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ABSTRACT

A set of inequalities which apply to the surface of 
rigidly rotating, perfect fluids with asymptotically flat 
exteriors is derived. This set consists of both algebraic 
inequalities and inequalities which involve integrals per­
formed over the surface of the fluid. The physical content 
of these inequalities is investigated by examining the 
restrictions they impose on the existence of rotating fluid 
models with Kerr interiors. For this case, the dominant set 
of inequalities is found and expressed in an analytic form.
These restrictions impose a finite maximum redshift between 
observers on the surface and at infinity for all models 
with the Kerr parameter a > m. However, for all models with 
0 < a/m 1, there is a unique configuration for which the 
redshift is unbounded. In the static limit, a 0, a finite 
maximum redshift depending on the matter distribution of the 
static background is found. This result is compared to sta­
bility requirements for non-rotating fluids. The implications 
of this comparison and areas for future extensions are discussed.



RESTRICTIONS ON RELATIVISTICALLY ROTATING FLUIDS

By Jack R. Schendel 

1.0. INTRODUCTION

The motivation for studying rotating fluids in gen­

eral relativity is two-fold. General relativity, as any 

o'ther physical theory, must withstand the correspondence 

with observations of nature. In the case of general relat­

ivity a major testing ground comes from astronomical 

observations of massive objects such as compact stars and 

a variety of the more massive galactic nuclei. Although the 

physics of these objects is quite complicated and not well 

understood, we may gain useful insight into the 

gravitational interactions that take place within these 

objects by considering them as se1f-gravitating fluids as 

was done within the context of Newtonian gravitational 

theory by such researchers as Maclaurin, Jacobi, Poincare 

and others.

The second point of motivation arises from the 

first. It appears that most astrophysical objects rotate 

and as a consequence possess angular momentum. As in Newto­

nian theory, one must expect angular momentum to play a key 

role in applications of general relativity to astrophysical 

systems. These expectations are heightened when one con­

siders the purely general relativistic effects such as frame 

dragging and magnetic-1ike interactions which occur in 

general relativity when the system possesses angular momen­

tum. With this in mind, any information connecting the
1



behavior of material sources with the gravitational field 

through angular momentum could itself prove valuable in 

understanding angular momentum as a source of the gravita­

tional field .

With this as motivation I now state the general 

mathematical requirements . I will consider two spacetime 

manifolds (M+,g+) and (M-,g-) which are partially bounded by 

a timelike hypersurface, E. On E (M+,g+) and (M“,g-) must 

be isometric. Hereafter, (M+,g+), (M-,g“) and E will be

refered to as the exterior, the interior and the matching 

surface, respectively.

In order to simulate an isolated astrophysical sys­

tem the following requirements must also be imposed on the 

interior and the exterior. First, the exterior must have a 

vanishing energy-momentum tensor and be asymptotically flat 

in the standard sense. In addition, the matter distribution

of the interior as defined by the energy-momentum tensor 
must obey

T VaVb > 0 , (1.1)
a b —

and

(T , Vb ) (TaCV ) < 0 , (1.2)
a b c —

for any tiraelike vector, V , defined on the interior mani­

fold. The physical intepretation of eq. (1.1) is that the 

local matter density as measured by any observer be non­

negative. Equation (1.2) requires that the local matter 

current as measured by any observer have a timelike flow.

2



1.1. Earlier Attempts

It is a very difficult problem to match rotating, 

physically acceptable interiors to asymptotically flat 

exteriors. In this section I will review some of the 

earlier attempts in order to illuminate some of the diffi­

culties inherent in this problem.

1.11. Rotating Shells

One of the earliest attempts to find a solution to 
this matching problem came from Brill and Cohen1, who de­

rived an approximate solution for a slowly rotating spheri­

cal shell by considering linear perturbations of the static

case. They found to first order in the angular velocity 

that (a) the shell is spherical and of uniform density, (b) 

the shell is in rigid rotation and (c) the spacetime 

interior is flat and all inertial frames are dragged around 

rigidly with the shell as the shell approaches the 

Schwarzschild horizon.

De La Cruz and Israel attempted to extend these

results to higher order. Their technique was to assume that

the exterior was the Kerr solution and the interior metric

could be cast in the canonical form for an axisymmetric,
3stationary vacuum spacetime first given by Lewis ,

ds2 = e2(v~X) (d p2+ dz2) + p2e_2Xd<}>2 - e2 X (d t-'f'd <J> ) 2 , (1.3)

where v, X and ¥ are functions of p and z. In this form the 

field equations reduce to

= p ( X2 - X2) -(l/4)p-1e2X (4*2 - f2) , (1.4a)
P p z p z

3



V z
2 p X X -(l/2)p1e4X’F T 

p z p z , (1.4b)

X
pp

+ p lX + \ = -(l/2)p 2 e4 X ('I' 2+ V 2) , (1.4c)
p zz p z

and

PP
, ( 1 •4d )

P z z

where the subscripts denote partial differentiation. They 

then demand that

(1.5)

and choose a particular matching surface of the parametric 

form

P s= f(e) z E= g(0 ) (1.6)

Equation (1.5) fixes the functions v, X and V on E. Since 

eqs. (1.4c) and ( 1.4d) form a well behaved set of elliptical 

partial differential equations, they arrive at a well- 

defined elliptical boundary value problem. Once f and X 

are known v can be found via quadrature of eqs. (1.4a) and 

(1.4b). However, since solving eqs. (1.4c) and ( 1 . 4d ) is, 

at best, very difficult they resort to a perturbation 

technique. They proceed by expanding the Kerr solution in a 

power series in a/R. R is the radial coordinate of the 

unperturbed shell and a is the Kerr angular momentum 

parameter. With this expansion the non-linear right sides 

of eqs. (1.4c) and ( 1.4d ) are assumed known from the 

previous order of approximation. Thus, at each order in the 

approximation eqs. (1.4c) and (1.4d) become a set of linear 

inhomogeneous elliptical partial differential equations 

which can be solved by standard methods.

4



They then deduce the physical properties of the 

shell by calculating the surface stress-energy tensor which 

is given by
-1

S =(8tt) (g Y - Y ) ,(1.7)
ab ab ab

where Ya^ is defined in terms of the interior and exterior

extrinsic curvatures K+, and K-, asab ab

’'ab ‘ Klb - Klb • (1-8)

and Y is the trace of Ya^. The proper surface density and 

and the velocity ua of the surface are then defined by

Sa^ua=ou^ ,(1.9)

where u u = -1. The angular velocity of the shell as3.

measured by a stationary observer at infinity is then given 

by
a) = Y ^ /(“Yt, + Yt - Y ^ , ) • (1.10)

t <p t <?

De La Cruz and Israel carried out this procedure to 

third order in the Kerr parameter and found that, to first 

order, the results of Cohen and Brill were reproduced 

exactly. However, in the third order of the approximation 

these results break down. They showed that in no case could 

the shell be uniform and simultaneously be in rigid 

rotation. They did find that the interior inertial frames 

were dragged with the shell as the matching surface ap­

proached the outer Kerr horizon. However, the credibility 

of the interpretation of the model in this limit is somewhat 

strained by the fact that the surface stresses become 

infinite in this limit. Because of these results and the

5



complicated nature of higher orders they conclude that a 

rotating shell does not appear to be the natural source of 

the Kerr solution.

1.12. Rotating Disks: The Model of Bardeen and Wagoner

Bardeen and Wagoner4,5 have constructed and explored 

a sequence of rotating disk models. They assume that the 

matter is a perfect fluid in rigid rotation and confined to 

a disk perpendicular to the axis of rotation. In order to 

simplify the field equations they ignore the pressure and, 

in particular, its effects on the structure perpendicular to 

the disk. In doing so, the interior matter distribution 

takes on the form of boundary conditions imposed on the 

exterior .

They begin by choosing two parameters necessary to 

specify their model. Instead of the mass and angular

momentum, they choose the coordinate radius of the disk,

which sets the basic scale of the mod e 1 , and a parameter y

which is related to the integral o f the equation of

hydrostatic support such that

y = zc/(zc + 1) , (1.11)

where z is the redshift at the center of the disk. The c
parameter y varies from zero in the Newtonian limit to one 

in the extreme relativistic limit. They proceed by

expanding a variant of the canonical axisymmetric, station­

ary metric eq. (1.3) and the resulting field equations 

equivalent to eqs. (1.4) in a power series in y. As in the 

case of De La Cruz and Israel, Bardeen and Wagoner's

6



versions of eqs. (1.4) become inhomogeneous but linear 

partial differential equations with the inhomogeneous terms 

being known from lower orders of the approximation. Further 

simplification arises when it is noted that in oblate 

spheroidal coordinates their versions of eqs. (1.4c) and 

(1.4d ) are separable yielding ordinary differential 

equations at each order of the approximation. Once these 

equations are solved at a particular order, then their 

version of v can be found via quadrature of eqs. (1.4a) and 

(1.4b).

Boundary conditions at the disk are imposed in the 

form of self-consistency requirements on the surface density 

which is defined in a manner analogous to that of De La Cruz 

and Israel. They require that the equation of hydrostatic 

support be satisfied parallel to the disk and that the 

surface density be positive and also finite at the rim of 

the disk. In addition, they demand asymptotic flatness.

The equations are then solved analytically through 

the post-Newtonian order. Beyond this order the equations 

are integrated numerically using the analytic results 

through the second order in y as starting points. The 

numerical calculations are carried out independently by 

both Bardeen and Wagoner through fifth order. Bardeen 

continues the calculation through tenth order where he 

estimates the accuracy to be better than one per cent, even 

in the extreme relativistic limit. These estimates are 

based on analytic asymptotic relations between the functions 

'F and X and the mass and angular momentum.

7



This method of calculation yields a sequence of

equilibrium models. The physical interpretation of this 

sequence is that a disk of fixed rest mass (as defined by 

the surface density) loses angular momentum, contracts and 

becomes more relativistic as y approaches one. In this 

sequence the angular momentum monotonica11y decreases to a 

finite value in the extreme relativistic limit. They also 

note that the binding energy, defined as the difference 

between the rest mass and the gravitational mass, is 

positive and increases monotonically with y indicating that 

these models become more stable to gravitational collapse as 

they become increasingly relativistic. For y _< 1/2 the 

maximum surface density occurs at the center and decreases 

to zero at the rim. For y 1/2 the maximum of the density 

occurs away from the center. In the relativistic limit the 

mass tends to be concentrated near the rim in a somewhat 

ring-like distribution.

By examining the angular velocity and the geometry 

of the exterior, Bardeen and Wagoner conjecture that in the 

extreme relativistic limit the geometry of the exterior 

becomes that of the extreme Kerr geometry (that is, a = ra) . 

The angular velocity of the disk as measured by a stationary 

observer at infinity approaches the angular velocity of the 

outer horizon of the extreme Kerr geometry in this limit. 

They also calculate the quadrupole moment as defined by the 

asymptotic structure of their exterior geometry and find 

that in this limit the ratio of the quadrupole moment to the

8



to the monopole moment is one as in the case of the extreme

Kerr geometry. One more fact supports their conjecture. At 

y => 0.6 an ergotoroid forms near the rim and as y approaches 

one it approaches the ergosphere of the extreme Kerr 

ge ome try.

Although these results are suggestive that the 

exterior geometry of a rotating disk approaches the extreme 

Kerr geometry in the relativistic limit, there are some 

problems. Bardeen and Wagoner admit that their technique 

loses accuracy near the disk in this limit. They also note 

that there are two distinct instabilities inherent in this 

problem. The first is that thin disks are highly unstable 

to fragmentation. Although a fully relativistic treatment 

of this instability is not done, fragmentation instabilities 

in the Newtonian regime will probably carry over due to the 

fact that they ignore all structure perpendicular to the 

disk by considering it to be infinitesimally thin. The 

second instability arises from the appearance of marginally 

trapped surfaces in the extreme relativistic limit. As they 

argue, any perturbation will lead to a genuinely trapped 

surface and eventually to a singularity. These problems 

lead to the conclusion that the limiting case of y 

approaching one is not physically realizable.

1.13. Slowly Rotating Spheroids: The Model of Chandrasekhar 

and Miller

Chandrasekhar and Miller6 have constructed slowly 

rotating constant density models. Their approach is

9



different from either of the models discussed above.
7Following a technique developed by Hartle and Thorne they 

perturb away from a fully relativistic, static, spherically 

symmetric solution of the field equations in an attempt to 

understand the effects of slow rotation in the relativistic 

regime.

Hartle and Thorne developed their technique to study 

relativistic models of neutron stars. The algorithm is as 

follows. They choose a realistic equation of state and then 

numerically construct a fully relativistic, static .spheri­

cally symmetric, perfect fluid model. They then expand the 

metric, the mass density, and the pressure in a power series 

in the angular velocity to second order. The perturbation 

from spherical symmetry arises from second order terms which 

they assume contain quadrupole-like terms. The resulting 

equations are solved numerically and they find that the 

surface becomes deformed due to the quadrupole perturbations 

in the pres sure.

Chandrasekhar and Miller choose an incompressible 

homogeneous fluid as opposed to the more realistic equations 

of state of Hartle and Thorne for two reasons. The first 

reason is that an analytic, static, spherically symmetric 

solution of the field equations is known for this equation 

of state. This is the well-known interior Schwarzschild 

solution. The second and more important reason is that rel­

ativistic effects are more easily studied with such a model 

since this model is more compact than the numerical neutron

10



star models of Hartle and Thorne. For incompressible homo­

geneous perfect fluids, stable configurations exist for 

radii down to nine-eighths of the Schwarzschild radius. At

this point the pressure becomes unbounded . This is a
8 9special case of the results of Buchdahl and Bondi 

concerning limiting surface redshifts for more general 

equations of state. Hartle and Thorne find that for their 

equations of state stable models do not exist for radii less 

than two and one-half times the Schwarzschild radius. Thus, 

relativistic effects are better explored with less realistic 

equations of state.

Based on their numerical calculations, Chandrasekhar 

and Miller find the following results. In the relativistic 

limit (i.e.,as R + 9/8 Rg ) the quadrupole moment becomes 

very close to that given by the Kerr exterior. They also 

find that an ergoregion seems to form in this relativistic 

limit. From these results they speculate that the relati­

vistic limit of their model seems to be matched to a Kerr 

exterior.

They also calculate the eccentricity of isobaric 

surfaces and find that as R decreases the eccentricity 

begins to diverge in the relativistic limit indicating the 

relativistic limit will approach a disk-like configuration. 

However at R => 2.4 R the eccentricity falls drastically. 

From this evidence they question the existence of disk-like 

configurations within general relativity.

11



1.14. Some Purely Numerical Attempts

Bonnazzola and Schneider10 have numerically 

integrated the field equations for a rigidly rotating 

perfect fluid with a degenerate Fermi gas equation of 

state. They conclude on the basis of their calculated 

quadrupole moment that it may be possible to match their 

model to a Kerr exterior. However, they find that the inner 

isobaric surfaces are prolate rather than oblate as might be 

expected from the work of Chandrasekhar and Miller who find 

that these surfaces become spherical in the relativistic 

limit of their model.
11 12Butterworth and Ipser , argue that the method of 

Bonnazzola and Schneider incorporates artificial

restrictions which preclude relativistic effects such as 

the formation of ergoregions. This is done by discarding 

solutions that may be associated with coordinate singular­

ities. They proceed to numerically integrate the field 

equations and find some interesting results. They find that 

ergoregions do form. They also find that sequences of 

rigidly rotating homogeneous models of increasing 

eccentricity terminate at a maximum eccentricity. Their 

physical explanation is that at this point mass begins to 

shed at the equator. This appears to be a somewhat 

unexpected general relativistic result as Maclaurin 

spheroids do not exhibit this behavior although post-Newton­

ian corrections to the Maclaurin sequence do imply this 

behavior. These results, like those of Chandrasekhar and 

Miller, seem to preclude disk-like configurations.

12



1.2. A Different Approach

In the previous section I have reviewed some of the 

previous attempts to understand rotating fluids in general 

relativity in order to illuminate some of the difficulties 

inherent to the problem of constructing fluid models. In 

reviewing these attempts one also gains an appreciation for 

the approximate and somewhat tenuous nature of the results. 

With this in mind, the approach taken here will be quite 

different. Rather than attempting to solve the field 

equations either exactly or approximately for a particular 

model, I will seek general restrictions on rotating fluids 

arising from the full field equations.

In order to have some chance of succeeding in this

undertaking, I will restrict this study to stationary, axi- 

symmetric, rigidly rotating perfect fluids. Roos has 

shown that for rotating fluids with an analytic equation of 

state solutions exist within the neighborhood of the

matching surface provided that the surface is tangent to 

both the timelike and rotational Killing vectors. Although 

there is no guarantee that such solutions exist globally, 

these solutions cannot be completely excluded by any known

local arguments.

There is an argument against the stationarity of 
such solutions due to Friedman and Schutz14,15 . They argue 

that all rotating perfect fluids are dynamically unstable 

due to the emission of gravitational radiation. The generic 

instability they describe is motion to lower energy con­

13



figurations via bar-like perturbations. Purely Newtonian 

stars are stable to such perturbations. However, they show 

that within general relativity these bar like perturbations 

give rise to gravitational radiation which further drives 

these perturbations by carrying off angular momentum. This 
is consistent with Chandrasekhar's investigation16 of the 

effects of gravitational radiation reaction on the sequence 

of Maclaurin spheroids. He finds that the introduction of 

this reaction force causes the Maclaurin sequence to branch 

off onto the sequence of Dedekind ellipsoids which have 

lower angular momentum. Although this instability does 

indicate that a rotating star can not be described by a 

globally stationary solution to the field equations, loose 

estimates based on Chandrasekhar's work indicate that the 

time scale for the growth of these instabilities may be much 

longer than the age of the universe for main sequence 

stars. From this fact, it seems reasonable, although not 

entirely correct, to model rotating stars as globally 

stationary solutions of the field equations.

In chapter two I will define the basic mathematical 

properties of the physical systems to which this study will 

be restricted. After these definitions the field equations 

will be explored and found to demand that certain algebraic 

and integral inequalities be satisfied. The physical 

interpretation of these inequalities will also be 

discussed. In chapter three these general results will be 

applied to an interior matched to a Kerr exterior. A

14



combination of the inequalities is found to give rise to a 

very simple result: There exists for each Kerr exterior for 

which a _< ra only one possible extreme relativistic 

configuration characterized by its angular velocity which is 

identical to the angular velocity associated with the 

horizon of the Kerr black hole. In chapter four this result 

and its implications will be discussed. Areas for future 

extensions of this work will also be considered.

15



2.0. STATIONARY, AXISYMMETRIC PERFECT FLUIDS

2.1. Preliminary Definitions 

In this section I will define a possible class of 

rotating fluid solutions of the field equations. This 

class consists of stationary, axisymmetric perfect fluids 

undergoing rigid rotation. Although some of the results 

presented here can be extended to the case of differential 

rotation, only the case of rigid rotation will be considered 

here.

The following conventions will be employed through­

out the remainder of this work. The physical spacetime will 

be assumed to have the signature of (-,+,+,+). Small latin 

indices will be used to label components of tensors on the 

spacetime and will run from 0 to 3. Geometrized units where 

G = c = l will be used.

2.11. Stationary, Axisymmetric Spacetimes

By stationary one normally means that the system

under study maintains the same behavior at all time s. More

precisely, s tationarity implies the existence o f a one

parameter group of transformations which maps earlier events

into later events. I shall adopt as the definition of
1 7stationarity Carter's definition of pseudo-stationarity : A

spacetime is pseudo-stationary if it is invariant under the

the action of a continuous one-parameter group of isometries
ra

which is generated by a Killing vector field, E , which is
0

timelike at least asymptotically. The demand of asymptotic

16



flatness, which is taken here to mean Newtonian behavior far 

from the fluid, allows the normalization

£m C -► -1 (2.1)
0 Om

at infinity.

The existence of this timelike Killing vector field 

gives rise to a conserved quantity, the total mass, m, which

can be used to characterize the spacetime. This mass, as
1 8defined by Komar , is expressed in terms of an integral 

over a closed two surface at infinity as

m = -(1/8tt)^ V[a5bJdS , (2.2)
0 ab

where the square brackets denote the standard antisymmetriz- 

ation of indices.

Axisymmetric normally implies that there is a 

preferred curve called the axis of rotation which serves as 

the center of rotations that leave the system unchanged. I 

shall use the following as a definition: A spacetime is axi­

symmetric if it is invariant under a continuous one parame­

ter group of isometries which is generated by a Killing vec­
tor field, £m, whose integral curves are diffeomorphic to

circles and which is globally defined to be spacelike except

on the axis of rotation where it vanishes identically.

Here, the axis of rotation is a timelike two surface. The

condition that the integral curves of £m be diffeomorphic to
1

circles means that these integral curves defined by

dxa = 5a (2.3)
d <i> 1

17



must describe closed rotational orbits for the parameter 

range, 0 _<<(>_< 2 it to eliminate the possibility of pseudo­

rotations .

As in the case of stationary spacetimes, the

existence of this rotational Killing vector field gives

rise to a conserved quantity, the angular momentum J, which

characterizes the spacetime. 1 8Again following Komar , the

angular momentum of the spacetime is defined to be

J = (l/16ir)^ V[a£b]dS , (2.4)
1 ab

where the integral is performed over a closed two-surface at 

infinity.

From the above definition, it is clear that the
group of isometries generated by £m is isomorphic to the

1
ordinary one-parameter rotation group. The group of

isometries generated by is isomorphic to R(l), the group
0

of translations on the real line. When a spacetime is

stationary and axisymmetric the two Killing vector fields

together generate a two-parameter abelian group formed as
1 9the direct product R(1)XS0(2). Carter has shown that this 

direct product structure implies that the two generators 

commute.

2.12. Perfect Fluids

In general, fluids can be quite complicated due to 

the vast number of microscopic interactions which are 

incorporated in the macroscopic theory of fluids. Within 

general relativity, all of these interactions, in principle, 

must be included in the energy-momentum tensor. A vast
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simplification arises by describing the energy-momentum 

tensor of the fluid in macroscopic variables and ignoring

their microscopic origins. However, the energy-momentum 

tensor of a real fluid with isotropic pressure and no elec­

tromagnetic charge is still quite complicated and is given 
by20

™ab a b,/- *-A\r>^b « ab, (ab) /oc\T = u u u +(p-C0)P - 2na + q u , (2.5)

where the parenthesis indicate standard symmetrization of

indices, y is the mass density, p is the pressure, t, and n

are the bulk and dynamic coefficients of viscosity, u is
ci Id sl bthe four velocity field of the fluid, 9, a and P are, 

respectively, the expansion, the shear tensor and the
3. a.projection tensor of u and q is the heat flow vector. The

heat flow vector can be expressed in terms o f the

temperature field of the fluid , T , and the thermal

conductivity , < , Of the fluid as

a
q

a b= -K P (V T + T a ) 
b b y (2.6)

where a is 
b

the acceleration of the flow and V is
b

the

covariant derivative of the spacetime.

It is obvious from the above definition that the 

problem of solving Einstein's equations,

Gab = 8it Tab , (2.7)

and the equations of motion,

7 Tab = 0 , (2.8)
b
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including viscous effects and heat flows very quickly 

becomes unmanageable. Since the intent here is to isolate

the effects of angular momentum, I shall restrict this study 

to non-viscous fluids having no thermal conductivity, here­

after referred to as perfect fluids. With this definition, 

the energy-momentum tensor for a perfect fluid becomes
Tab = (p + p) ua ub + p gab , (2.9)

3. bwhere g is the metric of the spacetime.

With this definition of a perfect fluid, the energy 

conditions, eqs. (1.1) and (1.2), reduce to

|p| < p . (2.10)

This condition must be imposed on the equation of state 

which is taken here to mean a functional relation between y 

and p, p = p(p). An additional requirement will also be

imposed on the equation of state: the pressure vanishes when

the mass density vanishes. This requirement allows the 

matching surface to be defined as the surface on which the 

pressure vanishes as is the normal procedure in Newtonian 

stellar structure.

A restriction stronger than the energy condition, 

eq. (2.10), will also be imposed on the fluid. The pressure 

will always be assumed to be positive near the matching sur­

face. Although there are no a priori reasons to reject

negative pressure, it is highly unlikely that materials 

exhibiting characteristics of negative pressure are stable 

to gravitational collapse. Thus, it would be un­

reasonable to expect such systems to be stationary.
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2.13. Classes of Fluid Flows

Although fluid flows, in general, can be quite 

complicated, they can be quite simply classified for 

spacetimes which are stationary and axisymmetric. A fluid 

flow is defined to be circular or purely rotational if the 

four velocity field of the fluid is a linear combination of 

the two independent Killing vector fields; i.e.,

ua = (-’l')_1/2 ( Ka+ n £a) , (2.11)
0 1

where the factor containing the V is defined as the redshift 

factor and insures that

ua u = -1 .(2.12)
a

Because of the timelike character of u , f must be negative, 

ft in eq.(2.11) defines the angular velocity of the fluid. 

Two distinct subclasses of circular flows are defined by the 

behavior of ft. If ft is constant the fluid is said to be in 

rigid rotation. If ft is not constant the fluid is said to

be in differential rotation. By convention, ft will always 

be taken to be positive.

The second class of fluid flows is non-circular 

flows. This motion is characterized by the property that 

the velocity field of the fluid is orthogonal to the rota­

tional Killing vector field,

u = 0 . (2.13)
1 m

Two distinct subclasses of non-circular flows exist, con­

vective flows and what I shall call radial flows. The
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distinction between these two subclasses is that the

projection of the integral curves of the velocity onto 

a purely spacelike hyper surf ace is closed for convective 

flows and is not closed for radial flows. Radial flows 

could be used to model the gravitational collapse of a star 

which has exhausted its nuclear fuel or, perhaps, the 

explosive process of a star becoming a supernova. 

Convective flows are defined in such a way that they model 

the normal process of convection which occurs in main 

sequence stars .

As the motivation of this study is to explore the 

role that angular momentum plays in general relativistic 

astrophysical systems, of all the classes of flows purely 

rotational flows must be the most important. This is not to 

say that a general relativistic treatment of convective 

flows would not be of interest. It is simply beyond the 

scope of this study. It should also be obvious that the use 

of radial flows which are strictly stationary to model the 

above-mentioned catastrophic stellar phenomena offers little 

hope. For these reasons I shall restrict this study to 

purely rotational flows as defined by eq. (2.11). In 

addition, only rigid rotations will be considered here due 

to the added complexity which arises from differential 

rotation.
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2.2. Reduction of the Field Equations 
2 1Geroch has developed a formalism which allows the 

field equations to be simplified in a covariant manner when 

the spacetime admits two commuting Killing vector fields.

His reduction is obtained by mapping the physical spacetime

M and the physical fields defined on M to the manifold of 

trajectories of the Killing vector fields, S. Each point in 

S corresponds to a particular orbit of the Killing vector

fields in M. Two points in M are mapped into the same point 

in S if they can be connected by a curve in M whose tangent 

is everywhere a linear combination of the two commuting

Killing vector fields.

As it will be used here, this mapping is isomorphic

to a projection of the physical spacetime M onto a

two-dimensional surface everywhere orthogonal to the two

Killing vector fields. The existence of such a surface is

not guaranteed in general. Because Cm and £ commute, there
0 1

does exist a family of two-surfaces which are everywhere
tangent to 5m and ?m . These surfaces are known as surfaces 

0 1
of transitivity. If the spacetime also possesses a family

of two-surfaces orthogonal to and the spacetime is
0 1

said to be orthogonally transitive. It can be shown that

the conditions for a spacetime to be convection-free are 

equivalent to the conditions that the spacetime be 

orthogonally transitive. Thus, with the assumption of 

circular flow the existence of the two-dimensional surface 

described above is guaranteed.
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2.21. Reduction for Perfect Fluids
2 2Hansen and Winicour have applied the Geroch for­

malism to spacetimes which have a non-vanishing matter 

distribution described by the energy-momentum tensor of a 

perfect fluid. They begin with a spacetime M which admits 

a pair of commuting Killing vector fields, and , such

that they are everywhere timelike and spacelike

respectively. It is convenient to write the pair as
0 1

£m, where A runs from 0 to 1 as will all other upper case 
A

latin indices. These additional indices are not merely for

convenience but represent a hidden symmetry of the field

equations. This hidden symmetry has been reviewed by

Kinnersley . The basis of this symmetry is that the field

equations are invariant under the action of a group of

transformations which replace and ?in by linear
0 1

combinations of themselves. This group of transformations 

is isomorphic to S0(2,l) and manifests itself as a gauge

freedom in the way the Killing scalars, defined as

X = K , (2.14a)00 0 0m

01 0 1m

and

x = £ra S
11 11m

(2.14b)

(2.14c)

transform under the action of the group. One finds that the
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triad defined as

X
U

(A
00 01

A )
1 1

(2.15)

transforms as a vector under the action of S0(2,l) with a 

norm given by

GWVXX=2(XX-X2) , (2.16)
U v 00 11 01

where GyV ,a constant scalar field on S, is the metric of
2the S0(2,l) vector space. The function x defined as

t2 = - GUV X X , (2.17)
U v

is a positive scalar field on S . Hereafter, lower case

greek indices refer to the transformation properties of the

object with respect to S0(2,l) and range from one to three.

The metric, h , on S is given by 
ab

h = g + 2 x'2 XMN ? ? , (2.18)
ab ab Ma Nb

and is used to project tensor fields defined on M onto S.

The indices of tensors on S run from zero to three.

However, only the components orthognal to 5m and are non-
0 1

zero (i.e., by choosing a coordinate system in which £m = 6m
0 0

and = <5m the indices of the non-zero components of 
1 3

tensors on S run from one to two). The alternating tensor 

on S is given by

e - </2 T)-l eMN £ cm 5" , (2.19)
ab abmn M N
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where e is the alternating tensor of M and
abmn

alternating symbol defined by the rules

e is the MN

AMe e
MB

(2.20a)

xA

a nd
x
A

(2.20b)

(2.20c)

for any object x and which is used to raise and lower upper 

case latin indices. is related to Gag in the following 

way,

G = - e e , (2.21)
aB A (C D )B

where the index a is identified with the pair (AB) and B is

identified with the pair (CD).

The covariant derivative D on S of a tensor field
a

Qa***k defined on S is given by
c . . .d

D Q b
a

c
d . . . e

hS V Qn 
e m

P
r

, (2.22)
s

where V is the covariant derivative on M. The Riemann a
_ a

tensor of S is defined by
bed

D D k = (1/2) (ft. m k , (2.23)
[a b] c abc m

where k is any vector fie Id defined on S. 
a
In general to proceed with the reduction one is
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required to define two additional scalar fields on S given 

by
c = (1/2) eMN emnpq £ £ V F, . (2.24)
A Mm Nn p Aq

These two fields measure the circulation of the spacetime. 

With the assumption of purely rotational flow, these fields 

vanish. With this fact the procedure of projecting the 

field equations onto S yields

Dm ( t -1D X ) = t-3 X (Dm XV)(D X ) -2 x ~1 R F,m , (2.25)
mp p mv mnAB

(R. = (1/2)t-2 (D Xu)(D X ) + t~1D D t + h mh nR ,(2.26)
ab a bp abab mn

and

Dm(T h nR F,V ) = 0 
m mp A

, (2.27)

Dm [x( h nh P R - (1 /2 )h hnp R )] 
a m np am np

= -(1/2)hmn R D t -x"1 XMN D (R ) ,(2.28)
mn a a mn M N

where R is the Ricci tensor of M. These last two equations 
mn

arise from the Bianchi identities.

Up to this point no particular source has been 

chosen and eqs. (2.24) through (2.28) describe a general 

convection-free spacetime with two commuting Killing vector 

fields. The specific source can now be added through the 

full field equations on M,

R = 8 tt (T - (1/2)T g ) . (2.29 )
mn mn mn

MBy defining s = (1,H) the velocity field, assumed to be
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purely rotational takes the form

ua = (-4') 1/2 sM £a . (2.30)
M

In order to compactify the notation, it is useful to define 

the SO(2,1) vector

SU = M N s s = (1,0,n2 )
y (2.31 )

which is related to 4' by

4' = SU X = X + 2 0 X +51 X (2.32)
U 00 01 11

due to the unit norm of the velocity. With this notation

the field equations for a stationary, axisymme trie rigidly

rotating perfect fluid take the compact form

Dm[t-1D X ] = t-3 X (Da X ) (D X6)
mu u f? a

+ 8TrT-3[(u+3p)X + ( u+p) t 2 4'-1 S ] , (2.33)
U u

0J- = (l/2)T_2(Dm X ) (D XU) + 8 it (u+p) , (2.34)
U m

and

( U+p) 4' ~1 D 4' = -2 D p . (2.35)
a a

Equations (2.33) and (2.34) are the projections of the field

equations onto S and determine the variables h and X
ab u

Equation (2.35) is the result of projecting the Bianchi

indentities and, therefore, is an integrabi1ity condition

imposed on the solutions of eqs. (2.33) and (2.34). A

solution of these equations specified by h , X ,u and p areab u
equivalent to a solution of the field equations specified by

28



g , u ,u and p on the physical spacetime. This can be seen 
ab

by using the coordinate freedom to choose Cm = (1,0,0,0) and
0

£ = (0,0,0,1) which cooresponds to a coordinate system in
1

0 3which the coordinates x and x parameterize the integral

curves of the timelike and rotational Killing vector fields

respectively. This choice determines the metric of the

physical spacetime, g , in terms of h and X via eqs.
ab ab y

(2.17) and (2.18). The velocity field ua is determined by 

the Killing vector fields and X^ via eqs. (2.30) and (2.32). 

2.22. Extension to the Manifold of Trajectories with 

Bound ary

A problem arises due to the fact that the rotational

Killing vector vanishes on the axis of rotation. At these

points in M the mapping from M to S becomes singular leaving

S topologically equivalent to a half-plane which is without
2 2*24boundary on the left side. Hansen and Winicour * have

extended the manifold of trajectories, S, to the manifold of 

trajectories with boundary, S, by imposing regularity 

conditions on the points on the axis of rotation.

The following conditions are imposed to guarantee 

the regularity of the points on the axis:

= X =nraDX=0 ,(2.36a)
01 11 m a

a = nm D t > 0 ,(2.36b)
m

and
b = nmD(npDX )>0 , (2.36c)

m P 1 1

where nm is the unit normal to the axis and a and b are
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smooth functions along the axis. The vanishing of t, Xor
and X follows from the fact that vanishes on the axis.

1 1 1
The vanishing of the normal derivative of X is imposed to

a
prevent discontinuities in its derivative in M which would 

give rise to singularities in M. Eq. (2.36b) sets the sign

t in S, as the definition of r, eq . (2.17), allows t to be

either positive or negative. Eq. (2.36c) precludes the 

possibility of conical singularities forming on the axis.

With the above regularity conditions the

compactification of S is performed by adding the points on 

the axis, yielding the manifold of trajectories with

boundary S . Hereafter, references to the manifold of 

trajectories will mean S and the tildes will be dropped.

2.3. Generalizations of Two Newtonian Results

In this section fully relativistic generalizations

of Von Zeipel's theorem and the Newtonian virial theorem

will be exhibited. The first generalization can be stated

as: The surfaces of constant density, the isobaric surfaces
2 5and the surfaces of constant redshift coincide. Boyer 

first recognized that the conservation of energy and 

momentum eq. (2.35) implies that the isobaric surfaces and 

the surfaces of constant redshift must coincide. Since the 

redshift between two stationary observers, one on the 

surface and one at infinity can be expressed as

z = (-f)_1/2 - 1 , (2.37)
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surfaces of constant f are surfaces of constant redshift.

These surfaces must coincide with isobaric surfaces since 

the gradients of p and ^ are an t i pa ra 1 le 1 . By writing eq. 

(2.35) as
D (In'F) + 2 ( u+p)_ 1D p = 0 , (2.38)
m m

and then taking the curl of this equation,

£anm D [D (Inf) + 2(u+p)-1D p] = 0 , (2.39)n m m

one finds that
£amn (D u)(D p) = 0 , (2.40)

m n

which implies that the gradients of u and p are parallel.

Thus, it follows that the isobaric surfaces and the surfaces

of constant density must coincide.

The surfaces of constant redshift become the "level"

surfaces of Newtonian theory. These are surfaces where the

difference between the gravitational potential energy and

the kinetic energy is a constant, which can be seen by

examining the Newtonian limit of f = const . In this limit

the timelike and rotational Killing vector fields become

3/3t and 3 / 3 <t> respectively, where t is the Newtonian time

and <p is the azimuthal angle of a circular cylindrical

coordinate system. In coordinates (t, p , $ , z ) the components
of the Killing vector fields are = <5m and = 6m . This

0 0 12
implies that in the Newtonian limit

X = g > -1 - 2<J, , (2.42a)
00 00

X = g > 0 , (2.42b)
01 02
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X =g + p2 ,(2.42c)
11 22

where <(> is the Newtonian gravitational potential and p is

the distance from the axis in the Newtonian limit. Thus, in

the Newtonian limit V = constant becomes
-;}> + (l / 2)tt2 p2 = const , (2.43)

and Von Zeipel's theorem is recovered exactly: Level

surfaces coincide with the isobaric surfaces.

The conservation of energy and momentum, eq. (2.35),

can be used to produce other results. Taking the inner
m

product of this equation with n , the outward directed 

normal to an isobaric surface, yields

nm D f = -2 'F (y+p) ~1 nm D p . (2.44)
m m

If the isobaric surface is chosen to be the matching surface 

where the pressure vanishes, one finds that

nm D t < 0 , (2.45)
m

due to the fact that 'F is negative to insure the timelike 

flow of the fluid, y and p are positive and the gradient of 

p must be directed inward.

Given an equation of state, y = y(p), one can

integrate eq . (2.44) inward from the matching surface. This

yieId s

P “I
'F = 'F exp[-2 f (y+p) dp] , (2.46)

0 0

where 'F is the quantity which determines the redshift ofO
the matching surface. This equation allows 'F to be chosen
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as one of the interior parameters. Normally the central 

density or the central pressure is used to parameterize 

either Newtonian or relativistic stellar models; however, 

neither of these quantities will be known without detailed 

knowledge of the interior. Since 'f is related to theO
central density via eq. (2.46) and the equation of state it 

will be used to parameterize the interior together with the 

angular velocity ft.

A second relativistic generalization of a Newtonian 

result which can be found is the virial theorem. This 

theorem follows from the definition of the total mass and 

the angular momentum of the spacetime, eqs. (2.2) and (2.4). 

These integrals can be expressed in terms of volume 

integrals involving the energy-momentum tensor by using the 

Gauss theorem and the field equations. The results are

m - 2 / £,a [ T b - (1/2) 6 b T ] d S ,(2.47)
0 a a b

and
J = / £a T b dS 

la b
, (2.48)

where the integration is performed over the interior and dS

is chosen such that

dS = 0 , (2.49)
1 a

Equations (2.48) and (2.49) can be written in terms of the 

Killing scalars as

a nd

m = - 2 / [y + 3p - 2ft (y+p)'!' * q ] dS
0 a

J = / [ ( y+p) V ^ E3 dS
0 a

, (2.50)

,(2.51 )
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where n is a linear combination of the Killing scalars 

defined by the S0(2,l) vector Na = (0,1,ft) as

n = Na X = X + ft X . (2.52 )
a 01 11

By combining eqs.(2.50) and (2.51) one finds that

m = 2 ftJ + f(u+3p)£a dS . (2.53)
0 a

2 6As shown by Abramowicz, Lasota and Muchotrzeb , in the

Newtonian limit this becomes

E -f 2 E + 3 / pd V = 0 ,(2.54)
grav rot I

where E is the Newtonian gravitational energy, E is
grav rot

the Newtonian rotational energy and the pressure integral is 

performed over the volume of the fluid I.

It should be noted that with the assumptions of pos-

itive pressure and matter density eq. (2.53) imposes the

following condition on m, J and ft

m > 2 ft J . (2.55)

This restriction, hereafter referred to as the virial

theorem, is the first explicit restriction involving only 

the parameters needed to describe the system.

2.4. The Algebraic Inequalities of Hansen and Winicour

2 2 2 4Hansen and Winicour 9 have used the structure 

of the field equations coupled to boundary conditions to 

prove certain inequalities, among which is the positivity of 

the angular momentum density. In examining the integrand of
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eq. (2.51) it is seen that the sign of the angular momentum 

density is determined by the sign of n . This is because T 

is negative and the quantity u+p is positive.

In this and later calculations, the following 

combination of the field equations, eq . (2.33), will prove

useful:
A[YBV]Dm[T_1Xv DmXY] = 87T(u+p)T_1'i'‘1A[YBV] . (2.56)

Y ^When A and B are constants this becomes
Dm [ x ~1 82 D (a/B)] = Sir ( u+p ) t**1 'P_1 A[y BV ] S X , (2.57)

m y v
where a = AY X and 8 = BY X . The choice of AY = NY and

Y Y Y YB1 = S1 yields
Dm [t_1 'P2 D (n/'F)] =0 .(2.58)

m

This equation is a well behaved elliptical differential

equation for n / "P in any open region not containing points at

which either 'P or x vanish. According to a theorem due to 
2 7Hopf n/'P will either be a constant or have no extrema in

such a region If a region can be f o u nd such that on its

boundary n/'P is bounded above (b elow) by zero and unbound ed

below (above) then n/'P will be negative (positive) in the

entire region • If, in add i tion, V has a particular sign i n

this region then the sign of n will be established.

Hansen and Winicour begin by proving the velocity of 

light curve, defined as the locus of points where 'F 

vanishes, has a single connected component which divides S 

into two regions where 'P < 0 and ¥ > 0. By taking the 

derivative of eq. (2.16) normal to the axis twice and 

evaluating the results on the axis one finds that the axis
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regularity conditions imply
b XQ0 = -a2 . (2.59)

Since a and b are positive this implies that \ must be00
negative on the axis. Since X and are equal on the axis00
it follows that the velocity of light curve cannot intersect 

the axis .

Because of the causal requirements the velocity of 

light curve also cannot intersect the fluid. Suppose there 

exists a region D in S that is bounded by a closed curve on 

which T vanishes. Because this region D cannot intersect 
the fluid, eq. (2.57) with the choice AY= S^and B V= (0,0,1) 

become s
Dm[T_1 X 2 D (T/X )] = 0 . (2.60)

11m 11

The Hopf theorem applied to this equation would require that 

y/Xii vanish identically in D. This behavior leads Hansen 

and Winicour to conclude that the curve y = 0 cannot bound 

a region of S and that the velocity of light curve must 

extend to infinity. By asymptotic flatness, one finds that

y ->• -1 + (l/2)n2p2 , (2.61 )

far from the fluid. Since p _> 0 there can only be a single 

velocity of light curve asymptotically. Because of this and 

the fact that no region can be bounded by the curve y = 0 

the velocity of light curve must have a single connected 

component which divides S into two regions, y > 0 and y < 0.

The Hopf theorem can now be applied to eq.(2.58) in 

a region bounded by the axis and the velocity of light 

curve. Since the velocity of light curve cannot intersect
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the axis and n vanishes there, n/'P must also vanish on the 

axis. Since lP = 0 on the velocity of light curve, the 

id entity

n2 = ( 1 /2 ) x2 + Xi i V (2.62)

implies that n mus t have a single sign on the velocity of 

light curve. By asymptotic flatness n must be positive far 

from the fluid and, thus, must be positive everywhere on the 

velocity of light curve. This implies that n/'P + as the 

velocity of light curve is approached from the interior. 

Since the Hopf theorem states that n/’P cannot have extrema 

in this region, n/'P must be negative which demands that

n > 0 (2.63) 

inside the velocity of light curve with the equality holding 

only on the axis. This argument can be extended to the 

region outside of the velocity of light curve where ¥ > 0. 

On the boundary of this region which is bounded by the 

velocity of light curve and some curve far from the fluid, 

one finds that n/'P is positive and by the Hopf theorem must 

be positive everywhere in this region.

Hansen and Winicour have generated other inequal­

ities involving Killing scalars. The quantity v, defined by 
by vector Ra = (l,ft,0) as

v = Ra X = Xoo + ft Xoi , (2.64)

is everywhere negative. Within the velocity of light curve 

this claim follows immediately from the n inequality and 

causality requirements as seen by writing v as

v = 'P - ft n . (2.65)
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For the region outside of the velocity of light curve the 

Hopf theorem can be applied to the following equation,

Dm[T-1 y2 D (v/'O] = 0 ,(2.66) in

which is obtained from eq. (2.57) by the choice of Aa = Ra 

and Ba = S* . By eq. (2.65) v is negative on the velocity 

of light curve and asymptotically

v -*• - 1 - 2 <f> ,(2.67) 

where <J> is the Newtonian gravitational potential which is 

much less than unity. Application of the Hopf theorem in 

the region outside the velocity curve of light demands that 

v be negative in this region.

2.5. Integral Inequalities of Rigidly Rotating Perfect

Fluid s

In this section two classes of inequalities 

involving integrals performed over the projection of the

matching surface onto S will be derived. The usefulness of 

these inequalities is that they can be applied to the 

matching problem yielding inequalities involving the 

interior and exterior parameters which restrict the possible 

solutions even when there is no detailed knowledge of the

interior.

One class of integral inequalities arises from eq. 

(2.57). By multiplying this equation by an as of yet

arbitrary function of a/3 and integrating over a region V

bounded by the curve x = £, e being a small positive
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constant, and the projection of the matching surface <£ as 

shown in figure one, one finds that

f f(a/6) Dm[T—1 f?2 D (a/S)] dV
' V m

= 8tt / (p+p) f (a / S) t 1 Afw Bv] dV . (2.68)

Application of the Gauss theorem to the integral on the left 

yield s

,r_f(a/S) T-1S2Dm(a/8) dl = f-.f'u/S) t " 1 6 2Dm( a/6 )D (a/S)dV 
v G m V m

+ 8 tt /Vf(a/S) ( u+p)T_1’f_1A BV ^ dV , (2.69)

where C is the boundary of V described above, dl^ is the
dual of the displacement dxra along C and f^ is the ordinary

derivative of f with respect to its argument a/S.

The purpose of the above calculation is as follows.

In examining the right side of eq . (2.69) it is seen that

the sign of f / determines the sign of the first integral on

the right. This is because the norm of is positive

definite and T is intrinsically positive. An inequality
V ^will result if A and B are judiciously chosen such that 

the second integral on the right is positive (negative) 

while choosing f to be a monotonically increasing 

(decreasing) function of a/S so that the first integral on 

the right is also positive (negative). If this can be done 

then the sign of the integral performed over the boundary of 

V will be fixed .

For this inequality to be useful when there is no 

detailed knowledge of the interior, the contribution to the 

integral from the curve t = e must vanish in the limit as e
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approaches zero (that is, when this curve approaches the 

axis). If the axis contribution can be made to vanish for 
particular choices of ,BV and f then the integral on the

left will reduce to an integral over the projection of the 

matching surface onto S,<b. The resulting integral can then 

be performed with only knowledge of the exterior.

One class of integral inequalities arises from the 
choice of and BV = SV . For this choice eq. (2.69)

becomes

/ f(n/'P) t-1 Y2 Dm(n/'Odl =
C m

/ f/(n/'0 T"1 2 Dm(n/'OD (n/'O dV . (2.70)
V m

In this case the axis contribution can be made to vanish

because of the behavior of n and f near the axis. The axis

regularity conditions imply that as the curve x = e

approaches the axis 'f approaches some finite value while n
2

approaches zero as x . Since D x is parallel to dl on the
3. 3

curve x = e the axis contribution will vanish provided f

vanishes on the axis. The following choice of f,

q
f ( n/ f) = (-n/'O (2.71)

such that q > 0, satisfies this condition since the axis

regularity conditions demand that n vanish on the axis. 

This choice then yields the inequality

, q -1 2 “/ (-n/O x f D (n/O dl < 0 . (2.72)
& m

This class of inequalities can be extended to include the
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limiting case where q vanishes. This can be seen by writing

eq. (2.70) with q = 0 as

2 ni — 1 2 m
f t V D (n/l) dl = f T y 9 (n/T) D t dl , (2.73)
(£> mT = e 3t m

and noting that the axis regularity conditions imply that

the partial derivative of n/'P is negative. Thus, the

restriction that q be strictly positive can be relaxed to

the condition that q be non-negative. One member of this

class, the choice of q = 1 , has been derived previously by
2 6Abramowicz, Lasota and Muchotrzeb .

Although one might expect many classes of integral
U v

inequalities to be derived for various choices of A ,B and 

f, only one other class of integral inequalities has been 

derived from eq. (2.69). Following the same arguments as 
above one finds that the choice of AM = N^ and BV = RV and 

f(a/S) = (-a/8)^, where q > 0, yields

/ q -1 2 m
(-n/v) t v D (n/v) dl < 0 . (2.74)

<8 m

This class is very closely related to the above class and is

s t r i ctly equivalent in the limit as q approaches zero. This

can be seen by writing T as v + Q n in eq. (2.72) and

expressing the grad lent of n/’P in terms of the gradient of

n / v. In applying these integral inequalities to Kerr

exteriors, the n/'P inequalities will impose the strongest

restrictions as will be seen in the next chapter.

Although the analysis of the integral inequalities 

may not be complete, there seems to be no systematic way of
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choosing A^ , BV and f to yield the strongest inequality.

No further inequalities arising from eq. (2.69) have been 

found. To illustrate the difficulties in constructing more 

integral inequalities, consider the choice = (0,1,0) and 

BV = SV . For this choice eq. (2.69) becomes

/ f(A01/'P) t-1 Din(X01/'P) dl
C m

/ f/a01/'O T-1 f2 Dm(X01/'O D (X^/f) dV 
V m

-Sir / f(Xr)1/'P) (p+p) x 1 JldV . (2.75)
V

The axis contribution can be made to vanish by choosing f to 

vanish when its argument vanishes. To establish an
inequality f and f ^ are required to have opposite signs. 

This is because Xqi 0 which can be proven by means of

the Hopf theorem arguments . This cannot happen since f(0) 

= 0. One could establish the inequality

I f(X01/'O t-1 'P2 Dm(X01/'F) dl < 0 (2.76)
C m

by choosing f to be positive and f/ to be negative. A 

simple function satisfying this condition is

f(Xoi/'F) = c - (Xqj/'O , (2.77)

where c is a constant chosen such that

c > max(Xoi/'!') , (2.78)

where max(Xoi/f) is the maximum value of ^ q 1 / ^

interior. The axis regularity conditions imply that the 

axis contribution is positive and, therefore,
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-12 m
/ f(X /'{') t Y D (X /Y) dl < 0 , (2.79)
(E> m

for the above choice of f. To explore this inequality

detailed information about the interior, namely c, must be

known. If the maximum of X /Y occurs on B then c could be0 1
calculated from knowledge of the exterior only. However, 

the Hopf theorem applied to eq . (2.57) with the choice of
= (0,1,0) and BV = SV precludes minima from occurring in 

the interior but does allow the possibility that maxima 

could exist. Thus, not even the Hopf theorem can save this 

inequality.

One additional class of integral inequalities can be 

generated from the field equations. Contracting Xa into 

eq . (2.33) yield s

Dm D t = 16itpr . (2.80)
m

Following an analogous procedure to that described above 

one finds that

/ f(t) DmT dl > 0 (2.81 )
© m

if f is a positive, monotonically increasing function of t 

such that in the limit as t approaches zero it vanishes.

In the Newtonian limit, both the inequalities, eqs. 

(2.72) and (2.81), are automatically satisfied. Utilizing 

the Newtonian limit of t,

t * /T p , (2.82)

where p is the distance from the axis, one finds that eq .
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(2.80) becomes
/ f (p) ^ • d'n >0 ,(2.83)
d> P

where e is a unit vector directed away from the axis and dn 
P

is the outward directed normal to the infinitesimal 

displacement d? alongCB . For spheroidal configurations the

inner product of £ and
P

dn will be positive and the in­

equality will be satisfied . Using this Newtonian limit a s

a guide, the physical content of eq. (2.81) i s that the

d i s tance from the axis. as measured by x, mu s t increase, o n

the average, as one moves from the pole to the equator.

The Newtonian limit of eq. (2.72) can be found by 

noting that in this limit

2 2
'P •+•-1 -2<\> + p £2 , (2.84a)

2
n + ftp ,(2.84b)

m -1
D q ->• - 2ft a ,(2.84c)

c

and ,

D'P‘>2(g-a ) , ( 2.84d )
c

where "ac is the centripetal acceleration and "g is the 

Newtonian gravitational field. With these identifications 

the Newtonian limit of eq. (2.72) becomes 

— 1 2 2/ p f(-ri/f) [ft p g - (1 + 2<|))? ] -dl? > 0 , (2.85)
<S> c

where dl? i s the normal to the displacement dx along <B.

Since both a a and g are directed inward it is the "g term
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which may cause a violation of the inequality. The relation 

between the two terms can be further explored by examining 

the pressure condition, eq. (2.45), which in the Newtonian 

limit becomes
*g • n - "ac •tT < 0 . (2.86)

Thus, if g is replaced by *a„ one expects the worst case.

With this replacement eq. (2.85) becomes

-1 2 2 _/ P f(-n/'0 [1 + 2<|> - J2 p ] ~a -dn < 0 . (2.87)
c

The integral inequality is satisfied in the Newtonian limit 

since 'ac*i? <0 , n p << 1 and <j) << 1 . The physical 

content of this limit is that averaged over the surface the 

difference between twice the gravitational potential energy 

and the rotational energy must be less than the rest energy. 

Since the inequality is automatically satisfied in this 

limit it is difficult to arrive at a physical interpretation 

of the inequality without exploring the fully relativistic 

version. This will be done in the next chapter for a Kerr 

exterior .
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3.0. APPLICATIONS TO KERR INTERIORS

In this chapter the restrictions derived in chapter

two will be applied to interiors matched to the Kerr

solution as the exterior. The choice of the Kerr exterior

is somewhat arbitrary as the results of the preceding

chapter hold for any stationary, axisymmetric exterior which

is asymptotically flat. The use of the Kerr solution to

model the gravitational field of an astrophysical object can
2 8be questioned. Hernandez has shown that in the Newtonian 

limit the Kerr solution has the very special multipole 

structure

n+1 l-2n 2n
q = (-1 ) m J ,(3.1)
2n

t h
where q2n the 2n coefficient of the Legendre series for

the Newtonian potential, m is the mass and J is the angular

momentum. Because of this very special relationship between

the multipole moments and the angular momentum, it is

unlikely that the Kerr solution describes any realistic
2 9-30astrophysica1 system . The larger Tomimatsu-Sato family

3 1of solutions , which are stationary, axisymmetric and 

asymptotically flat, have a more general multipole 

structure. However, the Kerr solution, which is a member of 

this family, gives the simplest physical insight into the 

restrictions derived in the preceding chapter. Additional 

motivation for using a Kerr exterior is provided by the 

investigations reviewed in chapter one which indicate that
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the Kerr exterior may be obtained in the extreme

limit.

3.1. The Kerr Solution

This two parameter solution of the vacuum field
3 2equations, discovered in 1963 by Kerr , is characterized by 

the parameters m and a. In Boyer-Lindquist coordinates the 

Kerr metric takes the form

2 2-12 2 22 2 2 2 
ds = p (A dr + d9 ) + (r + a )sin 9 d <J> - dt

-1 2 2
+ 2 mrp (a sin 9 d <j> - dt) , (3.2a)

whe re
2 2 2 2
p=r+acos9 ,(3.2b)

and
2 2

A=r-2mr+a .(3.2c)

As seen from this form the Kerr solution reduces to the

SchwarzschiId solution when a vanishes. By comparison with 

the linear theory one finds that m represents the total mass 

of the system and a represents the angular momentum of the

system per unit mass.

From eqs. (3.2) it is seen that this form of the

metric becomes singular when either A or p vanishes. p 

vanishes only in the equatorial plane (i.e.,when 9 = it / 2 )

when r = 0. This is a true singularity in the spacetime as 

the curvature scalar diverges when p is zero.

At first glance one might believe that this is a

point singularity. However, it is actually a ring. This
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can be seen by transforming to Cartesian-like spatial 

coordinates (x,y,z) defined by

x + iy = (r + ia) exp(iit>) , (3.3a)
a nd

In these
c 3 3 form

z = r cos0

coordinates the metric takes on the

. (3.3b) 

Ke rr-Schild

2 2 2 2 2 
ds = dx + dy + dz - dt

r(xdx-ydy) - a(xdy-ydx) + zd z + 
2 , 2r + a r

From eqs. (3.3) one finds that r is determined 

the quartic

2mr
4,22 r +a z

(3.4)

by solving

4 2 2 2 22 22
r-(x+y+z-a)r-az=0 . (3.5)

Inspection of this equation shows that in the equatorial

plane the vanishing of r corresponds to a disk where
2 2 2x +y _<a . In these coordinates the curvature scalar 2

2 2 2diverges only on the boundary of the disk where x +y =a .

The Kerr solution can be extended to negative values 

of r. By identifying the top of the r=0 disk in the region 

of the spacetime where r is positive with the bottom of the 

r = 0 disk in the region of the spacetime where r is

negative and doing likewise with the top of the disk in the 

negative r region with the bottom of the disk in the 

positive r region one finds two distinct regions connected 

by a "wormhole" formed by the disk. This "wormhole" does 

introduce problems with causal requirements. One finds that 

the rotational Killing vector fie Id becomes timelike for
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negative values of r near the singularity giving rise to
3 4acausal closed timelike curves in the spacetime. Carter 

has shown that for the case a > m these closed timelike 

curves can be deformed to pass through any point in the 

extended spacetime.

The vanishing of A does not result in a true 

singularity of the spacetime but a coordinate singularity 

associated with the Boyer-Lindquist coordinates. When the 

radial coordinate takes the value

r+ = m ± / m2 - a2 , (3.6) 

A vanishes. These two surfaces are null two surfaces and 

are the event horizons of the Kerr solution. Note that for 

the case a > m there are no real solutions of A = 0 ; and, 

thus, there are no event horizons. This behavior leads to a 

naked singularity for this case.

For the case a < m there is yet more structure. On the 

surface defined by

r(9) = m + v m2 - a2cos20 , (3.7)

the timelike Killing vector becomes null. This surface is 

timelike everywhere except at the poles where it coincides 

with the outer horizon. The physical interpretation of this 

surface is that no observer inside this surface can remain 

stationary as viewed by an observer in an asymptotic 

Lorentz frame. The reason for this is that the velocity of 

a static observer is proportional to the tiraelike Killing 

vector. This surface is known as the static limit and the 

region between the static limit and the outer horizon is
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known as the ergosphere due to the fact that negative energy 

states exist in this region. These negative energy states 

allow processes which can drain the rotational energy from 

the Kerr black hole35.

3.2. The Matching Surface

In this section the matching surface will be 

investigated. As in Newtonian theory the matching surface 

will be defined to be the surface where the pressure 

vanishes. By the relativistic version of Von Zeipel's 

theorem the matching surface is also a surface of constant 

redshift. This allows the matching surface to take on an 

explicit form.

In Boyer-Lindquist coordinates the Killing vector 

fields are £m = (1,0,0,0) and = (0,0,0,1) which implies

X 00 0 0
1 + 2mr/p 2 , (3.8a)

2 2
Xqi = g Q 3 = ~ 2mra sin 9/p , (3.8b)

and
2 2 2 2 4 2

X 3^= g^^ = (r + a )sin 9 + 2mra sin 9/p , (3.8c)

where p is defined as above. With these explicit forms 
2 5Boyer demonstrated that the generalization of Von Zeipel's 

theorem becomes

2 2 2 2 2 2 2 
- 1 + ft (r + a )sin 9 + 2mr(l-aftsin 9) /p = T , (3.9)O

where f is the redshift factor of the matching surface.
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Solutions of this equation for a given Kerr exterior

parameterized by m and a and a particular interior

parameterized by f
o

and 0 give the allowable boundaries of

the fluid. In the calculations it is convenient to replace

f by K defined as
0

+III . (3.10)
o

Note that in order for the fluid elements on the surface to 

follow a timelike trajectory

K < 1 .(3.11)

It is also convenient to view the equation for the matching 

surface as a quartic equation in r parameterized by m, a, K 

and SI,

P(r,0;m,a,K,n) =0 , (3.12)

where

422 2222 2
P = r SI sin 9 + r [a SI sin 9(l + cos 9) - K]

2 2 2 2 2 2 2
+ 2mr(l-aS5 sin 0) + a cos 9 (a SI sin 9 - K) . (3.13)

Although no closed-form solution in the form 

r = r(0) is known, useful information can be obtained by

investigating special cases of eq . (3.12). On the axis the

surface equation reduces to a quadratic in r with solutions

R± = (m/K) ± /~(m/K)2 - a2 . (3.14)

The quartic also has a positive root r 00 associated with 

the degeneracy sin9 -*■ 0. The condition that the pressure

increase inward, eq. (2.45), is only satisfied for R+.

A necessary condition that the boundary have spherical 

topology is that solutions exist at the poles which demands
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K < m/a . (3.15)

This will be refered to as the Boyer polar condition.

At the equator eq. (3.12) reduces to the cubic

equation
3 2 2 2 2 2

rfi + r(aft-K) + 2m(l-afl) = 0 , (3.16)

and a root at r = 0. The positive solutions of this cubic

are

R = 2 
k 3

K
a ft

cos [ ( a+2 irk ) / 3 ] , (3.17)

where k = 0 or 2 and
2 2 2 3/2

cos a = -mft(l-aft) [3/(K-a ft )] , (3.18)

such that a is chosen to be in the third quadrant. For 

to be real cos a must be less than or equal to one, which 

implies that
2 2 2/3 4/3

K ^ a n + 3(mft) (1-aft) . (3.19)

This inequality will be refered to as the Boyer equatorial 

condition. The pressure condition is satisfied only for

k = 0.

The pressure condition implies that if any boundary 

with spherical topology exists it must pass through Rq. at 

the pole and Rq at the equator. Thus, eqs. (3.15) and 

(3.19) represent necessary conditions for the existence of a 

spheriodal boundary. The question of whether these 

conditions represent sufficient conditions for the existence 

of a continuous spheroidal boundary at intermediate values 

of 9 has not been resolved. The work of deFelice', Nobili 

and Calvani and my own extensive numerical studies seem to 

imply that Boyer conditions do represent sufficient
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conditions. Attempts were made to solve the quartic by

means of the quartic algorithm . However, the application 

to the quartic became so complicated that it was abandoned.

The numerical examples which numbered in the tens of 

thousands showed the following behavior when the Boyer

conditions were satisfied. The positive solutions of

eq. (3.12) define three non-intersecting surfaces: one which 

connects R- at the pole to r = 0 at the equator, one which 

connects R+ at the pole to Rq at the equator, and one which 

tends to infinity at the pole connecting to R2 at the

equator. An attempt was made to prove the existence of 

these surfaces by applying Sturm’s theorem which would show 

that eq.(3.12) has three non-degenerate, positive roots at 

all intermediate polar angles. As in the case of the 

attempt to solve the quartic, the analysis became extremely 

complex and was finally abandoned after the results were 

established for some limited ranges of the parameters.

While the possibility that additional inequalities could 

arise from further attempts, the numerical studies imply 

that the Boyer conditions are sufficient conditions for the 

existence of boundaries with spherical topology.
3 6As demonstrated by deFelice', Nobili and Calvani 

the condition that the pressure increase as one moves inward 

into the fluid from the matching surface is also consistent 

with spheroidal configurations which have an internal cavity 

defined by the surface connecting R_ at the pole to r = 0 at 

the equator. In addition, if the Boyer polar condition is
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violated when a > m then toroidal configurations appear
defined by a surface connecting r = 0 on the equator to Rq 

on the equator. As a is increased from a value less than m 

to a value greater than m the spheroidal configurations with 

cavity transform smoothly into the toroidal configurations. 

Any physical interpretation of these two classes of 

configurations lacks credibility as the ring singularity at 

r = 0 appears on the inner surface. Because of this fact 

and the multiple connectedness associated with the disk at 

this point only spheroidal configurations without the 

internal cavity will be considered here.

3.3. Application of the Algebraic Inequalities 

The algebraic inequalities derived in Chapter Two 

will now be applied to the matching surface. The virial 

theorem offers no restrictions that are not already 

contained in the combination of the timelike flow condition, 

eq. (3.11), and the Boyer equatorial condition. The maximum 

angular velocity allowed by these two conditions is a 

solution of the sixth order equation

2 2 3 2 4
(1-a n ) = 27(mfl) (1-afi) . (3.20)

Application of Sturm's theorem on the interval allowed by 

the virial theorem (0,l/2a) shows that there is always one 

root in this interval when a < m. Thus, the Boyer 

equatorial condition is stronger than the virial theorem. 

The same is true for a > m when the timelike flow condition
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is replaced by the Boyer polar condition. In the case where 

a = m both the Boyer equatorial condition and the virial 

theorem imply that afi < 1/2 .

As was stated in section 2.4. the v inequality is 

satisfied within the velocity of light curve whenever the n

inequality is satisfied. Thus, it is sufficient to
/

invesitgate the restrictions arising from the n inequality. 

Due to the lack of a closed-form solution for the matching 

surface it seems that the n inequality can not be applied to 

an arbitrary point on the surface. However, a closed-form 

inequality among the parameters which is a necessary and 

sufficient condition for the n inequality to be satisfied 

everywhere on the matching surface does exist.

A necessary condition can be found by examining the 

behavior of n near the pole. The axis regularity conditions 

imply that both n and the first in-surface derivative must 

vanish on the axis and, therefore, also at the pole. If n 

is to be positive near the axis then the second in-surface 

derivative must be non-negative. The necessary condition 

found in this manner will also be a sufficient condition for 

n to be non-negative everywhere on the matching surface if n 

increases monotonically as one moves from the pole to the 

equator. The fact that n does increase monotonically is 

seen by calculating the partial derivative of q with respect 

to sin 9 and evaluating the result on the matching surface 

by means of eqs. (3.12) and (3.13). After some manipulation 

the calculation yields
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an
3(sin 9)

- 4
n sin 9 

(l-ansin29)

224 2 -2 2242
-{(l-K)(K-a ft sin 9)+[(K-1)aftsin 9+nsin 9(l-a ft sin 9)] }

2aftr
P'(l-a2ft2sin1+9)

, (3.21)

where P' is the partial derivative of P with respect to r. 

Inspection of the right side of this equation shows that it 

is positive due to the timelike condition on K, the virial 

theorem,the Boyer equatorial condition and the fact that the 

pressure condition eq. (2.45) requires P' to be negative. 

Thus, n is a monotonically increasing function as one moves 

from the pole to the equator. The condition that the second 

in-surface derivative be non-negative is equivalent to

3 n > 0 , (3.22)
9(sin 9 )

at the pole. By calculating this quantity and substituting 

the polar radius written in terms of the parameters into the 

result one find s

2mft ) m -4. / m _ a \ ( 1 , (3.23)m
aK^ IK \ K2 / j

as a necessary and sufficient condition for n to be 

non-negative everywhere on the matching surface. It should 

be noted that this condition is not sufficient to guarantee 

that n >1 0 globally. The local nature of this result is 

also Indicated by the fact that the condition that the 

pressure be positive is required only in the neighborhood of 

the matching surface. In fact, this inequality may be
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satisfied for configuartions containing interior regions in 

which not only is the pressure negative but the positive 

energy condition, eq. (2.10), may be violated.

3.4. Application of the Integral Inequalities 

The analysis of the integral inequalities in eqs. 

(2.72), (2.74) and (2.81) is a problem that poses more

difficulty than the analysis of the algebraic inequalities 

for three reasons: the seemingly ever present lack of a 

closed form expression for the matching surface, the fact

that the integral inequalities are actually classes of

inequalities with one member for each choice of f, a nd the

lack of a meaningful Newtonian limit to use as a guid e .

The first two problems can be overcome by resorting to 

purely numerical techniques to solve eq. (3.12) for the 

matching surface and performing the integrals. The problem 

of determining the strongest restrictions due to the 

integral inequalities then becomes a straightforward but 

time consuming parameter study.

The results of this parameter study are as follows. 

The strongest class of restrictions comes from the n/'F 

integral inequalities eq. (2.72) while the n/v inequalities 

eq. (2.74) are only slightly weaker except in the limit of 

q = 0 where the two inequalities agree as noted in section

2.4. The class of integral inequalities eq. (2.81) based on 

the t equation made no restrictions to numerical accuracy. 

The strongest restriction of the n/'F class of inequalities

57



came from the choice of q = 0 as shown in figure two. 

Although not shown in this figure for the sake of clarity, 

many choices of q were used yielding the result that as q is 

smoothly increased the range of allowed parameters also 

smoothly increases.

The fact that the choice q = 0 yields the strongest

restrictions is a quite fortunate result as the field

equations will allow this integral to be performed

analytically. To see this, note that this inequality is 

based upon the following combination of the field equations:

m -1 2
D [t Y D (n/Y)] = 0 . (3.24)

m

If this equation is integrated over A, any closed region of 

S, and the Gauss theorem is utilized one finds that 

, -12 m/ x Y D (n/Y) dl = 0 , (3.25)
3 A m

where 3A is the boundary of A. If this region A is chosen

to be the region bounded by (B , the projection of the

matching surface on S, portions of the axis and a curve at

constant r far from the fluid as shown in figure three then

—12 m ,-12®
/ T Y D (b/Y) dl = / T Y D (n/Y) d1
Qf m A” m

, -12®+/t YD(n/Y)dl ,(3.26)
R m

where A denotes the integration along the axis from the pole 

R+ to some large value of r = R, and R denotes the 

integration along the curve r = R from the north pole to the
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south pole. With this choice of A both the integrals on the 

right of eq . (3.26) can be performed analytically with the

results

, -1 2 m/ x V D (n/f) d1 
Ar m

3/2 — 1 — 1= 2 {n(R-R+) + ma[(R2+a2) -(R2+a2) ]} , (3.27)

and

, -1 2 m / T f D (n/'?) dl
R m

3/2
= -2 fi[R - m(3-2a ) ] + (3.28)

-1 2 m
Since the divergenceless character of t f D (n/f) allows 

the boundary of A to be freely deformed with no change in 

the value of the integral in eq. (3.25) R can approach 

infinity yielding

-1 2 m 3/2 2 2-1

/ x YD (n/'Odl = 2 [mfi(3-2afi)-fiR+-ma(R++a ) ] . (3.29)
© m

Thus, the integral inequality eq . (2.72) becomes

4maR+ft2 + 2R+(R+-3m)n + aK > 0 . (3.30)

This is the strongest known restriction arising from any 

known integral inequality. Like the n inequality, eq. 

(3.23), this restriction does not require the positive 

energy condition eq. (2.10) to hold. Thus, eq. (3.30) may 

be satisfied for configurations containing interior regions 

in which either the pressure is negative or eq. (2.10) is 

violated .
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This technique of deforming ID to a curve consisting 

of portions of the axis and a semicircle of infinite radius 

can also be applied to the x integral due to the fact that 

in the exterior x is harmonic. When f is chosen to be a 

constant the x inequality becomes

R+ 2.m .(3.31) 

Simple manipulations with eqs. (3.14) and (3.15) show that 

this inequality is weaker than the Boyer polar condition. 

Thus, the x inequalities are automatically satisfied for 

spheroidal configurations.

3.5. Overall Restrictions on Kerr Interiors 

The strongest restrictions on rigidly rotating, 

perfect fluid Kerr interiors come from a combination of the 

Boyer conditions eqs. (3.15) and (3.19), the n inequality of 

Hansen and Winicour eq. (3.23), and the h/'f integral

inequality eq. (3.30). Three distinct behaviors which

depend on the value of the ratio a/m are evident.

When a < m the interior parameters are restricted to a 

triangular region in the (ft,K) plane as seen in figures 4 

through 12. In these figures the boundaries of the region 

of allowed parameters are the n inequality which connects 

the origin to the top vertex of the triangle at K = 1, the

integral inequality which connects the top vertex to the 

vertex at the right, and the Boyer equatorial condition 

which connects the right vertex to the origin. As a 

approaches m the relative importance of the integral
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inequality diminishes. In the limiting case where a = m, 

shown in figure 13, the integral inequality poses no 

restrictions on the interior parameters. On these graphs

configurations above the d o 11 ed line have ergotoroids

emerging from the fluid. Their existence is consistent

with the 11 12findings of Butterworth and Ipser 1 It should

be noted that for all cases where a < m ergotoroids do 

appear; however, the regions for a << m are too small to 

indicate on the figures.

The prominent feature of these cases is the 

intersection of the n inequality and the integral inequality 

at K = 1. As K approaches one the matching surface becomes 

null and , therefore, represents the extreme relativistic 

limit. In this limit the n inequality becomes

ft ^ (a/2 m)[m +(m2-a2)1 2] 1 . (3.32)

3 9The right side is the angular velocity of the Kerr horizon

ft . Thus, the n inequality becomes 
H

ft > ft . (3.33)
H

Performing the same limit on the integral inequality yields

ft < ft .(3.34)
H

For the case where a = m the Boyer equatorial condition also 

implies eq. (3.34). Thus, combining the n inequality and 

the integral inequality (or the Boyer for a = m) yields a 

very simple result: For each Kerr exterior such that a m, 

there exists only one possible extreme relativistic
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configuration characterized entirely by its angular velocity 

which is equal to the angular velocity of the Kerr horizon. 

The conclusion drawn from this result is that the matching 

surface must approach the Kerr horizon in the extreme 

relativistic limit.

Another feature of the restrictions for cases where 

a _< m is the formation of a step-like behavior of the 

integral inequality in the limit as a 0 (i.e.,as the 

exterior approaches the Schwarzschild solution) which can be 

seen in figures 4 through 7. Although no restrictions are 

placed on non-rotating configurations (H = 0) due to the 

existence of the intersection of the n inequality and the 

integral inequality at K = 1, there is a limiting value of K 

for rotating configurations. As a approaches zero the 

integral inequality viewed as a quadratic in R+ becomes

R+ > 3m , (3.35)

which implies

K < 2/3 (3.36)

as demonstrated in the figures. The implications of the 

behavior of the restrictions in this static limit of a 

spherically symmetric fluid with a Schwarzschild exterior 

will be discussed in the next chapter.

When a > m the integral inequality poses no 

restrictions on the interior parameters. The restrictions 

arise from the n inequality and the Boyer conditions. For 

cases where m < a ^ 5.23094 m only the n inequality and the 

Boyer equatorial condition restrict the interior parameters
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as seen in figures 14 through 16. In these figures the

upper curve is the n inequality and the lower curve is the 

Boyer equatorial condition. At a a 5.23094 m the Boyer 

polar condition begins to play a role in restricting the

interior parameters as seen in figure 17. In this figure

the dotted line represents the Boyer polar condition. As 

seen in figures 18 through 21 the allowed parameters are

restricted to a triangular region in the (ft,K) plane with 

the boundaries defined by the n inequality at the left, the 

Boyer polar condition at the top and the Boyer equatorial 

condition at the right. One should note that the scales of 

the axes on figures 18 through 21 are decreasing as a 

becomes much greater than m. This shows that only nearly 

Newtonian (K << 1) and slowly rotating << 1) spheroidal

configurations are allowed in this limit.
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4.0. Concluding Remarks

4.1. Existence vs. Stability

As demonstrated in the last chapter, the strongest

restrictions do not rule out rotating fluid configurations

with arbitrarily high redshift. This is a somewhat

surprising result when one considers that the stability
8 9arguments Buchdahl and Bondi imply that z _< 2 for 

non-rotating configurations. To understand this apparent 

dichotomy the behavior of the integral inequality in the 

static limit of a spherically symmetric fluid with a 

Schwarzschild exterior will be derived and compared to the 

slowly rotating models discussed in chapter one. This 

comparison will show that the restrictions of chapter three 

are not as strong as those based on stability criteria.

The static limit is equivalent to considering 

perturbations to a spherically symmetric fluid with a 

Schwarzschild exterior. In this limit, to first order in a 

and fi, the surface is spherical as eq. (3.13) becomes 

K = 2m/R, where R represents the value of the Schwarzschild 

coordinate r at the matching surface. In terms of R the n 

inequality, eq. (3.23), reduces to
R3fl > 2ma (4.1)

and the integral inequality, eq. (3.30), reduces to
R2(R-3m)ft + ma > 0 . (4.2)

Although the n inequality implies that slowly rotating 

(£2<<1) configurations have little angular momentum (a<<l),
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it does not exclude rotating configurations with zero 

angular momentum. Such configurations would not appear 

possible without negative density or pressure regions. 

However, as noted in chapter three, positive density and 

pressure are not globally required for the inequalities to

hold.

The physical content of eqs. (4.1) and (4.2) can be

found by introducing the moments of inertia of the fluid and

the spacetime. The moment of inertia of the fluid can be
2written as I = amR where a represents the matter

distribution which can vary from a mass point (a = 0) to a 

thin shell of radius R (ct = l). The moment of inertia of a
o Qnearly static spacetime (J<<1) as defined by Hartle is

3 J
I = — . (4.3)

3 Q Q=0

This allows J to be written as J = Ift. By using the Kerr 

relationship, J = ma, and equating the two moments of 

inertia the Kerr parameter a may be written as
a = otHR2 . (4.4)

This allows the inequalities to be written entirely in terms 

of the unperturbed static background quantities m and R. 

Substitution of eq. (4.4) into the inequalities shows that

the n inequality is automatically satisfied and eq. (4.2) 

becomes R <^ (3 - ot)m, which implies that

K < 2/(3 - a) . (4.5)

Thus, in the static limit there exists a finite upper bound 

to the redshift of rotating models which depends on the 

matter distribution as represented by a. In the thin shell
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limit (a -► 1 ) the red shift becomes unbound ed as expected

from the models of Brill and Cohen1 and of De La Cruz and

Israel2.

The slowly rotating incompressible fluid models of 

Chandrasekhar and Miller6 provide a much more realistic case 

with which to explore the restriction. They found that a 

ranges from the Newtonian value of 2/5 to an upper limit of 

approximately 4/5. This upper limit to a occurs when the 

unperturbed fluid sphere has the minimum radius, 9m/4,

allowed by the stability requirement that the pressure

increase inwardly . This lower limit for R is a special

case of O
the results of Buchdahl and Bondi9 . For this

minimum radius K = 8/9 whereas the integral inequality eq. 

(4.5) with a = 4/5 yields an upper limit of 10/11. Thus, 

there are configurations allowed by the integral inequality 

(in the range 8/9 < K < 10/11) which contain a region or

regions in which the pressure must increase outward . This 

shows that in the static limit the restrictions based upon 

stability must be stronger than those based upon existence.

The limit coming directly from the integral 

inequality K = 2/3 corresponds to the case where a = 0 for 

which the moment of inertia vanishes. In this case it is 

clear that some negative density or pressure region must 

exist to preclude the formation of a horizon. Since the 

condition that the density and pressure be positive is a 

sufficient but not a necessary condition for validity of the 

inequalities such behavior is not excluded. Again, the
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conclusion is that restrictions based upon stability must be 

stronger than those based upon existence.

4.2. Future Trips into the Unknown which Lead Us back to

Reality

In this concluding section further explorations will 

be discussed. Of all of these, the question of stability 

must stand out. Although it seems that stability

requirements must further restrict the allowed interiors, 

the central issue is to what degree will they pose 

additional restrictions. The static limit implies that the 

restrictions due to existence are only slightly weaker than 

those due to stability. Could it be that the Bondi-Buchdahl 

z = 2 limit imposed on non-rotating fluids is misleading in 
the rotating case? If so, the redshift controversy40’41 of 

extragalactic astronomy could once again be revived. 

However, there is no known generalization of the z = 2 limit 

for rotating fluids.

Further investigations are also suggested by the

assumptions upon which the restrictions are based.

One key limitation is the fact that only rigid rotations

were considered. Generalizations to differential rotation
2 4for some of the algebraic inequalities have been found 

However, these results have not yet been proven for finite 

sources. The major difficulty in extending the Hopf theorem 

arguments to the case of differential rotation is that there 

is apparently no natural way of defining outside the

fluid. As it appears unlikely that astrophysica1 objects
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rotate rigidly, the question of the effects of differential

rotation merit further study.

Another limitation arises from the assumption that

only the relatively simple model of uncharged perfect fluids
4 2 4 3was considered. Bekenstein and Oron ♦ have made initial

investigations into the question of utilizing rigidly

rotating but charged fluids as a model for neutron stars.

Although no restrictions were imposed by their work, their

generalization of Von Zeipel's theorem implies that the

surface can unambiguously be defined by an equation similar

to the uncharged case but having an additional pressure

term, B /Sir, due to the magnetic pressure. As their model

represents the known physics of neutron stars very well, an

attempt to match this type of interior to an appropriate
4 4exterior such as the Kerr-Newman solution or the

Esposito-Witten family of solutions would be very

interesting. However, the generalizations of the global 

algebraic inequalities and the integral inequalities might 

be very difficult to generate due to the fact that the

magnetic field introduces circulation, as measured by the 

fields c^ defined in eq. (2.24), to the spacetime. This 

addition destroys the orthogonal transitivity of the

spacetime and the purely elliptical nature of the field 

equations. This consideration brings us to an important 

question. How does circulation in a spacetime which can be 

generated either by a magnetic field or by simple convection 

effect the restrictions? The added complexity of the field
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equations clouds this issue but it merits further

cons id eration.

As with most scientific endeavors this work leads to 

more questions than it answers. However, it is my hope that 

this very small step forward may provide motivation for 

further investigations which will give us a better 

understanding of the beauty that is ours to see on a clear 

night.
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Figure Captions.

Figure One. The Region of Integration V. It is bounded by 

by 0& , the projection of the physical matching surface onto 

S, and the curve x = e (dashed line).

Figure Two. The Integral Inequalities in the Limit as 

q 0. The curves labeled ra through re represent the

integral inequality eq. (2.72) for choice of q ranging from 

zero to one. The strongest restriction comes from the curve 

ra which corresponds to the choice q = 0.

Figure Three. The Region of Integration A. It is bounded 

by (£> , the projection of the physical matching surface

onto S, , portions of the axis extending from the poles

to some large value, R, of the radial coordinate and the 

curve r = R.

Figure Four. Restrictions for a/m = 10-5. Only values of

the parameters within the triangular region of the (mn,K) 

plane are allowed. In this case the step-like behavior of 

the integral inequality has become quite evident. The n 

inequality rises nearly vertically from the origin to 

intersect the integral inequality at K = 1 forming a very 

thin peak. The Boyer equatorial condition begins at the 

origin and intersects the integral inequality at (raft,K) = 

(0.104757,0.666667 ) .

4Figure Five. Restrictions for a/m = 10~ . Although not

apparent, the n inequality rises nearly vertically to meet
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1 near Q 0

equatorial condition (lower curve) intersects the integral 

inequality at (mf2,K) = (0.104765,0.666695 ).

the integral inequality at K = 1 near Q = 0. The Boyer

— 3Figure Six. Restrictions for a/m = 10 . Although not

apparent the n inequality rises nearly vertically to meet 

the integral inequality at K = 1 near ft = 0. The Boyer

equatorial condition intersects the integral inequality at 

(mft,K) = (0.104845,0.666949).

— 2Figure Seven. Restrictions for a/ra = 10_ . The n 

inequality (on the left) has now become apparent. The 

integral inequality and the Boyer equatorial condition 

intersect at (mft,K) = (0.105647,0.669498).

Figure Eight. Restrictions for a/m = 0.1. The values of mft 

and K are restricted to the area bounded on the left by the 

n inequality and the integral inequality (top right) and the 

Boyer equatorial condition (bottom right) which intersect at 

(mft,K) = (0.114251,0.695754).

Figure Nine. Restrictions for a/m = 0.3. The values of the 

parameters are restricted to the area bounded on the left by 

the n inequality and the integral inequality (upper right) 

and the Boyer equatorial condition (lower right) which 

intersect at (mft,K) = (0.138062,0.759145). For parameters 

above the dashed line an ergoregion exists at the equator.

Figure Ten. Restrictions for a/m = 0.5. The values of the 

parameters are restricted to the area bounded on the left by
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the n inequality and the integral inequality (upper right) 

and the Boyer equatorial condition (lower right) which 

intersect at (mft,K) = (0.171489,0.829032). For parameters

above the dashed line an ergoregion exists at the equator.

Figure Eleven. Restrictions for a/m = 0.7. The values of 

the parameters are restricted to an area bounded on the left 

by the n inequality and the integral inequality (upper

right) and the Boyer equatorial condition (lower right)

which intersect at (mn,K) = (0.222366,0.902967). For para­

meters above the dashed line an ergoregion exists at the 

equator. Note that the importance of the integral

inequality is diminishing.

Figure Twelve. Restrictions for a/ra = 0.9. The values of 

the parameters are restricted to an area bound on the left 

by the n inequality and the integral inequality (upper

right) and the Boyer equatorial condition (lower right)

which intersect at (mO,K) = 0.317761,0.973308). For para­

meters above the dashed line an ergoregion exists at the 

equator. Note that the importance of the integral

inequality is diminishing rapidly as a/m increases.

Figure Thirteen. Restrictions for a/m = 1. In this limit

the integral inequality imposes no restrictions. The 

restrictions come from the n inequality (upper curve) and 

the Boyer equatorial condition (lower curve) which intersect 

at (mft,K) = (0.5,1.0). Again for parameters above the

dashed line an ergoregion exists at the equator.
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Figure Fourteen. Restrictions for a/ra = 1.01. The only

restrictions come from the n inequality (upper curve) and 

the Boyer equatorial condition (lower curve) which intersect 

at (mft,K) = (0.333349,0.947707 ). For cases where a > m no

ergoregions form.

Figure Fifteen. Restrictions for a/m = 1.5. The only

restrictions come from the n inequality (upper cuvre) and 

the Boyer equatorial condition (lower curve) which intersect 

at (raft,K) = (0.134374,0.623607).

Figure Sixteen. Restrictions for a/m = 3.0. The only

restrictions come from the n inequality (upper curve) and 

the Boyer equatorial condition (lower curve) which intersect 
at (mil,K) = (0.440216xl0_ 1 , 0.327098 ) .

Figure Seventeen. Restrictions for a/m = 5.23094. The

restrictions for this case come from the n inequality (upper 

solid curve) and the Boyer equatorial condition (lower solid 
curve) which intersect at (mQ,K) = (0. 18273x10"1,0.19117 ) . 

However, at this value of a/m the Boyer polar condition

(dashed cuvre) begins to restrict the parameter range.

Figure Eighteen. Restrictions for a/m = 8. Restrictions

come from the n inequality (at left), the Boyer equatorial 

condition (at right) and the Boyer polar condition (at 

top). The n inequality and the Boyer polar condition
intersect at (mSl,K) = ( 0.7 8 1 2 1 1 x 1 0“ 2,0 . 1 2 5 ) . The two Boyer

conditions intersect at (mfi,K) = (0.92748xl0~2,0.125).
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RestrictionsFigure Nineteen. Restrictions for a/m = 10.

come from the q inequality (at lef t ) and the two Boyer

conditions. The Boyer polar condition intersects the n

inequality a t (mO,K) = (0.5x10 _2,o.i),» The two Boyer

conditions intersect at (mJl,K) = (0.652505x10 -2,o. 1).

Figure Twenty. Restrictions for a /m = 102. Restrictions

come from the n inequality (at left) and the two Boyer

conditions. The Boyer polar condition intersects the n

inequality at (mQ,K) = (0.5x10 \io-2) • The two Boyer
conditions intersect at = (0.189298x10“3,10“2). The 

importance of the n inequality is diminishing as a/m becomes 

larger .

3Figure Twenty-one. Restrictions for a/m = 10 . At this 

large value of a/m the restrictions demand that the 

configuration take on a slowly rotating (.Q<<1) and a nearly 

Newtonian (K<<1) form. In this Newtonian regime the effect 

of the n inequality begins to be negligible.
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