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ABSTRACT

A set of inequalities which apply to the surface of
rigidly rotating, perfect fluids with asymptotically flat
exteriors is derived. This set consists of both algebraic
inequalities and inequalities which involve integrals per-
formed over the surface of the fluid. The physical content
of these inequalities is investigated by examining the
restrictions they impose on the existence of rotating fluid
models with Kerr interiors. For this case, the dominant set
of inequalities is found and expressed in an analytic form.
These restrictions impose a finite maximum redshift between
observers on the surface and at infinity for all models
with the Kerr parameter a > m. However, for all models with
0 < a/m 1, there is a unique configuration for which the
redshift is unbounded. In the static limit, a 0, a finite
maximum redshift depending on the matter distribution of the
static background is found. This result is compared to sta-
bility requirements for non-rotating fluids. The implications
of this comparison and areas for future extensions are discussed.



RESTRICTIONS ON RELATIVISTICALLY ROTATING FLUIDS
By Jack R. Schendel

1.0. INTRODUCTION

The motivation for studying rotating fluids in gen-
eral relativity is two-fold. General relativity, as any
o'ther physical theory, must withstand the correspondence
with observations of nature. In the case of general relat-
ivity a major testing ground comes from astronomical
observations of massive objects such as compact stars and
a variety of the more massive galactic nuclei. Although the
physics of these objects 1is qguite complicated and not well
understood, we may gain useful insight into the
gravitational interactions that take place within these
objects by considering them as self-gravitating fluids as
was done within the context of Newtonian gravitational
theory by such researchers as Maclaurin, Jacobi, Poincare
and others.

The second point of motivation arises from the
first. It appears that most astrophysical objects rotate
and as a conseguence possess angular momentum. As in Newto-
nian theory, one must expect angular momentum to play a key
role in applications of general relativity to astrophysical
systems. These expectations are heightened when one con-
siders the purely general relativistic effects such as frame
dragging and magnetic—-1ike interactions which occur in
general relativity when the system possesses angular momen-

tum. With this in mind, any 1information connecting the



behavior of material sources with the gravitational field
through angular momentum could itself ©prove valuable in
understanding angular momentum as a source of the gravita-
tional field .

With this as motivation I now state the general
mathematical requirements . I will consider two spacetime
manifolds (M+,g+) and (M—,g—) which are partially bounded by
a timelike hypersurface, E. On E (M+,g+) and (M™,g—) must
be isometric. Hereafter, (M+,g+), (M—,g™) and E will Dbe
refered to as the exterior, the interior and the matching
surface, respectively.

In order to simulate an isolated astrophysical sys-
tem the following requirements must also be imposed on the
interior and the exterior. First, the exterior must have a
vanishing energy-momentum tensor and be asymptotically flat
in the standard sense. In addition, the matter distribution

of the interior as defined by the energy-momentum tensor

must obey

T vavb > 0 , (1.1)
ab —
and
(T , Vb ) (TaCv | < 0 , (1.2)
ab c —
for any tiraelike vector, V , defined on the interior mani-
fold. The physical intepretation of eq. (1.1) is that the

local matter density as measured by any observer be non-
negative. Equation (1.2) requires that the local matter

current as measured by any observer have a timelike flow.



1.1. Farlier Attempts

It is a very difficult problem to match rotating,
physically acceptable interiors to asymptotically flat
exteriors. In this section I will review some of the
earlier attempts 1in order to illuminate some of the diffi-
culties inherent in this problem.
1.11. Rotating Shells

One of the earliest attempts to find a solution to

this matching problem came from Brill and Cohenl, who de-

rived an approximate solution for a slowly rotating spheri-

cal shell Dbyconsidering 1linear perturbations of the static
case. They found to first order in the angular velocity
that (a) the shell 1is spherical and of uniform density, (b)
the shell is in rigid rotation and (c) the spacetime

interior is flat and all inertial frames are dragged around
rigidly with the shell as the shell approaches the
Schwarzschild horizon.

De La Cruz and Israel attempted to extend these
results to higher order. Their technique was to assume that
the exterior was the Kerr solution and the interior metric
could be cast in the canonical form for an axisymmetric,

stationary wvacuum spacetime first given by Lewiss,
ds2 = e2(v~X) (dp2+ dz2) + p2e 2XKP2 - e2X (dt-'f'do) 2, (1.3)

where v, X and ¥ are functions of p and z. In this form the

field equations reduce to

= p(X2- X2) —(1/4)p-1le2X (4*2 - £f2) o (1.4a)
P p z p z



2pX X —/2)ppledXt T

VZ Pz P z , (1.4Db)
X + p ZX + \ = —(1/2)p 2 edx (1 2+ V 2) , (1.4c¢)
pp p 1z p z
and
PP P 11z o (1e4d]
where the subscripts denote partial differentiation. They
then demand that
a.s)

and choose a particular matching surface of the parametric

form

P s= f(e) z E= g (0] (1.9
Equation (1.5) fixes the functions v, X and V on E. Since
egs. (1.4c) and (1.4d) form a well Dbehaved set of elliptical
partial differential equations, they arrive at a well-
defined elliptical boundary value problem. Once f and X
are known v can be found via guadrature of egs. (1.4a) and
(1.4b) . However, since solving egs. (1.4c¢c) and (1.4d) 1is,

at best, very difficult they resort to a perturbation
technique. They proceed by expanding the Kerr solution in a
power series in a/R. R 1s the radial coordinate of the
unperturbed shell and a is the Kerr angular momentum
parameter. With this expansion the non-linear right sides
of egs. (1.4¢c) and (1.4d) are assumed known from the
previous order of approximation. Thus, at each order in the
approximation egs. (1.4c) and (1.4d) become a set of linear
inhomogeneous elliptical partial differential equations

which can be solved by standard methods.



They then deduce the physical properties of the

shell by calculating the surface stress-—-energy tensor which

is given by
-1

S = (8r17) (g Y - Y ) , (L .7)
ab ab ab

where Ya” 1is defined 1in terms of the interior and exterior

extrinsic curvatures K+, and K-, as
ab ab
""ab ' Klb - Klb ' (1-8)
and Y i1is the trace of Ya". The proper surface density and

and the wvelocity wua of the surface are then defined by

Sa~ua=ocou”™ , (1L .9)

where u u3 = -1. The angular velocity of the shell as

measured by a stationary observer at infinity is then given

by

g = YY" / (“"Yt, + Yt - Yr ) v (1.10)
t < t Q

De La Cruz and Israel carried out this procedure to
third order in the Kerr parameter and found that, to first
order, the results of Cohen and Brill were reproduced
exactly. However, in the third order of the approximation
these results Dbreak down. They showed that in no case could
the shell be uniform and simultaneously be in rigid
rotation. They did find that the interior inertial frames

were dragged with the shell as the matching surface ap-
proached the outer Kerr horizon. However, the credibility
of the interpretation of the model in this 1limit is somewhat
strained by the fact that the surface stresses become

infinite in this limit. Because of these results and the



complicated nature of higher orders they conclude that a
rotating shell does not appear to be the natural source of
the Kerr solution.
1.12. Rotating Disks: The Model of Bardeen and Wagoner

Bardeen and Wagoner4,5 have constructed and explored
a sequence of rotating disk models. They assume that the
matter is a perfect fluid in rigid rotation and confined to
a disk perpendicular to the axis of rotation. In order to
simplify the field equations they ignore the pressure and,
in particular, its effects on the structure perpendicular to
the disk. In doing so, the interior matter distribution
takes on the form of boundary conditions imposed on the
exterior

They begin by choosing two parameters necessary to
specify their model. Instead of the mass and angular
momentum, they choose the coordinate radius of the disk,
which sets the Dbasic scale of the model, and a parameter y
which is related to the integral of the equation of

hydrostatic support such that

y = zc/(zec + 1) , (1.11)

where z, is the redshift at the center of the disk. The

parameter y varies from zero in the Newtonian 1limit to one
in the extreme relativistic limit. They proceed by
expanding a variant of the canonical axisymmetric, station-
ary metric eq. (1.3) and the resulting field equations
equivalent to egs. (1.4) 1in a power series 1in . As 1in the

case of De La Cruz and Israel, Bardeen and Wagoner's



versions of egs. (1.4) become inhomogeneous but linear
partial differential equations with the inhomogeneous terms
being known from lower orders of the approximation. Further

simplification arises when it is noted that in oblate

spheroidal coordinates their wversions of egs. (1.4c¢) and
(1.4d) are separable yielding ordinary differential
equations at each order of the approximation. Once these
equations are solved at a particular order, then their
version of v can be found via guadrature of egs. (1.4a) and
(1.4b) .

Boundary conditions at the disk are imposed in the
form of self-consistency requirements on the surface density
which is defined in a manner analogous to that of De La Cruz
and Israel. They require that the equation of hydrostatic
support Dbe satisfied ©parallel to the disk and that the
surface density Dbe positive and also finite at the rim of
the disk. In addition, they demand asymptotic flatness.

The equations are then solved analytically through

the post-Newtonian order. Beyond this order the equations
are integrated numerically using the analytic results
through the second order 1in y as starting points. The

numerical calculations are carried out independently by
both Bardeen and Wagoner through fifth order. Bardeen
continues the calculation through tenth order where he
estimates the accuracy to be Dbetter than one per cent, even
in the extreme relativistic limit. These estimates are
based on analytic asymptotic relations between the functions

T and X and the mass and angular momentum.



This method of calculation yields a sequence of

equilibrium models. The physical interpretation of this
sequence 1is that a disk of fixed rest mass (as defined by
the surface density) loses angular momentum, contracts and
becomes more relativistic as y approaches one. In this

sequence the angular momentum monotonically decreases to a
finite wvalue in the extreme relativistic limit. They also
note that the Dbinding energy, defined as the difference
between the rest mass and the gravitational mass, is
positive and increases monotonically with y indicating that
these models become more stable to gravitational collapse as
they Dbecome increasingly relativistic. For y < 1/2 the
maximum surface density occurs at the center and decreases
to zero at the rim. For vy 1/2 the maximum of the density
occurs away from the center. In the relativistic 1limit the
mass tends to Dbe concentrated near the rim in a somewhat
ring-like distribution.

By examining the angular velocity and the geometry
of the exterior, Bardeen and Wagoner conjecture that in the
extreme relativistic limit the geometry of the exterior
becomes that of the extreme Kerr geometry (that i1is, a = ra) .
The angular velocity of the disk as measured Dby a stationary
observer at infinity approaches the angular wvelocity of the
outer horizon of the extreme Kerr geometry in this limit.
They also calculate the guadrupole moment as defined by the
asymptotic structure of their exterior geometry and find

that in this limit the ratio of the guadrupole moment to the



to the monopole moment is one as in the case of the extreme

Kerr geometry. One more fact supports their conjecture. At
y » 0.6 an ergotoroid forms near the rim and as y approaches
one it approaches the ergosphere of the extreme Kerr

ge ome try.

Although these results are suggestive that the
exterior geometry of a rotating disk approaches the extreme
Kerr geometry 1in the relativistic limit, there are some
problems. Bardeen and Wagoner admit that their technique
loses accuracy near the disk in this 1limit. They also note
that there are two distinct instabilities inherent in this
problem. The first i1s that thin disks are highly unstable
to fragmentation. Although a fully relativistic treatment
of this instability is not done, fragmentation instabilities
in the Newtonian regime will probably carry over due to the
fact that they ignore all structure perpendicular to the
disk Dby considering it to Dbe infinitesimally thin. The
second instability arises from the appearance of marginally
trapped surfaces in the extreme relativistic 1limit. As they
argue, any perturbation will lead to a genuinely trapped
surface and eventually to a singularity. These problems
lead to the conclusion that the limiting case of v
approaching one 1s not physically realizable.

1.13. Slowly Rotating Spheroids: The Model of Chandrasekhar
and Miller

Chandrasekhar and Milleréb have constructed slowly

rotating constant density models. Their approach is



different from either of the models discussed above.

1
Following a technique developed by Hartle and Thorne they
perturb away from a fully relativistic, static, spherically
symmetric solution of the field equations 1n an attempt to
understand the effects of slow rotation 1in the relativistic
regime.

Hartle and Thorne developed their technique to study
relativistic models of neutron stars. The algorithm is as
follows. They choose a realistic equation of state and then
numerically construct a fully relativistic, static .spheri-
cally symmetric, perfect fluid model. They then expand the
metric, the mass density, and the pressure 1in a power series
in the angular velocity to second order. The perturbation
from spherical symmetry arises from second order terms which
they assume contain gquadrupole—-like terms. The resulting
equations are solved numerically and they find that the
surface Dbecomes deformed due to the qgquadrupole perturbations
in the pres sure.

Chandrasekhar and Miller choose an incompressible
homogeneous fluid as opposed to the more realistic equations
of state of Hartle and Thorne for two reasons. The first
reason 1is that an analytic, static, spherically symmetric
solution of the field equations i1is known for this equation
of state. This is the well-known interior Schwarzschild
solution. The second and more important reason 1is that rel-
ativistic effects are more easily studied with such a model

since this model 1is more compact than the numerical neutron

10



star models of Hartle and Thorne. For incompressible homo-
geneous perfect fluids, stable configurations exist for
radii down to nine-eighths of the Schwarzschild radius. At
this point the pressure Dbecomes unbounded . This is a
special case of the results of Buchdahl 8 and Bondi
concerning limiting surface redshifts for more general
equations of state. Hartle and Thorne find that for their
equations of state stable models do not exist for radii less
than two and one-half times the Schwarzschild radius. Thus,
relativistic effects are better explored with less realistic

equations of state.

Based on their numerical calculations, Chandrasekhar

and Miller find the following results. In the relativistic
limit (i.e.,as R + 9/8 Rg ) the guadrupole moment becomes
very close to that given by the Kerr exterior. They also

find that an ergoregion seems to form in this relativistic
limit. From these results they speculate that the relati-
vistic 1limit of their model seems to be matched to a Kerr
exterior.

They also calculate the eccentricity of isobaric
surfaces and find that as R decreases the eccentricity
begins to diverge 1in the relativistic 1imit indicating the
relativistic 1limit will approach a disk-like configuration.
However at R = 2.4 R the eccentricity falls drastically.
From this evidence they guestion the existence of disk-1like

configurations within general relativity.

11



1.14. Some Purely Numerical Attempts

Bonnazzola and Schneiderl0 have numerically
integrated the field equations for a rigidly rotating
perfect fluid with a degenerate Fermi gas equation of
state. They conclude on the basis of their calculated
quadrupole moment that it may be possible to match their
model to a Kerr exterior. However, they find that the inner
isobaric surfaces are prolate rather than oblate as might be
expected from the work of Chandrasekhar and Miller who find
that these surfaces become spherical in the relativistic
limit of their model.

Butterworth and Ipserll,l2 argue that the method of
Bonnazzola and Schneider incorporates artificial
restrictions which preclude relativistic effects such as
the formation of ergoregions. This 1s done by discarding

solutions that may be associated with coordinate singular-

ities. They proceed to numerically integrate the field
equations and find some interesting results. They find that
ergoregions do form. They also find that sequences of
rigidly rotating homogeneous models of increasing
eccentricity terminate at a maximum eccentricity. Their

physical explanation is that at this point mass begins to
shed at the equator. This appears to be a somewhat
unexpected general relativistic result as Maclaurin
spheroids do not exhibit this behavior although post—-Newton-
ian corrections to the Maclaurin sequence do 1imply this
behavior. These results, like those of Chandrasekhar and
Miller, seem to preclude disk-like configurations.

12



1.2. A Different Approach

In the previous section I have reviewed some of the
previous attempts to understand rotating fluids 1n general
relativity 1n order to illuminate some of the difficulties
inherent to the problem of constructing fluid models. In
reviewing these attempts one also gains an appreciation for
the approximate and somewhat tenuous nature of the results.
With this in mind, the approach taken here will be quite
different. Rather than attempting to solve the field
equations either exactly or approximately for a particular
model, I will seek general restrictions on rotating fluids
arising from the full field equations.

In order to have some chance of succeeding in this
undertaking, I will restrict this study to stationary, axi-
symmetric, rigidly rotating perfect fluids. Roos has
shown that for rotating fluids with an analytic equation of
state solutions exist within the neighborhood of the
matching surface provided that the surface 1is tangent to
both the timelike and rotational Killing wvectors. Although
there 1is no guarantee that such solutions exist globally,
thesesolutions cannot be completely excluded by any known
local arguments.

There 1s an argument against the stationarity of
such solutions due to Friedman and Schutzl4,15 . They argue
that all rotating perfect fluids are dynamically unstable
due to the emission of gravitational radiation. The generic

instability they describe 1is motion to lower energy con-

13



figurations via Dbar-like perturbations. Purely Newtonian
stars are stable to such perturbations. However, they show
that within general relativity these Dbar 1like perturbations
give rise to gravitational radiation which further drives
these perturbations by carrying off angular momentum. This
is consistent with Chandrasekhar's investigationl6é of the
effects of gravitational radiation reaction on the seqgquence
of Maclaurin spheroids. He finds that the introduction of
this reaction force causes the Maclaurin sequence to branch
off onto the sequence of Dedekind ellipsoids which have
lower angular momentum. Although this instability does
indicate that a rotating star can not be described by a
globally stationary solution to the field equations, loose
estimates Dbased on Chandrasekhar's work indicate that the
time scale for the growth of these instabilities may be much
longer than the age of the universe for main sequence
stars. From this fact, it seems reasonable, although not
entirely correct, to model rotating stars as globally
stationary solutions of the field equations.

In chapter two I will define the basic mathematical
properties of the physical systems to which this study will
be restricted. After these definitions the field equations

will Dbe explored and found to demand that certain algebraic

and integral inequalities be satisfied. The physical
interpretation of these inequalities will also be
discussed. In chapter three these general results will Dbe
applied to an interior matched to a Kerr exterior. A

14



combination of the inequalities is found to give rise to a
very simple result: There exists for each Kerr exterior for
which a < ra only one possible extreme relativistic
configuration characterized by 1its angular velocity which 1is
identical to the angular velocity associated with the
horizon of the Kerr Dblack hole. In chapter four this result
and its dmplications will be discussed. Areas for future

extensions of this work will also be considered.

15



2.0. STATIONARY, AXISYMMETRIC PERFECT FLUIDS

2.1. Preliminary Definitions
In this section I will define a possible class of
rotating fluid solutions of the field equations. This
class consists of stationary, axisymmetric perfect fluids
undergoing rigid rotation. Although some of the results
presented here can be extended to the case of differential

rotation, only the case of rigid rotation will be considered

here.

The following conventions will be employed through-
out the remainder of this work. The physical spacetime will
be assumed to have the signature of (=,+,+,+). Small latin

indices will Dbe wused to label components of tensors on the
spacetime and will run from 0 to 3. Geometrized units where
G=c=1 will Dbe used.
2.11. Stationary, Axisymmetric Spacetimes

By stationary one normally means that the system
under study maintains the same Dbehavior at all time s. More
precisely, s tationarity implies the existence of a one
parameter group of transformations which maps earlier events
into later events. I shall adopt as the definition of
stationarity Carter's definition of pseudo—stationarity17: A

spacetime 1s pseudo-stationary 1if it 1s invariant under the

the action of a continuous one-—-parameter group of isometries
ra

which 1is generated by a Killing vector field, E , which is
0

timelike at least asymptotically. The demand of asymptotic

16



flatness, which 1is taken here to mean Newtonian behavior far

from the fluid, allows the normalization

fm C » -1 (2.1)
0 Om

at infinity.

The existence of this timelike Killing vector field
gives rise to a conserved gquantity, the total mass, m, which
can be wused to characterize the spacetime. This mass, as
defined Dby Komar18 ,  1s expressed in terms of an integral
over a closed two surface at infinity as

m = —-(1/8t)* V[a5bJds ) (2.2)
0 ab

where the square brackets denote the standard antisymmetriz-
ation of 1indices.

Axisymmetric normally implies that there is a
preferred curve called the axis of rotation which serves as
the center of rotations that 1leave the system unchanged. I
shall use the following as a definition: A spacetime is axi-
symmetric if it 1is invariant under a continuous one parame-

ter group of isometries which is generated by a Killing wvec-

tor field, £m, whose integral curves are diffeomorphic to

circles and which 1is globally defined to be spacelike except

on the axis of rotation where it wvanishes identically.

Here, the axis of rotation 1s a timelike two surface. The

condition that the integral curves of £m be diffeomorphic to
1

circles means that these integral curves defined by

dxa = 5a (2.3)
d o 1

17



must describe closed rotational orbits for the parameter
range, 0 <<(>< 21 to eliminate the possibility of pseudo-
rotations .

As in the case of stationary spacetimes, the
existence of this rotational Killing vector field gives
rise to a conserved gquantity, the angular momentum J, which

. . . . 18
characterizes the spacetime. Again following Komar ,  the

angular momentum of the spacetime is defined to be

J = (1/le6ir)” V[ atblds ) (2.4)
1 ab
where the integral is performed over a closed two-surface at
infinity.
From the above definition, it is clear that the

group of isometries generated by £m 1is isomorphic to the
1

ordinary one—-parameter rotation group. The group of

isometries generated by is disomorphic to R(1l), the group
0

of translations on the real line. When a spacetime is

stationary and axisymmetric the two Killing wvector fields
together generate a two-parameter abelian group formed as
the direct product R(1)XS0(2). Carter19 has shown that this
direct product structure implies that the two generators
commute.
2.12. Perfect Fluids

In general, fluids can Dbe qguite complicated due to
the vast number of microscopic interactions which are
incorporated 1in the macroscopic theory of fluids. Within
general relativity, all of these interactions, in principle,

must be included in the energy-momentum tensor. A vast

18



simplification arises by describing the energy-momentum
tensor of the fluid in macroscopic variables and ignoring
their microscopic origins. However, the energy-momentum
tensor of a real fluid with i1sotropic pressure and no elec-

tromagnetic charge is still quite complicated and is given

by20

™ — * - >N

Tab = u & 1})’ /+ (p—C%\rP b «21’1aab’ + g (aLle) . {?C‘S}
where the parenthesis indicate standard symmetrization of
indices, vy 1is the mass density, ©p 1s the pressure, t, and n

are the bulk and dynamic coefficients of wviscosity, u is

the four velocity field of the fluid, 9, aCi:D and PSLb are,

respectively, the expansion, the shear tensor and the
projection tensor of u3' and qa' is the heat flow wvector. The
heat flow vector can be expressed in terms of the
temperature field of the fluid , T, and the thermal

conductivity, <, Of the fluid as

where a is the acceleration of the flow and V is the
b b

covariant derivative of the spacetime.
It is obvious from the above definition that the

problem of solving FEinstein's equations,
Gab = 8n Tab , (2.7)
and the eqguations of motion,

7 Tab = 0 ) (2.8)
b
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including viscous effects and heat flows very quickly
becomes unmanageable. Since the intent here is to isolate
the effects of angular momentum, I shall restrict this study
to non-viscous fluids having no thermal conductivity, here-
after referred to as perfect fluids. With this definition,
the energy-momentum tensor for a perfect fluid becomes
Tab = (p + p) ua ub + p gab , (2.9)
where gab is the metric of the spacetime.
With this definition of a perfect fluid, the energy

conditions, egs. (1.1) and (1.2), reduce to

Ipl < p . (2.10)

This condition must Dbe imposed on the equation of state

which is taken here to mean a functional relation between vy

and p, p = p(p). An additional reguirement will also be
imposed on the equationof state: the pressure vanishes when
the mass density vanishes. This requirement allows the

matching surface to be defined as the surface on which the
pressure vanishes as is the normal procedure in Newtonian
stellar structure.

A restriction stronger than the energy condition,
eq. (2.10), will also be imposed on the fluid. The pressure
will always be assumed to be positive near the matching sur-
face. Although there are no a priori reasons to reject
negative pressure, it is highly unlikely that materials
exhibiting characteristics of negative pressure are stable
to gravitational collapse. Thus, it would be un-

reasonable to expect such systems to be stationary.
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2.13. Classes of Fluid Flows

Although fluid flows, in general, can be quite
complicated, they can be quite simply classified for
spacetimes which are stationary and axisymmetric. A fluid
flow is defined to be circular or purely rotational if the

four wvelocity field of the fluid is a linear combination of

the two independent Killing vector fields; i.e.,
ua = (-1 1/2 ( Ka+ n £fa) ) (2.11)
0 1

where the factor containing the V is defined as the redshift

factor and insures that

ua u = -1 L (2.12)

Because of the timelike character of u , f must be negative,
ft. in eg. (2.11) defines the angular velocity of the fluid.

Two distinct subclasses of circular flows are defined by the

behavior of ft. If ft is constant the fluid 1is said to be 1in
rigid rotation. If ft is not constant the fluid 1is said to
be 1in differential rotation. By convention, ft will always

be taken to be positive.

The second class of fluid flows is non-circular
flows. This motion is characterized by the property that
the wvelocity field of the fluid is orthogonal to the rota-

tional Killing vector field,

u = 0 . (2.13)

Two distinct subclasses of non-circular flows exist, con-

vective flows and what I shall call radial flows. The
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distinction between these two subclasses is that the
projection of the integral curves of the wvelocity onto
a purely spacelike Thyper surface 1is closed for convective
flows and is not «closed for radial flows. Radial flows
could be wused to model the gravitational collapse of a star
which has exhausted its nuclear fuel or, perhaps, the
explosive process of a star becoming a supernova.
Convective flows are defined in such a way that they model
the normal process of convection which occurs in main
sequence stars .

As the motivation of this study 1s to explore the
role that angular momentum plays in general relativistic
astrophysical systems, of all the classes of flows purely
rotational flows must be the most important. This 1is not to
say that a general relativistic treatment of convective
flows would not be of interest. It 1is simply beyond the
scope of this study. It should also be obvious that the use
of radial flows which are strictly stationary to model the
above-mentioned catastrophic stellar phenomena offers 1little
hope. For these reasons I shall restrict this study to
purely rotational flows as defined by edq. (2.11) . In
addition, only rigid rotations will be considered here due

to the added complexity which arises from differential

rotation.
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2.2. Reduction of the Field Eguations

Geroch21 has developed a formalism which allows the
field equations to be simplified 1in a covariant manner when
the spacetime admits twocommuting Killing vector fields.
His reduction is obtained by mapping the physical spacetime
M and the physical fields defined on M to the manifold of
trajectories of the Killing wvector fields, S. Each point in
S corresponds toa particular orbit of the Killing wvector
fields in M. Two points in M are mapped into the same point
in S if they can be connected by a curve in M whose tangent
is everywhere a linear combination of the two commuting
Killing wvector fields.

As 1t will be wused here, this mapping is isomorphic

to a projection of the physical spacetime M onto a

two-dimensional surface everywhere orthogonal to the two

Killing wvector fields. The existence of such a surface is
not guaranteed in general. Because Cm and £ commute, there
0 1
does exist a familyof two-surfaces which are everywhere
tangent to bm and ?m . These surfaces are known as surfaces
0 1
of transitivity. If the spacetime also possesses a family
of two-surfaces orthogonal to and the spacetime 1is
0 1
saidto Dbe orthogonally transitive. It can Dbe shown that

the conditions for a spacetime to be convection-free are
equivalent to the conditions that the spacetime be
orthogonally transitive. Thus, with the assumption of
circular flow the existence of the two-dimensional surface

described above 1is guaranteed.
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2.21. Reduction for Perfect Fluids
Hansen and Winicour 22 have applied the Geroch for-
malism to spacetimes which have a non-vanishing matter

distribution described by the energy-momentum tensor of a

perfect fluid. They begin with a spacetime M which admits
a pair of commuting Killing wvector fields, and ,  such
that they are everywheretimelike and spacelike
respectively.It 1is convenient to writethe pair . : as

fm, where A runs from 0 to 1 as will all other upper case
A

latin indices. These additional indices are not merely for
convenience but represent a hidden symmetry of the field
equations. Thishidden symmetry has been reviewed by
Kinnersley . The basis of this symmetry 1is that the field

equations are invariant under the action of a group of

transformations which replace and ?in by linear

0 1
combinations of themselves. This group of transformations
is isomorphic to S0(2,1) and manifests itself as a gauge

freedom in the way the Killing scalars, defined as

X = K ) (2.14a)
00 0 Om
(2.14Db)
01 0 1m
and
X = £n § (2.14c¢)
11 11m
transform under the action of the group. One finds that the
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triad defined as

X (A A ) (2.15)
U 00 01 11

transforms as a vector under the action of S3S0(2,1) with a

norm given Dby

GWUV XX =—22 (XX—=X2)
U v 00 11 01

) (2.106)

where GyV ,a constant scalar field on S, 1is the metric of

2
the S0(2,1) wvector space. The function x defined as

T2 = - GUV X X , (2.17)

is a positive scalar field on S .Hereafter, lower case
greek indices refer to the transformation properties of the

object with respect to S0(2,1) and range from one to three.

The metric, h , on S 1is given by
ab
h = g + 2 x'2 XMN ? ? ) (2.18)
ab ab Ma Nb

and 1s wused to project tensor fields defined on M onto S.

The indices of tensors on S run from Zero to three.

However, only the components orthognal to bm and are non-
0 1

zero (i.e., Dby choosing a coordinate system in which £m = 6m
0 0

and = dm the indices of the non-zero components of
1 3

tensors on S run from one to two). The alternating tensor

on S is given by

e - </2 T)-1 eMN { cm 5" | (2.19)
ab abmn M N
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where e is the alternating tensor of M and e is the
abmn MN

alternating symbol defined by the rules

eAM e (2.20a)
MB
< ® (2.20Db)
and
X (2.20c)
A

for any object x and which 1is used to raise and lower upper

case latin indices. is related to Gag in the following

way,

G = - e e ) (2.21)

where the index a 1is identified with the pair (AB) and B 1is
identified with the pair (CD).

The covariant derivative D on S of a tensor field
a

Qa***k defined on S 1is given by
c .d
b ¢ h P
D 0 S V On (2.22]
a d...e e m T S
where V is the covariant derivative on M. The Riemann
a
_a
tensor of S 1is defined by
bed
D D k = (1/2) [t m k , (2.23)
[a b] c abc m

where k is any vector fielId defined on S.
a

In general to proceed with the reduction one is



required to define two additional scalar fields on S given

by

c = (1/2) eMN emnpqg £ £ vV F . (2.24)
A Mm Nn p Ag

These two fields measure the circulation of the spacetime.
With the assumption of purely rotational flow, these fields
vanish. With this fact the procedure of projecting the

field equations onto S yields

Dm (T —1D X ) = T-3X (Dm  XV) (D X ) -2x~IR Fm . (2.25)
mpeEe P m~r mmnAB
(R. = (1/2)T-2 (D Xu) (D X ) + w~1D D T + h mh nR , (2.26)
ab a oo =2k &aAa ko mn
Dm(T h nR Fv ) =0 L (2.27)
m mp A
and
Dm [x( h nh P R - (1/2)n hnp R )]
a m np am np
= —(1/2)hmn R D T -x"1 XMN D (R ) , (2.28)
mn a a mn M N
where R is the Ricci tensor of M. These last two equations
mn

arise from the Bianchi identities.

Up to this point no particular source has been
chosen and egs. (2.24) through (2.28) describe a general
convection—-free spacetime with two commuting Killing vector

fields. The specific source can now be added through the

full field eguations on M,

R = 8m (T - (1/2)T g ) . (2.29)
mn mn mn

By defining s = (1,H) the wvelocity field, assumed to be

27



purely rotational takes the form

ua = (-4') 1/2 sM f£fa . (2.30)
M

In order to compactify the notation, it 1is useful to define

the S0O(2,1) wvector

- M N =
st = Mg (1,0,n2 . (2.31)
which 1s related to ! by
=80 X = x + 2 0 X +51 X (2.32)
U 00 01 11
due to the wunit norm of the wvelocity. With this notation

the field equations for a stationary, axisymme trie rigidly

rotating perfect fluid take the compact form

Dm[T—-1D X | = T-3 X (DaX ) (D X6
mu u f? a
+ 8TrT—-3[ (u+t3p)X + [(u+p)Tr2 4'-15 | | (2.33)
U u
0J- = (l/2)T_2(Dm X ) (D XU) + 8m (u+p) , (2.34)
U m
and
(U+p)¥~1 D &' = -2 D p . (2.35)
a a

Equations (2.33) and (2.34) are the projections of the field

equations onto S and determine the wvariables h and X
ab u
Equation (2.35) is the result of projecting the Bianchi
indentities and, therefore, is an integrability condition
imposed on the solutions of egs. (2.33) and (2.34) . A
solution of these equations specified by h , X ,u and p are
ab u

equivalent to a solution of the field equations specified by
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g , u ,u and p on the physical spacetime. This can be seen
ab

by using the coordinate freedom to choose Cm = (1,0,0,0) and
0
£ = (0,0,0,1) which cooresponds to a coordinate system in

which the coordinates xO and x3 parameterize the integral

curves of the timelike and rotational Killing wvector fields

respectively. This choice determines the metric of the
physical spacetime, g , in terms of h and X via egs.

ab ab v
(2.17) and (2.18). The velocity field wa is determined by
the Killing wvector fields and X* via egs. (2.30) and (2.32) .

2.22. Extension to the Manifold of Trajectories with
Bound ary

A problem arises due to the fact that the rotational
Killing wvector vanishes on the axis of rotation. At these
points in M the mapping from M to S becomes singular leaving
S topologically equivalent to a half-plane which 1is without
boundary on the left side. Hansen and Winicour22f24 have
extended the manifold of trajectories, S, to the manifold of
trajectories with boundary, S, by imposing regularity
conditions on the points on the axis of rotation.

The following conditions are imposed to guarantee

the regularity of the points on the axis:

= X ==nralDbX=—=0 , (2.36a)
01 11 m a
a = nm D T > 0 , (2.36b)
m
and
b = nmmD (np DX ) >0 , (2.36c)
m P 11

where nm 1is the unit normal to the axis and a and b are
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smooth functions along the axis. The wvanishing of T, X

or

and X follows from the fact that vanishes on the axis.
11 |

The wvanishing of the normal derivative of X is dimposed to

a

prevent discontinuities in its derivative 1in M which would

give rise to singularities in M. Eqg. (2.36b) sets the sign
T in S, as the definition of r, eq. (2.17), allows T to be
either positive or negative. Eqg. (2.36c¢C) precludes the

possibility of conical singularities forming on the axis.
With the above regularity conditions the
compactification of S is performed by adding the points on
the axis, yielding the manifold of trajectories with
boundary S . Hereafter, references to the manifold of

trajectories will mean S and the tildes will be dropped.

2.3. Generalizations of Two Newtonian Results
In this section fully relativistic generalizations

of Von Zeipel's theorem and the Newtonian virial theorem

will be exhibited. The first generalization can be stated
as: The surfaces of constant density, the isobaric surfaces
and the surfaces of constant redshift coincide. Boyer25
first recognized that the conservation of energy and
momentum eq. (2.35) implies that the isobaric surfaces and
the surfaces of constant redshift must coincide. Since the
redshift between two stationary observers, one on the

surface and one at infinity can be expressed as

z = (=f)_1/2 - 1 . (2.37)
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surfaces of constant f are surfaces of constant redshift.
These surfaces must coincide with isobaric surfaces since
the gradients of p and * are antiparallel. By writing eq.

(2.35) as

D (In'F) + 2(u+p) 1D p = 0
m m

) (2.38)

and then taking the curl of this equation,

fanm D [D (Inf) + 2 (u+p)-1D p] = 0 , (2.39)
n m m

one finds that

famn (D u)(D p) = 0
m n

) (2.40)

which 1implies that the gradients of u and p are parallel.
Thus, it follows that the isobaric surfaces and the surfaces
of constant density must coincide.

The surfaces of constant redshift become the "level"
surfaces of Newtonian theory. These are surfaces where the
difference between the gravitational potential energy and
the kinetic energy is a constant, which can be seen Dby
examining the Newtonian 1limit of f = const . In this 1limit
the timelike and rotational Killing vector fields become
3/3t and 3/3® respectively, where t 1s the Newtonian time

and ¢ is the azimuthal angle of a circular cylindrical

coordinate system. In coordinates (t,p,$,z) the components
of the Killing vector fields are = dm and = om . This
0 0 . =

implies that in the Newtonian 1limit

X = g > -1 - W, , (2.42a)

X =g _ > 0 . (2.42p)
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% -g +  p2 ~ (2.42¢c)

11 22
where ( is the Newtonian gravitational potential and p 1is
the distance from the axis in the Newtonian limit. Thus, in
the Newtonian limit V = constant becomes
b+ (I /2)t2 p2 = const , (2.43)
and Von Zeipel's theorem is recovered exactly: Level

surfaces coincide with the isobaric surfaces.

The conservation of energy and momentum, eqg. (2.35),
can be used to produce other results. Taking the inner
m
product of this equation with n , the outward directed

normal to an isobaric surface, vyields

nm D f = =27 (y+p)~lnm D p . (2.44)
m m

If the isobaric surface 1is chosen to be the matching surface

where the pressure vanishes, one finds that

nm D t < 0 , (2.45)
m

due to the fact that T is negative to 1insure the timelike

flow of the fluid, vy and p are positive and the gradient of

p must be directed inward.

Given an equation of state, y = vy(p), one can
integrate eg. (2.44) inward from the matching surface. This
yieIds

P W
T = 'F exp[-2 { (y+p) dp] , (2.406)

0 0

where 'FO is the guantity which determines the redshift of

the matching surface. This equation allows T to be chosen
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as one of the interior parameters. Normally the central
density or the central ©pressure 1s used to parameterize
either Newtonian or relativistic stellar models; however,
neither of these qguantities will be known without detailed
knowledge of the interior. Since 'fo is related to the
central density via eq. (2.46) and the equation of state it
will be used to parameterize the interior together with the
angular velocity ft.

A second relativistic generalization of a Newtonian
result which can be found 1is the wvirial theorem. This
theorem follows from the definition of the total mass and
the angular momentum of the spacetime, egs. (2.2) and (2.4) .
These integrals can be expressed in terms of volume

integrals involving the energy-momentum tensor by using the

Gauss theorem and the field equations. The results are
n - 2/ fa | T b - (1/2) 6 b T ]dS , (2.47)
0 a a b
and
J = / fa T b ds (2.48)
1 & b

where the integration 1is performed over the interior and dS

is chosen such that

ds = 0 . (2.49)
1 a

Equations (2.48) and (2.49) can be written in terms of the

Killing scalars as
m = - 2 / [y + 3p - 2t (ytp)'!" *q] ds . (2.50)

0 a
and

Jg =/ [ly+tplV E3 ds L (2.51 )

0 a
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where n is a linear combination of the Killing scalars

defined by the S0(2,1) wvector Na = (0,1,ft) as

n = Na X = X + ft X . (2.52)
a 01 11

By combining egs. (2.50) and (2.51) one finds that

m = 2ft] + F(u+3p)fa dS . (2.53)
0 a
. 26 .
As shown by Abramowicz, Lasota and Muchotrzeb ) in the

Newtonian 1limit this becomes

E -f 2 E + 3 / pdv = 0 , (2.54)
grav rot I

where E is the Newtonian gravitational energy, E is
grav rot

the Newtonian rotational energy and the pressure integral 1is
performed over the volume of the fluid TI.

It should Dbe noted that with the assumptions of pos-
itive pressure and matter density eqg. (2.53) imposes the
following condition on m, J and it

m > 21ftd . (2.55)
This restriction, hereafter referred to as the virial
theorem, is the first explicit restriction involving only

the parameters needed to describe the system.

2.4. The Algebraic Inequalities of Hansen and Winicour

. 22 24
Hansen and Winicour 9 have wused the structure

of the field equations coupled to Dboundary conditions to
prove certain inequalities, among which 1is the positivity of

the angular momentum density. In examining the integrand of
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eq. (2.51) it 1is seen that the sign of the angular momentum
density 1s determined Dby the sign of n. This 1is Dbecause T

is negative and the quantity u+p is positive.

In this and later calculations, the following
combination of the field equations, eq. (2.33), will prove
useful:

A[YBV]IDm[T 1Xv DmXY| = 87T (u+p)T 11 ‘1IAI[YBV] . (2.56)
When AY and B are constants this becomes
Dm[x~182 D (a/B)] = Sir(ut+p) Tl 'P 1 Ay BV] S X , (2.57)
m y v
where a = AY X and 8 = BY X . The choice of AY = NY and
Y Y Y
Bl = Sl yields
Dm [T 1 'P2 D (n/'F)] =0 . (2.58)
m

This equation is a well behaved elliptical differential
equation for n/" in any open region not containing points at
which either " or x wvanish. According to a theorem due to
Hopf27 n/'P will either be a constant or have no extrema in
such a region If a region can be found such that on its
boundary n/'P 1is bounded above (below) by zero and unbound ed
below (above) then n/'P will Dbe negative (positive) in the
entire region: If, in addition, ¥V has a particular sign 1in
this region then the sign of n will be established.

Hansen and Winicour begin by proving the wvelocity of
light curve, defined as the locus of points where '
vanishes, has a single connected component which divides S
into two regions where ? < 0 and ¥ > 0. By taking the
derivative of eq. (2.10) normal to the axis twice and

evaluating the results on the axis one finds that the axis
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regularity conditions imply

b XQ0 = -a2 . (2.59)
Since a and b are positive this dimplies that \ must be
negative on the axis. Since X and are equal on the axis
00

it follows that the wvelocity of 1light curve cannot 1ntersect
the axis.

Because of the causal requirements the wvelocity of
light curve also cannot intersect the fluid. Suppose there

exists a region D in S that i1is bounded by a closed curve on

which T wvanishes. Because this region D cannot 1intersect
the fluid, eqg. (2.57) with the choice AY= S”and B V= (0,0,1)
become s
Dm[T 1 X 2 D (T/X )] = 0 . (2.60)
11m 11

The Hopf theorem applied to this equation would require that
y/Xii wvanish identically in D. This behavior leads Hansen
and Winicour to conclude that the curve y = (0 cannot bound

a region of S and that the wvelocity of 1light curve must

extend to infinity. By asymptotic flatness, one finds that

y » -1 + (1/2)n2p2 . (2.61)
far from the fluid. Since p > 0 there can only be a single
velocity of 1light curve asymptotically. Because of this and
the fact that no region can be bounded Dby the curve y = 0

the wvelocity of 1light curve must have a single connected
component which divides S into two regions, y > 0 and y < 0.

The Hopf theorem can now be applied to eg. (2.58) in
a region Dbounded by the axis and the wvelocity of 1light

curve. Since the wvelocity of 1light curve cannot intersect
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the axis and n wvanishes there, n/'P must also wvanish on the
axis. Since P = 0 on the wvelocity of 1light curve, the
identity

n2 = (1/2)x2 + Xii Vv (2.62)

implies that n must have a single sign on the wvelocity of
light curve. By asymptotic flatness n must be positive far
from the fluid and, thus, must be positive everywhere on the
velocity of 1light curve. This dimplies that n/'P + as the
velocity of light curve 1is approached from the interior.
Since the Hopf theorem states that n/P cannot have extrema
in this region, n/'P must be negative which demands that

n > 0 (2.63)
inside the wvelocity of light curve with the equality holding
only on the axis. This argument can be extended to the
region outside of the velocity of 1light curve where ¥ > 0.
On the boundary of this region which is bounded by the
velocity of 1light curve and some curve far from the fluid,
one finds that n/'P is positive and by the Hopf theorem must
be positive everywhere in this region.

Hansen and Winicour have generated other inequal-

ities 1involving Killing scalars. The quantity v, defined by
by wvector Ra = (1,ft,0) as

v = Ra X = Xoo + ft Xoi , (2.64)
is everywhere negative. Within the wvelocity of 1light curve

this c¢claim follows immediately from the n inequality and
causality requirements as seen by writing v as

v =" - ft n . (2.65)

37



For the region outside of the wvelocity of 1light curve the

Hopf theorem can be applied to the following equation,

DmI[T-1 y2 D (v/'0] = 0 , (2.606)

in
which is obtained from edq. (2.57) by the choice of Aa = Ra
and Ba = S* By eq. (2.65) v 1is negative on the velocity

of light curve and asymptotically

v -1 - 2 0 , (2.67)
where ( 1is the Newtonian gravitational potential which 1is
much less than wunity. Application of the Hopf theorem in

the region outside the velocity curve of 1light demands that

v be negative in this region.

2.5. Integral Inequalities of Rigidly Rotating Perfect
Fluids
In this section two classes of inequalities

involving integrals performed over the projection of the
matching surface onto S will be derived. The usefulness of
these inequalities is that they can be applied to the
matching problem yvielding inequalities involving the
interior and exterior parameters which restrict the possible
solutions even when there is no detailed knowledge of the
interior.

One class of 1integral inequalities arises from eq.
(2.57) . By multiplying this equation by an as of vyet
arbitrary function of a/3andintegrating over a region V

bounded by the curve x = £, e Dbeing a small ©positive
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constant, and the projection of the matching surface <f£ as

shown in figure one, one finds that

f f£f(a/6) Dm[T—! 2 D (a/S)] dv
Y m

= 8m / (p+p) f (a/sS) T 1 Afw BvV] av . (2.68)

Application of the Gauss theorem to the integral on the 1left

yield s

r f(a/S) T-1S2Dm(a/8) dl = f-.f'u/S) T"162Dm(a/6)D (a/S)dv
TG m Y m

+ 8m /Vf(a/sS) (u+p)T_1'f 1A BV’ av (2.69)

where C is the boundary of V described above, dl1” 1is the
dual of the displacement dxra along C and £~ is the ordinary
derivative of f with respect to its argument a/S.

The purpose of the above calculation is as follows.
In examining the right side of eq. (2.69) it 1s seen that
the sign of f / determines the sign of the first integral on
the right. This 1is Dbecause the norm of is positive
definite and T 1is intrinsically positive. An inequality

A

will result if AV and B are Jjudiciously chosen such that

the second integral on the right 1is positive (negative)
while choosing f to be a monotonically increasing
(decreasing) function of a/S so that the first integral on
the right 1is also positive (negative) . If this can be done

then the sign of the integral performed over the boundary of
V will be fixed.

For this inequality to be useful when there is no
detailed knowledge of the interior, the contribution to the

integral from the curve T = e must wvanish in the 1limit as e
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approaches zZero (that 1is, when this curve approaches the

axis) . If the axis contribution can be made to wvanish for

particular choices of ,BV and f then the integral on the

left will reduce to an 1integral over the projection of the

matching surface onto S,<b. The resulting integral can then

be performed with only knowledge of the exterior.

One class of integral inequalities arises from the

choice of and BV = SV . For this choice eq. (2.69)

becomes

/ f(n/'P) T-1 Y2 Dm(n/'0Odl =

C m
/ fl(n/'0 T"I 2 Dm(n/'OD (n/'O av . (2.70)
\ m
In this case the axis contribution can be made to wvanish
because of the Dbehavior of n and f near the axis. The axis
regularity conditions imply that as the curve X = e

approaches the axis 'f approaches some finite wvalue while n
2

approaches zero as x . Since D 3% is parallel to dl 3 on the
curve x = e the axis contributionwill wvanish provided f£
vanishes on the axis. The following choice of f,

f(n/ f) = (—n/'Oq (2.71)
such that g > 0, satisfies this condition since the axis

regularity conditions demand that n wvanish on the axis.

This choice then yields the inequality
I q —1 2 A
/ (—n/0O X f D (n/0O dl < 0 . (2.72)
& m

This class of inequalities can be extended to include the
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limiting case where g vanishes. This can be seen by writing
eq. (2.70) with g = 0 as
2 ni -1 2 m

JS T v D (n/l) di = f T y 9 (n/T) D T dl ;o (2.73)

(£ T =¢ 3T m
and noting that the axis regularity conditions imply that
the partial derivative of n/'P is negative. Thus, the
restriction that g be strictly positive <can be relaxed to
the condition that q be non—-negative. One member of this
class, the choice of g = 1, has Dbeen derived previously by

. 26
Abramowicz, Lasota and Muchotrzeb .

Although one might expect many c¢lasses of integral

U
inequalities to be derived for wvarious choices of A ,BV and
f, only one other class of 1integral inequalities has been
derived from eq. (2.69) . Following the same arguments as
above one finds that the choice of AM = N* and BV = RV and
f(a/s) = (-a/8)”, where q > 0, yields

q -1 2 M
/" (-n/v) T v D (n/v) dl < 0 . (2.74)

<8 m
This class 1s very closely related to the above class and 1is
strictly equivalent in the 1limit as g approaches =zero. This
can be seen by writing T as v 4+ Q n in eq. (2.72) and
expressing the grad lent of n/?P in terms of the gradient of
n/v. In applying these integral inequalities to Kerr
exteriors, the n/'P inequalities will impose the strongest
restrictions as will be seen in the next chapter.

Although the analysis of the integral inequalities

may not be complete, there seems to be no systematic way of
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choosing A” , BV and f to yield the strongest inequality.

No further inequalities arising from eq. (2.69) have Dbeen
found. To 1llustrate the difficulties 1in constructing more
integral inequalities, consider the choice = (0,1,0) and
BV = g8V . For this choice eqg. (2.69) becomes

/ £(A01/'P) T—I Din (X01/'p) dl

C m

/ fl=01/'0 T-1 f2 Dm(X01l/'0 D (X~/f) dv
\Y% m

-sir / £(Xr)1/'P) (p+p) x 1| Jldv . (2.75)
s

The axis contribution can be made to wvanish by choosing f to

vanish when its argument vanishes. To establish an

inequality f and f * are required to have opposite signs.

This 1is because Xor 0 which can be proven by means of
the Hopf theorem arguments . This cannot happen since £ (0)
= 0. One could establish the inequality
I £(X01/'0 T-1 'P2 Dm(XO01l/'F) dl < 0 (2.76)
C m
by choosing f to Dbe positive and £/ to Dbe negative. A

simple function satisfying this condition is

f(Xoi/'F) = ¢ - (XoJ/'o v (2.77)
where ¢ 1s a constant chosen such that
c > max (Xoi/'!") . (2.78)
where max (Xoi/f) 1is the maximum wvalue of *gol/"
interior. The axis regularity conditions imply that the

axis contribution is positive and, therefore,
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/ £(X /") T Y D (X /Y) dl < 0 o (2.79)

(B> m

for the above choice of f. To explore this inequality

detailed information about the interior, namely ¢, must be

known. If the maximum of XOI/Y occurs on B then ¢ could be
calculated from knowledge of the exterior only. However,
the Hopf theorem applied to eqg. (2.57) with the choice of

= (0,1,0) and BV = SV precludes minima from occurring in

the 1interior but does allow the possibility that maxima
could exist. Thus, not even the Hopf theorem can save this
inequality.

One additional class of 1integral i1inequalities can be
generated from the field equations. Contracting Xa into

eq . (2.33) vyields

Dm D T = l61Tpr . (2.80)
m

Following an analogous procedure to that described above

one finds that

/ £(r) DmT dl > 0 (2.81 )
© m

if f is a positive, monotonically increasing function of T
such that in the 1limit as T approaches zero it wvanishes.

In the Newtonian 1limit, Dboth the inequalities, egs.
(2.72) and (2.81), are automatically satisfied. Utilizing
the Newtonian limit of T,

T * /T p . (2.82)

where p 1s the distance from the axis, one finds that eq.
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(2.80) becomes

/ f(p) ~ + dn =O , (2.83)
d> P

where eP is a unit vector directed away from the axis and dn
is the outward directed normal to the infinitesimal

displacement d? alongCB . For spheroidal configurations the

inner product ©°f £ and 4n will be positive and the in-

P
equality will be satisfied. Using this Newtonian limit as
a guide, the physical content of eq. (2.81) is that the
distance from the axis. as measured by x, must dincrease, on

the average, as one moves from the pole to the equator.
The Newtonian limit of eq. (2.72) can be found by

noting that in this 1imit

2 2

Doete—] 2> + p il , (2.84a)
2
n o+ ftp , (2.84Db)
m -1

D q » - 2ft a , (2.84c¢)

c

and ,

D'"P=2 (g—a ) L (2.84d)

c

where "ac 1is the centripetal acceleration and "g is the

Newtonian gravitational field. With these identifications
the Newtonian limit of eq. (2.72) Dbecomes
| . 2 2
/ p  f(-ri/f) [ft p g - (L+2<[))? ] -dl? > 0 . (2.85)
<> c

where dl? is the normal to the displacement dx along <B.

Since both a and g are directed inward it is the "g term
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which may cause a violation of the inequality. The relation
between the two terms can be further explored by examining
the pressure condition, eq. (2.45), which in the Newtonian

limit Dbecomes

*gon - "ac 1T < 0 , (2.80)

Thus, 1f g 1s replaced by *a, one expects the worst case.

With this replacement edq. (2.85) becomes

/ P f(-n/'0 [1 + Xp - J22p2] ~a -dn < 0 . (2.87)
o

The 1integral 1inequality 1is satisfied in the Newtonian limit
since 'ac*i? <O , n p << 1 and ¢ << 1 . The physical
content of this limit 1is that averaged over the surface the
difference between twice the gravitational potential energy
and the rotational energy must be 1less than the rest energy.
Since the inequality is automatically satisfied in this
limit it is difficult to arrive at a physical interpretation
of the 1inequality without exploring the fully relativistic
version. This will be done in the next chapter for a Kerr

exterior .
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3.0. APPLICATIONS TO KERR INTERIORS

In this chapter the restrictions derived 1in chapter
two will be applied to interiors matched to the Kerr
solution as the exterior. The choice of the Kerr exterior
is somewhat arbitrary as the results of the preceding
chapter hold for any stationary, axisymmetric exterior which
is asymptotically flat. The wuse of the Kerr solution to
model the gravitational field of an astrophysical object can
be qguestioned. Hernande228 has shown that 1in the Newtonian
limit the Kerr solution has the very special multipole
structure

q = (-1) m J , (3.1)
2n

th
where g2n the 2n coefficient of the Legendre series for

the Newtonian potential, m 1is the mass and J 1is the angular
momentum. Because of this very special relationship between
the multipole moments and the angular momentum, it is

unlikely that the Kerr solution describes any realistic

9-30
astrophysical system . The larger Tomimatsu-Sato family
. 31 . , . .
of solutions , which are stationary, axisymmetric and
asymptotically flat, have a more general multipole
structure. However, the Kerr solution, which is a member of

this family, gives the simplest physical insight into the
restrictions derived in the preceding chapter. Additional
motivation for using a Kerr exterior 1is provided by the

investigations reviewed in chapter one which indicate that
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the Kerr exterior may be obtained in the extreme

limit.

3.1. The Kerr Solution

This two parameter solution of the wvacuum field

32

equations, discovered in 1963 by Kerr , 1s characterized by
the parameters m and a. In Boyer-Lindguist coordinates the
Kerr metric takes the form
2 =2—-1= 2 == 2 2 2
ds = p (A dr + d9 ) + (r + a )sin 9 4do - dt
-1 2 2
+ 2 mrp (a sin 9 do - dt) , (3.2a)
whe re
2 2 2 2
pPertacos 9 , (3.2b)
and
2 2
A=—1r—22mxr-+a .(3.2c)
As seen from this form the Kerr solution reduces to the
SchwarzschiId solution when a wvanishes. By comparison with

the linear theory one finds that m represents the total mass
of the system anda represents the angular momentum of the

system per unit mass.

From egs. (3.2) it 1s seen that this form of the
metric becomes singular when either A or p vanishes. P
vanishes only in the equatorial plane (i.e.,when 9 = 1n/2)
when r = 0. This 1s a true singularity 1in the spacetime as

the curvature scalar diverges when p 1s zero.
At first glance one might believe that this 1is a

point singularity. However, it is actually a ring. This
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can be seen by transforming to Cartesian-1like spatial

coordinates (x,y,z) defined by
x + 1y = (r + 1a) exp(iit>) , (3.3a)
and
z = r cosl . (3.3b)

In these coordinates the metric takes on the Kerr-Schild

Form?>?
2 2 2 2 2
ds = dx + dy + dz - dt
2mr r (xdx-ydy) - a(xdy-ydx) + zdz + (3.4)
r %a=3~ r2 + a2 r
From egs. (3.3) one finds that r is determined by solving

the quartic

4 2 2 2 == 22
rr—(=x+ v+ =—a) r—a ==—=0 . (3.5)

Inspection of this equation shows that in the equatorial
plane the vanishing of r correspondsto a disk where
2 2 2 .
Xty <a . In these coordinates the curvature scalar?
. . 2 2 2
diverges only on the boundary of the disk where x +y =a

The Kerr solution can be extended to negative wvalues
of r. By didentifying the top of the r=0 disk in the region
of the spacetime where r 1is positive with the bottom of the
r = 0 disk in the region of the spacetime where r is
negative and doing likewise with the top of the disk in the
negative T region with the bottom of the disk in the
positive r region one finds two distinct regions connected
by a "wormhole" formed by the disk. This "wormhole" does
introduce problems with causal requirements. One finds that

the rotational Killing vector fielId Dbecomes timelike for
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negative wvalues of r near the singularity giving rise to
acausal closed timelike curves 1in the spacetime. Carter

has shown that for the case a > m these closed timelike
curves can be deformed to pass through any point in the

extended spacetime.

The vanishing of A does not result in a true
singularity of the spacetime but a coordinate singularity
associated with the Boyer-Lindguist coordinates. When the

radial coordinate takes the wvalue

r+ = m + / m2 - a? , (3.6)

A vanishes. These two surfaces are null two surfaces and
are the event horizons of the Kerr solution. Note that for
the case a > m there are no real solutions of A = 0 ; and,
thus, there are no event horizons. This behavior leads to a
naked singularity for this case.

For the case a < m there 1is yet more structure. On the

surface defined by

r(9) = m + v m2 - al2cos20 , (3.7)

the timelike Killing vector becomes null. This surface 1is
timelike everywhere except at the poles where it coincides
with the outer horizon. The physical interpretation of this
surface is that no observer inside this surface can remain
stationary as viewed by an observer in an asymptotic
Lorentz frame. The reason for this 1is that the wvelocity of
a static observer 1s proportional to the tiraelike Killing
vector. This surface 1is known as the static 1limit and the

region between the static 1imit and the outer horizon 1is

49



known as the ergosphere due to the fact that negative energy
states exist in this region. These negative energy states

allow processes which c¢can drain the rotational energy from

the Kerr black hole35.

3.2. The Matching Surface
In this section the matching surface will be
investigated. As 1n Newtonian theory the matching surface

will be defined to be the surface where the pressure

vanishes. By the relativistic wversion of Von Zeipel's

theorem the matching surface is also a surface of constant

redshift. This allows the matching surface to take on an

explicit form.

In Boyer-Lindguist coordinates the Killing wvector

fields are £m = (1,0,0,0) and = (0,0,0,1) which implies
1 + 2mr/p?2
XOO 00 , (3.8a)
2 2
XQI = gQ3= ~ 2mra sin 9/p ., (3.8b)
and
2 2 2 2 4 2
X 3= g™ = (r + a )sin 9 4+ 2mra sin 9/p , (3.8c)
where p 1is defined as above. With these explicit forms

25 . . .
Boyer demonstrated that the generalization of Von Zeipel's

theorem becomes

2 2 2 2 2 2 2
- 1 4+ ft (r + a )sin 9 + 2mr(l-aftsin 9) /p = T ) (3.9)

where f is the redshift factor of the matching surface.
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Solutions of this equation for a given Kerr exterior

parameterized by m and a and a particular interior

parameterized by f and 0 give the allowable boundaries of
o

the fluid. In the calculations it 1is convenient to replace

f by K defined as
0

i
+

(3.10)

Note that in order for the fluid elements on the surface to
follow a timelike trajectory

K < 1 .(3.11)

It 1is also convenient to view the equation for the matching

surface as a quartic equation in r parameterized Dby m, a, K

and SI,
P(r,0;m,a,K,n) =0 , (3.12)
where
42> 222> 2
P = r 8 sin 9 + r [a S sin 9(1l+4+cos 9) - K]
2 2 2 2 2 2 2
+ 2mr(l-aS5 sin 0) + a cos 9 (a S sin 9 - K) . (3.13)
Although no closed-form solution in the form
r = 1r(0) is known, useful information can be obtained by
investigating special cases of eq. (3.12) . On the axis the

surface equation reduces to a quadratic in r with solutions

Rt = (m/K) * /~(m/K)2 - a2 . (3.14)
The quartic also has a positive root r Il associated with
the degeneracy sin9 -1 0. The condition that the pressure
increase inward, eq. (2.45), is onlysatisfied for R+,

A  necessary condition that the boundary have spherical

topology is that solutions exist at the poles which demands
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K < m/a . (3.15)

This will be refered to as the Boyer polar condition.

At the equator eq. (3.12) reduces to the cubic
equation
3 2 2 2 2 2
rfi + r(aft—K) + 2m(l-afl) = 0 , (3.106)
and a root at r = 0. The positive solutions of this cubic
are
R = 2 K cos [ (a+2 irk) / 3] o (3.17)
k 3 a ft
where k = 0 or 2 and
2 2 2 3/2
cos a = -mft(l-aft) [3/ (K-a ft )] ) (3.18)
such that a is chosen to be in the third quadrant. For
to be real cos a must be less than or equal to one, which

implies that
2 2 2/3 4/3
K ~ a n + 3(mft) (1-aft) . (3.19)
This inequality will be refered to as the Boyer equatorial
condition. The pressure condition is satisfied only for
k = 0.

The pressure condition implies that if any boundary

with spherical topology exists it must pass through Rg. at

the pole and Rgo at the equator. Thus, eqgs. (3.15) and
(3.19) represent necessary conditions for the existence of a
spheriodal boundary. The question of whether these

conditions represent sufficient conditions for the existence

of a continuous spheroidal Dboundary at intermediate wvalues

of 9 has not been resolved. The work of deFelice', Nobili
and Calvani and my own extensive numerical studies seem to
imply that Boyer conditions do represent sufficient
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conditions. Attempts were made to solve the qguartic by
means of the qguartic algorithm . However, the application
to the quartic became so complicated that it was abandoned.

The numerical examples which numbered in the tens of

thousands showed the following behavior when the Boyer
conditions were satisfied. The positive solutions of
eq. (3.12) define three non-intersecting surfaces: one which
connects R- at the pole to r = 0 at the equator, one which

connects R+ at the pole to Rg at the equator, and one which
tends to infinity at the pole connecting to R2 at the
equator. An attempt was made to prove the existence of
these surfaces by applying Sturm’s theorem which would show
that eg. (3.12) has three non-degenerate, positive roots at
all intermediate polar angles. As in the case of the
attempt to solve the quartic, the analysis became extremely
complex and was finally abandoned after the results were
established for some limited ranges of the parameters.
While the ©possibility that additional inequalities could
arise from further attempts, the numerical studies imply
that the Boyer conditions are sufficient conditions for the
existence of boundaries with spherical topology.

As demonstrated by deFelice', Nobili and Calvani36
the condition that the pressure increase as one moves inward
into the fluid from the matching surface 1is also consistent
with spheroidal configurations which have an internal cavity
defined by the surface connecting R_ at the pole to r = 0 at

the equator. In addition, if the Boyer polar condition is
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violated when a > m then toroidal configurations appear
defined by a surface connecting r = 0 on the equator to Ro
on the equator. As a 1is 1increased from a value less than m
to a value greater than m the spheroidal configurations with
cavity transform smoothly into the toroidal configurations.
Any physical interpretation of these two classes of
configurations lacks credibility as the ring singularity at
r = 0 appears on the inner surface. Because of this fact
and the multiple connectedness associated with the disk at
this point only spheroidal configurations without the

internal cavity will be considered here.

3.3. Application of the Algebraic Inequalities

The algebraic inequalities derived in Chapter Two
will now be applied to the matching surface. The wvirial
theorem offers no restrictions that are not already
contained in the combination of the timelike flow condition,
eq. (3.11), and the Boyer equatorial condition. The maximum
angular velocity allowed by these two conditions is a

solution of the sixth order equation

2 23 2 4
(1-a n ) = 27 (mfl) (l-afi) . (3.20)

Application of Sturm's theorem on the interval allowed by
the wvirial theorem (0,1/2a) shows that there 1is always one
root in this interval when a <  m. Thus, the Boyer
equatorial condition 1is stronger than the wvirial theorem.

The same 1s true for a > m when the timelike flow condition
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is replaced by the Boyer polar condition. In the case where
a = m both the Boyer equatorial condition and the wvirial
theorem imply that afi < 1/2

As was stated 1in section 2.4. the v inequality is
satisfied within the wvelocity of 1light curve whenever the n
inequality is satisfied. / Thus, it is sufficient to
invesitgate the restrictions arising from the n inequality.
Due to the lack of a closed-form solution for the matching
surface it seems that the n inequality can not be applied to
an arbitrary point on the surface. However, a closed-form
inequality among the parameters which is a necessary and
sufficient condition for the n inequality to be satisfied
everywhere on the matching surface does exist.

A necessary condition can be found by examining the
behavior of n near the pole. The axis regularity conditions
imply that both n and the first in-surface derivative must
vanish on the axis and, therefore, also at the pole. If n
is to Dbe positive near the axis then the second in-surface
derivative must be non—-negative. The necessary condition
found in this manner will also be a sufficient condition for
n to be non-negative everywhere on the matching surface if n
increases monotonically as one moves from the pole to the
equator. The fact that n does increase monotonically is
seen by calculating the partial derivative of g with respect
to sin 9 and evaluating the result on the matching surface
by means of egs. (3.12) and (3.13). After some manipulation

the calculation yields

55



-4

an n sin 9

3(sin 9) (l-ansin?29)

224 2 2
-{(1-K) (K-a ft sin 9)+[ (K—=1l)aftsin 9+nsin 9(l-a ft sin 9)]

2aftr ;o (3.21)
P' (1l-a2ft2sinl+9)

where P' 1is the partial derivative of P with respect to r.
Inspection of the right side of this equation shows that it
is positive due to the timelike condition on K, the wvirial
theorem, the Boyer equatorial condition and the fact that the
pressure condition eqg. (2.45) requires P! to be negative.
Thus, n 1s a monotonically increasing function as one moves
from the pole to the equator. The condition that the second

in-surface derivative Dbe non-negative 1is equivalent to

3 n I (3.22)
> 0
9(sin 9)
at the pole. By calculating this gquantity and substituting

the polar radius written in terms of the parameters into the

result one find s

2mft | m 4/ m a |\ 1 1 o (3.23)
ak” ITK \ K2 / ]

as a necessary and sufficient condition for n to be
non—-negative everywhere on the matching surface. It should
be noted that this condition is not sufficient to guarantee
that n > 0 globally. The local nature of this result is
also Indicated Dby the fact that the condition that the
pressure be positive 1is required only in the neighborhood of

the matching surface. In fact, this inequality may Dbe
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satisfied for configuartions containing interior
which not only 1s the pressure negative but the
energy condition, eq. (2.10), may be violated.

3.4. Application of the

The analysis of the
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came from the choice of g = 0 as shown 1in figure two.
Although not shown in this figure for the sake of clarity,
many choices of q were used vyielding the result that as g 1is
smoothly increased the range of allowed parameters also
smoothly increases.

The fact that the choice q = 0 yields the strongest
restrictions is a quite fortunate result as the field
equations will allow this integral to be performed
analytically. To see this, note that this inequality 1is
based wupon the following combination of the field equations:

D [T Y D (n/Y)] = 0 . (3.24)
m
If this equation 1is integrated over A, any closed region of

S, and the Gauss theorem 1is utilized one finds that

| -12 m
/ X Y D (n/Y) dl = 0 , (3.25)
3JA m
where 3A is the boundary of A. If this region A 1is chosen
to be the region Dbounded by (B , the projection of the

matching surface on S, portions of the axis and a curve at

constant r far from the fluid as shown in figure three then

—12 m , — A =20
/ T Y D (b/Y) dl = / T Y D (n/Y) dl
or m A' m
. — 1 Zz2®
-+ /7 YyD(n/¥Y)dl , (3.26)
R m

where 4 denotes the integration along the axis from the pole

R+ to some large wvalue of rr = R, and R denotes the

integration along the curve r = R from the north pole to the
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south pole. With this choice of A both the integrals on the

right of eq. (3.26) can Dbe performed analytically with the
results
-1 2 m
/x ¥V D (n/f) dl
Ar m
3/2 -1 -1
= 2 {n(R-R+) + mal[ (R2+a?2) - (R2+a?2) 11} . (3.27)
and
! -1 2 m
/T f D (n/'?) dl
R m
3/2
= -2 fi[R - m(3-2a )| + (3.28)
-1 2 m

Since the divergenceless character of T f D (n/f) allows
the boundary of A to be freely deformed with no change in
the wvalue of the 1integral in eq. (3.25) R can approach

infinity vyielding

-1 2 m 3/2 2 >2-1
/ x YD (n/'0dl = 2 [mfi(3-2afi)-fiR+-ma (R++a ) | . (3.29)
© m
Thus, the integral inequality eq. (2.72) becomes
4maR+ft2 + 2R+ (R+-3m)n + akK > 0 . (3.30)

This is the strongest known restriction arising from any

known integral inequality. Like the n inequality, eq.
(3.23), this restriction does not require the positive
energy condition eq. (2.10) to hold. Thus, eq. (3.30) may

be satisfied for configurations containing interior regions
in which either the pressure 1is negative or eqg. (2.10) is

violated .
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This technique of deforming ID to a curve consisting
of portions of the axis and a semicircle of infinite radius
can also Dbe applied to the x integral due to the fact that
in the exterior x 1s harmonic. When f 1is chosen to be a
constant the x 1inequality becomes

R+ 2 .m . (3.31)
Simple manipulations with egs. (3.14) and (3.15) show that
this inequality i1s weaker than the Boyer polar condition.
Thus, the x inequalities are automatically satisfied for

spheroidal configurations.

3.5. Overall Restrictions on Kerr Interiors
The strongest restrictions on rigidly rotating,

perfect fluid Kerr interiors come from a combination of the

Boyer conditions egs. (3.15) and (3.19), the n inequality of
Hansen and Winicour eq. (3.23), and the h/'f integral
inequality eq. (3.30) . Three distinct behaviors which

depend on the value of the ratio a/m are evident.

When a < m the interior parameters are restricted to a

triangular region in the (ft,K) plane as seen 1in figures 4

through 12. In these figures the boundaries of the region

of allowed parameters are the n 1inequality which connects

the origin to the top vertex of the triangle at K = 1, the

integral inequality which connects the top vertex to the

vertex at the right, and the Boyer equatorial condition

which connects the right vertex to the origin. As a

approaches m the relative importance of the integral
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inequality diminishes. In the limiting case where a = m,
shown in figure 13, the integral inequality poses no
restrictions on the 1interior parameters. On these graphs
configurations above the dolled line have ergotoroids
emerging from the fluid. Their existence 1s consistent
with the findings of Butterworth and Ipser 11112 It should
be noted that for all <cases where a < m ergotoroids do
appear; however, the regions for a << m are too small to
indicate on the figures.

The prominent feature of these cases is the

intersection of the n inequality and the integral inequality

at K = 1. As K approaches one the matching surface becomes
null and , therefore, represents the extreme relativistic
limit. In this 1imit the n inequality becomes
ft ~ (a/2m) [m + (m2—-a2)l 2] 1 . (3.32)
. . . . ) 39
The right side 1is the angular velocity of the Kerr horizon
ft . Thus, the n inequality becomes
H
> ft . (3.33)
H

Performing the same 1imit on the integral inequality vyields

< ft . (3.34)

H
For the case where a = m the Boyer equatorial condition also
implies eqg. (3.34) . Thus, combining the n inequality and
the integral inequality (or the Boyer for a = m) yields a
very simple result: For each Kerr exterior such that a m,
there exists only one possible extreme relativistic
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configuration characterized entirely by its angular velocity
which 1is equal to the angular velocity of the Kerr horizon.
The conclusion drawn from this result is that the matching
surface must approach the Kerr horizon in the extreme
relativistic limit.

Another feature of the restrictions for cases where
a < m 1is the formation of a step-like Dbehavior of the
integral 1inequality in the 1limit as a 0 (i.e.,as the
exterior approaches the Schwarzschild solution) which can be
seen 1in figures 4 through 7. Although no restrictions are
placed on non-rotating configurations (H = 0) due to the
existence of the intersection of the n 1inequality and the
integral inequality at K = 1, there 1is a limiting wvalue of K

for rotating configurations. As a approaches zero the

integral inequality viewed as a guadratic in R+ Dbecomes

R+ > 3m r (3.35)
which implies

K < 2/3 (3.36)
as demonstrated in the figures. The 1dmplications of the

behavior of the restrictions in this static limit of a
spherically symmetric fluid with a Schwarzschild exterior

will be discussed 1in the next chapter.

When a > m the integral inequality poses no
restrictions on the 1interior parameters. The restrictions
arise from the n inequality and the Boyer conditions. For

cases where m < a ~ 5.23094 m only the n inequality and the

Boyer equatorial condition restrict the interior parameters
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as seen in figures 14 through 16. In these figures the
upper curve 1is the n 1inequality and the lower curve 1is the
Boyer equatorial condition. At a a 5.23094 m the Boyer
polar condition begins to playa role in restricting the

interior ©parameters as seen 1in figure 17.In this figure

the dotted 1line represents the Boyer polar condition. As
seen in figures 18through 21 the allowed parameters are
restricted to a triangular region in the (ft,K) plane with

the Dboundaries defined by the n inequality at the 1left, the
Boyer polar condition at the top and the Boyer equatorial
condition at the right. One should note that the scales of
the axes on figures 18 through 21 are decreasing as a
becomes much greater than m. This shows that only nearly
Newtonian (K << 1) and slowly rotating << 1) spheroidal

configurations are allowed 1in this 1limit.
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4.0. Concluding Remarks

4.1. Existence vs. Stability

As demonstrated 1in the last chapter, the strongest
restrictions do not rule out rotating fluid configurations
with arbitrarily high redshift. This is a somewhat
surprising result when one considers that the stability
arguments Buchdahl 8 and Bondi ? imply that z < 2 for
non—-rotating configurations. To understand this apparent
dichotomy the behavior of the integral 1inequality in the
static limit of a spherically symmetric fluid with a
Schwarzschild exterior will Dbe derived and compared to the
slowly rotating models discussed in chapter one. This

comparison will show that the restrictions of chapter three

are not as strong as those based on stability criteria.

The static limit is equivalent to considering
perturbations to a spherically symmetric fluid with a
Schwarzschild exterior. In this 1imit, to first order in a
and fi, the surface is spherical as eq. (3.13) becomes
K = 2m/R, where R represents the value of the Schwarzschild
coordinate r at the matching surface. In terms of R the n
inequality, eqg. (3.23), reduces to

R3fl > 2ma (4.1)
and the integral inequality, eqg. (3.30), reduces to
R2(R-3m)ft + ma > 0 . (4.2)

Although the n inequality implies that slowly rotating

(£2<<1) configurations have 1little angular momentum (a<<l),
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it does not exclude rotating configurations with zero

angular momentum. Such configurations would not appear
possible without negative density or pressure regions.
However, as noted 1in chapter three, positive density and

pressure are not globally required for the inequalities to

hold.

The physical content of egs. (4.1) and (4.2) can be

found by introducing the moments of inertia of the fluid and

the spacetime. The moment of 1nertia of the fluid can be
) 2
written as I = amR where a represents the matter
distribution which can wvary from a mass point (a=0) to a
thin shell of radius R (ct=1). The moment of 1inertia of a
. . . 00

nearly static spacetime (J<<1) as defined by Hartle is

3J

I = . (4.3)

3Q ©=0
This allows J to be written as J = Ift. By using the Kerr
relationship, J = ma, and equating the two moments of

inertia the Kerr parameter a may be written as

a = otHR2 . (4.4)

This allows the inequalities to be written entirely in terms

of the unperturbed static Dbackground gquantities m and R.

Substitution of eq. (4.4) into the inequalities shows that
the n inequality is automatically satisfied and eq. (4.2)
becomes R ¢ (3 - ot)m, which implies that

K < 2/(3 - a) : (4.5)

Thus, in the static 1limit there exists a finite upper bound
to the redshift of rotating models which depends on the

matter distribution as represented by a. In the thin shell
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limit (a » 1) the red shift becomes unbounded as expected
from the models of Brill and Cohenl 454 of De La Cruz and

Israel?2,.

The slowly rotating incompressible fluid models of
Chandrasekhar and Miller6 provide a much more realistic case
with which to explore the restriction. They found that a
ranges from the Newtonian wvalue of 2/5 to an upper limit of
approximately 4/5. This wupper 1limit to a occurs when the
unperturbed fluid sphere has the minimum radius, 9m/4,

allowed by the stability requirement that the pressure

increase inwardly . This lower 1limit for R 1s a special
0 i9

case of the results of Buchdahl and Bondijd. For this

minimum radius K = 8/9 whereas the integral inequality eq.

(4.5) with a = 4/5 vyields an upper limit of 10/11. Thus,

there are configurations allowed by the integral inequality
(in the range 8/9 < K < 10/11) which contain a region or
regions 1in which the pressure must increase outward . This
shows that in the static limit the restrictions Dbased upon

stability must be stronger than those based upon existence.

The limit coming directly from the integral
inequality K = 2/3 corresponds to the case where a = 0 for
which the moment of inertia wvanishes. In this case it 1is

clear that some negative density or pressure region must
exist to preclude the formation of a horizon. Since the
condition that the density and pressure be positive 1is a
sufficient but not a necessary condition for wvalidity of the

inequalities such behavior is not excluded. Again, the
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conclusion is that restrictions based upon stability must be

stronger than those based upon existence.

4.2.Future Trips into the Unknown which Lead Us Dback to
Reality

In this concluding section further explorations will
be discussed. Of all of these, the guestion of stability
must stand out. Although it seems that stability
regquirements must further restrict the allowed interiors,
the central issue is to what degree will they pose
additional restrictions. The static limit implies that the
restrictions due to existence are only slightly weaker than
those due to stability. Could it Dbe that the Bondi-Buchdahl
z = 2 1limit dimposed on non-rotating fluids 1is misleading in
the rotating case? If so, the redshift controversy40’41 of
extragalactic astronomy could once again be revived.
However, there 1is no known generalization of the z = 2 1limit
for rotating fluids.

Further investigations are also suggested Dby the
assumptions upon which the restrictions are based.
One key limitation 1is the fact that only rigid rotations
were considered. Generalizations to differential rotation
for some of the algebraic inequalities have Dbeen found
However, these results have not yet been proven for finite
sources. The major difficulty in extending the Hopf theorem
arguments to the case of differential rotation is that there
is apparently no natural way of defining outside the
fluid. As it appears unlikely that astrophysical objects
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rotate rigidly, the question of the effects of differential
rotation merit further study.

Another limitation arises from the assumption that
only the relatively simple model of uncharged perfect fluids

42043 have made initial

was considered. Bekenstein and Oron
investigations into the question of utilizing rigidly
rotating but charged fluids as a model for neutron stars.
Although no restrictions were imposed by their work, their
generalization of Von Zeipel's theorem implies that the
surface can unambiguously be defined by an equation similar
to the uncharged case Dbut having an additional pressure
term, B /Sir, due to the magnetic pressure. As their model

represents the known physics of neutron stars very well, an

attempt to match this type of interior to an appropriate

exteriorsuch as the Kerr—-Newman solution 44 or the
Esposito-Witten family of solutions would be very
interesting. However, the generalizations of the global

algebraic inequalities and the integral inequalities might
be very difficult to generate due to the fact that the
magnetic field introduces circulation, as measured by the
fields ¢ defined in eq. (2.24), to the spacetime. This
addition destroys the orthogonal transitivity of the
spacetime and the purely elliptical nature of the field
equations. This consideration brings us to an 1mportant
question. How does circulation 1in a spacetime which can be
generated either by a magnetic field or by simple convection

effect the restrictions? The added complexity of the field
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equations clouds this issue but it merits further
cons id eration

As with most scientific endeavors this work leads to
more gquestions than it answers. However, it 1is my hope that
this wvery small step forward may provide motivation for
further investigations which will give us a better
understanding of the beauty that is ours to see on a clear

night.
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Figure Captions.

Figure One. The Region of Integration V. It 1is bounded by
by 0& , the projection of the physical matching surface onto
S, and the curve x = e (dashed 1line).

Figure Two. The Integral Inequalities in the Limit as
q 0. The curves labeled ra through re represent the
integral inequality eq. (2.72) for choice of g ranging from
zero to one. The strongest restriction comes from the curve
ra which corresponds to the choice g = 0.

Figure Three. The Region of Integration A. It 1is bounded
by (£> ,  the projection of the physical matching surface
onto S, , portions of the axis extending from the poles
to some large value, R, of the radial coordinate and the
curve r = R.

Figure Four. Restrictions for a/m = 10-5. Only wvalues of
the parameters within the triangular region of the (mn, K)
plane are allowed. In this case the step-like Dbehavior of
the 1integral 1inequality has become guite evident. The n

inequality rises nearly vertically from the origin to

intersect the integral inequality at K = 1 forming a very
thin peak. The Boyer equatorial condition begins at the
origin and intersects the integral inequality at (raft,K) =

(0.104757,0.666667 ) .

4
Figure Five. Restrictions for a/m = 10~ . Although not

apparent, the n inequality rises nearly vertically to meet
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the integral inequality at K = 1 near Q@ = 0. The Boyer

equatorial condition (lower curve) intersects the integral
inequality at (mf2,K) = (0.104765,0.666695 ).
Figure Six. Restrictions for a/m = 10_3 . Although not

apparent the n 1inequality rises nearly vertically to meet
the 1integral inequality at K = 1 near ft = 0. The Boyer

equatorial condition intersects the 1integral inequality at

(mft, K] = (0.104845,0.666949) .

Figure Seven. Restrictions  for a/ra = 10:2 . The n
inequality (on the left) has now Dbecome apparent. The
integral inequality and the Boyer equatorial condition
intersect at (mft,K) = (0.105647,0.669498).

Figure Eight. Restrictions for a/m = 0.1. The wvalues of nft

and K are restricted to the area bounded on the left by the
n inequality and the integral inequality (top right) and the
Boyer equatorial condition (bottom right) which intersect at

(mft,K) = (0.114251,0.695754).

Figure Nine. Restrictions for a/m = 0.3. The wvalues of the
parameters are restricted to the area bounded on the 1left by
the n inequality and the integral inequality (upper right)
and the Boyer equatorial condition (lower right) which
intersect at (mft, K) = (0.138062,0.759145) . For parameters

above the dashed 1line an ergoregion exists at the equator.

Figure Ten. Restrictions for a/m = 0.5. The wvalues of the

parameters are restricted to the area bounded on the 1left by
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the n inequality and the integral inequality (upper right)
and the Boyer equatorial condition (lower right) which
intersect at (mft,K) = (0.171489,0.829032) . For parameters

above the dashed 1line an ergoregion exists at the equator.

Figure Eleven. Restrictions for a/m = 0.7. The wvalues of
the parameters are restricted to an area bounded on the 1left
by the n 1inequality and the integral inequality (upper
right) and the Boyer equatorial condition (lower right)
which intersect at (mn,K) = (0.222366,0.902967) . For para-
meters above the dashed 1line an ergoregion exists at the
equator. Note that the importance of the integral

inequality 1is diminishing.

Figure Twelve. Restrictions for a/ra = 0.9. The wvalues of

the parameters are restricted to an area bound on the left

by the n inequality and the integral inequality (upper
right) and the Boyer equatorial condition (lower <right)
which intersect at (mO, K) = 0.317761,0.973308) . For para-

meters above the dashed 1line an ergoregion exists at the
equator. Note that the importance of the integral

inequality 1is diminishing rapidly as a/m increases.

Figure Thirteen. Restrictions for a/m = 1. In this 1limit
the integral inequality imposes no restrictions. The
restrictions come from the n 1inequality (upper curve) and

the Boyer equatorial condition (lower curve) which intersect
at (mft,K) = (0.5,1.0) . Again for parameters above the

dashed 1line an ergoregion exists at the equator.
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Figure Fourteen. Restrictions for a/ra = 1.01. The only
restrictions come from the n inequality (upper curve) and
the Boyer equatorial condition (lower curve) which intersect
at (mft,K) = (0.333349,0.947707 ). For cases where a > m no

ergoregions form.

Figure Fifteen. Restrictions for a/m = 1.5. The only
restrictions come from the n inequality (upper cuvre) and
the Boyer equatorial condition (lower curve) which intersect
at (raft,K) = (0.134374,0.623607) .

Figure Sixteen. Restrictions for a/m = 3.0 The only
restrictions come from the n inequality (upper curve) and

the Boyer equatorial condition (lower curve) which intersect

at (mil,K) = (0.440216x10_1,0.327098).

Figure Seventeen. Restrictions for a/m = 5.23094. The

restrictions for this case come from the n inequality (upper

solid curve) and the Boyer equatorial condition (lower solid
curve) which intersect at (mQ, K) = (0. 18273x10"1,0.19117 ) .
However, at this wvalue of a/m the Boyer polarcondition

(dashed cuvre) begins to restrict the parameter range.

Figure Eighteen. Restrictions for a/m = 8. Restrictions
come from the n inequality (at left), the Boyer equatorial
condition (at right) and the Boyer ©polar condition (at
top) . The n inequality and the Boyer polar condition
intersect at (mS1,K) = (0.781211x10%“2,0.125) . The two Boyer
conditions intersect at (mfi,K) = (0.92748x10~2,0.125).
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Figure Nineteen. Restrictions for a/m = 10. Restrictions

come from the g inequality (at left) and the two Boyer
conditions. The Boyer polar condition 1intersects the n
inequality at (mO, K) = (O.5xlO_}%(Lj), The two Boyer
conditions intersect at (mJl,K) = (0.652505x10 —=2,0.1).

Figure Twenty. Restrictions for a/m = 10z Restrictions
come from the n i1inequality (at left) and the two Boyer
conditions. The Boyer polar condition intersects the n
inequality at (mQ, K) = (0.5x10 \i()—2)' The two Boyer
conditions intersect at = (0.189298x10"3,10%™2). The

importance of the n inequality 1is diminishing as a/m becomes

larger .

Figure Twenty-one. Restrictions for a/m = 103. At this
large value of a/m the restrictions demand that the
configuration take on a slowly rotating (.Q0<<1l) and a nearly
Newtonian (K<<1) form. In this Newtonian regime the effect

of the n inequality begins to be negligible.
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