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ABSTRACT 

The effects of air blast from high explosives detonation on selected 

power plant structures and components are investigated analytically. Relying 

on a synthesis of state of the art methods estimates of structural response 

are obtained. Similarly blast loadings are determined from compilations of 

experimental data reported in the literature. 

Plastic-yield line analysis is employed to determine the response of 

both concrete and steel flat walls (plates) under impulsive loading. Linear 

elastic theory is used to investigate the spalling of concrete walls and mode 

analysis methods predict the deflection of piping. 

The specific problems considered are: the gross deformation of reinforced 

concrete shield and containment structures due to blast impulse, the spalling 

of concrete walls, the interaction or impact of concrete debris with steel 

containments and liners, and the response of exposed piping to blast impulse. 

It is found that for sufficiently close-in detonations and/or large explosive 

charge weights severe damage or destruction will result. This is particularly 

true for structures or components directly exposed to blast impulse. 

i-vi 
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EFFECTS OF AIR BLAST ON POWER PLANT STRUCTURES AND COMPONENTS 

1. INTRODUCTION AND PROBLEM DESCRIPTION 

The purpose of the effort, described in this report, is to investigate 

the effects of high explosive detonations on structures and components found 

typically in nuclear power plants. The specific interest lies in close-in 

detonations (1 to 100 feet from the structure) of explosive quantities which 

can reasonably be transported on site by motor vehicle (50 to 20,000 lb). 

The phenomena associated with such explosions are very complex and in general 

involve multiple loading effects, i.e. air blast, ground shock and direct 

shock in the case of near contact placement of the explosive. The current 

effort is limited to obtaining "first cut" estimates of the response to 

explosions and represents a synthesis of existing data, methods and procedures 

rather than an attempt at new research. Also attention is restricted ex­

clusively to the effects of air blast on structures, this being the primary 

loading mechanism from explosive detonation. 

Past efforts concerned with the effects of air blast on structures focus 

their attention primarily on the low and moderate overpressure range. It is 

usually assumed that the dimensions of the blast wave are large relative to 

those of the structure and that the shock wave is plane [1]. While such 

treatments are appropriate for very large explosions, such as those resulting 

from nuclear events, they are not suitable in the current application where 

the dimensions of the blast wave field and structure are of the same order 

of magnitude. The blast loading in this case is often very local and the 

variation of blast wave strength in its interaction with the structure must 

be accounted for. Also, blast wave durations may be shorter than the 

structure's clearing times, thus limiting the loads to one side of the structure. 

Past work for such blast loading has been limited to developing design 

procedures for explosive storage and manufacturing facilities [2]. The major 
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emphasis in these procedures is to determine the overall response of heavily 

reinforced concrete walls to the impulse load generated by the explosion. 

Loading on the wall face is assumed to be uniform. While these procedures 

are applicable to the problem under consideration, modifications must be 

introduced to account for the nonuniformity of loading which is important 

for the case of large structures and/or close-in explosions. 

In addition to the containment or shield structures much of the nuclear 

power plant equipment is susceptible to air blast damage. The inherent redun­

dancies and safety features, which help to minimize the hazards posed by air 

blast damage, as well as the physical plant layout may vary from installation 

to installation. It is not the objective of this study to investigate the 

vulnerability of specific power plants. Therefore, all analysis effort is 

concentrated on a few items which are not plant specific and whose failure or 

severe damage may by itself constitute a significant hazard. Specifically 

the study is limited to estimating the response of containment and shield 

structures as well as of piping runs outside of containment, such as main 

feedwater and steam lines. Both reinforced concrete and steel containment 

structures are considered. 

A major simplification in the structural response analysis arises from 

the fact, that the loadings in most cases can be considered as impulsive, 

and that the details of pressure-time histories are of little consequence. 

The reason for this is that in general the structural response times are 

significantly larger than the blast wave durations, the latter being of the 

order of one millisecond. Thus primary emphasis is placed on gross structural 

response produced by the total impulse over the loaded area. 

One exception are explosions close-in to concrete structures, where 

a direct strong shock wave is also transmitted into the wall due to the 
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reflection of the air shock at the surface. Wall damage may result in the 

form of spallation on the inner wall surface, when the shock wave reflects 

as a strong tension wave. This early time effect, produced by shock reflec­

tion, is strongly dependent on the blast wave pressure-time history and may 

lead to the formation of high velocity debris. Due to their high tensile 

strength steel structures loaded by air blast are not susceptible to 

spalling. The motion and deflection of concrete walls produced by the total 

blast impulse will continue long after the blast load ceases and can lead to 

a secondary spallation called scabbing [2], which is caused by shear and 

bending. This tends to separate the layer of concrete which covers the back 

face reinforcement. Again, this type of damage does not occur in steel 

structures, which will most likely fail due to the formation of plastic hinges 

The same failure mechanism is expected for reinforced concrete walls. In 

fact the most severe damage of concrete walls occurs when the wall deflections 

are sufficiently large to cause substantial plastic deformation of the re­

inforcement. Ultimately complete wall destruction by shear plug separation 

or fragmentation of the loaded area may occur. 

Steel containments are always surrounded by concrete shield structures. 

Therefore, they do not experience direct air blast loading, but they may 

suffer damage due to impact of concrete debris formed by spalling or 

disintegration of the concrete shield walls. Again the loading in such 

cases is primarily impulsive. For piping outside of containment the shock 

diffraction phase is of the same order of magnitude as the total duration of 

the blast wave. Thus no significant drag loading phase exists and the ap­

proximation of an impulsive load is again in general applicable. 

Contact placement of the explosive and the use of special shaped charges 

is not considered in the current study. While the employment of these 
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techniques may result in the severest local structural damage, it is not 

possible to calculate damage estimates for these cases by means of simple 

analytical procedures. On the other hand, fairly reliable damage estimates 

may be obtained from experimental data contained in the demolition litera­

ture [3,4]. Since a precise definition of contact placement cannot be made, 

the closest charge placement here is arbitrarily limited to a scaled dis-

1/3 tance of 0.2 ft/lbm or approximately 1.5 charge radii. While this distance 

is well within the fireball (6 charge radii) of the explosion, the peak 

reflected pressure at a wall ('\'68,000 psi) is still sufficiently moderate 

so that direct interaction and impedance matching of explosive to wall material 

may be neglected. Attention is restricted to the effects of bulk explosives 

and the analysis is simplified by assuming that the explosive charge is of 

spherical shape. The pressure loading of the wall is assumed to be that of 

a rigid surface. Thus structural motion or deformation does not alter the 

loading. In light of the impedance mismatch, between air and structural 

materials, and the shortness of a typical pressure loading this is a reasonable 

assumption. 

In the current study response data are obtained for reinforced concrete 

walls and pipes subjected to air blast from close-in explosive detonations. 

Further the behavior of steel walls impacted by concrete debris is analyzed 

and the deformation of steel liners, attached to the inner side of concrete 

structures, under the action of loose concrete debris is estimated. Methods 

for calculating the spalling of concrete walls as well as for their deformation 

under impulsive blast loading have been presented earlier [5], These techniques 

are summarized here (Sections 3 and 4) and representative results are given. 

Section 5 contains an outline of methods and typical results for the deforma­

tion of steel walls and liners under the action of concrete debris. Pipe 
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response under air blast loading is discussed in Section 6 and the details 

of the analysis method are presented in Appendix A. The estimation of air 

blast parameters and loads is discussed in Section 2. 

Where possible, the results are scaled as a function of the explosive 

charge weight (energy). Even where scaling is not applicable all data is 

presented in terms of the scaled charge standoff distance. The response 

estimates are based on simplified engineering analysis and in general reduce 

to a few simple algebraic expressions. It is not practical in the limited 

space of a report, to present sufficient response information to cover all 

situations of interest to nuclear power plant applications. Therefore, an 

attempt is made to provide sufficient blast loading information, which is 

usually more scalable or can be presented in a more compact form, so that 

any case of interest is readily computable by using the simple response 

formulas. 
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2. AIR BLAST LOADING 

The spherical air blast wave generated by an explosion undergoes a 

complex reflection and defraction process upon encountering a structure. 

The resulting local structural loading is time varying and depends on the 

blast wave peak pressure, its decay history, duration, and the angle of 

shock wave incidence. The blast wave structure interaction is best illus­

trated by the example of a flat wall. As shown in Fig. 1 when the spherical 

blast sweeps across the structure an ever increasing circular section of the 

wall becomes loaded. For a given explosive charge the local loading at any 

given circle of radius x is a function of the standoff y and the angle of 

incidence a. The detailed local interaction between the blast wave and 

the wall is illustrated in Fig. 2 at two different instances of time. In 

the first instant, blast wave reflection is still regular having a small 

angle of incidence while at the later time Mach reflection is indicated 

forming the familiar three shock configuration. This occurs at large angles 

of incidence (approximately angles larger than 40°). Also indicated in the 

figure are the shock waves induced in the wall by blast wave reflection 

and the stress waves resulting from their reflection at the back face of the 

wall. 

Due to the complexity of the blast wave interaction with the wall, no 

analytical description of the blast loading is possible. Therefore, loading 

definition is obtained from experimental data systematized in the form of 

graphs and charts and collected over many years, primarily for defense 

applications. In the current work. Army Technical Manual TM5-1300 [2] is 

primarily used. Some inconsistencies exist in the data of this document; 

however, the information presented is reasonably complete. Where necessary, 

the data has been supplemented with information from other sources [6]. 



WALL 

EXPLOSIVE CHARGE 

Fig. 1. Schematic of Explosive Charge and Wall 



Pg - INCIDENT AIR SHOCK 

Pj. - REFLECTED AIR SHOCK 

O-p - REFLECTED DILATATION WAVE 

Tp - REFLECTED SHEAR WAVE 

P^ - MACH STEM SHOCK r - RADIAL DISTANCE 

a - ANGLE OF INCIDENCE 

( a ) REGULAR REFLECTOR TIME t , (b) MACH REFLECTION TIME tg 

PQ - COMPRESSION WAVE 

Fig. 2. Air Blast Interaction with a Wall 
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The basic variables of interest to blast loading of structures are 

shown in Fig. 3. These are taken from Figure 4-5 of TM5-1300 [2] and are 

1/3 given as a function of scaled distance z = r/W , where r is the distance 

from the center of the explosive charge to the point of interest on the 

structure and W is the TNT equivalent charge weight. The curve labeled 

p is the peak incident shock pressure and i represents the scaled positive 

impulse of the incident blast wave. The p and i curves are respectively 

the peak reflected pressure and the scaled positive reflected impulse for 

a normal blast wave incidence on the structure, i.e. a = 0 (see Fig. 1). 

It should be noted that quantities referred to here are scaled but not 

nondimensionalized, hence the following units must be used: lb for charge 

weight, ft/lb for scaled distance, psi for pressures and psi-s/lb for 

impulses. 

The maximum pressure experienced by a rigid surface that is in the path 

of the blast wave is the peak reflected pressure denoted by p . This is 

dependent on the angle of incidence, a, which is the angle between the di­

rection toward the center of the explosion and the direction of the normal 

to the surface of the wall, and on the value of the incident pressure p at 

s 
the point under consideration. The reflected pressure p is given by the 

relationship 

p = C p (1) 
ra ra s 

where C (a,p ) is the experimentally determined reflection or amplification 

factor which is presented graphically in Fig. 4. The values shown are a 

S5mthesis of data given in TM5-1300 [2] and more recent data obtained by 

Carpenter and Brode [6]. The latter information is primarily used for values 

of a over 40°. At large distances and nearly glancing incidence, i.e. a close 

to 90°, the explosion in the vicinity of a large structure takes on the 
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Fig. 4. Blast Wave Reflection (Amplification) Factors 
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characteristics of a surface burst. This fact was employed to construct the 

curves of Fig. 4 at large angles of incidence. While the ratio of pressures 

(surface burst to free air burst at the same scaled distance) appears to be 

variable [2] the selected value of an amplification factor of 1.5 at 90° 

represents a reasonable average. The variation of p across the surface of 
ra 

a structure can thus be obtained from Eq. (1) using the information of Figs. 

3 and 4. 

With p determined. Fig. 3 is reentered to find a fictitious value of 

the scaled distance z from the reflected pressure (p ) curve. Using this z 

value the corresponding scaled positive reflected impulse i is found from 
ra 

the 1 curve. This one to one correspondence between p and 1 postulated 
r " "̂ ra ra ̂  

in TM5-1300 [2] is accepted for the purposes of this study even though it leads 

to some inconsistencies, eg. impulses which are not compatible with the peak 

pressure and the positive phase duration. The assumption appears to be suffi­

ciently good for scaled distances below z = 1, where the most severe loading 

occurs. 

The total positive reflected impulse I , delivered to any section of 

a structure, is computed by integrating the local values of impulse i over 

the area of interest. For flat walls this is a simple procedure however 

when structural surfaces are curved then a complex numerical procedure is 

required to obtain the total impulse. Results of the total impulse loading 

for specific configurations are presented in the following sections dealing 

with the structural response. In all of these computations the differences 

in timing of the impulsive load at various positions on the structure are 

ignored. This is justified since both arrival time differences and blast 

wave durations are substantially shorter, of the order of one millisecond, 

than the structural response times. Thus for all structural calculations it 

is assumed that the impulse is applied instantaneously over the entire section 

of interest. This should in general give conservative results. 
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As pointed out elsewhere [5] the spalling of concrete walls is strongly 

dependent on the wave form (pressure-time history) of the reflected blast 

wave. Of interest are reflections in the high pressure region, where little 

information is available concerning the wave form shape. In general the 

pressure decay is exponential, however recent experiments [6] indicate that 

the wave forms are more complex, particularly in the Mach-stem reflection 

region where two pressure peaks have been observed. To obtain computational 

estimates of spalling a simple analytical description of the wave forms, 

which was originally derived to describe nuclear explosions in air [7], is 

employed. The expression was found to be in reasonably good agreement with 

wave forms predicted by detailed numerical computations for a TNT explosion [8]. 

The equation takes the form of a triple exponential, which relates the time 

dependent pressure p to the peak blast wave pressure p and the dimensionless 

positive phase duration x = t/t , where t is time measured from shock arrival 

and t is the positive phase duration of the pressure. 

P(T) = P (1 - X) ( ae'^'^ + be"̂ "̂  + ce"̂ "̂ ) (2) 

s 

The coefficients (a,b,c) and the exponents (a,3,Y) ̂ î e functions of p . 

Values of these parameters were obtained from Fig. 24 of Reference [7], Of 

interest to spall calculations is the wave form of the reflected pressure. 

Consistent with the assumptions for impulse loading made earlier, it is 

assumed that the duration of the reflected wave is equal to that of the 

Incident wave and that the decay of both waves is similar. Hence, the para­

meters corresponding to the incident peak overpressure also describe the 

reflected wave. 

While equation (2) is simple and could be used when numerical spalling 

calculations are carried out, it is not possible to obtain analytical spall 
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solutions with this wave form. To generate such analytical estimates the 

decaying pressure wave is locally approximated by a simple power law 

P ( T ) = Pg (1 - T^). (3) 

The exponent y is a function of peak pressure p and varies also along the 
s 

pressure decay, i.e. it depends on the ratio p/p . Values of y are cal­

culated by matching, for each peak pressure p , the pressures p obtained from 

equation (3) with those from equation (2). Fig. 5 is a graphical presenta­

tion of the values of y thus obtained. 
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INCIDENT SHOCK PRESSURE, psi 

Fig. 5. Variation of Pressure Wave Form Exponent 
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3. CONCRETE WALL RESPONSE TO AIR BLAST IMPULSE 

Both flat and curved concrete walls are encountered in shield and 

containment structures of nuclear power plants. Their dimensions are of the 

order of 50 to 100 ft with radii of curvature having similar magnitudes. 

Therefore blast loadings for all charge weights considered here will be 

localized. In a "first cut" response analysis it is then conservative to 

assume that the walls are flat and uniform extending sufficiently far in all 

directions so that boundaries may be neglected. Since the reflected pressures 

experienced by the structures are in general very high (>1000 psi) both the 

elastic part of the response and the shear resistance of the loaded wall 

sections are not significant [5]. It is also assumed that enough structural 

ductility exists to sustain large displacements under a constant ultimate 

load. Both prestressed or conventionally reinforced concrete walls are 

considered. 

The structural analysis of the effects of the explosion consists of two 

phases: first, computation of the blast loading, according to the procedures 

outlined in Section 2, and second, evaluation of the wall resistance. In the 

first phase it is assumed that the wall provides no material strength to resist 

the impulse associated with the applied blast load. The only resistance 

available is provided by the inertia of the mass of the wall. In the present 

approach, given the total impulse and the total mass, a single velocity 

imparted to the entire wall segment under consideration is computed. During 

the resistance phase the ultimate load carrying capacity of the reinforced 

concrete structure is developed to provide a decelerating force which brings 

the wall back to rest. The total wall deflection or its rotation can then 

be compared with damage criteria. The latter may be either some maximum 

permissible material deformation or an emperical limit, which if exceeded is 

known to result in severe structural damage. 
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3.1 LOADING PHASE 

The procedure for obtaining the local scaled impulse per unit area 

1 at any point of the wall was outlined in Section 2. Given a charge weight 

W these values may be converted to actual impulses per unit area, i.e. 

I = W^^^i (4) 
ra ra 

Integration of the local impulses over the loaded area results in the total 

impulse. In the case of a flat wall the total impulse I is easily computable. 

^T = I(x,y) 2TTX dx (5) 
o 

Here the notation of Fig. 1 has been used. The local impulse values I(x,y) 

are given as functions of the standoff distance y and the radial coordinate x. 

Each I(x,y) is obviously equivalent to the corresponding I . Since no 

analytical expressions exist for the local impulse the integration is carried 

out numerically. It should be noted that all the variables on the right 

hand side of Eq. (5) are scalable, hence the total impulse can also be scaled. 

Introducing z = x/W^ and z = y/VI one can write 
X 

i„ = I„/W = 2-n 
T T 

i(z,z ) z dz (6) 
o 

o 

where i_ is the scaled total impulse over the circle with scaled radius z 
T X 

at a scaled standoff distance of z^ and z is the integration variable (scaled 

radius) along the wall. A graphical presentation of the relationship between 

1 and z for various values of z is given in Fig. 6. This data is universal 

and can be used to evaluate the impulse over any circular area on a flat wall. 

During the loading phase it is assumed that the only resistance offered 

to motion is by the inertia of the loaded wall segment. The velocity attained 
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0-0 1-0 
RADIAL DISTANCE, f t / l b 1/3 

TNT 

Fig. 6. Scaled Total Blast Impulse on a Flat Wall 
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by the wall segment is then simply 

I 

- = if (̂> 

Here M is the mass of the circular wall segment given as 

M 2 ^2/3 2 ,„. 

M = mTrx =mirW z (8) 

where m is the mass per unit area of the wall. Since the mass, for a given 

2/3 
wall, is proportional to the square of the radius x it will scale with W 

This is indicated by the second equality in Eq. (8). The total impulse 

scales directly with the charge weight W (see Eq. (6)), hence based on Eq. (7) 

the velocity of an impulsively loaded wall segment will scale with the cube 

root of the charge weight. This scaled velocity is wall specific because 

of its dependence on m the mass per unit area. However, it is possible to 

construct a general velocity variable, u, which includes the parameter m, 

as follows: 

vm 
u = 

wl/3- 2 
z 
X 

z 
"" i(z,z^) z dz (9) 
0 

Again this variable is only a function of the scaled standoff z and the scaled 

radius of the wall segment z . Fig. 7 represents the velocity variable as 

a function of the scaled standoff z for various wall response limits. As 

will be seen in later sections of this report these curves do not correspond 

to any fixed values of scaled radial distance z . Rather z varies with the 
•' X X 

standoff distance, e.g. for the velocity at the spall limit curve z = z 

(a = 45 deg.). 

3.2 WALL RESPONSE AND RESISTANCE 

An implied assumption in separating the wall response from the 

loading phase is that the motion of the wall does not affect the magnitude 
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of the blast loading. This assumption is justified because the duration of 

the impulse is short relative to the response time of the structure. Any 

motion of the structure during the blast loading period is therefore minimal. 

Similarily the assumption of no structural resistance during loading is 

acceptable because for most cases the shear stresses resulting from the 

application of the pressure forces substantially exceed the shear strength 

of the concrete [5]. 

Several mechanisms can be postulated to compute deflections of wall 

segments due to the impulse of the blast. Ultimate strength analysis, which 

is commonly used for the design of reinforced concrete structures, was found to 

be most appropriate for the current application [5]. This analysis assumes 

plastic yielding under a constant resistance force F and completely neglects 

the elastic strength of the material. The deflection of the wall 6 can be 

computed from the kinetic energy of the loaded wall segment, of mass M, and 

initial velocity v imparted by the blast impulse. 

6 = ̂  (10) 
2F R 

Due to the restraining effect of the inertia of the entire wall surrounding 

the loaded wall segment a circular yield line pattern, similar to that of a 

clamped circular plate, is expected to form. The uncertainties in the cir­

cumferential support conditions of the loaded wall segment, which is neither 

clamped or simply supported, and in the load distribution make an estimate 

of the ultimate load capacity F difficult. Consideration of all the factors 
R 

[5] lead to the following simple compromise expression 

F^ = 10 M^. (11) 

Here M is the ultimate moment assuming that the wall is equally reinforced on 

both faces, or the average ultimate moment if the reinforcements, are different. 
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For conventionally reinforced concrete walls the ultimate moment is [9] 

ô = ̂ s ̂ s (d - T^ (12) 

where A is the reinforcement steel cross-sectional area per unit width 
s '^ 

(height) of wall, f is the steel yield strength, d is the effective depth 

of reinforcement from the loaded face of the wall, and a is the concrete 

compression block depth. The latter can be evaluated by equating the com­

pression force in the concrete to the tension force of the reinforcement 

at yielding. The compression is assumed to act over an equivalent block of 

uniform stress [9], of intensity 0.85 f , where f is the concrete compression 
c c 

strength. Hence one obtains 

A f 

c 

When spalling or scabbing of the concrete covering the reinforcement is ex­

pected, the expression for the ultimate moment is modified [2] 

M = A f d (14) 
o s s c 

where d is the distance between the centerlines of the front and backface 
c 

reinforcement. For prestressed concrete walls the computation of the ultimate 

moment M is considerably more complicated. It must be based on the full 

plastic strength of the prestressing tendons and their location in the wall 

cross-section. An average value of M for horizontal and vertical directions 

as well as different bending directions is determined and used to compute the 

ultimate load capacity F . 
R 

Eq. (10) can be rewritten in terms of the total impulse I and the 

ultimate moment M 

I ° 2 

6 = „„ ̂  „ (15) 
20 M M 

o 
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The rate of increase of total impulse with radial distance along the wall 

varies significantly, being very high for very small radii and diminishing 

as the radius increases (see Fig. 6). On the other hand the mass of the 

circular wall segment increases as the square of the radius. Therefore based 

on Eq. (15) one may expect a maximum displacement 6 to exist. Since no 

analytical expression for 6 in terms of radius exists the maximum is found 

numerically by evaluating the expression over circles with ever increasing 

radii until the critical value is located. To be conservative in the wall 

deflection estimates it is this maximum value of 6 which is used. 

It is readily noted from either Eq. (10) or (15) that the deflection 6 

is a scalable quantity. Since the impulse is proportional to the charge 

weight W and the mass scales as W one finds that 6 scales as W . Again 

to eliminate the dependence on specific wall parameters a universal wall 

deflection variable may be constructed which represents the maximum deflection 

as a function of the scaled standoff distance only, i.e. 

6 m M 
A = -^^3° (16) 

W ' 

The resulting curve is shown in Fig. 8. It can be used to estimate the 

maximum deflection for any specific wall (parameters m and M ) under the action 

of an impulsive blast loading resulting from an explosion of charge weight 

W,detonated at any arbitrary standoff distance y. The velocity of the wall 

segment corresponding to this maximum deflection is shown in Fig. 7. The 

particular shape of this curve results from the fact that for close-in ex­

plosions the maximum deflection occurs when the plastic hinge radius x (radius 

of loaded segment) is approximately one and one half times the standoff 

distance y, i.e. x/y - 1.5, while for larger standoff distances the ratio is 

x/y =3.7. A sharp transition occurs between these two regimes around a 
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1/3 scaled standoff distance z = 1 ft/lb 
o 

Another measure of wall damage is the rotation or angular deflection 

the wall experiences at the plastic hinge radius. For the circular yield 

pattern assumed here the tangent of this rotation angle 0 is simply the 

ratio of wall deflection to the radius of the plastic hinge circle, i.e. 

tan0 = - (17) 
X 

Again a maximum rotation exists for each charge standoff distance which 

must be found by numerical means, i.e. by integrating over increasing circles. 

The maximum rotation angle 0 does not coincide with the maximum of the 

deflection 6. In general it has been found that the maximum 0 occurs before 

(at smaller hinge radii than) the maximum 5. For the range of scaled stand­

off distances from 0.2 to 3.0 the ratio of hinge radius to standoff x/y, at 

maximum 0, varies from 0.75 to 1.10. To be on the conservative side the 

maximum value of 0 will be used to indicate wall damage rather than the value 

corresponding to the maximum deflection. 

From Eq. (17) it is obvious that tan0 is a scalable quantity. The 

deflection 6 scales as W and the radius x scales as W^ , therefore tan0 

is directly proportional to the charge weight W. Again a universal wall 

rotation variable, which contains the wall specific parameters, can be con­

structed. 

M m tane 
0 = -^-- f (18) 

W z 
X 

The relationship between the scaled wall rotation variable of Eq. (18) and 

the scaled standoff distance is shown in Fig. 9 while the wall velocity 

corresponding to the same loading is given in Fig. 7. It should be noted 

that the scaling pertains only to the function tanO and not to the angle 0 
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itself. The reason for this is, that only tanO can be directly expressed in 

terms of scaled quantities and that the relationship between 0 and the trig­

onometric function is neither linear nor a simple power law depedence. Never­

theless the information of Fig. 9 can be readily employed to estimate the 

maximum rotation at the hinge line for any reinforced concrete wall under 

impulsive blast loading. 

By virtue of the assumption that the elastic response can be neglected, 

the application of the procedure outlined above must be restricted to loadings 

which indeed produce large plastic deformations. The upper limit of applica­

bility will be dictated by the failure or rupture strains of the reinforcement 

steel. For the circular yield patterns assumed here the relationship between 

strain e and the hinge rotation 0 can be approximately stated as 

COS0 = - ^ (19) 
1+e 

Thus for example if the rupture strain of the reinforcement is e = 0.10 

then the computational results may be applied to rotation angles up to 25°. 

Both very small charges as well as extremely large charge weights should 

not be treated by the analysis. For small charges there will be no gross 

plastic deformation of the wall. For very large charges, particularly at 

large standoff distances, the assumption of local loading and deformation of 

a single wall becomes invalid. While no precise limits on charge weight can 

be established, it appears that applicability of the wall response calculations 

should be approximately restricted to the range of 50 - 20,000 lb of TNT. 

3.3 EXAMPLES OF WALL RESPONSE COMPUTATIONS 

The methods and procedures outlined above are applied to two 

typical walls in order to estimate their maximum deflections and rotations 

under the action of explosive charge detonation. The examples also illustrate 
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the procedures which may be employed to establish acceptable limits on 

either charge weight or standoff distance, based on selected damage criteria. 

Since the computations for the two example walls have been detailed else­

where [5], only a summary of their physical and geometrical descriptions 

is presented below: 

a - Conventional Reinforced Concrete Wall 

Wall thickness 

Concrete Compression strength 

Steel yield strength 

Reinforcement in each face 

and in each direction 

Effective depth of reinforcement 

Ultimate moment (Eq. (12) and (13)) 

Ultimate load capacity (Eq. (11)) 

h = 30 in. 

f = 4,500 psi 
c 

f = 60,000 psi 
s 

A =1.5 in^/ft 
s 

d = 27 in. 

M = 0.195 X 10 ft-lb/ft 
o 

F^ = 1.95 X 10^ lb 
K 

b - Prestressed Concrete Wall 

Wall thickness 

Concrete compression strength 

Conventional steel yield strength 

Tendon yield strength 

Plastic strength of each tendon, 

170-1/4" diameter strands 

Tendon spacing - horizontal 

vertical 

Tendon location - horizontal 

vertical 

Horizontal reinforcement-inside face 

h = 

f = 

f = 

42 in. 

4500 psi 

60,000 psi 

f̂  = 240,000 psi 

T = 2.0 X 10 lb 

^H 

^ 

^H 

\ 

A 

= 

= 

= 

= 

= 

27 

48 

6 : 

21 

1.: 

in. 

in. 

Ln., 

in., 

from outside face 

, at centerline 

27 in^/ft 
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Effective depth d = 39 in, 

i oV Ultimate moment - vertical tendons M „ = 0.7 x 10 ft-lb/ft 

horizontal tendons M „ = 2.0 x 10 ft-lb/ft 
oH 

horizontal M = 0.24 x 10^ ft-lb/ft 
reinforcement ° 

Average ultimate moment M = 0.9 x 10 ft-lb/ft 
o 

Ultimate load capacity F^ = 9.0 x 10 ft-lb/ft 

The results for Wall Type-a and Wall Type-b are summarized in Fig. 10 

and Fig. 11 respectively. Shown are iso-deflection curves and iso-rotation 

curves as they depend on charge weight and standoff distance. The results 

are for close-in deformations in the range of scaled standoff from 0.2 to 

1/3 1.0 ft/lb . If displacement of the wall is to be limited to a specific 

value, say 1 ft, then the charge weights that can be tolerated at any specific 

standoff distance can be determined from the figures. Alternately given a 

maximum charge weight the required standoff distance may be obtained again 

for a specific deflection limit. The limits on displacement may be considered 

as "functional" limits. The severity of the effects caused by a particular 

deflection depends not only on wall type and thickness but also on the 

structural dimensions. Thus, for the same deflection, a wall with a small 

span may suffer considerably more damage than a larger wall. On the other 

hand rotation limits can be easier related to local structural damage since 

they are based on maximum reinforced concrete ductility. Thus TM5-1300 [2] 

recommends that rotation at a yield line, as defined by conventional ultimate 

load analysis, be limited to 5° where structural Integrity is to be maintained. 

If large deformations and scabbing are to be allowed then TM5-1300 [2] recom­

mends a 12° limit on yield line rotation. The curves corresponding to these 

two limits are shown in Figs. 10 and 11. It can be seen that the critical 
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.-.--'"^^ î̂ -̂''̂ '̂  

1 II 

1 1 1 1 n i l 

^ ^ ^ ^ 

1 1 1 1 1 i l l 

1 1 

^ o 5 ^ 

1 M i l 

1: 

^ 

— 

z 

— 

II 

10 10 10 

CHARGE WEIGHT. W-lb 

10 

Fig. 11. Deflections and Deformation Criteria as a 
Function of Charge Parameters for Wall Type b 



32 

explosive charge weight, at any particular standoff distance, can easily 

vary over an order of magnitude depending which limits or allowable damage 

criteria are chosen. While fairly precise bounds exist for ultimate 

strength design of concrete structures [9] under ordinary conditions and 

static loadings no such criteria are available for the dynamic response of 

air blast loaded structures. At best one can arrive at some criteria based 

on the physical appearance of the structure at the end of the response 

phase. This is the basis for the above mentioned rotation limits. Similarly 

experimental evidence exist [2], that very severe wall damage, in the form 

of scabbing and disintegration of the concrete, is to be expected when the 

maximum deflections are as large as the wall thickness. In the absence of 

more precise information the above criteria may serve as guides for the 

setting of charge weight and standoff limits. 

3.4 EFFECTS OF WALL CURVATURE 

No simple techniques are available to estimate the structural 

response of curved concrete walls subjected to explosive air blast loading. 

For curved walls loaded on the convex side, as would be the case for nuclear 

power plant containments, the flat wall estimates should provide conservative 

answers. Here only the effect of wall curvature and of finite structural 

size (finite radius) on the blast loading and impulse will be examined. 

Subsequent response calculations are again carried out with the flat wall 

approximations using however the impulses for the curved structure. 

The interaction of a spherical blast wave with a cylindrical 

structure results in a three-dimensional geometry and flow field. As the 

blast sweeps across the structure their line of intersection is distorted 

from the circular ring shape of the flat plate to a complex three-dimensional 

elliptic shape. An approximate numerical technique was developed to obtain 
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the impulse on the structure acting in a direction normal to the axis of 

the cylinder. The integration of impulse was performed in a grid network 

consisting of circles and longitudinal strips parallel to the cylinder axis. 

Again at each point the reflected impulse per unit area was determined by 

the procedure outlined in Section 2. Since the blast wave spreads beyond 

the width (diameter) of the cylinder appropriate cutoffs are introduced in 

the integration procedure for the total impulse. Fig. 12 shows the total 

impulse variation with scaled standoff distance over cylindrical structures 

with five different radii. Also shown is the total impulse on a flat wall. 

The length or height of the cylinder (wall) in all cases was the same 100 ft 

and the charge weight was 1000 lb. It can be seen that for large diameter 

structures the impulse differs little from the flat wall case. Due to the 

sharp reduction of projected area the total impulse is significantly reduced 

when the cylinder radius is small (5 ft). 

Using the flat wall response analysis of section 3.2 but the impulses 

as properly computed for a curved structure one obtains the deflections and 

hinge line rotations shown respectively in Fig. 13 and Fig. 14. Again for 

large radii there is little deviation from the flat wall results, however 

for small cylinder radii the difference is substantial. 

Based on these results it may be concluded, that the flat wall analysis 

while somewhat conservative will give reasonable estimates of wall response 

for typical nuclear power plant containment structures which in general have 

cylinder radii on the order of ten's of feet. On the other hand for structures 

with diameters of the order of a few feet, such as pipes, the flat wall 

computation of impulses is a gross overestimate and the proper numerical 

impulse evaluation should be used. An added benefit of using flat wall 

calculations for large diameter structures is that the results are scalable. 
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The introduction of an additional length scale, i.e. the diameter of the 

structure, makes scaling of the impulse load on a cylinder impossible. There­

fore loads on small diameter structures must be computed individually, i.e. 

for each charge weight and standoff. 
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4. SPALLING OF CONCRETE WALLS 

It was indicated earlier that spalling may occur on the back face of a 

concrete wall which is subjected to air blast on its front phase. The 

phenomenon of spall in brittle materials occurs when strong tension waves 

are reflected into the wall from the free surface at the back face and 

interact with the decaying compression wave in such a way as to produce 

locally tension stresses which exceed the dynamic tensile rupture strength 

of the material. Since the process has been discussed at length elsewhere 

[5,10,11,12] only a brief outline of the assumptions and calculation procedures 

will be given here. 

It is assumed that the wall material is linear-elastic and the spalling 

occurs instantaneously whenever the dynamic tensile ruptures strength is 

reached. The actual spherical wave interaction with the back face shown in 

Fig. 2 is approximated by plane wave theory, using both normal and oblique 

reflections, for which analytical solutions are possible. 

To obtain the time history of the compression wave incident on the back 

face of the wall, it is assumed that the wave form remains similar to that of 

the air blast and that the peak pressure in the wall decays linearly with 

distance through the wall. This is consistent with a linear-elastic material 

behavior and constant wave speed as well as with the spherical divergence 

of the pressure wave. Hence for any angular position a (angle of incidence) 

the value of the peak compression arriving at the back face of the wall P 

is given in terms of the peak reflected pressure p at the front face as: 

p = P ~irh = P - ^ • (20) 
a ra r + h/cosa ra y + h 

Here r is the radial distance from the point of burst to the wall at angle a, 

h is the wall thickness and y is the normal distance from the explosion point 
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to the wall (y = r cosa). Once p is determined the decay of the compression 

wave at the back face of the wall and angular position a is obtained by the 

assumption of wave similarity. For analytical estimates of wall spallation 

this pressure decay must be represented by a simple mathematical expression. 

We assume that the power law of Eq. (3) locally approximates the pressure 

decay with the variation of the exponent given in Fig. 5. 

4.1 SPALL AT NORMAL INCIDENCE 

The reflection of a plane compression wave from a free surface at 

normal incidence is a one-dimensional problem as shown in Fig. 15. Assuming 

that the material is linearly elastic with constant wave speed, the condition 

of a stress free boundary implies that a tension wave, equal in strength 

and wave shape to that of the compression wave, is reflected back into the 

wall as illustrated in Fig. 15 (a). The actual state of stress of any 

location is then the algebraic sum of the two stress waves (compression and 

tension). Whenever this net stress a at the head of the reflected tensile 

wave equals the dynamic tensile rupture strength a of the material, spallation 

will occur as illustrated in Fig. 15 (b). Designating all stress values as 

positive quantities, p for compression and a for tension, one can write for 

the first spall 

'T = %l = %-^l^h^ =Po-Pl(V' (21) 

Here the subscripts o refer to the peak initial value of stress in the wave 

and p is the stress in the compression wave at the location of the first 

spall. Considering the symmetry of the waves and the constant wave speed it 

can be easily demonstrated that time t.. , which corresponds to pressure p 

in the compression wave, is given by 

26 

h = - r ' (22) 



40 

FREE SURFACE 
BACKFACE OF WALL 

NOTE: 
ACTUAL STRESS DISTRIBUTION 
GIVEN BY SOLID LINE 

SPALL OCCURS 
WHEN o-̂  = <r^ 

Fig. 15. Spalling at Normal Incidence 



41 

where 6 is the thickness or depth of the first spall and c is the wave speed. 

If the initial peak compression is much larger than the tensile rupture 

strength a and the wave form is decaying with time then it is possible to 

obtain multiple spalls. In fact, the theoretical number of spalls n is given 

as 
P„ 

n < -^ . (23) 
^T 

Since a new free surface is generated every time a spall appears, the reasoning 

applied to the first spall can be extended to all spalls. Thus, Eq. (21) can 

be generalized for an arbitrary spall k as follows: 

^T = V = V l ^ V l ^ - \ \ ^ • (24) 

Here p, is the value of the compression wave when the k's spall occurs and 

p, . is the value corresponding to that for the preceding spall. Again con­

sidering wave S3rmmetry and constant wave speed the time t, along the wave form 

corresponding to stress pj^ can be simply ©"btained . 

2(6. + 5- + ... + 6, . + 6, ) 
tĵ  i ^ ^=i ^ (25) 

From the above it can be seen that the thickness of the spalls depend strongly 

on the wave form of the compression wave. 

The velocity of the spall layers for this simple one-dimensional case is 

obtained by equating the momentum of the spall layer to the portion of the 

impulse imparted to it by the compression wave and still trapped in it at the 

time of spall. Expressing all quantities per unit area one can write for the 

first spall 

h = ^ p(t)dt = p 5̂ u (26) 
w 1 i 

0 
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where 1 is the trapped impulse, p the density of the wall material and u. 
1 w 1 

the velocity of the first spall layer. By simple analogy, the velocity u, 
K. 

for any arbitrary spall k can be obtained from: 

rt. 

Jt 
P(t)dt = p^6^u^ (27) 

k-1 

Again, the strong dependence of spall velocity on the form of the compression 

wave can be readily discerned. 

To derive specific expressions for spall thickness and velocity, the 

wave form approximation given by Eq. (3) must now be employed. Substituting 

into Eq. (21) and using Eq. (22) yields the following relationship for the 

first spall depth 

ct^^a \1/Y 

•.•S'S. (28) 

A general relationship is derived for the k-th spall by using Eqs. (24) and (25) 

together with expression (3). After simplification one obtains 

\ = 2 
2 V o ; 

1/Y (k - Da , 1/YI c t ^ / a ^ \ l / Y r 
k^/Y - (k - 1)^/^ 

(29) 

The spall velocities obtain from the impulse expressions. Eq. (8) can 

be integrated using (3). Substitution of Eqs. (22) and (28) and subsequent 

simplification yields the velocity of the first spall 

2P. 

1 cp 
w 

1 -
Y + 1 P, 

(30) 

The same procedure can be applied to any spall and after much simplification 

one obtains for the velocity of the k-th spall 

2P. ( 1 a_ 

k cp 1 -

w 
Y + 1 P, 

k + p^ - 1 
(31) 
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It is interesting to note that the spall velocities do not depend explicitly 

on the blast wave duration t and thus the explosive weight. 

4.2 SPALL AT OBLIQUE INCIDENCE 

When a plane compression wave in an elastic medium strikes a free 

surface obliquely the reflection process becomes considerably more complex 

than in the case of normal incidence. To maintain a stress free boundary at 

the surface two waves must be reflected back into the material, namely a 

dilatational wave and a shear wave [13]. A typical reflection process of this 

type is illustrated in Fig. 16. For linear-elastic media the reflection angle 

for the dilatational wave must be equal to a the angle of incidence because 

its wave speed is equal to that of the incident wave. However, the shear 

wave having a different wave speed c', reflects at a different angle 3 in 

order to stay in contact with the point of wave incidence as it moves across 

the surface. The relationship between these angles, wave speeds, and the 

Poisson's ratio v of the material can be obtained from Snell's law [13] and 

is written as 

sm g _ _c_ 
sin 6 c' 

>(1 - v)]-
1 - 2v J 

1/2 
(32) 

Concerning the strengths of the reflected waves, these are obtained from the 

condition that the sum of the resultant stresses normal to the surface must 

be zero. Using a reflection coefficient TI_ it can be shown [5,12] that the 

following relationships hold. 

R̂ = V l (33) 

•"R " ^ ( \ "̂  ̂ '̂'"̂  2e] -^,0^ (34) 

2 ^„ 
tan B tan 2p - tan a ,„c\ 

T] = 2 ^̂ ^̂  
tan 3 tan 2B + tan a 
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Fig. 16. Interaction of an Oblique Compression 
Wave with a Free Surface 
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Here a is the amplitude of the incident dilatation wave and a and x 
I R R 

are the amplitudes of the reflected dilatational and shear wave respectively. 

For physically acceptable values of v the dilatational wave speed is 

always larger than the shear wave speed and thus angle 3 is smaller than 

angle a. The above equations also indicate that the reflection process is 

independent of the amplitude of the incident wave and is only a function of 

material properties and the angle of incidence. Using typical material 
4 

properties for concrete, i.e., v = 0.15 and c = 10 fps values of the angle f 

and the reflection coefficient ri„ waves are obtained (Fig. 17). It is 
R 

interesting to note that the reflection factor r\ (Fig. 17b) changes sign 

twice as the angle of incidence varies from zero to 90 degrees. Since such 

a sign change implies a phase reversal of the reflected dilatational wave, 

no spalling should be expected in concrete for angles of incidence larger 

than 45°. 

The geometry of a typical oblique spall is shown in Fig. 18. Also 

shown are the profiles of the compression and reflected tension wave. Intro­

ducing again the pressure notation p (positive quantities) for the stress 

in the incident compression wave and letting q be the absolute value of the 

reflection coefficient q one can write for the first spall 

R 

^T == ̂ R - Pl^^) = ^Pa - Pl(^l> (3^) 

where the second expression obtains from (33) together with the identity 
n a^ = np . The thickness of the spall 6̂  is now related to the t̂  (when 
K i a i -L 
the pressure is p ) by the following modified equation: 

26 cos a 
t, = - ^ . (37) 
1 c 

For strong compression waves multiple spalls are again possible. Their 

theoretical total number n can be estimated from the following expression [5] 
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17. Free Surface Reflection Parameters for Oblique 
Dilational Wave (Poisson's Ratio = 0.15) 
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Fig. 18. Spalling at Oblique Incidence 
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For an arbitrary spall k the relations giving spall depth are: 

k> 
o,j, = qp k-l(\-l> - Pk̂ V = ̂ \ - V ( T ^ ) - Pk̂ V 

and 

'^k^ 

2(6 + 6 + + 6 ĵ  + 6 )cos a 

(38) 

(39) 

(40) 

Spall velocities are again obtainable from the impulse integral. However, 

since that impulse is acting in the direction of the incident wave, the 

velocity will also be in this direction and the impulse is trapped in a 

length given by 6/cosa. Thus for the first spall the relationship is 

P„u w 1 cos a 
p(t)dt (41) 

For an arbitrary spall k one obtains 

P.u-w k cos a 
p(t)dt (42) 

"k-1 

Applying the approximate wave form, given by Eq. (3), to the above 

relationships one obtains specific expressions for spall thicknesses and 

velocities. 

Thickness of 1st spall 

1 2 cos a \ p^ y 

1/Y 
6, = 

Thickness of k-th spall 

•̂ k 1 CO OS a I L 
(1 - nS'/^ - (1 

k-l l/y' 
n ) 1 + 

1 - n P. 

(43) 

1/Y) 

>(44) 
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Velocity of 1st spall 

2P„ 
u, = 1 (Y + l)cp 

2 
cos (X 

w 
(Y + n) - — 

a 
(46) 

th 
Velocity of k spall 

2 
2p cos a \ , /i k\ 0 

_ _la I / J. K I 1 - n I T (47) 

4.3 SPALL CALCULATIONS AND RESULTS 

With the relationships derived above it is possible to calculate 

the spall variables in any given situation. The required inputs are the 

charge weight, wall thickness, and charge standoff distance. The spall 

parameters at any arbitrary incidence angle may then be readily obtained. 

Since the detailed procedure has been outlined before [5] only representative 

results which concern the most salient features of spalling will be given 

here. These results will be used to indicate trends rather than provide de­

tailed information for all possible ranges of spalling. 

Evidence exists [10] that the dynamic tensile rupture strength of 

brittle materials is substantially higher than the static value. In recent 

experiments with concrete [14], values in excess of 2000 psi were measured. 

This information was used to generate the computational results presented 

here. The other required physical parameters are typical for the quality 

of concrete used in nuclear power plant structures. In summary the values 

used in the computations are: 

Compressive Strength 

Dilatational Wave Speed 

Poisson's Ratio 

Dynamic Tensile Rupture Strength 

f = 4000 psi 
c '^ 

c = 10^ ft/s 

V = 0.15 
a = 2000 psi 
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Since all of the blast wave parameters including the positive over­

pressure phase duration t can be scaled [2], the spall results would also 

be scalable except for the finite wall thickness h which affects the com­

pression wave attenuation (see Eq. (20)). However, by using the expedient 

of a scaled wall thickness [5] it is possible to present the results in a 

more compact form. Thus all length dimensions will be scaled with the cube 

root of the explosive charge weight (w ). 

Fig. 19 presents spall thickness (depth) and velocity at normal shock 

incidence (a = 0), as a function of charge standoff distance with spall 

number as a parameter as indicated in the figure. The results are for a wall 

of zero thickness, i.e. no attenuation of shock wave in the wall is assumed 

to take place. The spall depth increases with spall number but the spall 

velocity shows an opposite trend. Thus the first spall has the highest 

velocity while its thickness is a minimum. Spall thickness also increases 

with standoff distance but again the spall velocity decreases. These trends 

reflect the dependence of spall thickness on the profile of the compression 

wave which is steepest at the shock front and flattens out as the pressure 

decays. Similarly, the wave forms become less steep as the peak pressure 

decays, i.e., the standoff distance increases. 

The most notable aspect of the results is that high spall velocities 

(100-500 ft/s) are associated only with very thin spall layers. Even for 

4 
charges of 10 lb the corresponding spalls are less than one quarter inch 

thick. On the other hand for substantial spall layers (> 1 in.) the velocities 

are quite low (about 15 ft/s). Because of this in the case of normal 

incidence, the kinetic energy per unit area of spall does not vary appreciably 

over the entire range of blast parameters considered. Similarly the total 

depth of spall, i.e., the sum of all spall layer thicknesses, is nearly 
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1/3 
constant, being on the order of 0.25 ft/lb . This is not an unexpected 

result. It can be shown [5] that the total depth of spall D is approximately 

equal to one half the wave length of the compression wave, i.e., D - ct /2, 

and this quantity is remarkably constant in the pressure range of interest. 

For reinforced concrete walls spalling is expected to be limited to the 

concrete layer covering the reinforcement, since this layer is thinner than 

the predicted total spalling depth. 

Fig. 20 again gives spall depth and velocity information but as a function 

of spall number with scaled standoff distance as a parameter. This is a 

clearer illustration of the spall number cut-off at various standoff distances, 

e.g., for the assumed dynamic tensile rupture strength of 2000 psi, 33 spalls 

1/3 may occur at a standoff of 0.2 ft/lb while only 3 spalls will be possible 

1/3 

at a standoff of 1.0 ft/lb . It should be obvious, that due to the dis­

crete nature of spalling, the spall number cut-off is not a continuous function 

of standoff but proceeds in steps. 

The effect of wall thickness on spall velocity and depth is illustrated 

in Fig. 21, where results are given for the first spall variables at normal 

incidence as a function of scaled charge standoff distance with scaled wall 

thickness as parameter. For fixed charge weight and distance the spall thick­

ness increases with increasing wall thickness while the spall velocity de­

creases. Similar results are obtained for subsequent spalls. Typically for 

3 
a 10 lb charge at 3 ft standoff a wall thickness of 3 ft will result in a 

threefold increase in spall thickness relative to zero wall thickness and a 

twofold decrease in spall velocity. For larger standoff distances the effect 

becomes less pronounced. 

A very strong effect on spall thickness and velocity is produced by 

variations in angle of shock incidence a. This is illustrated in Fig. 22 



10° p 

10 — 
to 

a. 

UJ 
a 
_ i 
_J 
<t -3 
^ 1 0 

10 

10̂  

Zo= 0.2 ft/lb 
1/3 

=?I0 

10 

1/3 
Zo= 0.2ft/lb -i\0 ^ 

CO 

SPALL DEPTH 
SPALL VELOCITY 

INCIDENT ANGLE a = 0 
WALL THICKNESS Z^=0 

1 1 

10' 

(A 

2 >• 

o 

.10^ 

15 20 25 
SPALL NUMBER 

30 35 
10 

40 

Ln 

Fig. 20. Variation of Spall Depth and Velocity with Spall Number 
at Various Standoff Distances 



S
P

A
LL

 
D

E
P

T
H

, 
ft

/l
b 

1/
3 

o
' 

p ro
 

a
t 

m
i 

l
l

l
l 

n
il

 

o
 

o
 

o bo
 

I 
I 

I 
I 

I 
i 

m
il

 
ro

 O
 

I 

S
P

A
LL

 
V

E
L

O
C

IT
Y

,f
t/

s 



55 

loV 

30"^ 

30*' 

•c^/^ 
10" 

1st SPALL 

WALL THICKNESS Z,„=0 

SPALL DEPTH 
SPALL VELOCITY 

10 

10 

2 ^ 
10 

10 

o 
o 
_ l 
UJ 
> 

O-

10 
0.2 0.4 0.6 0.8 

STANDOFF DISTANCE, f t / l b 
/3 

Fig. 22. Effect of Angle of Incidence on 
Spall Depth and Velocity 



56 

which gives the spall variables for the first spall as a function of scaled 

standoff distance for various values of the angle of incidence a. Again the 

case of zero wall thickness or no shock attenuation by the wall is presented. 

As indicated earlier no spalls occur beyond a = 45° because the reflection 

factor changes phase at this point (see Fig. 17). For a given standoff distance 

the spall thickness increases with angle of incidence while the velocity 

decreases. Relative to nomnal incidence the spall thickness for the oblique 

case is increased by the factor 1/cosa as well as by the effect of the reflection 

2 
coefficient. The velocity is decreased by cos a and again by a reflection 

coefficient effect. In computing the kinetic energy per unit area for oblique 

incidence, values substantially higher than those for normal incidence are 

encountered. The maximum in kinetic energy, for all standoff distances con­

sidered, occurs at an angle of incidence of about 20°. 

The formation of a typical spall crater as calculated by the plane wave 

theory is shown in Fig. 23. Scaled variables are used in the illustration 

1/3 with both the charge standoff and wall thickness being 0.2 ft/lb . The 

jaggedness of the crater profile is due primarily to the fact that spall depth 

is computed discretely at a finite number of incidence angles a neglecting all 

interactions in angular direction between adjacent layers. This is a severe 

limitation of the plane wave theory. However, the results appear to give a 

reasonable qualitative picture of crater formation. 

A comparison of the maximum spall velocities (first spall, normal incidence) 

with the maximum wall velocities induced by the total impulse of the blast is 

shown in Fig. 24. The latter velocities are obtained by considering the gross 

motion of the entire loaded portion of the wall and are calculated by the yield 

line analysis procedures outlined in Section 3. The results are given in 

scaled form as a function of charge standoff distance for a number of wall 

1/3 thicknesses. It is seen that except for the thickest wall (Z =0.6 ft/lbm ) 
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the velocities induced by impulse loading are substantially higher than those 

produced by direct spalling. A similar behavior is observed at other angular 

positions. Hence coupling between the two motions can be expected. The 

impulse motion is a late time effect and a number of stress wave reflections 

will occur before this motion commences. Therefore, the small high velocity 

spall debris is expected to be ejected from the wall before the gross motion 

takes effect. However, the heavier spall debris which has but little velocity 

is expected to stay in contact (or near contact) with the wall and will be 

later ejected by the wall motion at quite high velocities. The kinetic 

energies of this debris are at least one order of magnitude higher than the 

values produced by direct spall. It therefore appears that the severest 

effects of spallation may be due to coupling to the gross wall motion which 

arises from the total blast impulse loading. 

Based on the foregoing analysis and computational results a number of 

important conclusions may be reached. First it appears that a cut-off for 

spalling of concrete may be expected at an angle of about 45 degrees because 

of the phase reversal in the reflection coefficient. The angle will be 

smaller for larger standoff distances because the tensile stresses will not 

exceed the rupture strength at large angles. In fact, if the tensile rupture 

strength is indeed 2000 psi no spalling can take place for scaled standoff 

1/3 distances larger than 1.8 ft/lb . The second important point is the above 

described coupling between spalling and the wall motion produced by impulse 

which leads to the high velocity ejection of most spall debris. Finally for 

explosions of interest, the total spall depth throughout the crater is greater 

than the thickness of the concrete cover on the backface reinforcement. Thus 

unless very severe wall deformations occur the concrete cover depth will be 

the limit on ejected debris. All these facts lead to a simple "first cut" 
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estimate of spall debris ejection, without performing any detailed spall 

calculation. The debris mass is simply limited by the spall cut-off (45° 

or smaller) and the depth of the concrete covering the reinforcement, while 

its velocity is obtained from the wall motion produced by impulse, as 

given in Fig. 7. 



61 

5. CONCRETE DEBRIS EFFECTS 

The debris produced by concrete wall spalling or disintegration, when 

ejected at high velocity may upon impact produce severe damage to structures 

and equipment. Nuclear power plants have typically one of two arrangements: 

(1) a free standing steel containment surrounded by a concrete shield 

structure or (2) a concrete containment with an attached thin steel liner. 

Since the prime purpose of steel liners is to provide air leak tightness, 

they are shallowly anchored in the concrete and contribute little to the 

strength of the containment wall. However, unless complete wall disintegra­

tion occurs, the liners may be able to contain or retard the concrete debris. 

The debris may separate from the concrete wall as individual concrete 

fragments or as a large coherent mass of concrete. For fragment Impact, the 

loading on the steel is very local and the analysis of the phenomenon must 

be based on penetration mechanics. When large masses of concrete impact 

a steel structure, the load is more distributed and the phenomenon may be 

approximated as the impact of two plates or as the impulsive loading of a 

plate. Consistent with the assumptions made in the concrete wall analysis, 

the steel structures are approximated as flat plates with the boundaries 

sufficiently far removed from the impact region, so that their presence may 

be neglected. 

5.1 IMPACT OF CONCRETE FRAGMENTS 

All of the existing penetration mechanics analyses, including the 

most recent work, e.g., [2,3,15,16], concerns the impact of metal fragments 

(or projectiles) on concrete, steel, etc. Usually it is assumed that the 

missile is either rigid (nondeformable) [2,3] or that it deforms plastically [15]. 
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Neither of these assumptions is obviously appropriate for concrete fragments 

impacting on steel. Due to the differences in compressive strength and the 

lack of ductility in concrete, either considerable crushing or rebound of 

the missile is to be expected depending on the impact velocity range. Assuming 

a rigid, noncrushable and nonrebounding concrete missile should therefore 

result in very conservative penetration estimates. Concrete fragments may 

be expected to have irregular shapes while the existing analyses assume a 

regular shaped missile. Because of all these discrepancies between concrete 

fragment impact and the existing penetration analyses and theories, estimates 

of the concrete on steel penetration were made using the simplest available 

empirical relationship [16], which is based on the most recent compilation of 

missile penetration data. 

The missile is assumed to be of a standard cylindrical shape with the 

diameter d (in.) being equal to the length and with the nose curvature 

r = d/2 (see sketch in Table 1). The penetration x (in.) is then 

X = K Ddv" (48) 

3 
where, D = W/d is the caliber density, W is the weight of the projectile 

(lb), and v is the impact velocity (K ft/s). The exponent a depends on the 

target material and has a value a = 1.22 for steel. The constant K depends 

on the hardness of the missile material; we use for concrete the same value 

as for armor piercing steel K = 2.33, These values together with a typical 

specific weight of concrete (0,0868 lb/in ) lead to the following relationship 

x = 0,128 d v^*^^ (49) 
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TABLE 1 

CONCRETE FRAGMENT IMPACT ON STEEL 

STANDARD MISSILE 

SHAPE 

r=d/2 

PENETRATION-x (in.) 

DIAMETER 

d(in,) 

1.0 

2.0 

3.0 

4.0 

6.0 

12.0 

50 

.0033 

.0066 

.0099 

.0132 

.0198 

.0396 

VELOCITY-v (ft/s) 

100 

.0077 

.0154 

.0231 

.0308 

.0462 

.0924 

200 

.018 

.036 

.054 

.072 

.108 

.216 

300 

.030 

.059 

.086 

.118 

.177 

.354 

400 

.042 

.084 

.125 

,167 

.251 

.502 
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Typical penetration results calculated with eq. (49) are given in 

Table 1. With all the conservativeness built into this expression, the 

penetrations are still very minimal. It therefore appears that the impact 

of individual concrete fragments on steel structures will have little or 

no detrimental effects. This is particularly true for steel containments 

which are relatively massive structures with wall thicknesses far in 

excess of penetrations one can realistically expect from concrete fragment 

impact. It appears from eq. (49) that penetrations are proportional to 

the missile diameter d and would further increase as the diameter increases. 

However, the underlying assumptions [16] of very localized loading make the 

application of this empirical expression unacceptable for fragments of 

larger size. 

5.2 IMPACT OF LARGE DEBRIS MASSES 

As pointed out earlier, the impact of large masses of concrete 

debris on a steel containment structure can be approximated as the impact 

of a concrete plate on a steel plate. The size and thickness of the concrete 

plate can be ascertained from the response analyses of the concrete shield 

wall. Depending on the severity of concrete wall deformation, the debris 

may be produced by spalling, scabbing or wall disintegration. The last 

two are late-time mechanisms occurring near the end of the deformation period 

when the wall velocity is diminishing and ultimately approaches zero. Thus 

the debris velocity will in general be small. On the other hand, the 

spalling debris separates before high wall deflection velocities are attained. 

Thus it is assumed that it is the spalling debris which may be ejected at 

high velocities. The mass of the spalling debris is assumed to be in 

the form of a circular plate with a depth equal to the concrete cover depth 

over the rear face reinforcement. The radius of the debris mass, a, is given 

by the spall cutoff, i.e., by an angle of incidence of 45° or smaller, and 
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is obtained from the following expression 

a = (h -I- y)tan a (50) 

where y is the standoff distance, h is the wall thickness and a is the 
•' c 

spall cut-off angle which in general may be taken as 45°. Since the debris 

radius, a, depends on the wall thickness, it is not a scalable quantity. 

This in turn implies that the steel plate response cannot be scaled since, 

as will be seen, it depends on the radius of the loaded area. 

The relative timing between spalling and gross wall motion is not known, 

therefore it is not at all clear which velocity should be used as the debris 

velocity. We arbitrarily select as the debris velocity, the velocity of 

the wall produced by the blast impulse acting on an area with radius equal 

to that of the spall cutoff. As seen in Fig. 7, this velocity is in general 

higher than the velocity corresponding to the impulse which produces maximum 

wall deflection. The resulting impact should therefore be conservative. 

For impact velocities in the range of 50-400 ft/s the impact pressures 

computed by impedance matching between steel and concrete (assuming elastic 

4 5 

behavior for both materials) vary from 1.3 x 10 psi to over 10 psi. 

These pressures are many times larger than the compressive strength of 

concrete, thus crushing of the debris should be expected. At high impact 
4 

velocities, the yield strength of steel, which is of the order of 3 x 10 psi 

is also exceeded, while at low impact velocities the steel structure may be 

expected to respond elastically. It is therefore not at all obvious which 

type of impact analysis is appropriate. Because of the complexities of 

elastic analysis, the assumption is made that the steel structure can be 

treated as a rigid-perfectly plastic plate with a priori assumed deformation 

modes. Further the load is again assumed to be impulsive,permitting the 
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the decoupling of the loading and response phases. 

Initial velocity estimates of the steel plate can be obtained by con­

sidering the impact to be either fully plastic or perfectly elastic. Again 

the true impact process is probably more complex. However, reasonable velocity 

bounds can be based on the plastic and elastic impact velocities. Assuming 

only inertial resistance during loading, the elastic velocity will be an upper 

bound. A true elastic impact analysis should consider the wave motion in 

the plates. However, due to all the other uncertainties we limit our estimate 

to an instantaneous perfectly elastic impact. Then the momentum and energy 

equations are respectively: 

m v -t-mv = m v -<-mv (51) 
c c s s c CO s so 

2 2 2 2 
V V V V 
C . S C O . so /CT\ 

Here m = ph is the mass per unit area, p is the density, h is the plate 

thickness, v is the velocity. Subscripts c and s refer respectively 

to the concrete and steel plate. Subscript o desigantes the state before 

impact while the nonsubscrlpted velocities occur after impact. For the 

current application v = 0 . Solving equations (51) and (52) simultaneously 
SO 

yields: 

2 v 2 V 
(53) se 

2 

1 

V 
CO 

m 
+ ^ m c 

2 

1 + 

V 
CO 

P h ^s s 
P h c c 

where subscript e designates elastic impact. 

When the impact is perfectly plastic the energy equation (52) is not 

applicable. The momentum equation together with the condition that after 
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V 

sp 

Vco 

m 
1 + ^ m c 

V 
CO 

P h 

impact the two velocities are equal, i.e., v = v (subscript p refers to 

plastic impact) gives the following expression 

(54) 

For any given situation the velocity imparted to the steel plate under 

elastic impact is twice as high as that resulting from plastic impact. It 

should also be noted that for fixed material properties the ratio of the 

steel plate velocity to the concrete debris velocity is in both cases only 

a function of the plate thickness ratio. For typical concrete and steel 

properties the ratio of the densities is p/p =3.37. Thus equations 
s c 

(53) and (54) may be rewritten as follows: 

V V = -z—.„„.,,—77— (55) 
se CO 1 -̂  3.37 h /h 

s c 

V /v = -z—, - „T .—77— (56) sp CO 1 -f 3.37 h /h 
s c 

Much work has been done in recent years on the rigid-plastic response 

of plates under impulsive loading [17,18,19,20]. In most cases a finite 

size circular plate with either simple or clamped supports at the edges 

is considered. Taking into account plate bending, membrane stresses and 

strain rate effects it is only possible to obtain simple deflection 

relationships for the case of uniform impulse over the entire plate [17]. 

The only analysis directly applicable to our problem [20] considers an 

infinite thin plate with the load applied over a finite circular area 

of radius r = a. The plate is assumed to be rigid-ideally plastic with 

a deflection mechanism consisting of a hinge at the center r = 0 and a 

hinge circle at r = r . For impulsive loading the final deflection 6 
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at the center is predicted to be [20]: 

2 2 2 ̂ 2 
m r V r I 

^ " 48 M " 48 mM„ ^̂ ^̂  

o o 

Here m is the mass per unit area of plate, I is the impulse per unit area, 

V is the initial plate velocity, and M is ultimate (yield) moment. The 

latter quantity is given as 

M = y h^ a (58) 
o 4 s o 

where h is the plate thickness and a the yield strength of the plate 

material. Estimates of the initial velocity v can be obtained from either 

eq. (55) or eq. (56) depending on the assumptions made regarding the impulse 

process. The size of the initial hinge radius r is not known. However, 

considering the case of a pulse of constant intensity, p, and short duration 

it can be shown [20], that the hinge radius is a constant which can be 

expressed in terms of the load radius, a, as follows: 

r = 4 - ^ a (59) 
pa - 4 M 
^ o 

4 
In the current application, load intensities of the order of 10 psi 

are expected, while typical radii of the impacting debris will be on the 

order of feet. With a steel plate thickness on the order of a couple inches 

2 
and typical yield stresses for steel one finds that pa >> 4 Mo. Therefore 

eq. (59) may be approximated as 

r = I- a (60) 

o 3 

Using the above expression in eq. (57) one finds that central plate deflection 

can be calculated from 



69 

2 2 
.̂ _ m a V f , . . 

^ = 27 M ^̂ ^̂  
o 

Typical results are shown in Fig. 25, where the deflection is given 

as a function of scaled standoff distance for three different charge weights. 

Computations for both elastic and plastic impact velocities are given. As 

mentioned earlier, these should bracket the true results. The approach of 

the spall limit causes the rapid drop-off in the deflection curves at a 

1/3 scaled standoff distance of about 1.6 ft/lb . Due to the direct dependence 

of the load area radius, a, on the wall thickness the results are not scalable. 

However, the computations are so simple that deflection estimates are 

readily obtainable for any wall. 

A comparison of deflections for two walls of different strength and 

thickness is shown in Fig. 26. It should be noted that the ultimate moments 

indicated both in Figs. 25 and 26 refer to the wall and not the impacted 

3 
plate. For a charge weight of 10 lb the deflections are seen to be quite 

moderate, even for the 2.5 ft wall, except at the very close-in charge 

4 
locations. When charge weight increases to 10 lb, severe damage can be 

expected since plate deflections in excess of 1 ft are predicted for much 

of the standoff range. 

It is not possible to formulate precise failure criteria. Since a 

circular yield pattern was assumed, eq. (19) can be used to estimate the 

relationship between strain e and hinge rotation 9 where tan 9 = 6/r . 

Knowing the rupture strain limit for the material a failure criterion 

based on local deformation effects might be postulated. This however 

provides no information on what effect the local deformation might have 

on gross structural response, i.e., structural stability. 
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5.3 EFFECT OF CONCRETE DEBRIS ON STEEL LINERS 

The presence of a steel liner on the inside face of a concrete 

containment structure contributes little to the strength of the wall. Thus 

the liner is expected to deform together with the gross motion of the wall. 

However, in the region where spalling takes place, the liner becomes 

detached from the wall and additional liner deformation may occur due to 

the action of the loosened debris. At the same time the liner acting as a 

membrane may prove effective in containing the spall debris. 

The process of liner detachment and subsequent deformation is very 

complex. Since liners attach to the concrete by means of structural steel 

members, a certain amount of bending resistance should be expected. Here, 

however, it will be assumed that only membrane stresses are important in 

describing liner deformation. Since the liner also moves with the wall it 

is not at all obvious what velocity should be used to obtain the relative 

motion between liner and wall. It will be conservative to assume that the 

wall velocity at spall cut-off (see Fig. 7) can be used as an estimate of 

the liner velocity relative to the wall. In effect this implies that the wall 

comes to rest at that time while in reality its motion continues past that 

point. 

Assuming the liner to deform into a spherical membrane the deflection 

normal to the wall C at any radial position r is given in terms of the central 

deflection 6 as 

2 
5 = 6(1 - ̂ ) (62) 

r o 

where r is the radius of the membrane (radius of liner attachment). The 
o 

value of r is taken as the spall cut-off radius, i.e., the radial distance 
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at the backface of the wall at 45° angle of incidence. The problem of a 

plastically deforming membrane under impulsive loading has been treated by 

many investigators. Following the analysis presented by Cole [21] it is 

found that the plastic work WP in deforming a spherical membrane is 

2 2 
WP = TTa h 6 =4irM 6/h (63) 

o s o s 

where a is the liner yield stress, M the liner ultimate moment and h o -̂  ' o s 

the liner thickness. At the final state this work must equal the kinetic 

energy KE imparted to the membrane by the impulse 

1 2 1 2 2 
K E = 4 M v = i m T r r v (64) 

/ / o 

Here M is the total mass moving at the initial velocity v , i.e., M is the 

sum of the detached liner mass and of the spalled concrete debris mass. 

Similarly m is the combined mass per unit area of liner and concrete, 

m = m -I- m . Equating the two energies given by eqs. (63) and (64) one 
s c 

obtains the final central deflection of the liner. 

, .1/2 .m h N1/2 

o s 

It should be noted that while m is the combined mass per unit area the 

thickness h is only that of the liner. Again since r depends on the 

concrete wall thickness the deflections cannot be scaled. However, with 

V known (from Fig. 7) the deflection is readily computable. Results for 

a typical 2.5 ft thick wall and a 0.25 in. thick liner are shown in Fig. 27. 

Deflections in excess of 1 ft. are obtained for the entire range of standoffs 

4 
when the charge is 10 lb and for close-in distances at a charge weight of 
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10 lb. Also shown in the figure are the spall radii r for the three 

charge weights. The decrease in radius at larger standoffs occurs because 

the actual spall cut-off limit is shifted to angles of incidence smaller 

than 45 degrees, i.e., the reflected pressure at angles beyond the cut-off 

is insufficient to produce spalling. 

It should be kept in mind that the computed deflections are a rough 

estimate of liner deformation relative to the concrete wall. Thus,when 

actual wall displacements are large there will be additional liner deforma­

tions. However, in these cases, membrane liner response may be of little 

interest because other failure modes such as buckling and local tearing, 

which are associated with substantial wall disintegration, will predominate. 

The only membrane failure criterion which may be readily formulated 

is again based on the strain at rupture. Since the increase in area of 

2 
a spherical membrane may be approximated by [21] AA = Tr6 and the original 

2 
plate area is A = irr the ratio of AA/A may be used as a measure of the 

plastic membrane strain, i.e., 

. 2 
G = (j-) (66) 

o 

When this ratio exceeds the value of the rupture strain of the liner material 

failure may be expected. 
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6. AIR BLAST EFFECTS ON PIPES 

Severe damage to piping, such as the main feedwater pr steam lines, 

located outside of containment in nuclear power plants may pose a grave 

safety hazard. It is therefore necessary to obtain estimates of the 

deformation which may result when such piping is subjected to air blast 

loading from high explosives detonation. No satisfactory analysis method of 

this problem exists currently and no empirical data from controlled experi­

ments is available. A method of obtaining pipe deformation estimates which 

utilizes recent results in dynamic plasticity is therefore developed. 

Details of this analysis are presented in the Appendix. It should be noted 

that the method outlined provides only a rough approximation. Also when 

the loading of the pipe is from close-in detonations many assumptions of 

the analysis are open to question. 

It is again assumed that the loading is impulsive and that deforma­

tions are related to the total transverse impulse 1 experienced by the 

pipe. As indicated earlier (Section 2) the blast impulse acting on 

a pipe must be obtained by numerical integration of the local reflected 

impulses over the pipe surface. The results so obtained cannot be 

scaled with charge weight because of the finite pipe diameters. Figures 

28 to 32 present the total transverse air blast impulse, each for a pipe 

of different diameter (1 ft to 5 ft) as a function of scaled standoff 

distance. In each case results are given for three different charge 

weights (10^, 10"̂  and 10 lb) and four different pipe length (20, 30, 40 

and 50 ft). For fixed charge weight and pipe length, the impulses differ 

by more than a factor of three over the range of pipe diameters from 1 ft 

to 5 ft. It is also readily apparent that the impulses are not directly 

proportional to the charge weight as is the case for a flat wall (see Fig. 6). 
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The analysis method outlined in Appendix A assumes two major forms 

of deformation for pipes under air blast loading. These are a beam like 

bending with no cross-sectional distortion and a local "ring" deformation 

of the pipe. For the latter no interaction between adjacent pipe sections 

is assumed. Similarly interactions between the two forms of deformation 

are neglected. For each type of deformation both a plastic mode and a 

bound or limit analysis method are employed to estimate the deflections 

and response times. To make the analysis simple a sine distribution 

of the transverse impulse is assumed. This leads in the case of the mode 

analysis method, which is expected to yield more realistic results, to 

the following maximum (central) deflection formulas: 

Beam Deflection 

4TT " P o 

f (V2)' 
6̂  = u^ = 0.0286 — ^ — 2 (̂ 8> 

a p h £ 
y s 

Here eq. (67) is identical to eq. (A12a) of Appendix A and eq. (68) 

corresponds to eq. (A26a). For the latter I_/2 was substituted for the 

I of Appendix A so that the symbol I always has the unique meaning of 

total transverse impulse, a is the yield stress of the pipe material, 

p the pipe material density, h the pipe wall thickness and £ the half 

length of the pipe. The fully plastic moment M and mass per unit length 

of pipe p, which includes both the steel pipe and water, are given by 

the following expressions: 

Ring Deformation 



and 
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M = 4(R ^ - R.^) CI (69) 
o 3 o 1 y 

p = IT (R ^ - R.̂ )p + TTR.^P (70) 

o i s 1 w 

where p is the liquid (water) density and R and R. are respectively the 

outer and inner radius of the pipe. 

Once the total transverse impulse I on a pipe is determined, it 

becomes a simple matter to calculate both the beam and ring deformation 

using eqs. (67) and (68). Deflection results for a fixed charge weight 

3 

of W = 10 lb and five different pipe diameters (1, 2, 3, 4 and 5 ft) 

are presented in Figs. 33 to 37. In each figure both the beam and ring 

mode deformations are given each for four different pipe length (20, 30, 

40 and 50 ft.). The pipes approximate Schedule 80 piping with the wall 

thickness assumed to be h = D/20, where D is the pipe diameter. A yield 
4 

stress for steel at 600°F was used: its value is a = 2 x 10 psi. 
y 

The calculations clearly indicate that the ring deformation is only 

weakly dependent on the pipe length. Based on physical considerations, 

this is an expected result. In fact, if the proper local impulse rather 

than the total impulse were used in the computations, then the dependence 

of the ring deformation on pipe length should be negligible. The crossover 

observed in ring deformation curves can be explained by the variation of the 
2 

term (I /2£) . At close-in standoffs where the impulse depends only weakly 
2 

on pipe length (see Figs. 28-32), the £ term dominates and ring deformations 

obtained from eq. (68) are smallest for the longest pipe. At far distances 

where I is strongly affected by pipe length, there is little difference in 

the deformations or they increase with pipe length. 

As expected, beam deflections at a fixed pipe diameter increase with 

Increasing pipe length. If the pipe length is held constant, both ring 

deformations and beam deflections decrease with increasing pipe diameter. 
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Fig. 36. Pipe Deformations - Pipe Diameter D = 4 ft 
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Fig. 37. Pipe Deformations - Pipe Diameter D = 5 ft 
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It is the strong (cubic) inverse dependence of the deformations on the 

pipe diameter (or wall thickness) that leads to this result. The effect 

is more clearly illustrated in Fig. 38 which gives the deflections for a 

30 ft. pipe at five different pipe diameters. 

In the graphical presentation of the results, maximum ring deformations 

were limited to one pipe diameter and beam deflections were restricted to 

the smaller of £/2 or 10 feet. Since both types of analysis are based 

on the assumption of small deflections (see Appendix A), the true range of 

applicability is probably much more restrictive. In general, the results 

are much more uncertain for small standoff distances. Here the defonnations 

are large and are strongly influenced by local impulse intensity rather 

than the total Impulse on the pipe. Based on the magnitude of the deflections 

it appears that the results for large pipe diameters may be more reliable 

than those for smaller pipes. 

At the current stage of analysis development it is not possible to 

arrive at any precise failure criteria. Some intuitive notion on the 

severity of damage may be arrived at based on the physical appearance of 

the pipe. Thus at a ring deformation of one half the pipe diameter, one 

would expect severe pipe damage. For beam deflections a damage criterion 

must consider both the deflection itself and the pipe length. The ratio 

6,/£ which is a measure of the hing rotations both at the supports and 

the pipe center may therefore provide an appropriate criterion. However, 

no information on allowable magnitudes of hinge rotations exist and arbitrary 

limits must be selected. Since both in the analysis and in reality the pipe 

is not restrained longitudinally at the supports, no failure criterion based 

on pipe elongation can be formulated. 
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Fig. 38. Pipe Deformations - Pipe Length L = 30 ft 
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7. DISCUSSION AND CONCLUSION 

The analysis methods and results presented in the foregoing sections 

provide a means for estimating the susceptibility of nuclear power plant 

structures and equipment to air blast loading generated by high explosives 

detonations. As indicated before, the effort was limited to investigating 

the response of only a few critical items such as containment and shield 

structures and important piping located outside of containment. 

No developmental effort was undertaken during the course of this 

study, and the results are based on a synthesis of state of the art methods. 

In many cases extreme simplifying assumptions were made to permit the 

derivation of simple structural response relationships. In the presenta­

tion of results no attempt was made to cover the complete range of values 

which may be of Interest in analyzing nuclear power plant susceptibility. 

However, sufficient blast loading data is presented so that response 

estimates for specific cases may be calculated using the simple equations 

given in the report. 

It should be obvious that if more precise structural response data 

are required then additional effort must be expended to improve the analysis 

methods. Both the blast load determination and the response calculations 

can be improved. Concerning the first, the inconsistencies in impulse 

loading arising from the assumption of a one to one correspondence between 

reflected pressure and impulse should be eliminated. The structural 

response analysis for flat walls and plates can be improved by considering 

not only perfectly plastic bending and hinge formation but also the membrane 

and strain rate effects. An analysis which takes into account wall curvature 

would further improve the response predictions. An area that merits 

particular attention is the response of piping under blast loading. 

Neglecting the interaction between bending and local ring deformation makes 
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the validity of the results in certain cases very questionable. An analys 

procedure which takes into account the coupling between these deformation 

modes should therefore be developed. 

A significant limitation on the applicability of the analysis pro­

cedures is the lack of appropriate failure and damage criteria. Some 

attempts were made to establish approximate relationships between the 

computed deformations and allowable (rupture) strains. However, much more 

effort is required to determine the damage levels which are unacceptable 

for a particular structure. In establishing such limits both the local 

structural deformations and the functional aspects of the structure should 

be considered. 

Finally it is again pointed out that only air blast loading from 

explosive detonation was taken into account in the current study. For 

large charges placed close to the structure ground shock and cratering 

effects may prove as damaging as the air blast. Regardless of charge 

weight the contact placement of explosives may produce the severest local 

damage. Thus in an overall analysis of nuclear power plant vulnerability 

these loading mechanisms should also be considered. 
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APPENDIX 

Methods for Estimating Pipe 

Deformation Due to Explosive Loading 

The basic problem is to obtain engineering estimates of the total 

plastic deformation which results when a segment of piping is subjected 

to explosive loading from a known charge weight located a fixed distance 

from the pipe. The methods outlined below utilize recent results in dy­

namic plasticity to obtain such deformation estimates. It should be noted, 

however, that no entirely satisfactory method is currently available for 

analysis of this problem. The methods outlined provide only rough approxi­

mations in many cases of importance. In particular, when the loading is the 

result of a nearby charge, many of the assumptions used in this analysis are 

open to question. Further, since no controlled experiments on explosive 

loading of piping are available, validation of this analysis is not currently 

possible. 

It is assumed that the total transverse impulse, I , is known and that 

this is a pure impulse. That is, it produces instantaneous velocities pro­

portional to the local impulse (per unit length or per unit area, depending 

on the formulation). The analysis is further simplified by splitting the 

impulsive loading into two parts, "s3Tranetric" and "antisymmetric" as shown in 

Fig. Al. The symmetric impulsive loading causes no translation of the trans­

verse diameter pp' of the cylinder, hence it produces shape changes of the type 

sketched in Fig. A2(a). The antisymmetric loading produces a rigid-body transla­

tion of each ring section, together with some deformations out of the initial 

circular shape. If the latter deformations are neglected, the antisymmetric 

impulsive loading produces mainly bending of the pipe as a beam constrained 
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Fig. Al. Splitting of Impulsive Pipe Loading 
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(a) 

Fig. A2. Local Ring Deformation and Bending Deflection of Pipe 
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at its supports, as in Fig. A2(b). 

A method of damage calculation that is crude, but should be adequate 

in certain circumstances, is to treat the two loadings and responses as in­

dependent of each other, and to obtain the total displacement of the point 

of the cylinder nearest the charge point W as the sum of the "ring deformation" 

due to the symmetric loading and the "beam bending" deformation due to de­

flection of the pipe as a beam between supported sections. The interactions 

being neglected are (1) the effect of the compressive beam-bending stresses 

in augmenting the local ring deformations in the area closest to the charge 

location; and (2) the effect of the inward deflection of the ring in decreasing 

the effective plastic section modulus. These interactions would be important 

in a thin-walled cylinder. 

The first type of interaction is compensated for qualitatively by 

treating the deformation of the central ring section as independent of those 

of the adjacent ring sections. These deform less and hence constrain the 

deformations of the section closest to the charge point. In the "isolated ring 

calculation these constraints are neglected. In the region of maximum de­

formation this can be regarded as roughly equivalent to the weakening effect 

of the compressive stresses involved in the bending of the cylinder as a beam. 

It should also be noted that this discussion presupposes that the two types 

of deformation - local damage at the central ring section and bending as a 

beam between supports - are of approximately equal importance. This may not 

be the case when the impulse distribution is localized near the center of the 

pipe span or when the charge is very near the pipe. 

The known transverse impulse I produces instantaneous velocities 

proportional to Impulse per unit distance along the pipe axis in the treat-
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ment as a "beam", and per unit area in the treatment as a "ring". This 

isn't entirely satisfactory since I depends on the dimensions of the pipe 

(radius R, length 2£ between supports) as well as on the stand-off distance; 

however, without more detailed information on actual impulse distributions 

as a function of dimensions and charge weight, no more exact treatment can 

be justified. 

The mode and the bound approximation methods are employed to estimate 

deflections and response times. In both cases these have been used in their 

simplest forms - first for the pipe treated as an ordinary beam, hinged at 

the supports and at midsection, and then treated as a ring deforming as shown 

in Fig. A2(a). 

The distribution of total impulse is needed in order to apply the mode 

technique, while the total initial kinetic energy is needed to calculate the 

deflection bound. Lacking better information, a simple sine distribution of 

transverse impulse per unit length 1 (x) along the beam axis is assumed: 

. , X . . ir X (Al) 
i^(x) = i^sm 2 J • 

Since 1 = 2 
IT X , 4£ . 

1 s m -;r — dx = — 1 , 
m 2 £ IT m 

0 

\ 4 £ 
(A2) 

This gives initial transverse velocities at the beam axis of 

• o , . T . . IT X . TT T / . - J l 
w (x ) = ::r- = w s m ^ y ; w = y Tn ^^^•' 

p o 2 £ o 4 £ P 
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where p is mass per unit length, including steel pipe and water, with mass 

densities p and p , respectively: 

p = A p + A p =TT(R - R ^ ) P +TrR^p (A4) 
^ ŝ s w*̂ w o i "̂s 1 "̂w 

The total initial kinetic energy K of transverse motion then can be esti­

mated as 

r2 

K = 2 
o 

£ - 2 '^ T 
y p (w (x)) dx = ̂  -^ (A5) 

0 ^ 

1. "Beam" Deflections: The pipe is treated as an ordinary beam and estimates 

must be developed for maximum central deflection, 

a. Mode Approximation 

With the Initial transverse velocity of the beam axis given by (A5), 

the mode velocity field is: 

.* X _ < < 
w (x,t) = w^ (t) 1̂ , 0 ̂  X ^ £. (A6) 

"O 

The initial velocity magnitude, w^ , is obtained by the mode matching 

technique as 

r£ 

w (x)^dx 
-x̂  0 3 T /ATN 

w* = ^ = 7 1 ? - ^̂ >̂ 
ij) dx 

0 

The acceleration ŵ . is obtained from the energy-dissipation rate equation 
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W 

) (w^ f) dx = 4M„ -* , (A8) 

and hence. 

6M 
w; = - - ^ , (A9) 

£ P 

where M is the fully plastic moment of the pipe section 

2 2 
^ = 2 ( ^^ iEo. _ i M ^ o = - (R^ - R^) 0 rAlO) 
MQ z (. 2 3Tr 2 3TT '' y 3 ^ o î  ^y ^^^^ 

Integrating (A9) yields 

•o 6Mn ^ /A11 \ 

w^ = w^ - —^ t (All) 
£ P 

f 
The final midpoint displacement, w^ , and stopping time, t^, are 

2 
2 ? T 

f J^^ /-Ox 3 "-T , . . , „ . 

*̂ = l 2 ^ (̂ *̂  ^ 7^ TT ^ ^̂  
o 4Tr M P 

2 - £1 
£ P -o 1 T /AToi.\ 

t ^ = 717^ w. = TT- TT— . (A12b) 
f 6M * 2Tr M 

b. Upper Bound Estimate 

An upper bound on the midpoint deflection is given by 

in •" m r_ 
ij 
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where K is the kinetic energy due to the impulse and P is the limit load 

magnitude of a force applied at the midsection. Assuming small deflections 

this is 

4M 
P = — ° 
L £ (A14) 

Taking K from Eq. (A5), 

t u 
r : m 

2 
TT 

32 

x2 
T 

iip 
£ 

4Mo 

2 
IT 

128 

T2 
T 

M p 
0 

(A15) 

A comparison of (A15) with (A12a) shows that the two estimates are quite 

close. The upper bound is probably quite close to the mode technique since 

the latter is itself an overestimate when compared to a complete rigid-

plastic s.olution. The overstimate compared to such a solution is probably 

ahout 15%. Strain rate sensitivity could reduce the deflection by as much 

as 50% in the case of a mild steel. 

The defect of taking the load magnitude as specified by the total im­

pulse I is indicated by the form of the expressions for final deflection. 

2 
Both methods give this as proportional to I„/M p , with no dependence on £. 

The result would be more useful if the dependence on pipe dimensions, ex­

plosive charge weight, and stand-off could ba shown explicitly. 

2. "Ring" Deflection Estimate: 

To estimate deformations of the central ring section from its initial 

circular shape, there is need for a distribution of impulse per unit area 

around the circumference. For lack of better information, the radial impulse 

is taken as a cosine function of central angle 
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i ' ( <|)) = 1 cos (j). (A16) 

At the midsect ion of the span the impulse per u n i t l eng th i s 1 , so 
m 

i = 2 
m 

r TT/2 , rTT/2 
i ' cos<j) Rd()) = 21 ^ . ^ -

0 ° •'o 
c o s (}) Rd(|) = Y Rig (A17) 

where R is the mean radius. Thus 

;̂ = IR f I^ = ̂  • <̂ «> 

The total impulsive loading on the middle ring section can be split into 

"anti-symmetric" and "syimnetric" parts as in Fig. Al, each with half the 

intensity magnitude of the supposed distribution 1'((}>). Intuitively, the 

antisymmetric loading produces mainly translation of the section without 

large changes of the circular shape, while the S3mmietric loading produces 

the shape changes of the ring we are interested in, the transverse diameter 

remaining stationary. This is not rigorous since no superposition principle 

can be claimed; however, it seems to be a reasonable assumption if the 

impulse isn't too localized. 

The initial velocity field due to the impulse can be expressed in terms 

• o • o 
of components u , u„ shown in Fig. A3(a). The equations relating these 

velocity components to the total impulse are: 



o 
txi 

Fig. A3. Velocity Components of Local Ring Deformation 
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Ui = u sind) = — r ^ sin* = u cosd) sin* (A19a) 
I r p o 

u„ = u cos* = — f ^ — cost}) = u cos d) (A19b) 
2 r p o 

i ; i ; i^ 
where i^ = = = ^ ^ ^ (A20) 

where p' = p h is the mass density per unit area of the pipe wall, thickness h, 

a. Mode Approximation 

The mode form deformation is taken to be symmetric in each half of 

the ring, as shown in Fig. A3(b). This has plastic hinges at A, B, B', with 

rigid-body rotation rate G about the instantaneous center at C. Thus the 

velocity field has components 

u* = -y'e = u^ (- l') = u^ (-1 + COS.1.) (A21a) 

u* = x'e = u^ |'= u^ (1 - sin(f>) (A21b) 

Here u^(t) is the mode form velocity amplitude, whose initial value u^ is 

found by the standard technique from the assumed initial field, as 

"l • % 1 ^ 7 2 ^ = °-"'' F?SJ • < " " 

The acceleration magnitude u^ of the mode deformation is obtained from the 

energy rate equation 

rir/2 
-2 P'(uju; H- U-* „;> Rd* . 4M; Hi ^^„ , 
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where p' = ph is mass per unit area of wall and M' is fully plastic bending 

moment per unit length along the pipe axis. 

M' = ̂  ay . (A24) 
4 "y 

Using e q s . (A21) we ob ta in 

u^ = - ^°y = ^ . (A25) 
(3Tr-8)R Ps 1 .425Rps 

Integrating gives the following results for the final deformation and 

stopping time: 

u^ = 0.0286 ^hrj , (A26a) 
a p h £ y s 

RI^ 
t = 0.285 ~- . (A26b) 

a h £ 
y 

The intuitive argument illustrated in Fig. Al suggests that the deformation 

out of the circular shape is due to the syimnetric loading with amplitude 

1 1 

—i'. This corresponds to replacing I by —1 in Eqs. (A26). 

b. Upper Bound Estimate 

Alternatively the deflection bound method can be applied. This 

requires the initial kinetic energy K' per unit length at the span mid­

section and the plastic collapse load P' of the half ring subjected to a 

pair of forces at the middle diameter of the ring. These are 

K' = f p' Ru^ = y p hR ( T — L T ) ^ (A27) o 4 o 4 ^ s 2p hR£ ' s 



105 

4M' h^o 

^L= ^ = -T^ <^«> 

The upper bound is given by 

K' 1^ 

% ^ % = ^ = l6 TV <^29) 
L a p h £ y s 

where again one replaces I with -r-I to account for only the symmetric 

impulsive loading producing ring deformation. 

The upper bound is much larger than the final displacement predicted 

by the mode method. This may be traced to the small value, 0.401, of the 

ratio u./u , which implies that the mode method underestimates the final 

deflection. In the bound method, the distribution of kinetic energy is 

never specified. Thus the bound must allow for cases where the maximum de­

flection is sensitive to the distribution of kinetic energy. 

The deformation estimates developed above may be summarized as follows; 

2 
Beam: ^ 3 •'"T 

w^ = — 2 M T ' (inode) (A12a) 
4Tr o 

2 l2 

- f = 128 S S ' (̂ °"̂ >̂ <^^^ 

2 
Ring- f IT 

u. = 0.0286 V ^ . (mode) (A26a) 
a P h^l^ 
y s 

"̂ "̂  = Tfi ^ - T ' (bound) (A29) 
^^ 0 p h\2 

y s 

In summary, the two deflection estimates, (a) treating the structure 

as a beam, and (b) treating the mid-section as an isolated ring, are here 
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assumed independent of each other, based on a conjectural splitting of the 

impulsive load into an anti-symmetric and a symmetric part, with the former 

causing mainly translational motion of the whole ring, and the latter pro­

ducing deformations of the initial circular shape. The two types of response 

are obviously not independent; energy used in local deformation is not 

available for producing translational (beam type) deformations. A mode ap­

proximation could be developed which couples the bending and ring deformations; 

however, such a development effort is not consistant with the overall objec­

tives of the current study. 

The deformation estimates contained in the body of this report are 

based on eqs. (A12a), (A 15 ), (A26a), (A29) above - suitably modified to 

include charge weight and standoff distance by proper substitution for I . 

3. Sample Calculations 

To compare the various deformation estimates, the following sample problem 

is considered: 

I^ = 14.72 X lO^lb-sec 

£ = 120 inches 

R̂  = 10 in., R = 12 in., h = 2 in. 
1 o 

a = 40 X 10^ psi 
y 

-3 -4 2 
p = 0.73 X 10 lb. in. sec 
s 

p = 0.094 X 10""̂  lb. in.~^ sec^ 
w 

M = 38.8 X 10^ in. lb. o 
-2 2 

•p = 0.131 lb. in. sec 

This corresponds approximately to a 20 ft. span of 2 ft. outside dia., sch 140, 
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water-filled pipe subjected to a 1000 lb. charge detonated 10 ft. from the 

pipe center. The various estimates are as follows: 

Beam: w. = 3.24 in. (mode) 

fu 
w 

m 

f 

fu u o 

= 3.29 

= 0.46 

= 3.16 

i n . 

i n . 

i n . 

(bound) 

(mode) 

(bound) 

Ring: 

For this particular case, the beam response would appear to dominate (using the 

mode approximation) and the predicted deformation are small enough that the 

small strain response limitation of the theory is probably a good approximation. 

The previously mentioned differences in the ring approximations can also be 

seen. 

4. Possible Modification due to Impulse Distribution 

All of the above computations were based on simple sine and cosine dis­

tributions of impulse. Clearly the distribution of impulse can deviate from 

such distributions by wide margins - particularly in the case of close-in 

detonations. To illustrate this point consider a larger diameter pipe sub­

jected to a close-in detonation. Using a pipe of 24 in. radius, 2 in. wall 

thickness and a stand-off distance of 2 ft. produces a more concentrated 

impulse pressure. Local damage becomes more pronounced than beam bending 

deformation and calculations based on an isolated ring appear unsatisfactory -

probably leading to gross overestimation of local deformation. 

To illustrate this, consider the following impulsive loading distribution: 

X = 0 1 2 4 10 ft 

Case 1: 2 ft stand-off i'(x,0) = 33 24 10.2 3.0 1.0 psi-sec 

I^ = 14.7 X 10"̂ lb-sec 
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Case 2: 10 ft stand-off x = Q 5 10 15 ft 

1^ = 6.7 X lO^lb-sec i'(x,0) = 3.5 3.0 1.5 0.8 psi-sec 

where i'(x,6) is the Impulsive pressure (psi-sec) at a point x from the 

central section and at angle 9 from the "horizontal" diameter. The ring 

deformations are predicted to be: 

Case 1: 2 ft stand-off 

.o 13.7 ,,„„ . -1 
u^ = 2p ^ - ^"90 m.-sec 

s 

u^ = 3.74 X 10~^ (u°)^ = 82.4 in. 

Case 2: 10 ft stand-off 

.o 1.53 -„, . -1 
""* = 2 P T " ^^^ m . - s e c 

s 

u^ = 3.74 X 10~^ (u°)^ = 1.03 in. 

The very large value of displacement in Case 1 (2 ft stand-off) is 

meaningless quantitatively, since the analysis is valid for small deflections. 

Qualitatively it indicates only that in this mode of deformation the local 

(out-of-circular) displacement is of the order of the pipe radius, and would 

probably lead to failure by rupture. 

A similar calculation can be performed for the beam mode. To account 

for the localized nature of the impulse, a bell shaped distribution of im­

pulse is used. Tabulated impulse per unit area data at x = 0 is computed 

to give 1 where m 



1 = 2 
m 
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(Tr/2 
i ' ( 0 , 9 ) cos9 Rd9 

o 
o 

and the axial distribution is assumed to be 

2 2 
i(x) = 1 exp (-X /2a ), 

m 

Knowing the total Impulse 

^T = 
2 2 r— 

i exp (-X /2a ) dx = »''2Tr a i 
m m 

—00 

allows computation of the parameter a as 

^ 1 T 

^ 1 
m 

Applying the mode technique gives the following results; 

Case 1 (2 ft stand-off): 

1 = 806 Ib-sec-in 
m 

I^ = 14.7 X 10"̂  lb-sec 

a = 7.3 in. 

w^ = 493 m-sec 

w^ = 0.61 in. 

Case 2 (10 ft stand-off): 

i = 118 lb sec in 
m 

I = 6.7 lb-sec 

o = 22.7 in. 



no 

w^ = 201 m-sec 

w^ = 0.10 in 

Evidently for these examples the local (out-of-circular) deformation 

of the central ring section greatly exceeds that of the beam bending mode. 

The present estimated deflections are smaller than those of the previous 

section in part because of the change of dimensions of the pipe (R = 24 in. 

instead of R = 11 in.) and because of the change of the initial mode am­

plitude; the latter is due both to the change of dimensions and to the use 

of more detailed data on impulse distribution. 

Clearly,to obtain definitive estimates of final plastic deformation 

requires development of more exact impulse data and development of refined 

analysis methods. 
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