | 83 | 7 | 73 | 66 |
| 255 | 77 | 83 | 9 | 244 | 69 | 89 | 8 | 80 | 70 |
| 287 | 84 | 88 | 11 | 275 | 75 | 94 | 10 | 86 | 75 |
| 317 | 89 | 92 | 12 | 306 | 81 | 99 | 11 | 93 | 79 |
| 347 | 95 | 96 | 14 | 336 | 86 | 103 | 13 | 98 | 83 |
| 377 | 100 | 100 | 16 | 368 | 92 | 108 | 15 | 104 | 86 |
| 407 | 105 | 104 | 18 | 396 | 97 | 111 | 17 | 109 | 90 |
| 439 | 110 | 108 | 21 | 427 | 102 | 116 | 19 | 114 | 93 |
| 468 | 115 | 111 | 23 | 457 | 107 | 119 | 20 | 119 | 97 |
| 500 | 120 | 115 | 25 | 488 | 111 | 123 | 22 | 124 | 100 |
| 530 | 124 | 119 | 28 | 519 | 116 | 127 | 24 | 128 | 103 |
| 560 | 128 | 122 | 30 | 548 | 120 | 131 | 27 | 133 | 107 |
| 592 | 133 | 126 | 33 | 579 | 125 | 135 | 29 | 138 | 110 |
| 621 | 137 | 129 | 35 | 610 | 129 | 138 | 31 | 142 | 114 |
| 651 | 141 | 133 | 38 | 640 | 133 | 142 | 33 | 146 | 117 |
| 681 | 145 | 136 | 40 | 672 | 137 | 146 | 36 | 150 | 121 |
| 712 | 149 | 140 | 43 | 700 | 141 | 150 | 38 | 154 | 125 |
| 742 | 153 | 143 | 46 | 732 | 145 | 154 | 41 | 158 | 128 |
| 773 | 157 | 147 | 49 | 761 | 148 | 157 | 43 | 162 | 132 |
| 803 | 160 | 150 | 52 | 793 | 152 | 161 | 46 | 166 | 135 |
| 834 | 164 | 154 | 55 | 823 | 156 | 165 | 49 | 170 | 139 |
| 864 | 167 | 157 | 58 | 853 | 159 | 168 | 51 | 173 | 143 |
| 894 | 171 | 161 | 61 | 883 | 163 | 172 | 54 | 177 | 146 |
| 925 | 175 | 164 | 64 | 913 | 166 | 175 | 57 | 180 | 150 |
| 956 | 178 | 168 | 68 | 944 | 170 | 179 | 59 | 184 | 154 |
| 987 | 182 | 171 | 71 | 974 | 173 | 182 | 62 | 187 | 157 |
| 1016 | 185 | 174 | 74 | 1005 | 176 | 186 | 65 | 191 | 161 |
| 1047 | 188 | 177 | 77 | 1037 | 180 | 189 | 68 | 194 | 164 |
| 1078 | 191 | 181 | 81 | 1067 | 183 | 193 | 71 | 197 | 168 |
| 1107 | 194 | 184 | 84 | 1097 | 186 | 196 | 74 | 200 | 171 |
| 1139 | 198 | 187 | 87 | 1127 | 189 | 199 | 77 | 203 | 174 |
| 1168 | 201 | 190 | 91 | 1158 | 192 | 203 | 80 | 207 | 178 |
| 1200 | 204 | 194 | 94 | 1187 | 195 | 206 | 83 | 210 | 181 |
| 1230 | 207 | 197 | 98 | 1218 | 198 | 209 | 86 | 212 | 184 |
| 1260 | 209 | 200 | 101 | 1249 | 201 | 213 | 89 | 216 | 188 |
| 1290 | 212 | 204 | 105 | 1279 | 204 | 216 | 92 | 217 | 189 |
| 1320 | 215 | 207 | 108 | 1310 | 207 | 219 | 95 | 219 | 190 |
| 1353 | 218 | 210 | 112 | 1340 | 210 | 223 | 98 | 221 | 191 |
| 1382 | 220 | 212 | 115 | 1370 | 212 | 226 | 101 | 222 | 191 |
| 1413 | 221 | 213 | 117 | 1401 | 215 | 229 | 105 | 224 | 192 |
| 1442 | 223 | 214 | 118 | 1431 | 218 | 232 | 108 | 226 | 193 |
| 1474 | 224 | 215 | 120 | 1463 | 220 | 236 | 111 | 227 | 194 |
| 1505 | 226 | 215 | 122 | 1493 | 223 | 239 | 115 | 229 | 195 |
| 1535 | 227 | 216 | 124 | 1523 | 225 | 241 | 118 | 230 | 196 |
| 1568 | 227 | 216 | 124 | 1554 | 226 | 242 | 119 | 232 | 196 |
| 1596 | 227 | 216 | 124 | 1590 | 226 | 242 | 120 | 233 | 197 |
| 1629 | 227 | 216 | 124 | 1616 | 226 | 242 | 120 | 235 | 198 |

SMI 73 SIMULATION RESULTS
INJECTION RATE SENSITIVITY ANALYSIS RESULTS
(CONTINUED)

| 500 MMCFD Case | | | | 1000 MMCFD Case | | | | 250 MMCFD Case | | | |
|------------------|-----------------------|------------|--------------|------------------|-----------------------|------------|--------------|------------------|-----------------------|------------|--------------|
| Time Step (Days) | Cumulative Production | | | Time Step (Days) | Cumulative Production | | | Time Step (Days) | Cumulative Production | | |
| | Oil (MBO) | Gas (MMCF) | Water (MBBL) | | Oil (MBO) | Gas (MMCF) | Water (MBBL) | | Oil (MBO) | Gas (MMCF) | Water (MBBL) |
| 1689 | 227 | 216 | 124 | 1653 | 226 | 242 | 120 | 1643 | 236 | 199 | 126 |
| 1689 | 227 | 216 | 124 | 1693 | 226 | 242 | 120 | 1576 | 236 | 199 | 126 |
| 1729 | 227 | 216 | 124 | 1713 | 226 | 242 | 120 | 1711 | 236 | 199 | 126 |
| 1749 | 227 | 216 | 124 | 1753 | 226 | 242 | 120 | 1748 | 236 | 199 | 126 |
| 1789 | 227 | 216 | 124 | 1773 | 226 | 242 | 120 | 1768 | 236 | 199 | 126 |
| 1809 | 227 | 216 | 124 | 1813 | 226 | 242 | 120 | 1808 | 236 | 199 | 126 |
| 1849 | 227 | 216 | 124 | 1833 | 226 | 242 | 120 | 1828 | 236 | 199 | 126 |
| 1869 | 227 | 216 | 124 | 1873 | 226 | 242 | 120 | 1868 | 236 | 199 | 126 |
| 1909 | 227 | 216 | 124 | 1893 | 226 | 242 | 120 | 1888 | 236 | 199 | 126 |
| 1929 | 227 | 216 | 124 | 1933 | 226 | 242 | 120 | 1928 | 236 | 199 | 126 |
| 1969 | 227 | 216 | 124 | 1953 | 226 | 242 | 120 | 1948 | 236 | 199 | 126 |
| 2009 | 227 | 216 | 124 | 1993 | 226 | 242 | 120 | 1988 | 236 | 199 | 126 |
| 2029 | 227 | 216 | 124 | 2013 | 226 | 242 | 120 | 2008 | 236 | 199 | 126 |
| 2069 | 227 | 216 | 124 | 2053 | 226 | 242 | 120 | 2048 | 236 | 199 | 126 |
| 2089 | 227 | 216 | 124 | 2073 | 226 | 242 | 120 | 2068 | 236 | 199 | 126 |
| 2129 | 227 | 216 | 124 | 2113 | 226 | 242 | 120 | 2108 | 236 | 199 | 126 |
| 2149 | 227 | 216 | 124 | 2133 | 226 | 242 | 120 | 2148 | 236 | 199 | 126 |
| 2189 | 227 | 216 | 124 | 2173 | 226 | 242 | 120 | 2168 | 236 | 199 | 126 |
| 2209 | 227 | 216 | 124 | 2193 | 226 | 242 | 120 | 2208 | 236 | 199 | 126 |
| 2249 | 227 | 216 | 124 | 2233 | 226 | 242 | 120 | 2228 | 236 | 199 | 126 |
| 2269 | 227 | 216 | 124 | 2253 | 226 | 242 | 120 | 2268 | 236 | 199 | 126 |

SMI 73 SIMULATION RESULTS
POST-INJECTION SHUT-IN PERIOD SENSITIVITY ANALYSIS RESULTS

3 MONTH SHUT-IN PERIOD CASE

INJECT 150 MMCF @ 500 MCFD, SHUT-IN FOR 3 MOS

NO SHUT-IN PERIOD CASE

INJECT 150 MMCF @ 500 MCFD, NO SHUT-IN PERIOD

6 MONTH SHUT-IN PERIOD CASE

INJECT 150 MMCF @ 500 MCFD, SHUT-IN FOR 6 MOS

| 3 MONTH SHUT-IN CASE | | | | NO SHUT-IN PERIOD CASE | | | | 6 MONTH SHUT-IN PERIOD CASE | | | |
|----------------------|-----------------------|------------|--------------|------------------------|-----------------------|------------|--------------|-----------------------------|-----------------------|------------|--------------|
| Time Step (Days) | Cumulative Production | | | Time Step (Days) | Cumulative Production | | | Time Step (Days) | Cumulative Production | | |
| | Oil (MBO) | Gas (MMCF) | Water (MBBL) | | Oil (MBO) | Gas (MMCF) | Water (MBBL) | | Oil (MBO) | Gas (MMCF) | Water (MBBL) |
| 0 | 4 | 3 | 0 | 0 | 3 | 14 | 0 | 0 | 0 | 0 | 0 |
| 31 | 19 | 18 | 1 | 31 | 17 | 30 | 1 | 28 | 5 | 4 | 0 |
| 61 | 29 | 25 | 1 | 61 | 26 | 37 | 1 | 58 | 20 | 15 | 1 |
| 93 | 37 | 30 | 3 | 90 | 33 | 41 | 3 | 89 | 30 | 22 | 1 |
| 122 | 44 | 33 | 4 | 122 | 40 | 45 | 4 | 118 | 38 | 26 | 3 |
| 153 | 51 | 37 | 6 | 151 | 47 | 49 | 6 | 149 | 45 | 30 | 4 |
| 183 | 57 | 41 | 8 | 182 | 54 | 53 | 8 | 179 | 52 | 34 | 6 |
| 214 | 64 | 44 | 9 | 212 | 60 | 56 | 10 | 209 | 59 | 37 | 8 |
| 245 | 70 | 47 | 11 | 243 | 66 | 59 | 11 | 240 | 65 | 41 | 9 |
| 274 | 75 | 50 | 13 | 273 | 71 | 62 | 13 | 270 | 71 | 44 | 11 |
| 306 | 81 | 53 | 15 | 305 | 77 | 65 | 16 | 301 | 76 | 47 | 13 |
| 335 | 86 | 56 | 17 | 334 | 82 | 68 | 18 | 331 | 82 | 50 | 15 |
| 366 | 91 | 59 | 20 | 365 | 87 | 70 | 20 | 362 | 87 | 53 | 18 |
| 398 | 96 | 61 | 22 | 395 | 92 | 73 | 22 | 393 | 92 | 55 | 20 |
| 427 | 101 | 64 | 24 | 425 | 97 | 75 | 24 | 423 | 97 | 58 | 22 |
| 457 | 105 | 66 | 27 | 456 | 102 | 78 | 27 | 453 | 102 | 60 | 24 |
| 488 | 110 | 69 | 29 | 487 | 106 | 81 | 30 | 484 | 106 | 63 | 27 |
| 518 | 114 | 71 | 32 | 518 | 111 | 83 | 32 | 514 | 111 | 65 | 30 |
| 548 | 118 | 73 | 35 | 548 | 115 | 85 | 35 | 544 | 115 | 68 | 32 |
| 579 | 123 | 76 | 38 | 577 | 120 | 88 | 37 | 575 | 119 | 70 | 35 |
| 610 | 127 | 78 | 41 | 608 | 124 | 90 | 40 | 606 | 124 | 73 | 38 |
| 641 | 131 | 81 | 43 | 639 | 128 | 92 | 43 | 635 | 128 | 75 | 40 |
| 670 | 135 | 83 | 46 | 670 | 132 | 94 | 46 | 666 | 132 | 78 | 43 |
| 700 | 139 | 86 | 49 | 699 | 136 | 96 | 49 | 696 | 136 | 80 | 46 |
| 731 | 143 | 88 | 52 | 730 | 140 | 99 | 52 | 728 | 140 | 83 | 49 |
| 761 | 146 | 90 | 55 | 760 | 144 | 101 | 55 | 757 | 143 | 85 | 52 |
| 792 | 150 | 93 | 59 | 791 | 148 | 103 | 58 | 788 | 147 | 87 | 55 |
| 822 | 154 | 96 | 62 | 821 | 151 | 106 | 61 | 818 | 151 | 90 | 59 |
| 853 | 157 | 98 | 65 | 851 | 155 | 108 | 64 | 848 | 155 | 92 | 62 |
| 883 | 161 | 101 | 68 | 882 | 159 | 110 | 68 | 879 | 158 | 95 | 65 |
| 913 | 164 | 103 | 71 | 912 | 162 | 113 | 71 | 909 | 162 | 97 | 68 |
| 945 | 168 | 106 | 75 | 943 | 166 | 115 | 74 | 940 | 165 | 100 | 71 |
| 975 | 171 | 108 | 78 | 973 | 169 | 117 | 77 | 971 | 169 | 102 | 75 |
| 1006 | 175 | 111 | 81 | 1005 | 173 | 120 | 81 | 1002 | 172 | 105 | 78 |
| 1036 | 178 | 113 | 85 | 1034 | 176 | 122 | 84 | 1031 | 175 | 107 | 81 |
| 1066 | 181 | 116 | 88 | 1064 | 179 | 124 | 87 | 1062 | 179 | 110 | 85 |
| 1096 | 184 | 118 | 92 | 1097 | 183 | 127 | 91 | 1093 | 182 | 113 | 88 |
| 1127 | 188 | 121 | 95 | 1125 | 186 | 129 | 94 | 1122 | 185 | 115 | 91 |
| 1158 | 191 | 123 | 99 | 1156 | 189 | 132 | 98 | 1153 | 188 | 117 | 95 |
| 1187 | 194 | 126 | 102 | 1189 | 192 | 134 | 102 | 1184 | 191 | 120 | 98 |
| 1218 | 197 | 129 | 106 | 1217 | 195 | 136 | 105 | 1214 | 194 | 122 | 102 |
| 1248 | 199 | 131 | 109 | 1249 | 198 | 139 | 109 | 1244 | 197 | 125 | 106 |
| 1279 | 202 | 134 | 113 | 1277 | 200 | 141 | 112 | 1275 | 200 | 128 | 109 |
| 1310 | 205 | 136 | 117 | 1308 | 203 | 144 | 116 | 1306 | 203 | 130 | 113 |
| 1341 | 207 | 138 | 119 | 1339 | 206 | 146 | 119 | 1336 | 206 | 133 | 116 |
| 1370 | 209 | 139 | 122 | 1370 | 208 | 147 | 122 | 1366 | 208 | 135 | 120 |
| 1400 | 211 | 140 | 124 | 1399 | 210 | 149 | 124 | 1397 | 210 | 136 | 122 |
| 1431 | 213 | 142 | 126 | 1430 | 212 | 150 | 127 | 1428 | 212 | 138 | 125 |
| 1461 | 215 | 142 | 128 | 1460 | 213 | 151 | 129 | 1457 | 214 | 139 | 127 |
| 1492 | 217 | 144 | 131 | 1501 | 213 | 151 | 129 | 1490 | 216 | 140 | 129 |
| 1523 | 219 | 144 | 133 | 1535 | 213 | 151 | 129 | 1519 | 218 | 141 | 131 |
| 1556 | 219 | 145 | 133 | 1555 | 213 | 151 | 129 | 1548 | 220 | 142 | 133 |
| 1594 | 219 | 145 | 133 | 1595 | 213 | 151 | 129 | 1582 | 220 | 142 | 134 |
| 1614 | 219 | 145 | 133 | 1615 | 213 | 151 | 129 | 1619 | 220 | 142 | 134 |

SMI 73 SIMULATION RESULTS
POST-INJECTION SHUT-IN PERIOD SENSITIVITY ANALYSIS RESULTS
(CONTINUED)

| 3 MONTH SHUT-IN CASE | | | | NO SHUT-IN PERIOD CASE | | | | 6 MONTH SHUT-IN CASE | | | |
|----------------------|-----------------------|------------|--------------|------------------------|-----------------------|------------|--------------|----------------------|-----------------------|------------|--------------|
| Time Step (Days) | Cumulative Production | | | Time Step (Days) | Cumulative Production | | | Time Step (Days) | Cumulative Production | | |
| | Oil (MBO) | Gas (MMCF) | Water (MBBL) | | Oil (MBO) | Gas (MMCF) | Water (MBBL) | | Oil (MBO) | Gas (MMCF) | Water (MBBL) |
| 1654 | 219 | 145 | 133 | 1655 | 213 | 151 | 129 | 1653 | 220 | 142 | 134 |
| 1674 | 219 | 145 | 133 | 1675 | 213 | 151 | 129 | 1673 | 220 | 142 | 134 |
| 1714 | 219 | 145 | 133 | 1715 | 213 | 151 | 129 | 1713 | 220 | 142 | 134 |
| 1754 | 219 | 145 | 133 | 1735 | 213 | 151 | 129 | 1733 | 220 | 142 | 134 |
| 1774 | 219 | 145 | 133 | 1775 | 213 | 151 | 129 | 1773 | 220 | 142 | 134 |
| 1814 | 219 | 145 | 133 | 1795 | 213 | 151 | 129 | 1793 | 220 | 142 | 134 |
| 1834 | 219 | 145 | 133 | 1835 | 213 | 151 | 129 | 1833 | 220 | 142 | 134 |
| 1874 | 219 | 145 | 133 | 1875 | 213 | 151 | 129 | 1853 | 220 | 142 | 134 |
| 1894 | 219 | 145 | 133 | 1895 | 213 | 151 | 129 | 1893 | 220 | 142 | 134 |
| 1934 | 219 | 145 | 133 | 1935 | 213 | 151 | 129 | 1933 | 220 | 142 | 134 |
| 1954 | 219 | 145 | 133 | 1955 | 213 | 151 | 129 | 1953 | 220 | 142 | 134 |
| 1994 | 219 | 145 | 133 | 1995 | 213 | 151 | 129 | 1993 | 220 | 142 | 134 |
| 2014 | 219 | 145 | 133 | 2015 | 213 | 151 | 129 | 2013 | 220 | 142 | 134 |
| 2054 | 219 | 145 | 133 | 2055 | 213 | 151 | 129 | 2053 | 220 | 142 | 134 |

SMI 73 SIMULATION RESULTS
INJECTION VOLUME SENSITIVITY ANALYSIS RESULTS

150 MMCF INJECTION CASE INJECT 150 MMCF @ 500 MCFD, SHUT-IN FOR 3 MOS

300 MMCF INJECTION CASE INJECT 300 MMCF @ 500 MCFD, SHUT-IN FOR 3 MOS

75 MMCF INJECTION CASE INJECT 75 MMCF @ 500 MCFD, SHUT-IN FOR 3 MOS

400 MMCF INJECTION CASE INJECT 400 MMCF @ 500 MCFD, SHUT-IN FOR 3 MOS

| 150 MMCF INJECTION CASE | | | | 300 MMCF INJECTION CASE | | | | 75 MMCF INJECTION CASE | | | | 400 MMCF INJECTION CASE | | | |
|-------------------------|-----------------------|------------|--------------|-------------------------|-----------------------|------------|--------------|------------------------|-----------------------|------------|--------------|-------------------------|-----------------------|------------|--------------|
| Time Step (Days) | Cumulative Production | | | Time Step (Days) | Cumulative Production | | | Time Step (Days) | Cumulative Production | | | Time Step (Days) | Cumulative Production | | |
| | Oil (MBO) | Gas (MMCF) | Water (MBBL) | | Oil (MBO) | Gas (MMCF) | Water (MBBL) | | Oil (MBO) | Gas (MMCF) | Water (MBBL) | | Oil (MBO) | Gas (MMCF) | Water (MBBL) |
| 0 | 4 | 3 | 0 | 13 | 8 | 10 | 0 | 30 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
| 31 | 19 | 18 | 1 | 45 | 23 | 31 | 1 | 61 | 17 | 12 | 1 | 31 | 14 | 26 | 0 |
| 61 | 29 | 25 | 1 | 73 | 33 | 44 | 1 | 91 | 25 | 17 | 2 | 60 | 27 | 49 | 1 |
| 93 | 37 | 30 | 3 | 104 | 42 | 53 | 2 | 122 | 32 | 21 | 4 | 92 | 38 | 68 | 1 |
| 122 | 44 | 33 | 4 | 134 | 50 | 60 | 3 | 153 | 39 | 24 | 5 | 121 | 47 | 80 | 1 |
| 153 | 51 | 37 | 6 | 164 | 57 | 66 | 4 | 182 | 45 | 28 | 7 | 152 | 55 | 89 | 2 |
| 183 | 57 | 41 | 8 | 195 | 65 | 72 | 6 | 213 | 52 | 31 | 9 | 182 | 62 | 97 | 4 |
| 214 | 64 | 44 | 9 | 225 | 71 | 78 | 7 | 243 | 57 | 34 | 11 | 212 | 70 | 105 | 5 |
| 245 | 70 | 47 | 11 | 255 | 77 | 83 | 9 | 274 | 63 | 37 | 13 | 243 | 76 | 112 | 7 |
| 274 | 75 | 50 | 13 | 287 | 84 | 88 | 11 | 305 | 69 | 40 | 15 | 273 | 83 | 118 | 8 |
| 306 | 81 | 53 | 15 | 317 | 89 | 92 | 12 | 336 | 74 | 43 | 17 | 304 | 89 | 124 | 10 |
| 335 | 86 | 56 | 17 | 347 | 95 | 96 | 14 | 365 | 79 | 45 | 20 | 334 | 95 | 130 | 11 |
| 366 | 91 | 59 | 20 | 377 | 100 | 100 | 16 | 395 | 84 | 48 | 22 | 366 | 101 | 136 | 13 |
| 398 | 96 | 61 | 22 | 407 | 105 | 104 | 18 | 427 | 89 | 51 | 24 | 395 | 106 | 141 | 15 |
| 427 | 101 | 64 | 24 | 439 | 110 | 108 | 21 | 456 | 93 | 53 | 27 | 426 | 111 | 145 | 17 |
| 457 | 105 | 66 | 27 | 468 | 115 | 111 | 23 | 488 | 98 | 56 | 29 | 457 | 116 | 150 | 19 |
| 488 | 110 | 69 | 29 | 500 | 120 | 115 | 25 | 517 | 102 | 58 | 32 | 486 | 120 | 155 | 21 |
| 518 | 114 | 71 | 32 | 530 | 124 | 119 | 28 | 548 | 107 | 60 | 35 | 518 | 125 | 159 | 23 |
| 548 | 118 | 73 | 35 | 560 | 128 | 122 | 30 | 578 | 111 | 63 | 38 | 547 | 130 | 164 | 26 |
| 579 | 123 | 76 | 38 | 592 | 133 | 126 | 33 | 609 | 116 | 65 | 40 | 578 | 134 | 168 | 28 |
| 610 | 127 | 78 | 41 | 621 | 137 | 129 | 35 | 639 | 120 | 67 | 43 | 608 | 138 | 172 | 30 |
| 641 | 131 | 81 | 43 | 651 | 141 | 133 | 38 | 669 | 124 | 70 | 46 | 639 | 143 | 176 | 33 |
| 670 | 135 | 83 | 46 | 681 | 145 | 136 | 40 | 701 | 129 | 72 | 49 | 669 | 147 | 180 | 35 |
| 700 | 139 | 86 | 49 | 712 | 149 | 140 | 43 | 730 | 133 | 74 | 52 | 699 | 151 | 184 | 38 |
| 731 | 143 | 88 | 52 | 742 | 153 | 143 | 46 | 761 | 137 | 76 | 55 | 730 | 155 | 188 | 41 |
| 761 | 146 | 90 | 55 | 773 | 157 | 147 | 49 | 791 | 141 | 78 | 58 | 760 | 159 | 192 | 43 |
| 792 | 150 | 93 | 58 | 803 | 160 | 150 | 52 | 823 | 145 | 80 | 61 | 791 | 163 | 196 | 46 |
| 822 | 154 | 96 | 62 | 834 | 164 | 154 | 55 | 852 | 149 | 82 | 64 | 823 | 167 | 200 | 49 |
| 853 | 157 | 98 | 65 | 864 | 167 | 157 | 58 | 883 | 153 | 85 | 67 | 852 | 170 | 204 | 52 |
| 883 | 161 | 101 | 68 | 894 | 171 | 161 | 61 | 913 | 156 | 87 | 70 | 882 | 174 | 207 | 55 |
| 913 | 164 | 103 | 71 | 925 | 175 | 164 | 64 | 943 | 160 | 89 | 73 | 912 | 177 | 211 | 58 |
| 945 | 168 | 106 | 75 | 956 | 178 | 168 | 68 | 974 | 164 | 91 | 77 | 943 | 180 | 215 | 61 |
| 975 | 171 | 108 | 78 | 987 | 182 | 171 | 71 | 1004 | 167 | 92 | 80 | 974 | 184 | 219 | 65 |
| 1006 | 175 | 111 | 81 | 1016 | 185 | 174 | 74 | 1036 | 171 | 94 | 84 | 1005 | 187 | 222 | 68 |
| 1036 | 178 | 113 | 85 | 1047 | 188 | 177 | 77 | 1065 | 174 | 96 | 87 | 1034 | 190 | 226 | 71 |
| 1066 | 181 | 116 | 88 | 1078 | 191 | 181 | 81 | 1095 | 177 | 98 | 90 | 1066 | 194 | 230 | 75 |
| 1096 | 184 | 118 | 92 | 1107 | 194 | 184 | 84 | 1126 | 180 | 100 | 94 | 1095 | 197 | 233 | 78 |
| 1127 | 188 | 121 | 95 | 1139 | 198 | 187 | 87 | 1157 | 183 | 102 | 97 | 1125 | 200 | 237 | 81 |
| 1158 | 191 | 123 | 99 | 1168 | 201 | 190 | 91 | 1188 | 186 | 104 | 101 | 1156 | 203 | 240 | 84 |
| 1187 | 194 | 126 | 102 | 1200 | 204 | 194 | 94 | 1217 | 189 | 106 | 105 | 1186 | 206 | 244 | 88 |
| 1218 | 197 | 129 | 106 | 1230 | 207 | 197 | 98 | 1249 | 192 | 108 | 108 | 1218 | 209 | 247 | 91 |
| 1248 | 199 | 131 | 109 | 1260 | 209 | 200 | 101 | 1278 | 195 | 110 | 112 | 1247 | 212 | 251 | 95 |
| 1279 | 202 | 134 | 113 | 1290 | 212 | 204 | 105 | 1309 | 198 | 112 | 116 | 1279 | 215 | 254 | 98 |
| 1310 | 205 | 136 | 117 | 1320 | 215 | 207 | 108 | 1339 | 200 | 113 | 118 | 1308 | 218 | 258 | 102 |
| 1341 | 207 | 138 | 119 | 1353 | 218 | 210 | 112 | 1369 | 202 | 114 | 121 | 1338 | 220 | 261 | 105 |
| 1370 | 209 | 139 | 122 | 1382 | 220 | 212 | 115 | 1400 | 204 | 116 | 124 | 1369 | 223 | 264 | 109 |
| 1400 | 211 | 140 | 124 | 1413 | 221 | 213 | 117 | 1430 | 206 | 117 | 126 | 1399 | 225 | 265 | 111 |
| 1431 | 213 | 142 | 126 | 1442 | 223 | 214 | 118 | 1465 | 208 | 117 | 128 | 1434 | 226 | 266 | 113 |
| 1461 | 215 | 142 | 128 | 1474 | 224 | 215 | 120 | 1491 | 210 | 118 | 130 | 1460 | 227 | 266 | 114 |

SMI 73 SIMULATION RESULTS
INJECTION VOLUME SENSITIVITY ANALYSIS RESULTS
(CONTINUED)

| 150 MMCF INJECTION CASE | | | | 300 MMCF INJECTION CASE | | | | 75 MMCF INJECTION CASE | | | | 400 MMCF INJECTION CASE | | | |
|-------------------------|-----------------------|-----|-------|-------------------------|-----------------------|-----|-------|------------------------|-----------------------|-----|-------|-------------------------|-----------------------|-----|-------|
| Time | Cumulative Production | | | Time | Cumulative Production | | | Time | Cumulative Production | | | Time | Cumulative Production | | |
| Step | Oil | Gas | Water | Step | Oil | Gas | Water | Step | Oil | Gas | Water | Step | Oil | Gas | Water |
| 1492 | 217 | 144 | 131 | 1505 | 226 | 215 | 122 | 1522 | 211 | 119 | 133 | 1492 | 228 | 267 | 115 |
| 1523 | 219 | 144 | 133 | 1535 | 227 | 216 | 124 | 1553 | 212 | 120 | 134 | 1523 | 229 | 267 | 116 |
| 1556 | 219 | 145 | 133 | 1568 | 227 | 216 | 124 | 1582 | 212 | 120 | 134 | 1555 | 229 | 267 | 116 |
| 1594 | 219 | 145 | 133 | 1596 | 227 | 216 | 124 | 1615 | 212 | 120 | 134 | 1588 | 229 | 267 | 116 |
| 1614 | 219 | 145 | 133 | 1629 | 227 | 216 | 124 | 1655 | 212 | 120 | 134 | 1626 | 229 | 267 | 116 |
| 1654 | 219 | 145 | 133 | 1669 | 227 | 216 | 124 | 1675 | 212 | 120 | 134 | 1645 | 229 | 267 | 116 |
| 1674 | 219 | 145 | 133 | 1699 | 227 | 216 | 124 | 1715 | 212 | 120 | 134 | 1685 | 229 | 267 | 116 |
| 1714 | 219 | 145 | 133 | 1729 | 227 | 216 | 124 | 1735 | 212 | 120 | 134 | 1705 | 229 | 267 | 116 |
| 1754 | 219 | 145 | 133 | 1749 | 227 | 216 | 124 | 1775 | 212 | 120 | 134 | 1745 | 229 | 267 | 116 |
| 1774 | 219 | 145 | 133 | 1789 | 227 | 216 | 124 | 1795 | 212 | 120 | 134 | 1765 | 229 | 267 | 116 |
| 1814 | 219 | 145 | 133 | 1809 | 227 | 216 | 124 | 1835 | 212 | 120 | 134 | 1805 | 229 | 267 | 116 |
| 1834 | 219 | 145 | 133 | 1849 | 227 | 216 | 124 | 1875 | 212 | 120 | 134 | 1825 | 229 | 267 | 116 |
| 1874 | 219 | 145 | 133 | 1869 | 227 | 216 | 124 | 1895 | 212 | 120 | 134 | 1865 | 229 | 267 | 116 |
| 1894 | 219 | 145 | 133 | 1909 | 227 | 216 | 124 | 1935 | 212 | 120 | 134 | 1905 | 229 | 267 | 116 |
| 1934 | 219 | 145 | 133 | 1929 | 227 | 216 | 124 | 1955 | 212 | 120 | 134 | 1925 | 229 | 267 | 116 |
| 1954 | 219 | 145 | 133 | 1969 | 227 | 216 | 124 | 1995 | 212 | 120 | 134 | 1965 | 229 | 267 | 116 |
| 1994 | 219 | 145 | 133 | 2009 | 227 | 216 | 124 | 2015 | 212 | 120 | 134 | 1985 | 229 | 267 | 116 |
| 2014 | 219 | 145 | 133 | 2029 | 227 | 216 | 124 | 2055 | 212 | 120 | 134 | 2025 | 229 | 267 | 116 |
| 2054 | 219 | 145 | 133 | 2069 | 227 | 216 | 124 | 2075 | 212 | 120 | 134 | 2045 | 229 | 267 | 116 |

APPENDIX D
Model Input Data for South Marsh Island 73, B-65G Reservoir

South Marsh Island 73 B-65G Reservoir Initial Run Input Data

ID1: LSU PROJECT- ACTUAL FIELD STUDY TAYLOR ENERGY-BOAST III 12/08/93 aa]
ID2: B-65 G RESERVOIR WITH 5-WELLS IREPRS:0-->1
ID3: B-1, B-7, B10D, B12, B15 (b) DIP = 47 degrees down!
ID4: WOC @ -7351 SS FT AND ATTIC RESERVIOR.
ID5: SMI 73 BLOCK, 3-layer set up, thickness by grid block, WELL PRODUCING AT CONSTANT Qo
RESTART AND POST-RUN CODES

-1 0

GRID DATA

12 12 3

GRID BLOCK LENGTHS

0 0 0 0

1285. 190. 855. 150. 855. 210. 330. 150. 150. 500. 160. 275.

430. 260. 155. 155. 165. 115. 150. 250. 310. 150. 145. 410.

20. 19. 27.

17. 16. 20.

GRID BLOCK LENGTH MODIFICATIONS

3*0 18 0

| | |
|-------------------|-------------|
| 3 12 1 1 1 3 0 | [shale-out] |
| 4 4 5 5 1 1 12 | [B-12] |
| 3 3 4 4 1 1 4 | [B-12] |
| 3 3 6 6 1 1 5 | [B-12] |
| 5 5 4 4 1 1 5 | [B-12] |
| 5 5 6 6 1 1 6 | [B-12] |
| 3 5 2 3 1 1 0 | [B-12] |
| 3 5 4 6 2 2 4 | [B-12] |
| 3 5 4 6 3 3 2 | [B-12] |
| 1 3 1 1 1 1 13 | [B-1] |
| 1 2 2 3 1 1 15 | [B-1] |
| 1 2 1 3 2 2 15 | [B-1] |
| 1 2 2 3 3 3 4 | [B-1] |
| 1 1 1 1 5 5 1 1 6 | [B-7] |
| 1 0 1 1 4 4 1 3 0 | [B-7] |
| 1 0 1 1 2 3 1 3 0 | [B-7] |
| 1 2 1 2 2 4 1 3 0 | [B-7] |
| 6 7 6 8 3 3 8 | [B-10] |

DIP TO BE CALCULATED BASED ON ELEVATIONS OF EACH BLOCK.

1 00.0

6200. 6*6100. 5*6000.

6400. 6325. 5*6300. 5*6250.

6500. 6450. 5*6400. 5*6350.

6600. 6550. 5*6500. 5*6450.

6700. 6650. 5*6600. 5*6550.

6825. 6*6700. 6600. 6625. 3*6650.

6950. 3*6800. 6750. 6790. 6750. 5*6700.

7100. 3*6925. 2*6900. 2*6875. 2*6800. 2*6850.

7300. 7150. 7125. 5*7100. 2*7050. 2*7075.

7400. 7300. 7275. 7250. 4*7200. 7175. 2*7200. 7225.

7450. 2*7350. 7325. 2*7275. 2*7300. 7250. 3*7300.

7600. 2*7500. 7475. 4*7450. 7400. 3*7425.

POROSITY AND PERMEABILITY DISTRIBUTIONS

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

0 0 0 0

.28 .29 .25

680. 1056. 125.

680. 1056. 125.

68. 106. 12.5

POROSITY AND PERMEABILITY MODIFICATIONS

0 2 3 0 0

8 9 3 3 1 3 3000

9 1 1 5 5 1 3 3000

9 9 3 5 1 3 3000

6 7 8 8 2 3 12.5

11 11 6 6 1 3 12.5

TRANSMISSIBILITY MODIFICATIONS

0 0 0 1

ROCK PVT

1 1

| SAT | KROW | KRW | KRG | KROG | PCOW | PCGO |
|------|------|------|------|-------|------|------|
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.20 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 |
| 0.30 | 0.00 | 0.08 | 0.15 | 0.001 | 0.00 | 0.00 |
| 0.40 | 0.02 | 0.2 | 0.3 | 0.01 | 0.00 | 0.00 |
| 0.50 | 0.13 | 0.4 | 0.5 | 0.04 | 0.00 | 0.00 |
| 0.60 | 0.38 | 0.7 | 0.7 | 0.12 | 0.00 | 0.00 |
| 0.70 | 0.65 | 0.9 | 1.00 | 0.26 | 0.00 | 0.00 |
| 0.80 | 1.00 | 1.00 | 1.00 | 0.60 | 0.00 | 0.00 |
| 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 |
| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 |

ITHREE SWR

1 .2

PBO PBODAT PBGRAD

3457.0 6400. 0.000

VSLOPE BSLOPE RSLOPE PMAX REPRS

.000046 -.0000232 0. 3500.0 0 <---- "ON"

P MUO BO RSO

100. 0.91 1.00 16.0

500. 0.845 1.04 52.0

1000. 0.785 1.09 110.0

1500. 0.72 1.13 233.0

2000. 0.655 1.2 367.0

2500. 0.59 1.260 483.0

3000. 0.53 1.320 600.0

3500. 0.465 1.3647 718.0

P MUW BW RSW

100. 0.56 1.000 0.00

3100. 0.56 0.9928 0.00

3500. 0.56 0.9928 0.00

GAS AND ROCK PROP

0

P MUG BG PSI CR

100. .0163 .13729 0.0 .000003

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

500. .0171 .02222 0.0 .000003
800. .0183 .01273 0.0 .000003
1200. .0238 .00785 0.0 .000003
1600. .0497 .00573 0.0 .000003
2000. .0604 .00555 0.0 .000003
2500. .065 .00541 0.0 .000003
3100. .0700 .0047 0.0 .000003
3500. .075 .0041 0.0 .000003

RHOSCO RHOSCW RHOSCG

53.415 62.238 0.047

Initialization Option Codes

0 1 6782. 0.00 [KPI KSI PDATUM GRAD]

NR Pwoc WOC Pgoc GOC Soi Swi Sgi [Initialization by Rock Region]

1 3457. 7351. 0.0 4500. 0.75 0.25 0.0

Initialization by Layer (NZ Records)

1 3058 0.815 0.185 0.0 [Pi Soi Swi Sgi]
2 3058 0.753 0.247 0.0 [Pi Soi Swi Sgi]
3 3058 0.795 0.205 0.0 [Pi Soi Swi Sgi]

INITIAL OIL SATURATION FOR GRID

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

12*.8

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

12*.8

12*.8

12*.8

12*.8

12*.8

12*0.0

INITIALIZE WATER SATURATION

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

12*.2

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

NUMDIS IRK THRUIN

0 0 .6

AQUIFER DATA

1

1

1 12 12 12 1 3 500

WELL AND NODE DATA

NUMBER OF WELLS

5

WELL# NODES WELLNAME

1 1 B1

2 1 B7

3 1 B10D

4 1 B12

5 1 B15

WELL# NODE DIRECTION

1 2 3 3 1

2 11 5 1 1

3 6 7 3 1

4 4 5 1 1

5 6 11 2 1

RECURRENT DATA

C ===== DATA SET 1

0 2 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

1.0 365 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 1966 - Beginning of data read by NODES - if IWLCNG=1]

3 0 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--NEW WELLS--

B1 1 2 3 3 1 [FORMATTED: A5,5I3 - WELLID, IDWELL, I, J, PERF1, NLAYER]

14.7

0.00

B1 1 1 28. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 11 5 1 1 [FORMATTED: A5,5I3 - WELLID, IDWELL, I, J, PERF1, NLAYER]

24.98

0.00

B7 2 1 25. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 6 7 3 1 [FORMATTED: A5,5I3 - WELLID, IDWELL, I, J, PERF1, NLAYER]

6.1

0.00

B10D 3 1 23. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 2

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

730.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT, DTMIN, DTMAX]
HEADER ----> 1967 - Beginning of data read by NODES - if IWLCNG=1]
1 3 [NWELLN=No. of new wells, NWELLO=No. of old wells]
---NEW WELLS---
B12 4 4 5 1 1 [FORMATTED: A5,5I3 - WELLID, IDWELL, I, J, PERF1, NLAYER]
25.0
0.00
B12 4 1 107. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
OLD WELLS
B1 1 1 146. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 127. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 127. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
C===== DATA SET 3

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
1095.0 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP, ISOMAP, ISWMAP, ISGMAP, IPBMAP, IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT, DTMIN, DTMAX]
HEADER ----> 1968 - Beginning of data read by NODES - if IWLCNG=1]
0 4 [NWELLN=No. of new wells, NWELLO=No. of old wells]
---OLD WELLS---
B1 1 1 167. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 145. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 160. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 144. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
C===== DATA SET 4

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
1430.0 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP, ISOMAP, ISWMAP, ISGMAP, IPBMAP, IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT, DTMIN, DTMAX]
HEADER ----> 1969 except for December - Beginning of data read by NODES - if IWLCNG=1]
0 4 [NWELLN=No. of new wells, NWELLO=No. of old wells]
---OLD WELLS---
B1 1 1 195. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 175. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 175. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 253. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
C===== DATA SET 5

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
1445.0 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP, ISOMAP, ISWMAP, ISGMAP, IPBMAP, IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT, DTMIN, DTMAX]
HEADER ----> 1/2 December, 1969 - Beginning of data read by NODES - if IWLCNG=1]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B10D 3 3 0. 0. -746. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 6

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

1460.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 2/2 December, 1969 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B10D 3 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 7

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

1825.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> January-Dec, 1970 - Beginning of data read by NODES - if IWLCNG=1]

0 4 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 283. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 223. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 344. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 253. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 8

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

2190.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 1971 - Beginning of data read by NODES - if IWLCNG=1]

0 4 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 820. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 274. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 934. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 890. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 9

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

2555.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

HEADER ----> Jan-Dec 1972 - Beginning of data read by NODES - if IWLCNG=1]

1 4 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--NEW WELLS--

B15 5 6 11 2 1 [FORMATTED: A5,5I3 - WELLID, IDWELL, I, J, PERF1, NLAYER]

64.6

0.00

B15 5 3 0. 0. -1205. 000. [FORMATTED: A5,2I3,4F10.0]

--OLD WELLS--

B1 1 1 821. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 274. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 935. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 856. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C----- DATA SET 10

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

2920.0 [Times for output - IOMETH values]

0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1973 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 843. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 210. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 496. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 852. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B15 5 3 0. 0. -264. 000. [FORMATTED: A5,2I3,4F10.0]

C----- DATA SET 11

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

3285.0 [Times for output - IOMETH values]

0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> January-Dec 1974 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 642. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 275. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 163. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 696. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B15 5 3 0. 0. -269. 000. [FORMATTED: A5,2I3,4F10.0]

C----- DATA SET 12

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

3650.0 [Times for output - IOMETH values]

0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

HEADER ----> January-Dec 1975 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 240. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 249. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 143. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 453. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. -116. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 13

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

4015.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 1976 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 240. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 249. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 143. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 249. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. -23. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 14

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

4380.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1977 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 115. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 128. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 231. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. -129. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 15

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

4560 [Times for output - IOMETH values]

0 0 1 1 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-July 1978 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 136. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

B7 2 1 183. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 98. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
C===== DATA SET 16

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
4745 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]
HEADER ----> Aug-Dec 1978 - Beginning of data read by NODES - if IWLCNG=1]
0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]
---OLD WELLS---
B12 4 3 0. 0. -1516. 000. [FORMATTED: A5,2I3,4F10.0]
C===== DATA SET 17

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
5110 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]
HEADER ----> Jan-Dec 1979 - Beginning of data read by NODES - if IWLCNG=1]
0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]
---OLD WELLS---
B1 1 1 41. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 128. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 3 0. 0. -1612. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
C===== DATA SET 18A

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
5171 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]
HEADER ----> Jan-Feb 1980 - Beginning of data read by NODES - if IWLCNG=1]
0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]
---OLD WELLS---
B1 1 1 41. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 128. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 3 0. 0. -3068. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
C===== DATA SET 18B

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
5201 [Times for output - IOMETH values]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Mar 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 3 0. 0. 000. [FORMATTED: A5,2I3,4F10.0]
C===== DATA SET 18C

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
5291 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Apr-Jun 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 3 0. 0. -2427. 000. [FORMATTED: A5,2I3,4F10.0]
C===== DATA SET 18D

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
5321 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jul 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 3 0. 0. 000. [FORMATTED: A5,2I3,4F10.0]
C===== DATA SET 18E

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
5381 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Aug-Sep 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 3 0. 0. -2831. 000. [FORMATTED: A5,2I3,4F10.0]
C===== DATA SET 19

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
5391 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Oct 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

--OLD WELLS--

B12 4 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 19A

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

5410 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Oct 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 3 0. 0. 2500. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 20

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

5445 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Nov 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 1 51. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 21

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

5475 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Dec 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 1 67. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 22

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

5840 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Jul 1981 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 111. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 112. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C————— DATA SET 23

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

6144 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Oct 1982 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 1 58. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 23. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C————— DATA SET 24

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

6205 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Nov-Dec 1982 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 3 0. 0. -1123. 000. [FORMATTED: A5,2I3,4F10.0]

C————— DATA SET 25

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

6295 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Mar 1983 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 3 0. 0. -990. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 101. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C————— DATA SET 25

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

6570 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

HEADER ----> Apr-Dec 1983 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 54. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 101. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 26

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

6660 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Mar 1984 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 3 0. 0. -705. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 18. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 26

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

6935 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Apr-Dec 1984 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 54. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 18. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 27

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

7087 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-May 1985 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 3 0. 0. -1028. 000. [FORMATTED: A5,2I3,4F10.0]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 19. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 28

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

7300 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jun-Nov 1985 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 29

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

7633 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Jul 1986 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 8. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 30

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

7665 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Dec 1986 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 3 0. 0. -357. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 31

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

8030 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-May 1987 - Beginning of data read by NODES - if IWLCNG=1]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 3 0. 0. -730. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 3 0. 0. 575. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 32

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

8395 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Oct 1988 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 3 0. 0. 250. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 33

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

8760 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1989 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 3 0. 0. 277. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 26. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 34

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

9125 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1990 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 3 0. 0. 4. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

South Marsh Island 73, B-65G Reservoir - Initial Run Input Data (Continued)

B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 97. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 35

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
9490 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1991 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 3 0. 0. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 73. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 36

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
9855 [Times for output - IOMETH values]
1 1 1 1 0 1 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1992 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 3 0. 0. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 19. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

South Marsh Island 73, B-65G Reservoir - Final Run Input Data

ID1: LSU PROJECT- ACTUAL FIELD STUDY TAYLOR ENERGY-BOAST III 2/1/94 at-pc]
ID2: B-65 G RESERVOIR WITH 5-WELLS IREPRS:0--->1
ID3: B-1, B-7, B10D, B12, B15 (b) DIP = 47 degrees down!
ID4: WOC @ -7351 SS FT AND ATTIC RESERVIOR.
ID5: SMI 73 BLOCK, 3-layer set up, thickness by grid block, WELL PRODUCING AT CONSTANT Q0
RESTART AND POST-RUN CODES

-1 0

GRID DATA

12 12 3

GRID BLOCK LENGTHS

0 0 0 0

1285. 190. 855. 150. 855. 210. 330. 150. 150. 500. 160. 275.

430. 260. 155. 155. 165. 115. 150. 250. 310. 150. 145. 410.

20. 19. 27.

17. 16. 20.

GRID BLOCK LENGTH MODIFICATIONS

2*0 5 26 0

| | |
|-----------------|-------------|
| 1 2 1 1 1 1 28 | [B1] |
| 1 2 2 3 1 1 28 | [B1] |
| 1 2 1 3 2 2 28 | [B1] |
| 1 2 2 3 3 3 38 | [B1] |
| 5 7 6 8 3 3 55 | [B-10D] |
| 3 12 1 1 1 3 0 | [shale-out] |
| 4 4 5 5 1 1 5 | [B-12] |
| 3 3 4 4 1 1 5 | [B-12] |
| 3 3 6 6 1 1 5 | [B-12] |
| 5 5 4 4 1 1 5 | [B-12] |
| 5 5 6 6 1 1 6 | [B-12] |
| 4 4 3 3 1 1 0 | [B-12] |
| 3 3 2 2 1 1 0 | [B-12] |
| 3 3 3 3 1 1 0 | [B-12] |
| 5 5 2 2 1 1 0 | [B-12] |
| 5 5 3 3 1 1 10 | [B-12] |
| 4 4 2 2 1 1 0 | [B-12] |
| 3 5 4 6 2 2 3 | [B-12] |
| 3 5 4 6 3 3 1 | [B-12] |
| 4 4 4 4 1 1 1 | [B-12] |
| 3 3 5 5 1 1 3 | [B-12] |
| 1 2 1 1 1 1 28 | [B1] |
| 1 2 2 3 1 1 28 | [B1] |
| 1 2 1 3 2 2 28 | [B1] |
| 1 2 2 3 3 3 38 | [B1] |
| 11 11 5 5 1 1 6 | [B7] |
| 10 11 4 4 1 3 0 | [B7] |
| 10 11 2 3 1 3 0 | [B7] |
| 12 12 2 4 1 3 0 | [B7] |
| 5 7 6 8 1 3 19 | [B10D] |
| 5 7 6 8 3 3 55 | [B10D] |

DIP TO BE CALCULATED BASED ON ELEVATIONS OF EACH BLOCK.

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

1 00.0
6200. 6*6100. 5*6000.
6400. 6325. 5*6300. 5*6250.
6500. 6450. 5*6400. 5*6350.
6600. 6550. 5*6500. 5*6450.
6700. 6650. 5*6600. 5*6550.
6825. 6*6700. 6600. 6625. 3*6650.
6950. 3*6800. 6750. 6790. 6750. 5*6700.
7100. 3*6925. 2*6900. 2*6875. 2*6800. 2*6850.
7300. 7150. 7125. 5*7100. 2*7050. 2*7075.
7400. 7300. 7275. 7250. 4*7200. 7175. 2*7200. 7225.
7450. 2*7350. 7325. 2*7275. 2*7300. 7250. 3*7300.
7600. 2*7500. 7475. 4*7450. 7400. 3*7425.

POROSITY AND PERMEABILITY DISTRIBUTIONS

0 0 0 0
.28 .29 .25
680. 1056. 125.
680. 1056. 125.
68. 106. 12.5

POROSITY AND PERMEABILITY MODIFICATIONS

0 2 2 0 0 0 0 0
6 6 8 8 3 3 0
5 5 7 8 3 3 0
6 6 8 8 3 3 0
5 5 7 8 3 3 0

TRANSMISSIBILITY MODIFICATIONS

0 0 0 1

ROCK PVT

1 1
SAT KROW KRW KRG KROG PCOW PCGO
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 0.00 0.00 0.005 0.00 0.00 0.00
0.20 0.00 0.00 0.08 0.00 0.00 0.00
0.30 0.02 0.08 0.20 0.00 0.00 0.00
0.40 0.13 0.2 0.38 0.001 0.00 0.00
0.50 0.38 0.4 0.56 0.01 0.00 0.00
0.60 0.65 0.7 0.8 0.04 0.00 0.00
0.70 1.00 0.9 1.00 0.12 0.00 0.00
0.80 1.00 1.00 1.00 0.26 0.00 0.00
0.90 1.00 1.00 1.00 0.60 0.00 0.00
1.00 1.00 1.00 1.00 0.00 0.00 0.00

ITHREE SWR

1 .2
PBO PBODAT PBGRAD
3457.0 6400. 0.000
VSLOPE BSLOPE RSLOPE PMAX REPRS
.000046 -.0000232 0. 3500.0 0 <---- "ON"
P MUO BO RSO
100. 0.91 1.00 16.0
500. 0.845 1.04 52.0
1000. 0.785 1.09 110.0

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

1500. 0.72 1.13 233.0
2000. 0.655 1.2 367.0
2500. 0.59 1.260 483.0
3000. 0.53 1.320 600.0
3500. 0.465 1.3647 718.0

P MUW BW RSW
100. 0.56 1.000 0.00
3100. 0.56 0.9928 0.00
3500. 0.56 0.9928 0.00

GAS AND ROCK PROP

0

P MUG BG PSI CR
100. .0163 .13729 0.0 .000003
500. .0171 .02222 0.0 .000003
800. .0183 .01273 0.0 .000003
1200. .0238 .00785 0.0 .000003
1600. .0497 .00573 0.0 .000003
2000. .0604 .00555 0.0 .000003
2500. .065 .00541 0.0 .000003
3100. .0700 .0047 0.0 .000003
3500. .075 .0041 0.0 .000003

RHOSCO RHOSCW RHOSCG

53.415 62.238 0.047

Initialization Option Codes

0 1 6782. 0.00 [KPI KSI PDATUM GRAD]

NR Pwoc WOC Pgoc GOC Soi Swi Sgi [Initialization by Rock Region]

1 3457. 7351. 0.0 4500. 0.75 0.25 0.0

Initialization by Layer (NZ Records)

1 3058 0.815 0.185 0.0 [Pi Soi Swi Sgi]

2 3058 0.753 0.247 0.0 [Pi Soi Swi Sgi]

3 3058 0.795 0.205 0.0 [Pi Soi Swi Sgi]

INITIAL OIL SATURATION FOR GRID

12*0.0
12*0.0
4*.77 8*0.0
4*.77 4*0.0 4*.77
12*.77
12*.77
12*.77
12*.77
12*.77
2*0.0 10*.77
4*0.0 8*.77
12*0.0
12*.77
12*.77
12*.77
12*.77
12*.77
12*.77
12*.77

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

1*1.0 11*.23

2*1.0 10*.23

3*1.0 9*.23

4*1.0 8*.23

12*1.0

KSN1 KSM1 KCO1 KCOF KSKIP KOUT

0 0 0 0 0 0

NMAX FACT1 FACT2 TMAX WORMAX GORMAX PAMIN PAMAX

9999 1.25 0.5 10313. 1500.00 100000000. 150. 5000.

KSOL MITR OMEGA TOL TOL1 DSMAX DP MAX

4 250 1.7 .020 0.00 .025 150.0

NUMDIS IRK THRUIN

0 0 .6

AQUIFER DATA

1

2

1 4 12 12 1 3 1500

8 12 12 12 1 3 1500

WELL AND NODE DATA

NUMBER OF WELLS

5

WELL# NODES WELLNAME

1 1 B1

2 1 B7

3 1 B10D

4 1 B12

5 1 B15

WELL# NODE DIRECTION

1 2 3 3 1

2 11 5 1 1

3 6 7 3 1

4 4 5 1 1

5 6 11 2 1

RECURRENT DATA

C===== DATA SET 1

0 2 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

1.0 365 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 1966 - Beginning of data read by NODES - if IWLCNG=1]

5 0 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--NEW WELLS--

B1 1 2 3 3 1 [FORMATTED: A5,5I3 - WELLID, IDWELL, I, J, PERF1, NLAYER]

14.7

0.00

B1 1 1 28. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 11 5 1 1 [FORMATTED: A5,5I3 - WELLID, IDWELL, I, J, PERF1, NLAYER]

24.98

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

0.00

B7 2 1 25. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 6 7 3 1 [FORMATTED: A5,5I3 - WELLID, IDWELL, I, J, PERF1, NLAYER]

6.1

0.00

B10D 3 1 23. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 4 5 1 1 [FORMATTED: A5,5I3 - WELLID, IDWELL, I, J, PERF1, NLAYER]

25.0

0.00

B12 4 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B15 5 6 11 2 1 [FORMATTED: A5,5I3 - WELLID, IDWELL, I, J, PERF1, NLAYER]

64.6

0.00

B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 2

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

730.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 1967 - Beginning of data read by NODES - if IWLCNG=1]

0 4 [NWELLN=No. of new wells, NWELLO=No. of old wells]

OLD WELLS

B1 1 1 146. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 127. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 127. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 107. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 3

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

1095.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 1968 - Beginning of data read by NODES - if IWLCNG=1]

0 4 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 1 167. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 145. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 160. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 144. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 4

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

1430.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 1969 except for December - Beginning of data read by NODES - if IWLCNG=1]

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

0 4 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 195. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 175. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 175. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 253. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C DATA SET 5

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

1445.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 1/2 December, 1969 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B10D 3 3 0. 0. -746. 000. [FORMATTED: A5,2I3,4F10.0]

C DATA SET 6

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

1460.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 2/2 December, 1969 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B10D 3 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C DATA SET 7

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

1825.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> January-Dec, 1970 - Beginning of data read by NODES - if IWLCNG=1]

0 4 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 283. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 223. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 344. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 253. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C DATA SET 8

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

2190.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 1971 - Beginning of data read by NODES - if IWLCNG=1]

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

0 4 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 820. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 274. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 934. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 890. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 9

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

2555.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1972 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 821. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 274. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 935. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 856. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B15 5 3 0. 0. -1205. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 10

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

2920.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1973 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 843. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 210. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 496. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 852. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B15 5 3 0. 0. -264. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 11

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

3285.0 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> January-Dec 1974 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 642. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 275. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 163. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 1 696. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

B15 5 3 0. 0. -269. 000. [FORMATTED: A5,2I3,4F10.0]
C DATA SET 12

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
3650.0 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> January-Dec 1975 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 240. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 249. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 143. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 453. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. -116. 000. [FORMATTED: A5,2I3,4F10.0]

C DATA SET 13

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
4015.0 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> 1976 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 240. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 249. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 143. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 249. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. -23. 000. [FORMATTED: A5,2I3,4F10.0]

C DATA SET 14

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
4380.0 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1977 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 115. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 128. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 231. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. -129. 000. [FORMATTED: A5,2I3,4F10.0]

C DATA SET 15

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
4560 [Times for output - IOMETH values]

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

0 0 1 1 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-July 1978 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 1 136. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 183. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 98. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 16

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

4745 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Aug-Dec 1978 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B12 4 3 0. 0. -1516. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 17

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

5110 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1979 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 1 41. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 128. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B12 4 3 0. 0. -1612. 000. [FORMATTED: A5,2I3,4F10.0]

B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 18A

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

5171 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Feb 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 1 41. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B7 2 1 128. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

B12 4 3 0. 0. -3068. 000. [FORMATTED: A5,2I3,4F10.0]

B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 18B

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

5201 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Mar 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 3 0. 0. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 18C

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

5291 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Apr-Jun 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 3 0. 0. -2427. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 18D

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

5321 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jul 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 3 0. 0. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 18E

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

5381 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]

0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]

0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Aug-Sep 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 3 0. 0. -2831. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 19

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

5391 [Times for output - IOMETH values]

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Oct 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 1 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 19A

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
5410 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Oct 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 3 0. 0. 2500. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 20

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
5445 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Nov 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 1 51. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 21

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
5475 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Dec 1980 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B12 4 1 67. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 22

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
5840 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Jul 1981 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

B1 1 1 111. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 112. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 23

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

6144 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Oct 1982 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 58. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 23. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 24

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

6205 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Nov-Dec 1982 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 3 0. 0. -1123. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 25

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

6295 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Mar 1983 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 3 0. 0. -990. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 101. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 25

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

6570 [Times for output - IOMETH values]

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Apr-Dec 1983 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 1 54. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 101. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 26

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
6660 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Mar 1984 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 3 0. 0. -705. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 40. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 26

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
6935 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Apr-Dec 1984 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

---OLD WELLS---

B1 1 1 54. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 11. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 27

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
7087 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-May 1985 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

--OLD WELLS--

B1 1 3 0. 0. -1028. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 20. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 28

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
7300 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jun-Dec 1985 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
C ===== DATA SET 29

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
7633 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Jul 1986 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 10. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C ===== DATA SET 30

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
7665 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Dec 1986 - Beginning of data read by NODES - if IWLCNG=1]

0 1 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 3 0. 0. -357. 000. [FORMATTED: A5,2I3,4F10.0]
C ===== DATA SET 31

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
8030 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

HEADER ----> Jan-Dec 1987 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 3 0. 0. -730. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 3 0. 0. 164. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 32

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

8395 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP,KRWMP,KRGMP,IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1988 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 3 0. 0. 250. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 3 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 33

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

8760 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP,KRWMP,KRGMP,IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1989 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 0. 0. 277. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 3 0. 0. 347. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 34

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]

9125 [Times for output - IOMETH values]

0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP,KRWMP,KRGMP,IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1990 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 0. 0. 4. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

South Marsh Island 73, B-65G Reservoir - Final Run Input Data (Continued)

B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 97. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 35

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
9490 [Times for output - IOMETH values]
0 0 0 0 0 0 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 0 0 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1991 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 0. 0. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 73. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

C===== DATA SET 36

0 1 1 [ICHANG IOMETH IWLCNG -> NOTE: ICHANG not used if IOMETH>0]
9855 [Times for output - IOMETH values]
1 1 1 1 0 1 [IPMAP,ISOMAP,ISWMAP,ISGMAP,IPBMAP,IAQMAP]
0 0 0 0 1 1 1 [KROMP, KRWMP, KRGMP, IRSOMP]
0.1 0.1 30.0 [DT,DTMIN,DTMAX]

HEADER ----> Jan-Dec 1992 - Beginning of data read by NODES - if IWLCNG=1]

0 5 [NWELLN=No. of new wells, NWELLO=No. of old wells]

--OLD WELLS--

B1 1 1 0. 0. 000. [FORMATTED: A5,2I3,4F10.0]
B7 2 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B10D 3 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B12 4 1 75. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]
B15 5 1 0. 0. 0000. 000. [FORMATTED: A5,2I3,4F10.0]

APPENDIX E
Run Modifications Made for South Marsh Island 73, B-65G Reservoir

Run Modifications Made for South Marsh Island 73, B-65G Reservoir

The exact modifications made from run AA to run AB are as follows:

- The placement and strength of the aquifer were changed by increasing the strength of the aquifer from 500 SCF/psia to 1500 SCF/psia.
- The net sand thickness of the third layer at and to the northwest of the well B-10D was increased from 8 feet to 20 feet.
- The x-direction permeability was decreased from 3000 md to 680 md, 1056 md and 125 md for layers 1 through 3 respectively for columns 8 and 9, row 3 and columns 9 through 11, row 5.
- The y-direction permeability for column 9, rows 3 through 5, for layer 1 through 3 was decreased from 3000 md to 680 md, 1056 md, and 125 md, respectively.
- For columns 6 and 7, row 8, for layers 2 and 3, the y-permeability was increased from 12.5 md to 1056 md and 125 md, respectively.
- For column 11, row 6 for layers 1 and 3 the y-direction permeability was increased from 12.5 md to 680 md, 1056 md and 125 md, respectively.

The exact modifications made from run AB to run AC are as follows:

- For column 4, row 5, layer 1, the net thickness was decreased from 12 feet to 5 feet. This is in the vicinity of the B-12 well and was expected to improve the individual well match as well as the overall reservoir match.
- For column 6, row 8, layer 3, the horizontal permeability was set at zero md, in an attempt to modify the fluid movement around the B-10D well.
- The average oil saturation was decreased to 78% from 80% in an attempt to produce more water.
- The one main aquifer in run "ab" was modified to two separate aquifers, the first ranging from column 1 to 4, row 12, layers 1 to 3 and the second ranging from column 8 to 12, row 12, layers 1 to 3. Both were assigned a strength of 2500 ft³/psi.

The exact modifications made from run AC to run AD are as follows:

- Net sand in the vicinity of the B-12 and B-1 wells were reduced 1 to 3 feet.
- Overall original oil saturation was reduced from 78% to 77%.
- Aquifer strengths were reduced to 1500 ft³/psi from 2500 ft³/psi.

The exact modifications made from run AG to run AT are as follows:

- No changes were made to primary shale-out (pinch-out) against salt.
- Around well B-12, layer 1 was thickened slightly in grid blocks adjacent to the well.
- Grid Block 5 5 3 3 layer 1 was thickened from 0 feet to 10 feet.
- x and y permeability in layer 3 south of well B-10 (on strike) and northeast of well B-12 (downdip) was reduced to 0.
- Gas cap was placed in layer 1, rows 1 through 2 (for grids not shaled-out). This places a variably thick gas cap in the uppermost portions of the reservoir, but it is no deeper than 6428 subsea.