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ABSTRACT

The effects of air blast from high explosives detonation on selected
power plant structures and components are investigated analytically. Relying
on a synthesis of state of the art methods estimates of structural response
are obtained. Similarly blast loadings are determined from compilations of
experimental data reported in the literature.

Plastic~yield line analysis is employed to determine the response of
both concrete and steel flat walls (plates) under impulsive loading. Linear
elastic theory is used to investigate the spalling of concrete walls and mode
analysis methods predict the deflection of piping.

The specific problems considered are: the gross deformation of reinforced
concrete shield and contaimment structures due to blast impulse, the spalling
of concrete walls, the interaction or impact of concrete debris with steel
containments and liners, and the response of exposed piping to blast impulse.
It is found that for sufficiently close-in detonations and/or large explosive
charge weights severe damage or destruction will result. This is particularly

true for structures or components directly exposed to blast impulse.
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PREFACE

This report summarizes the results of an investigation conducted by
Argonne National Laboratory (ANL) for the U.S. Nuclear Regulatory Commission
(NRC) Office of Standards Development. The work was performed under a
Standard Order for DOE Work (FIN No. A20057) with Dr. J. F. Costello, NRC
serving as project monitor. His helpful suggestions and reviews are great-
fully acknowledged. In addition to the report authors, personnel who con-
tributed materially to the project effort are: Dr. B. J. Hsieh, ANL and
Professor P. S. Symonds, Brown University. The latter was responsible for

the development of the pipe response analysis presented in the Appendix.

C. A. Kot, Mechanical Engineer
Components Technology Division
Argonne National Laboratory
October 1978
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EFFECTS OF AIR BLAST ON POWER PLANT STRUCTURES AND COMPONENTS

1. INTRODUCTION AND PROBLEM DESCRIPTION

The purpose of the effort, described in this report, is to investigate
the effects of high explosive detonations on structures and components found
typically in nuclear power plants. The specific interest lies in close-in
detonations (1 to 100 feet from the structure) of explosive quantities which
can reasonably be transported on site by motor vehicle (50 to 20,000 1b).

The phenomena associated with such explosions are very complex and in general
involve multiple loading effects, i.e. air blast, ground shock and direct
shock in the case of near contact placement of the explosive. The current
effort is limited to obtaining 'first cut'" estimates of the response to
explosions and represents a synthesis of existing data, methods and procedures
rather than an attempt at new research. Also attention is restricted ex-
clusively to the effects of air blast on structures, this being the primary
loading mechanism from explosive detonation.

Past efforts concerned with the effects of air blast on structures focus
their attention primarily on the low and moderate overpressure range. It is
usually assumed that the dimensions of the blast wave are large relative to
those of the structure and that the shock wave is plane [1]. While such
treatments are appropriate for very large explosions, such as those resulting
from nuclear events, they are not suitable in the current application where
the dimensions of the blast wave field and structure are of the same order
of magnitude. The blast loading in this case is often very local and the
variation of blast wave strength in its interaction with the structure must
be accounted for. Also, blast wave durations may be shorter than the
structure's clearing times, thus limiting the loads to one side of the structure.
Past work for such blast loading has been limited to developing design

procedures for explosive storage and manufacturing facilities [2]. The major



emphasis in these procedures is to determine the overall response of heavily .
reinforced concrete walls to the impulse load generated by the explosion.

Loading on the wall face is assumed to be uniform. While these procedures

are applicable to the problem under consideration, modifications must be

introduced to account for the nonuniformity of loading which is important

for the case of large structures and/or close-in explosions.

In addition to the containment or shield structures much of the nuclear
power plant equipment is susceptible to air blast damage. The inherent redun-
dancies and safety features, which help to minimize the hazards posed by air
blast damage, as well as the physical plant layout may vary from installation
to installation. It is not the objective of this study to investigate the
vulnerability of specific power plants. Therefore, all analysis effort is
concentrated on a few items which are not plant specific and whose failure or
severe damage may by itself constitute a significant hazard. Specifically
the study is limited to estimating the response of containment and shield
structures as well as of piping runs outside of containment, such as main
feedwater and steam lines. Both reinforced concrete and steel containment
structures are considered.

A major simplification in the structural response analysis arises from
the fact, that the loadings in most cases can be considered as impulsive,
and that the details of pressure-time histories are of little consequence.

The reason for this is that in general the structural response times are
significantly larger than the blast wave durations, the latter being of the
order of one millisecond. Thus primary emphasis is placed on gross structural
response produced by the total impulse over the loaded area.

One exception are explosions close-in to concrete structures, where

a direct strong shock wave is also transmitted into the wall due to the .



reflection of the air shock at the surface. Wall damage may result in the
form of spallation on the inner wall surface, when the shock wave reflects

as a strong tension wave. This early time effect, produced by shock reflec-
tion, is strongly dependent on the blast wave pressure-time history and may
lead to the formation of high velocity debris. Due to their high tensile
strength steel structures loaded by air blast are not susceptible to

spalling. The motion and deflection of concrete walls produced by the total
blast impulse will continue long after the blast load ceases and can lead to

a secondary spallation called scabbing {2], which is caused by shear and
bending. This tends to separate the layer of concrete which covers the back
face reinforcement. Again, this type of damage does not occur in steel
structures, which will most likely fail due to the formation of plastic hinges.
The same failure mechanism is expected for reinforced concrete walls. In

fact the most severe damage of concrete walls occurs when the wall deflections
are sufficiently large to cause substantial plastic deformation of the re-
inforcement. Ultimately complete wall destruction by shear plug separation
or fragmentation of the loaded area may occur,

Steel containments are always surrounded by concrete shield structures.
Therefore, they do not experience direct air blast loading, but they may
suffer damage due to impact of concrete debris formed by spalling or
disintegration of the concrete shield walls. Again the loading in such
cases is primarily impulsive. For piping outside of containment the shock
diffraction phase is of the same order of magnitude as the total duration of
the blast wave. Thus no significant drag loading phase exists and the ap-
proximation of an impulsive load is again in general applicable.

Contact placement of the explosive and the use of special shaped charges

is not considered in the current study. While the employment of these



techniques may result in the severest local structural damage, it is not

possible to calculate damage estimates for these cases by means of simple .
analytical procedures. On the other hand, fairly reliable damage estimates

may be obtained from experimental data contained in the demolition litera-

ture [3,4]. Since a precise definition of contact placement cannot be made,

the closest charge placement here is arbitrarily limited to a scaled dis-

tance of 0.2 ft/lbml/3

or approximately 1.5 charge radii. While this distance
is well within the fireball (6 charge radii) of the explosion, the peak
reflected pressure at a wall (v68,000 psi) is still sufficiently moderate

so that direct interaction and impedance matching of explosive to wall material
may be neglected. Attention is restricted to the effects of bulk explosives
and the analysis is simplified by assuming that the explosive charge is of
spherical shape. The pressure loading of the wall is assumed to be that of

a rigid surface. Thus structural motion or deformation does not alter the
loading. 1In light of the impedance mismatch, between air and structural
materials, and the shortness of a typical pressure loading this is a reasomnable
assumption.

In the current study response data are obtained for reinforced concrete
walls and pipes subjected to air blast from close-in explosive detonations.
Further the behavior of steel walls impacted by concrete debris is analyzed
and the deformation of steel liners, attached to the inner side of concrete
structures, under the action of loose concrete debris is estimated. Methods
for calculating the spalling of concrete walls as well as for their deformation
under impulsive blast loading have been presented earlier [5]. These techniques
are summarized here (Sections 3 and 4) and representative results are given.

Section 5 contains an outline of methods and typical results for the deforma-

tion of steel walls and liners under the action of concrete debris. Pipe ‘



response under air blast loading is discussed in Section 6 and the details
of the analysis method are presented in Appendix A. The estimation of air
blast parameters and loads is discussed in Section 2.

Where possible, the results are scaled as a function of the explosive
charge weight (energy). Even where scaling is not applicable all data is
presented in terms of the scaled charge standoff distance. The response
estimates are based on simplified engineering analysis and in general reduce
to a few simple algebraic expressions. It is not practical in the limited
space of a report, to present sufficient response information to cover all
situations of interest to nuclear power plant applications. Therefore, an
attempt is made to provide sufficient blast loading information, which is
usually more scalable or can be presented in a more compact form, so that
any case of interest is readily computable by using the simple response

formulas.



2. AIR BLAST LOADING

The spherical air blast wave generated by an explosion undergoes a
complex reflection and defraction process upon encountering a structure.
The resulting local structural loading is time varying and depends on the
blast wave peak pressure, its decay history, duration, and the angle of
shock wave incidence. The blast wave structure interaction is best illus-
trated by the example of a flat wall. As shown in Fig. 1 when the spherical
blast sweeps across the structure an ever increasing circular section of the
wall becomes loaded. For a given explosive charge the local loading at any
given circle of radius x is a function of the standoff y and the angle of
incidence a. The detailed local interaction between the blast wave and
the wall is illustrated in Fig. 2 at two different instances of time. 1In
the first instant, blast wave reflection is still regular having a small
angle of incidence while at the later time Mach reflection is indicated
forming the familiar three shock configuration. This occurs at large angles
of incidence (approximately angles larger than 40°). Also indicated in the
figure are the shock waves induced in the wall by blast wave reflection
and the stress waves resulting from their reflection at the back face of the
wall.

Due to the complexity of the blast wave interaction with the wall, no
analytical description of the blast loading is possible. Therefore, loading
definition is obtained from experimental data systematized in the form of
graphs and charts and collected over many years, primarily for defense
applications. In the current work, Army Technical Manual TM5-1300 [2] is
primarily used. Some inconsistencies exist in the data of this document;
however, the information presented is reasonably complete. Where necessary,

the data has been supplemented with information from other sources [6].
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Fig. 2. Air Blast Interaction with a Wall



The basic variables of interest to blast loading of structures are
shown in Fig. 3. These are taken from Figure 4-5 of TM5-1300 [2] and are

1/3, where r is the distance

given as a function of scaled distance z = r/W
from the center of the explosive charge to the point of interest on the
structure and W is the TNT equivalent charge weight. The curve labeled

P is the peak incident shock pressure and iS represents the scaled positive
impulse of the incident blast wave. The P, and ir curves are respectively
the peak reflected pressure and the scaled positive reflected impulse for

a normal blast wave incidence on the structure, i.e. o = 0 (see Fig. 1).

It should be noted that quantities referred to here are scaled but not
nondimensionalized, hence the following units must be used: 1b for charge

/3 for scaled distance, psi for pressures and psi-s/lbl/3 fo

weight, ft/lbl r
impulses.

The maximum pressure experienced by a rigid surface that is in the path
of the blast wave is the peak reflected pressure denoted by Py’ This is
dependent on the angle of incidence, o, which is the angle between the di-
rection toward the center of the explosion and the direction of the normal
to the surface of the wall, and on the value of the incident pressure pS at
the point under consideration. The reflected pressure Py is given by the

relationship

pra - CerS (1 )

where Cra(a,ps) is the experimentally determined reflection or amplification
factor which is presented graphically in Fig. 4. The values shown are a
synthesis of data given in TM5-1300 [2] and more recent data obtained by
Carpenter and Brode [6]. The latter information is primarily used for values
of a over 40°. At large distances and nearly glancing incidence, i.e. a close

to 90°, the explosion in the vicinity of a large structure takes on the
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characteristics of a surface burst. This fact was employed to construct the
curves of Fig. 4 at large angles of incidence. While the ratio of pressures
(surface burst to free air burst at the same scaled distance) appears to be
variable [2] the selected value of an amplification factor of 1.5 at 90°
represents a reasonable average. The variation of pra across the surface of
a structure can thus be obtained from Eq. (1) using the information of Figs.
3 and 4.

With Py determined, Fig. 3 is reentered to find a fictitious value of
the scaled distance z from the reflected pressure (pr) curve, Using this z
value the corresponding scaled positive reflected impulse ira is found from
the ir curve. This one to one correspondence between P, and ira postulated
in TM5-1300 [2] is accepted for the purposes of this study even though it leads
to some inconsistencies, eg. impulses which are not compatible with the peak
pressure and the positive phase duration. The assumption appears to be suffi-
ciently good for scaled distances below z = 1, where the most severe loading
occurs.

The total positive reflected impulse IT’ delivered to any section of
a structure, is computed by integrating the local values of impulse ira over
the area of interest. For flat walls this is a simple procedure however
when structural surfaces are curved then a complex numerical procedure is
required to obtain the total impulse. Results of the total impulse loading
for specific configurations are presented in the following sections dealing
with the structural response. In all of these computations the differences
in timing of the impulsive load at various positions on the structure are
ignored. This is justified since both arrival time differences and blast
wave durations are substantially shorter, of the order of onme millisecond,
than the structural response times. Thus for all structural calculations it
is assumed that the impulse is applied instantaneously over the entire section

of interest. This should in general give conservative results.
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. As pointed out elsewhere [5] the spalling of concrete walls is strongly
dependent on the wave form (pressure-time history) of the reflected blast
wave. Of interest are reflections in the high pressure region, where little
information is available concerning the wave form shape. In general the
pressure decay is exponential, however recent experiments [6] indicate that
the wave forms are more complex, particularly in the Mach-stem reflection
region where two pressure peaks have been observed. To obtain computational
estimates of spalling a simple analytical description of the wave forms,
which was originally derived to describe nuclear explosions in air [7], is
employed. The expression was found to be in reasonably good agreement with
wave forms predicted by detailed numerical computations for a TNT explosion {8].
The equation takes the form of a triple exponential, which relates the time
dependent pressure p to the peak blast wave pressure P and the dimensionless
positive phase duration 1 = t/t+, where t is time measured from shock arrival

and t, is the positive phase duration of the pressure.

aT

p(t) = P (1L-1) (ae  +be " + ce_YT) 2)

The coefficients (a,b,c) and the exponents (a,B,y) are functions of P
Values of these parameters were obtained from Fig. 24 of Reference [7]. Of
interest to spall calculations is the wave form of the reflected pressure.
Consistent with the assumptions for impulse loading made earlier, it is
assumed that the duration of the reflected wave is equal to that of the
incident wave and that the decay of both waves is similar. Hence, the para-
meters corresponding to the incident peak overpressure also describe the
reflected wave.

While equation (2) is simple and could be used when numerical spalling

. calculations are carried out, it is not possible to obtain analytical spall
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solutions with this wave form. To generate such analytical estimates the

decaying pressure wave is locally approximated by a simple power law
= Y
p(t) =p, @ - ). (3)

The exponent y is a function of peak pressure P and varies also along the
pressure decay, i.e. it depends on the ratio p/ps. Values of y are cal-
culated by matching, for each peak pressure P> the pressures p obtained from
equation (3) with those from equation (2). Fig. 5 is a graphical presenta-

tion of the values of y thus obtained.
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3. CONCRETE WALL RESPONSE TO AIR BLAST IMPULSE

Both flat and curved concrete walls are encountered in shield and
containment structures of nuclear power plants. Their dimensions are of the
order of 50 to 100 ft with radii of curvature having similar magnitudes.
Therefore blast loadings for all charge weights considered here will be
localized. 1In a "first cut'" response analysis it is then comservative to
assume that the walls are flat and uniform extending sufficiently far in all
directions so that boundaries may be neglected. Since the reflected pressures
experienced by the structures are in general very high (>1000 psi) both the
elastic part of the response and the shear resistance of the loaded wall
sections are not significant [5]. It is also assumed that enough structural
ductility exists to sustain large displacements under a constant ultimate
load. Both prestressed or conventionally reinforced concrete walls are
considered.

The structural analysis of the effects of the explosion consists of two
phases: first, computation of the blast loading, according to the procedures
outlined in Section 2, and second, evaluation of the wall resistance. 1In the
first phase it is assumed that the wall provides no material strength to resist
the impulse associated with the applied blast load. The only resistance
available is provided by the inertia of the mass of the wall. In the present
.approach, given the total impulse and the total mass, a single velocity
imparted to the entire wall segment under consideration is computed. During
the resistance phase the ultimate load carrying capacity of the reinforced
concrete structure is developed to provide a decelerating force which brings
the wall back to rest. The total wall deflection or its rotation can then
be compared with damage criteria. The latter may be either some maximum

permissible material deformation or an emperical limit, which if exceeded is

known to result in severe structural damage.
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3.1 LOADING PHASE
The procedure for obtaining the local scaled impulse per unit area
ira at any point of the wall was outlined in Section 2. Given a charge weight

W these values may be converted to actual impulses per unit area, i.e.

1 o=w/3 @)
ra ro

Integration of the local impulses over the loaded area results in the total

impulse. 1In the case of a flat wall the total impulse IT is easily computable.

IT = Jx I(x,y) 2mx dx (5)
o

Here the notation of Fig. 1 has been used. The local impulse values I(x,y)
are given as functions of the standoff distance y and the radial coordinate x.
Each I(x,y) is obviously equivalent to the corresponding Ira' Since no
analytical expressions exist for the local impulse the integration is carried
out numerically. It should be noted that all the variables on the right

hand side of Eq. (5) are scalable, hence the total impulse can also be scaled.

Introducing zx = X/Wl/3 and zo = y/Wl/3 one can write

i = IT/W

z
X,
T 27 IO 1(z,z0) z dz (6)

where iT is the scaled total impulse over the circle with scaled radius zZ
at a scaled standoff distance of z, and z is the integration variable (scaled
radius) along the wall. A graphical presentation of the relationship between
iT and z, for various values of z, is given in Fig. 6. This data is universal
and can be used to evaluate the impulse over any circular area on a flat wall.

During the loading phase it is assumed that the only resistance offered

to motion is by the inertia of the loaded wall segment. The velocity attained
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by the wall segment is then simply

I
= L
V=g (7)
Here M is the mass of the circular wall segment given as
M=m x2 =m w2/3zx2 (8)

where m is the mass per unit area of the wall. Since the mass, for a given
wall, is proportional to the square of the radius x it will scale with W2/3.
This 1s indicated by the second equality in Eq. (8). The total impulse
scales directly with the charge weight W (see Eq. (6)), hence based on Eq. (7)
the velocity of an impulsively loaded wall segment will scale with the cube
root of the charge weight. This scaled velocity is wall specific because
of its dependence on m the mass per unit area. However, it is possible to
construct a general velocity variable, u, which includes the parameter m,
as follows:
v 2 Zx
u= ;I7§ = ;;r Jo 1(z,zo) z dz 9)
X
Again this variable is only a function of the scaled standoff z and the scaled
radius of the wall segment z - Fig. 7 represents the velocity variable as
a function of the scaled standoff z, for various wall response limits. As
will be seen in later sections of this report these curves do not correspond
to any fixed values of scaled radial distance Z. Rather z varies with the
standoff distance, e.g. for the velocity at the spall limit curve z =z
(a = 45 deg.).
3.2 WALL RESPONSE AND RESISTANCE

An implied assumption in separating the wall response from the

loading phase is that the motion of the wall does not affect the magnitude
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of the blast loading. This assumption is justified because the duration of
the impulse is short relative to the response time of the structure. Any
motion of the structure during the blast loading period is therefore minimal.’
Similarily the assumption of no structural resistance during loading is
acceptable because for most cases the shear stresses resulting from the
application of the pressure forces substantially exceed the shear strength

of the concrete [5].

Several mechanisms can be postulated to compute deflections of wall
segments due to the impulse of the blast. Ultimate strength analysis, which
is commonly used for the design of reinforced concrete structures, was found to
be most appropriate for the current application [5]. This analysis assumes
plastic yielding under a constant resistance force FRand completely neglects
the elastic strength of the material. The deflection of the wall § can be
computed from the kinetic energy of the loaded wall segment, of mass M, and
initial wvelocity v imparted by the blast impulse.

2
5 = %;é— (10)
R

Due to the restraining effect of the inertia of the entire wall surrounding
the loaded wall segment a circular yield line pattern, similar to that of a
clamped circular plate, is expected to form. The uncertainties in the cir-
cumferential support conditions of the loaded wall segment, which is neither
clamped or simply supported, and in the load distribution make an estimate
of the ultimate load capacity FR difficult. Consideration of all the factors

[5] lead to the following simple compromise expression

FR = 10 M_. (11)
Here M, is the ultimate moment assuming that the wall is equally reinforced on

both faces, or the average ultimate moment if the reinforcements, are different.
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For conventionally reinforced concrete walls the ultimate moment is [9]

_ 1
M= Al £ d - Ea) (12)

where AS is the reinforcement steel cross—-sectional area per unit width
(height) of wall, fS is the steel yield strength, d is the effective depth
of reinforcement from the loaded face of the wall, and a is the concrete
compression block depth. The latter can be evaluated by equating the com-
pression force in the concrete to the tension force of the reinforcement
at yielding. The compression is assumed to act over an equivalent block of
uniform stress [9], of intensity 0.85 fc’ where fc is the concrete compression
strength. Hence one obtains

AS fS

270.85
c

(13)

When spalling or scabbing of the concrete covering the reinforcement is ex-

pected, the expression for the ultimate moment is modified [2]
M =A fS d 14)

where dc is the distance between the centerlines of the front and backface
reinforcement. For prestressed concrete walls the computation of the ultimate
moment M0 is considerably more complicated. It must be based on the full
plastic strength of the prestressing tendons and their location in the wall
cross—-section. An average value of M0 for horizontal and vertical directions
as well as different bending directions is determined and used to compute the

ultimate load capacity FR.

Eq. (10) can be rewritten in terms of the total impulse IT and the

ultimate moment Mo.

(15)
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The rate of increase of total impulse with radial distance along the wall
varies significantly, being very high for very small radii and diminishing

as the radius increases (see Fig. 6). On the other hand the mass of the
circular wall segment increases as the square of the radius. Therefore based
on Eq. (15) one may expect a maximum displacement § to exist. Since no
analytical expression for § in terms of radius exists the maximum is found
numerically by evaluating the expression over circles with ever increasing
radii until the critical value is located. To be conservative in the wall
deflection estimates it is this maximum value of § which is used.

It is readily noted from either Eq. (10) or (15) that the deflection §
is a scalable quantity. Since the impulse is proportional to the charge
weight W and the mass scales as W2/3 one finds that § scales as W4/3. Again
to eliminate the dependence on specific wall parameters a universal wall
deflection variable may be constructed which represents the maximum deflection

as a function of the scaled standoff distance only, i.e.

§ mM
(o)

A= ——r (16)
w4/3

The resulting curve is shown in Fig. 8. It can be used to estimate the
maximum deflection for any specific wall (parameters m and Mo) under the action
of an impulsive blast loading resulting from an explosion of charge weight
W,detonated at any arbitrary standoff distance y. The velocity of the wall
segment corresponding to this maximum deflection is shown in Fig. 7. The
particular shape of this curve results from the fact that for close-in ex-
plosions the maximum deflection occurs when the plastic hinge radius x (radius
of loaded segment) is approximately one and one half times the standoff
distance y, i.e. x/y = 1.5, while for larger standoff distances the ratio is

x/y = 3.7. A sharp transition occurs between these two regimes around a
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scaled standoff distance z, = 1 ft/lbl/B.
Another measure of wall damage is the rotation or angular deflection
the wall experiences at the plastic hinge radius. For the circular yield
pattern assumed here the tangent of this rotation angle O is simply the

ratio of wall deflection to the radius of the plastic hinge circle, i.e.
8
tan® = — an
X

Again a maximum rotation exists for each charge standoff distance which
must be found by numerical means, i.e. by integrating over increasing circles.
The maximum rotation angle © does not coincide with the maximum of the
deflection 6. In general it has been found that the maximum O occurs before
(at smaller hinge radii than) the maximum §. For the range of scaled stand-
off distances from 0.2 to 3.0 the ratio of hinge radius to standoff x/y, at
maximum ©, varies from 0.75 to 1.10. To be on the conservative side the
maximum value of © will be used to indicate wall damage rather than the value
corresponding to the maximum deflection.

From Eq. (17) it is obvious that tan® is a scalable quantity. The

4/3

deflection § scales as W and the radius x scales as Wl/3, therefore tan®
is directly proportional to the charge weight W. Again a universal wall

rotation variable, which contains the wall specific parameters, can be con-

structed.

- — b
0= . (18)

]

The relationship between the scaled wall rotation variable of Eq. (18) and
the scaled standoff distance is shown in Fig. 9 while the wall velocity
corresponding to the same loading is given in Fig. 7. It should be noted

that the scaling pertains only to the function tan® and not to the angle 0
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itself. The reason for this is, that only tan® can be directly expressed in
terms of scaled quantities and that the relationship between O and the trig-
onometric function is neither linear nor a simple power law depedence. Never-
theless the information of Fig. 9 can be readily employed to estimate the
maximum rotation at the hinge line for any reinforced concrete wall under
impulsive blast loading.

By virtue of the assumption that the elastic response can be neglected,
the application of the procedure outlined above must be restricted to loadings
which indeed produce large plastic deformations. The upper limit of applica-
bility will be dictated by the failure or rupture strains of the reinforcement
steel. For the circular yield patterns assumed here the relationship between

strain € and the hinge rotation O can be approximately stated as

_ 1
cosO = T4e (19)

Thus for example if the rupture strain of the reinforcement is € = 0.10
then the computational results may be applied to rotation angles up to 25°.

Both very small charges as well as extremely large charge weights should
not be treated by the analysis. For small charges there will be no gross
plastic deformation of the wall. For very large charges, particularly at
large standoff distances, the assumption of local loading and deformation of
a single wall becomes invalid. While no precise limits on charge weight can
be established, it appears that applicability of the wall response calculations
should be approximately restricted to the range of 50 - 20,000 1b of TNT.

3.3 EXAMPLES OF WALL RESPONSE COMPUTATIONS

The methods and procedures outlined above are applied to two

typical walls in order to estimate their maximum deflections and rotations

under the action of explosive charge detonation. The examples also illustrate
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the procedures which may be employed to establish acceptable limits on ‘
either charge weight or standoff distance, based on selected damage criteria.
Since the computations for the two example walls have been detailed else-

where [5], only a summary of their physical and geometrical descriptions

is presented below:

a - Conventional Reinforced Concrete Wall

Wall thickness

30 in,

Concrete Compression strength fc 4,500 psi
Steel yield strength fS 60,000 psi
Reinforcement in each face AS 1.5 in2/ft
and in each direction
Effective depth of reinforcement d 27 in.
Ultimate moment (Eq. (12) and (13)) M.o 0.195 x 106 ft-1b/ft
Ultimate load capacity (Eq. (11)) FR 1.95 x lO6 1b
b - Prestressed Concrete Wall
Wall thickness h = 42 in.
Concrete compression strength fc 4500 psi
Conventional steel yield strength fs 60,000 psi
Tendon yield strength ft 240,000 psi
Plastic strength of each tendon, Tp 2.0 x 106 1b
170-1/4" diameter strands
Tendon spacing - horizontal Sy 27 in.
vertical Sy 48 in.
Tendon location - horizontal 1H 6 in., from outside face

vertical

Horizontal reinforcement-inside face

o <

21 in., at centerline

1.27 in?/ft
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Effective depth d = 39 in.

Ultimate moment - vertical tendons MOV = 0.7 x 106 ft-1b/ft
horizontal tendons MOH =2,0x 106 ft-1b/ft
horizontal M = 0.24 x 106 ft-1b/ft

reinforcement o
Average ultimate moment ﬁo = 0.9 x 106 ft-1b/ft
Ultimate load capacity FR_= 9.0 x lO6 ft-1b/ft

The results for Wall Type-a and Wall Type-b are summarized in Fig. 10
and Fig. 11 respectively. Shown are iso-deflection curves and iso-rotation
curves as they depend on charge weight and standoff distance. The results
are for close-in deformations in the range of scaled standoff from 0.2 to
1.0 ft/lbl/B. If displacement of the wall is to be limited to a specific
value, say 1 ft, then the charge weights that can be tolerated at any specific
standoff distance can be determined from the figures. Alternately given a
maximum charge weight the required standoff distance may be obtained again
for a specific deflection limit. The limits on displacement may be considered
as "functional" limits. The severity of the effects caused by a particular
deflection depends not only on wall type and thickness but also on the
structural dimensions. Thus, for the same deflection, a wall with a small
span may suffer considerably more damage than a larger wall. On the other
hand rotation limits can be easier related to local structural damage since
they are based on maximum reinforced concrete ductility. Thus TM5-1300 [2]
recommends that rotation at a yield line, as defined by conventional ultimate
load analysis, be limited to 5° where structural integrity is to be maintained.
If large deformations and scabbing are to be allowed then TM5-1300 {2] recom-
mends a 12° limit on yield line rotation. The curves corresponding to these

two limits are shown in Figs. 10 and 11. It can be seen that the critical
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explosive charge weight, at any particular standoff distance, can easily

vary over an order of magnitude depending which limits or allowable damage
criteria are chosen. While fairly precise bounds exist for ultimate
strength design of concrete structures [9] under ordinary conditions and
static loadings no such criteria are available for the dynamic response of
air blast loaded structures. At best one can arrive at some criteria based
on the physical appearance of the structure at the end of the response
phase. This is the basis for the above mentioned rotation limits, Similarly
experimental evidence exist [2], that very severe wall damage, in the form
of scabbing and disintegration of the concrete, is to be expected when the
maximum deflections are as large as the wall thickness. 1In the absence of
more precise information the above criteria may serve as guides for the
setting of charge weight and standoff limits.

3.4 EFFECTS OF WALL CURVATURE

No simple techniques are available to estimate the structural
response of curved concrete walls subjected to explosive air blast loading.
For curved walls loaded on the convex side, as would be the case for nuclear
power plant containments, the flat wall estimates should provide conservative
answers. Here only the effect of wall curvature and of finite structural
size (finite radius) on the blast loading and impulse will be examined.
Subsequent response calculations are again carried out with the flat wall
approximations using however the impulses for the curved structure.

The interaction of a spherical blast wave with a cylindrical
structure results in a three-dimensional geometry and flow field. As the
blast sweeps across the structure their line of intersection is distorted
from the circular ring shape of the flat plate to a complex three-dimensional

elliptic shape. An approximate numerical technique was developed to obtain .
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the impulse on the structure acting in a direction normal to the axis of

the cylinder. The integration of impulse was performed in a grid network
consisting of circles and longitudinal strips parallel to the cylinder axis.
Again at each point the reflected impulse per unit area was determined by
the procedure outlined in Section 2. Since the blast wave spreads beyond
the width (diameter) of the cylinder appropriate cutoffs are introduced in
the integration procedure for the total impulse. Fig. 12 shows the total
impulse variation with scaled standoff distance over cylindrical structures
with five different radii. Also shown is the total impulse on a flat wall.
The length or height of the cylinder (wall) in all cases was the same 100 ft
and the charge weight was 1000 1b. It can be seen that for large diameter
structures the impulse differs little from the flat wall case. Due to the
sharp reduction of projected area the total impulse is significantly reduced
when the cylinder radius is small (5 ft).

Using the flat wall response analysis of section 3.2 but the impulses
as properly computed for a curved structure one obtains the deflections and
hinge line rotations shown respectively in Fig. 13 and Fig. 14. Again for
large radii there is little deviation from the flat wall results, however
for small cylinder radii the difference is substantial.

Based on these results it may be concluded, that the flat wall analysis
while somewhat conservative will give reasonable estimates of wall response
for typical nuclear power plant containment structures which in general have
cylinder radii on the order of ten's of feet. On the other hand for structures
with diameters of the order of a few feet, such as pipes, the flat wall
computation of impulses is a gross overestimate and the proper numerical
impulse evaluation should be used. An added benefit of using flat wall

calculations for large diameter structures is that the results are scalable.
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The introduction of an additional length scale, i.e. the diameter of the
structure, makes scaling of the impulse load on a cylinder impossible. There-
fore loads on small diameter structures must be computed individually, i.e.

for each charge weight and standoff.
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4. SPALLING OF CONCRETE WALLS ‘

It was indicated earlier that spalling may occur on the back face of a
concrete wall which is subjected to air blast on its front phase. The
phenomenon of spall in brittle materials occurs when strong tension waves
are reflected into the wall from the free surface at the back face and
interact with the decaying compression wave in such a way as to produce
locally tension stresses which exceed the dynamic tensile rupture strength
of the material. Since the process has been discussed at length elsewhere
[5,10,11,12] only a brief outline of the assumptions and calculation procedures
will be given here.

It is assumed that the wall material is linear-elastic and the spalling
occurs instantaneously whenever the dynamic tensile ruptures strength is
reached. The actual spherical wave interaction with the back face shown in
Fig. 2 is approximated by plane wave theory, using both normal and oblique
reflections, for which analytical solutions are possible.

To obtain the time history of the compression wave incident on the back
face of the wall, it is assumed that the wave form remains similar to that of
the air blast and that the peak pressure in the wall decays linearly with
distance through the wall. This is consistent with a linear-elastic material
behavior and constant wave speed as well as with the spherical divergence
of the pressure wave. Hence for any angular position o (angle of incidence)
the value of the peak compression arriving at the back face of the wall Pa

is given in terms of the peak reflected pressure Pra at the front face as:

= —r ¥y 2
Py " Pra T ¥ h/cosa _ Pra y+h ° (20)

Here r is the radial distance from the point of burst to the wall at angle qa,

h is the wall thickness and y is the normal distance from the explosion point ‘
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to the wall (y = r cosa). Once P, is determined the decay of the compression
wave at the back face of the wall and angular position o is obtained by the
assumption of wave similarity. For analytical estimates of wall spallation
this pressure decay must be represented by a simple mathematical expression.
We assume that the power law of Eq. (3) locally approximates the pressure
decay with the variation of the exponent given in Fig. 5.
4.1 SPALL AT NORMAL INCIDENCE

The reflection of a plane compression wave from a free surface at
normal incidence is a one~dimensional problem as shown in Fig. 15. Assuming
that the material is linearly elastic with constant wave speed, the condition
of a stress free boundary implies that a tension wave, equal in strength
and wave shape to that of the compression wave, is reflected back into the
wall as illustrated in Fig, 15 (a). The actual state of stress of any
location is then the algebraic sum of the two stress waves (compression and
tension). Whenever this net stress UN at the head of the reflected tensile
wave equals the dynamic tensile rupture strength Op of the material, spallation
will occur as illustrated in Fig. 15 (b). Designating all stress values as

positive quantities, p for compression and ¢ for tension, one can write for

the first spall

Op = Oy = O, ~ Pp(ty) =P, - py(ty). (21)

Here the subscripts o refer to the peak initial value of stress in the wave
and Py is the stress in the compression wave at the location of the first
spall. Considering the symmetry of the waves and the constant wave speed it
can be easily demonstrated that time tl, which corresponds to pressure Py

in the compression wave, is given by

26

& = —El , (22)
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where 61 is the thickness or depth of the first spall and c¢ is the wave speed.
If the initial peak compression is much larger than the tensile rupture

strength o,, and the wave form is decaying with time then it is possible to

T

obtain multiple spalls. 1In fact, the theoretical number of spalls n is given

as

T

2
A o

. (23)

Since a new free surface is generated every time a spall appears, the reasoning
applied to the first spall can be extended to all spalls. Thus, Eq. (21) can

be generalized for an arbitrary spall k as follows:

(

o =

T Nk~ Pr-1 ) = el (24)

b1

Here Py is the value of the compression wave when the k's spall occurs and

Pr_1 is the value corresponding to that for the preceding spall. Again con-

sidering wave symmetry and constant wave speed the time tk along the wave form
corresponding to stress p can be simply obtained .

28 + 8, + ..+ 8 4+ 6)
tk = S (25)

From the above it can be seen that the thickness of the spalls depend strongly
on the wave form of the compression wave.

The velocity of the spall layers for this simple one-dimensional case is
obtained by equating the momentum of the spall layer to the portion of the
impulse imparted to it by the compression wave and still trapped iIn it at the
time of spall. Expressing all quantities per unit area one can write for the

first spall

t
. 11 _
i, = J p(t)dt = pwdlul (26)
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where il is the trapped impulse, pw the density of the wall material and ul .

the velocity of the first spall layer. By simple analogy, the velocity u

k

for any arbitrary spall k can be obtained from:

[

J
te-1

p(t)dt = pw6kuk . @27

ik =
Again, the strong dependence of spall velocity on the form of the compression
wave can be readily discerned.
To derive specific expressions for spall thickness and velocity, the
wave form approximation given by Eq. (3) must now be employed. Substituting
into Eq. (21) and using Eq. (22) yields the following relationship for the

first spall depth

1
W ()
Po
A general relationship is derived for the k~th spall by using Eqs. (24) and (25)

together with expression (3). After simplification one obtains

ct ko \1/y (k - Lyo_ | 1/y ct, fo. \1/y
s oot T _ T __+[_T LYo (k - 1)1/Y:\ _
k 2 P, P, 2 \p,
(29)

The spall velocities obtain from the impulse expressions. Eq. (8) can
be integrated using (3). Substitution of Eqs. (22) and (28) and subsequent
simplification yields the velocity of the first spall

2p [ g
o 1 T
u, = — |1 - — . (30)
1 cpw Yy +1 p0 ]

The same procedure can be applied to any spall and after much simplification

one obtains for the velocity of the k-th spall

[e}
_ 0 ), 12 k + 1 ) 31
U co { Yy +1 [ (kl_cl)l/y_l (31) ‘

|
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It is interesting to note that the spall velocities do not depend explicitly

on the blast wave duration t, and thus the explosive weight.

+
4.2 SPALL AT OBLIQUE INCIDENCE

When a plane compression wave in an elastic medium strikes a free
surface obliquely the reflection process becomes considerably more complex
than in the case of normal incidence. To maintain a stress free boundary at
the surface two waves must be reflected back into the material, namely a
dilatational wave and a shear wave [13]. A typical reflection process of this
type is illustrated in Fig. 16. For linear-elastic media the reflection angle
for the dilatational wave must be equal to o the angle of incidence because
its wave speed is equal to that of the incident wave. However, the shear
wave having a different wave speed c', reflects at a different angle 8 in
order to stay in contact with the point of wave incidence as it moves across
the surface. The relationship between these angles, wave speeds, and the

Poisson's ratio v of the material can be obtained from Snell's law [13] and

is written as

sin B c

sina _ ¢ _ [2(1—"\))]1/2 (32)

Concerning the strengths of the reflected waves, these are obtained from the
condition that the sum of the resultant stresses normal to the surface must
be zero. Using a reflection coefficient g it can be shown [5,12] that the

following relationships hold.

9% T "&%1 (33)
- <
= [(nR + 1)cot 28] 101 (34)
tan B tan2 28 - tan a
n, =2 (35)

tan B tan2 28 + tan o
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Here GI is the amplitude of the incident dilatation wave and oR and TR
are the amplitudes of the reflected dilatational and shear wave respectively.
For physically acceptable values of v the dilatational wave speed is
always larger than the shear wave speed and thus angle B is smaller than
angle a. The above equations also indicate that the reflection process is
independent of the amplitude of the incident wave and is only a function of
material properties and the angle of incidence. Using typical material
properties for concrete, i.e., v = 0.15 and ¢ = 104 fps values of the angle B,
and the reflection coefficient nR waves are obtained (Fig. 17). It is
interesting to note that the reflection factor ng (Fig. 17b) changes sign
twice as the angle of incidence varies from zero to 90 degrees. Since such
a sign change implies a phase reversal of the reflected dilatational wave,
no spalling should be expected in concrete for angles of incidence larger
than 45°,
The geometry of a typical oblique spall is shown in Fig. 18. Also
shown are the profiles of the compression and reflected tension wave. Intro-
ducing again the pressure notation p (positive quantities) for the stress

in the incident compression wave and letting n be the absolute value of the

reflection coefficient ng one can write for the first spall

g =

T~ % " pl(tl) =np, - pl(tl) (36)

where the second expression obtains from (33) together with the identity

NpOp = NP - The thickness of the spall 61 is now related to the t1 (when
the pressure is pl) by the following modified equation:
261 cos o
N S (37)
1 c

For strong compression waves multiple spalls are again possible. Their

theoretical total number n can be estimated from the following expression [5]
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Fig. 18. Spalling at Oblique Incidence
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n | (1 -n) . + 1
I : (38)

inn

n < -

For an arbitrary spall k the relations giving spall depth are:

k
= - - oK 1-n3_
op = Py (k1) —p () =np - om <1 - n) p, (t) (39)
and
2(8, + 8, + ... + 6 + 8 )cos a
, - 1 "2 k-1 " °k . (40

[od

Spall velocities are again obtainable from the impulse integral. However,
since that impulse is acting in the direction of the incident wave, the
velocity will also be in this direction and the impulse is trapped in a
length given by &8/cosoa. Thus for the first spall the relationship is

8

1 cos o

Y
p.u = J p(t)dt . (41)
(o]

For an arbitrary spall k one obtains

8 t
"
P o5 & - I p(t)dt . (42)

Applying the approximate wave form, given by Eq. (3), to the above
relationships one obtains specific expressions for spall thicknesses and
velocities.

Thickness of lst spall

ct o 1l/y
5 ————*——(1-n+—33—) (43)

Thickness of k-th spall

ct 11/ o, 11/y
5 = 5 {[(1 - @ - h Y][l + = —T] }(44)
o

k2 cos a np
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. Velocity of 1lst spall
2p o :
- 2 .
YT G+ Dep, ° [(Y *no-3 ] (46)

Velocity of kth spall

2

2p cos’a k\ o P
_ k 1 -1 o,
[ . — + - —_— -—

4.3 SPALL CALCULATIONS AND RESULTS

With the relationships derived above it is possible to calculate
the spall variables in any given situation. The required inputs are the
charge weight, wall thickness, and charge standoff distance. The spall
parameters at any arbitrary incidence angle may then be readily obtained.
Since the detailed procedure has been outlined before [5] only representative
results which concern the most salient features of spalling will be given
here. These results will be used to indicate trends rather than provide de-
tailed information for all possible ranges of spalling.

Evidence exists [10] that the dynamic tensile rupture strength of
brittle materials is substantially higher than the static value. In recent
experiments with concrete [14], values in excess of 2000 psi were measured.
This information was used to generate the computational results presented
here. The other required physical parameters are typical for the quality
of concrete used in nuclear power plant structures. In summary the values

used in the computations are:

Compressive Strength fC = 4000 psi

Dilatational Wave Speed c = 104 ft/s
. Poisson's Ratio v = 0.15

Dynamic Tensile Rupture Strength o, = 2000 psi
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Since all of the blast wave parameters including the positive over- .

pressure phase duration t, can be scaled [2], the spall results would also

+
be scalable except for the finite wall thickness h which affects the com-
pression wave attenuation (see Eq. (20)). However, by using the expedient

of a scaled wall thickness [5] it is possible to present the results in a

more compact form. Thus all length dimensions will be scaled with the cube
root of the explosive charge weight (Wl/3).

Fig. 19 presents spall thickness (depth) and velocity at normal shock
incidence (o = 0), as a function of charge standoff distance with spall
number as a parameter as indicated in the figure. The results are for a wall
of zero thickness, i.e. no attenuation of shock wave in the wall is assumed
to take place. The spall depth increases with spall number but the spall
velocity shows an opposite trend. Thus the first spall has the highest
velocity while its thickness is a minimum. Spall thickness also increases
with standoff distance but again the spall velocity decreases. These trends
reflect the dependence of spall thickness on the profile of the compression
wave which is steepest at the shock front and flattens out as the pressure
decays. Similarly, the wave forms become less steep as the peak pressure
decays, i.e., the standoff distance increases.

The most notable aspect of the results is that high spall velocities
(100-500 ft/s) are associated only with very thin spall layers. Even for
charges of 1041b the corresponding spalls are less than one quarter inch
thick. On the other hand for substantial spall layers (= 1 in.) the velocities
are quite low (about 15 ft/s). Because of this in the case of normal
incidence, the kinetic energy per unit area of spall does not vary appreciably
over the entire range of blast parameters considered. Similarly the total

depth of spall, i.e., the sum of all spall layer thicknesses, is nearly



51

0 4
.
-|
10 S o’
13 0 ! 3
=S 9 i
Z -2 NSI[FKFI~ 2
. \ NN -~ -~ 51:
I 15 NN -~ —~ ~— -
= N\ ~ ~ ke
= ' Al 7 ]
=R \ o
a 5 =
Q. =
(7] -
-4 ] 0
10 Z INCIDENT ANGLE a=0 — 10
s WALL THICKNESS Z, =0 -
——— SPALL DEPTH i
— — —~— SPALL VELOCITY .
_5 -
10 ' 1 | 0’
0.2 0.4 0.6 0./8 1.0
STANDOFF DISTANCE, ft/1b" >
Fig. 19. Variation of Spall Depth and Velocity with

Standoff Distance and Spall Number

SPALL VELOCITY, ft/s



52

constant, being on the order of 0.25 ft/lbl/3. This is not an unexpected .

result. It can be shown [5] that the total depth of spall D is approximately
equal to one half the wave length of the compression wave, i.e., D 2 ct+/2,
and this quantity is remarkably constant in the pressure range of interest.
For reinforced concrete walls spalling is expected to be limited to the
concrete layer covering the reinforcement, since this layer is thinner than
the predicted total spalling depth.

Fig. 20 again gives spall depth and velocity information but as a function
of spall number with scaled standoff distance as a parameter. This is a
clearer illustration of the spall number cut-off at various standoff distances,
e.g., for the assumed dynamic tensile rupture strength of 2000 psi, 33 spalls

/3

may occur at a standoff of 0.2 ft/lbl while only 3 spalls will be possible

at a standoff of 1.0 ft/lb1/3. It should be obvious, that due to the dis-
crete nature of spalling, the spall number cut-off is not a continuous function
of standoff but proceeds in steps.

The effect of wall thickness on spall velocity and depth is illustrated
in Fig. 21, where results are given for the first spall variables at normal
incidence as a function of scaled charge standoff distance with scaled wall
thickness as parameter. For fixed charge weight and distance the spall thick-
ness increases with increasing wall thickness while the spall velocity de-
creases. Similar results are obtained for subsequent spalls. Typically for
a 103 1b charge at 3 ft standoff a wall thickness of 3 ft will result in a
threefold increase in spall thickness relative to zero wall thickness and a
twofold decrease in spall velocity. For larger standoff distances the effect
becomes less pronounced.

A very strong effect on spall thickness and velocity is produced by

variations in angle of shock incidence a. This is illustrated in Fig. 22 .
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which gives the spall variables for the first spall as a function of scaled .
standoff distance for various values of the angle of incidence a. Again the

case of zero wall thickness or no shock attenuation by the wall is presented.

As indicated earlier no spalls occur beyond a = 45° because the reflection

factor changes phase at this point (see Fig. 17). For a given standoff distance
the spall thickness increases with angle of incidence while the velocity
decreases. Relative to normal incidence the spall thickness for the oblique

case is increased by the factor 1/coso as well as by the effect of the reflection
coefficient. The velocity is decreased by cosza and again by a reflection
coefficient effect. 1In computing the kinetic energy per unit area for oblique
incidence, values substantially higher than those for normal incidence are
encountered. The maximum in kinetic energy, for all standoff distances con-
sidered, occurs at an angle of incidence of about 20°.

The formation of a typical spall crater as calculated by the plane wave
theory is shown in Fig. 23. Scaled variables are used in the illustration
with both the charge standoff and wall thickness being 0.2 ft/lb1/3. The
jaggedness of the crater profile is due primarily to the fact that spall depth
is computed discretely at a finite number of incidence angles a neglecting all
interactions in angular direction between adjacent layers. This is a severe
limitation of the plane wave theory. However, the results appear to give a
reasonable qualitative picture of crater formation.

A comparison of the maximum spall velocities (first spall, normal incidence)
with the maximum wall velocities induced by the total impulse of the blast is
shown in Fig. 24. The latter velocities are obtained by considering the gross
motion of the entire loaded portion of the wall and are calculated by the yield
line analysis procedures outlined in Section 3. The results are given in
scaled form as a function of charge standoff distance for a number of wall .

thicknesses. It is seen that except for the thickest wall (Zw = 0.6 ft/lbml/3)
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the velocities induced by impulse loading are substantially higher than those
produced by direct spalling. A similar behavior is observed at other angular
positions. Hence coupling between the two motions can be expected. The
impulse motion is a late time effect and a number of stress wave reflections
will occur before this motion commences. Therefore, the small high velocity
spall debris is expected to be ejected from the wall before the gross motion
takes effect. However, the heavier spall debris which has but little velocity
is expected to stay in contact (or near contact) with the wall and will be
later ejected by the wall motion at quite high velocities. The kinetic
energies of this debris are at least one order of magnitude higher than the
values produced by direct spall. 1t therefore appears that the severest
effects of spallation may be due to coupling to the gross wall motion which
arises from the total blast impulse loading.

Based on the foregoing analysis and computational results a number of
important conclusions may be reached. First it appears that a cut-off for
spalling of concrete may be expected at an angle of about 45 degrees because
of the phase reversal in the reflection coefficient. The angle will be
smaller for larger standoff distances because the tensile stresses will not
exceed the rupture strength at large angles. 1In fact, if the tensile rupture
strength is indeed 2000 psi no spalling can take place for scaled standoff
distances larger than 1.8 ft/1b1/3. The second important point is the above
described coupling between spalling and the wall motion produced by impulse
which leads to the high velocity ejection of most spall debris. Finally for
explosions of interest, the total spall depth throughout the cfater is greater
than the thickness of the concrete cover on the backface reinforcement. Thus
unless very severe wall deformations occur the concrete cover depth will be

the limit on ejected debris. All these facts lead to a simple "first cut"
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estimate of spall debris ejection, without performing any detailed spall ‘
calculation. The debris mass is simply limited by the spall cut-off (45°

or smaller) and the depth of the concrete covering the reinforcement, while

its velocity is obtained from the wall motion produced by impulse, as

given in Fig. 7.
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5. CONCRETE DEBRIS EFFECTS

The debris produced by concrete wall spalling or disintegration, when
ejected at high velocity may upon impact produce severe damage to structures
and equipment. Nuclear power plants have typically one of two arrangements:
(1) a free standing steel containment surrounded by a concrete shield
structure or (2) a concrete containment with an attached thin steel liner.
Since the prime purpose of steel liners is to provide air leak tightness,
they are shallowly anchored in the concrete and contribute little to the
strength of the containment wall. However, unless complete wall disintegra-
tion occurs, the liners may be able to contain or retard the concrete debris.

The debris may separate from the concrete wall as individual concrete
fragments or as a large coherent mass of concrete. For fragment impact, the
loading on the steel is very local and the analysis of the phenomenon must
be based on penetration mechanics. When large masses of concrete impact
a steel structure, the load is more distributed and the phenomenon may be
approximated as the impact of two plates or as the impulsive loading of a
plate. Consistent with the assumptions made in the concrete wall analysis,
the steel structures are approximated as flat plates with the boundaries
sufficiently far removed from the impact region, so that their presence may
be neglected.

5.1 IMPACT OF CONCRETE FRAGMENTS

All of the existing penetration mechanics analyses, including the
most recent work, e.g., {2,3,15,16], concerns the impact of metal fragments
(or projectiles) on concrete, steel, etc. Usually it is assumed that the

missile is either rigid (nondeformable) [2,3] or that it deforms plastically [15].
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Neither of these assumptions is obviously appropriate for concrete fragments ‘
impacting on steel. Due to the differences in compressive strength and the
lack of ductility in concrete, either considerable crushing or rebound of
the missile is to be expected depending on the impact velocity range. Assuming
a rigid, noncrushable and nonrebounding concrete missile should therefore
result in very conservative penetration estimates. Concrete fragments may
be expected to have irregular shapes while the existing analyses assume a
regular shaped missile. Because of all these discrepancies between concrete
fragment impact and the existing penetration analyses and theories, estimates
of the concrete on steel penetration were made using the simplest available
empirical relationship [16], which is based on the most recent compilation of
missile penetration data.

The missile is assumed to be of a standard cylindrical shape with the
diameter d (in.) being equal to the length and with the nose curvature

r = d/2 (see sketch in Table 1). The penetration x (in.) is then

x=KDdv? (48)

where, D = W/d3 is the caliber density, W is the weight of the projectile

(1b), and v is the impact velocity (K ft/s). The exponent o depends on the
target material and has a value o = 1.22 for steel. The constant K depends
on the hardness of the missile material; we use for concrete the same value
as for armor piercing steel K = 2.33. These values together with a typical

specific weight of concrete (0.0868 1b/in3) lead to the following relationship

22

x = 0.128 d v (49)
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TABLE 1

CONCRETE FRAGMENT IMPACT ON STEEL

STANDARD MISSILE

e d

T

SHAPE
r=d/2

PENETRATION-x (in.)

DIAMETER VELOCITY-v (ft/s)
d(in.) 50 100 200 300 400
1.0 .0033 .0077 .018 .030 042
2.0 .0066 .0154 .036 .059 084
3.0 .0099 .0231 .054 .086 .125
4.0 .0132 .0308 .072 .118 .167
6.0 .0198 .0462 .108 177 .251
12.0 .0396 .0924 .216 .354 .502
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Typical penetration results calculated with eq. (49) are given in
Table 1. With all the conservativeness built into this expression, the
penetrations are still very minimal. It therefore appears that the impact
of individual concrete fragments on steel structures will have little or
no detrimental effects. This is particularly true for steel containments
which are relatively massive structures with wall thicknesses far in
excess of penetrations one can realistically expect from concrete fragment
impact. It appears from eq. (49) that penetrations are proportional to
the missile diameter d and would further increase as the diameter increases.
However, the underlying assumptions [16] of very localized loading make the
application of this empirical expression unacceptable for fragments of
larger size.

5.2 IMPACT OF LARGE DEBRIS MASSES

As pointed out earlier, the impact of large masses of concrete

debris on a steel containment structure can be approximated as the impact
of a concrete plate on a steel plate. The size and thickness of the concrete
plate can be ascertained from the response analyses of the concrete shield
wall. Depending on the severity of concrete wall deformation, the debris
may be produced by spalling, scabbing or wall disintegration. The last
two are late-time mechanisms occurring near the end of the deformation period
when the wall velocity is diminishing and ultimately approaches zero. Thus
the debris velocity will in general be small. On the other hand, the
spalling debris separates before high wall deflection velocities are attained.
Thus it is assumed that it 1s the spalling debris which may be ejected at
high velocities. The mass of the spalling debris is assumed to be in
the form of a circular plate with a depth equal to the concrete cover depth
over the rear face reinforcement. The radius of the debris mass, a, is given

by the spall cutoff, i.e., by an angle of incidence of 45° or smaller, and
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is obtained from the following expression
a= (h+ y)tan a, (50)

where y is the standoff distance, h is the wall thickness and a, is the
spall cut-off angle which in general may be taken as 45°. Since the debris
radius, a, depends on the wall thickness, it is not a scalable quantity.
This in turn implies that the steel plate response cannot be scaled since,
as will be seen, it depends on the radius of the loaded area.

The relative timing between spalling and gross wall motion is not known,
therefore it is not at all clear which velocity should be used as the debris
velocity. We arbitrarily select as the debris velocity, the velocity of
the wall produced by the blast impulse acting on an area with radius equal
to that of the spall cutoff. As seen in Fig. 7, this velocity is in general
higher than the velocity corresponding to the impulse which produces maximum
wall deflection. The resulting impact should therefore be conservative.

For impact velocities in the range of 50-400 ft/s the impact pressures
computed by impedance matching between steel and concrete (assuming elastic
behavior for both materials) vary from 1.3 x 104 psi to over 105 psi.

These pressures are many times larger than the compressive strength of
concrete, thus crushing of the debris should be expected. At high impact
velocities, the yield strength of steel, which is of the order of 3 x 104 psi,
is also exceeded, while at low impact velocities the steel structure may be
expected to respond elastically. It is therefore not at all obvious which
type of impact analysis is appropriate. Because of the complexities of
elastic analysis, the assumption is made that the steel structure can be
treated as a rigid-perfectly plastic plate with a priori assumed deformation

modes. Further the load is again assumed to be impulsive,permitting the
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the decoupling of the loading and response phases.

Initial velocity estimates of the steel plate can be obtained by con-
sidering the impact to be either fully plastic or perfectly elastic. Again
the true impact process is probably more complex. However, reasonable velocity
bounds can be based on the plastic and elastic impact velocities. Assuming
only inertial resistance during loading, the elastic velocity will be an upper
bound. A true elastic impact analysis should consider the wave motion in
the plates. However, due to all the other uncertainties we limit our estimate
to an instantaneous perfectly elastic impact. Then the momentum and energy

equations are respectively:

mv +mv =mv _ +mnv (51)
c c s's ¢ co s S0
2 2 2 2
Ve Vs Veo Vso
o, 5 + m,oS T m o + m 5 (52)

Here m = ph is the mass per unit area, p is the density, h is the plate
thickness, v is the velocity. Subscripts ¢ and s refer respectively
to the concrete and steel plate. Subscript o desigantes the state before

impact while the nonsubscripted velocities occur after impact. For the

current application Voo = 0. Solving equations (51) and (52) simultaneously
yields:
2 Voo 2 Voo
Vee m_ Ps h (53)
1+ -2 1+ 2
m p h
c c ¢

where subscript e designates elastic impact.
When the impact is perfectly plastic the energy equation (52) is not

applicable. The momentum equation together with the condition that after ‘
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impact the two velocities are equal, i.e., vSp = vCp (subscript p refers to

plastic impact) gives the following expression

Veco co (54
Vep m = o & +)
1+ =2 1+
m p h
c c ¢

For any given situation the velocity imparted to the steel plate under
elastic impact is twice as high as that resulting from plastic impact. It
should also be noted that for fixed material properties the ratio of the
steel plate velocity to the concrete debris velocity is in both cases only
a function of the plate thickness ratio. For typical concrete and steel
properties the ratio of the densities is ;%/;% = 3.37. Thus equations

(53) and (54) may be rewritten as follows:

_ 2
Vee!Veo = T ¥ 3.37 h_/h_ (55)

_ 1
Vep’Veo = T¥3.37 h_/h_ (56)

Much work has been done in recent years on the rigid-plastic response
of plates under impulsive loading [17,18,19,20]. 1In most cases a finite
size circular plate with either simple or clamped supports at the edges
is considered. Taking into account plate bending, membrane stresses and
strain rate effects it is only possible to obtain simple deflection
relationships for the case of uniform impulse over the entire plate [17].
The only analysis directly applicable to our problem [20] considers an
infinite thin plate with the load applied over a finite circular area
of radius r = a. The plate is assumed to be rigid-ideally plastic with
a deflection mechanism consisting of a hinge at the center r = 0 and a

hinge circle at r = T For impulsive loading the final deflection §
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at the center is predicted to be [20]:

2 2 2 .2
m ro v ro I
=78 ~ Ban (57
(o) [o]

Here m is the mass per unit area of plate, I 1is the impulse per unit area,
v is the initial plate velocity, and Mo is ultimate (yield) moment. The

latter quantity is given as

_1 2
Mo =7 hs g, (58)

where hs is the plate thickness and % the yield strength of the plate
material. Estimates of the initial velocity v can be obtained from either
eq. (55) or eq. (56) depending on the assumptions made regarding the impulse
process. The size of the initial hinge radius r, is not known. However,
considering the case of a pulse of constant intensity, p, and short duration
it can be shown [20], that the hinge radius is a constant which can be
expressed in terms of the load radius, a, as follows:
ro= 3 P2 —a (59)
pa -4 M

In the current application, load intensities of the order of 104 psi
are expected, while typical radii of the impacting debris will be on the
order of feet. With a steel plate thickness on the order of a couple inches
and typical yield stresses for steel one finds that pa2 >> 4 Mo. Therefore

eq. (59) may be approximated as

e

r
(o]

%-a (60)

Using the above expression in eq. (57) one finds that central plate deflection

can be calculated from
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Typical results are shown in Fig. 25, where the deflection is given
as a function of scaled standoff distance for three different charge weights.
Computations for both elastic and plastic impact velocities are given. As
mentioned earlier, these should bracket the true results. The approach of
the spall limit causes the rapid drop-off in the deflection curves at a
scaled standoff distance of about 1.6 ft/1b1/3. Due to the direct dependence
of the load area radius, a, on the wall thickness the results are not scalable.
However, the computations are so simple that deflection estimates are
readily obtainable for any wall.

A comparison of deflections for two walls of different strength and
thickness 1is shown in Fig. 26. It should be noted that the ultimate moments
indicated both in Figs. 25 and 26 refer to the wall and not the impacted
plate. For a charge weight of lO3 1b the deflections are seen to be quite
moderate, even for the 2.5 ft wall, except at the very close-in charge
locations. When charge weight increases to 104 1b, severe damage can be
expected since plate deflections in excess of 1 ft are predicted for much
of the standoff range.

It is not possible to formulate precise failure criteria. Since a
circular yield pattern was assumed, eq. (19) can be used to estimate the
relationship between strain € and hinge rotation 8 where tan 6 = 6/ro.
Knowing the rupture strain limit for the material a failure criterion
based on local deformation effects might be postulated. This however
provides no information on what effect the local deformation might have

on gross structural response, i.e., structural stability.
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5.3 EFFECT OF CONCRETE DEBRIS ON STEEL LINERS

The presence of a steel liner on the inside face of a concrete
containment structure contributes little to the strength of the wall. Thus
the liner is expected to deform together with the gross motion of the wall.
However, in the region where spalling takes place, the liner becomes
detached from the wall and additional liner deformation may occur due to
the action of the loosened debris., At the same time the liner acting as a
membrane may prove effective in containing the spall debris.

The process of liner detachment and subsequent deformation is very
complex. Since liners attach to the concrete by means of structural steel
members, a certain amount of bending resistance should be expected. Here,
however, it will be assumed that only membrane stresses are important in
describing liner deformation. Since the liner also moves with the wall it
is not at all obvious what velocity should be used to obtain the relative
motion between liner and wall., It will be conservative to assume that the
wall velocity at spall cut-off (see Fig. 7) can be used as an estimate of
the liner velocity relative to the wall, 1In effect this implies that the wall
comes to rest at that time while in reality its motion continues past that
point.

Assuming the liner to deform into a spherical membrane the deflection
normal to the wall £ at any radial position r is given in terms of the central

deflection § as

2
£=80 -5 (62)

r
o

where ro is the radius of the membrane (radius of liner attachment). The

value of T, is taken as the spall cut-off radius, i.e., the radial distance
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at the backface of the wall at 45° angle of incidence., The problem of a
plastically deforming membrane under impulsive loading has been treated by
many investigators. Following the analysis presented by Cole [21] it is

found that the plastic work WP in deforming a spherical membrane is

WP =m0 h 6 =41M 6°/h (63)
O s o S

where 9 is the liner yield stress, MO the liner ultimate moment and hs
the liner thickness. At the final state this work must equal the kinetic

energy KE imparted to the membrane by the impulse

Mv 2 _ 1-m TT 2 v 2 (64)
2 o)

N

KE =

Here M is the total mass moving at the initial velocity v , i.e., M is the
sum of the detached liner mass and of the spalled concrete debris mass.
Similarly m is the combined mass per unit area of liner and concrete,
m=m + m, . Equating the two energies given by eqs. (63) and (64) one

obtains the final central deflection of the liner.

1/2 1/2
5=rV(ﬁT) =erM €

It should be noted that while m is the combined mass per unit area the
thickness hS is only that of the liner. Again since T depends on the
concrete wall thickness the deflections cannot be scaled. However, with

v known (from Fig. 7) the deflection is readily computable. Results for

a typical 2.5 ft thick wall and a 0.25 in. thick liner are shown in Fig. 27.
Deflections in excess of 1 ft. are obtained for the entire range of standoffs

when the charge is 104 1b and for close-in distances at a charge weight of
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103 1b. Also shown in the figure are the spall radii r for the three

charge weights. The decrease in radius at larger standoffs occurs because
the actual spall cut-off limit is shifted to angles of incidence smaller
than 45 degrees, i.e., the reflected pressure at angles beyond the cut-off
is insufficient to produce spalling.

It should be kept in mind that the computed deflections are a rough
estimate of liner deformation relative to the concrete wall. Thus,when
actual wall displacements are large there will be additional liner deforma-
tions. However, in these cases, membrane liner response may be of little
interest because other failure modes such as buckling and local tearing,
which are associated with substantial wall disintegration, will predominate.

The only membrane failure criterion which may be readily formulated
is again based on the strain at rupture. Since the increase in area of
a spherical membrane may be approximated by [21] AA = néz and the original
plate area is A = wroz the ratio of AA/A may be used as a measure of the

plastic membrane strain, i.e.,

e = () (66)

When this ratio exceeds the value of the rupture strain of the liner material

failure may be expected.
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6. AIR BLAST EFFECTS ON PIPES

Severe damage to piping, such as the main feedwater or steam lines,
located outside of containment in nuclear power plants may pose a grave
safety hazard. It is therefore necessary to obtain estimates of the
deformation which may result when such piping is subjected to air blast
loading from high explosives detonation. No satisfactory analysis method of
this problem exists currently and no empirical data from controlled experi-
ments is available. A method of obtaining pipe deformation estimates which
utilizes recent results in dynamic plasticity is therefore developed.
Details of this analysis are presented in the Appendix. It should be noted
that the method outlined provides only a rough approximation. Also when
the loading of the pipe is from close-in detonations many assumptions of
the analysis are open to question.

It is again assumed that the loading is impulsive and that deforma-
tions are related to the total transverse impulse IT experienced by the
pipe. As indicated earlier (Section 2) the blast impulse acting on
a pipe must be obtained by numerical integration of the local reflected
impulses over the pipe surface. The results so obtained cannot be
scaled with charge weight because of the finite pipe diameters. Figures
28 to 32 present the total transverse air blast impulse, each for a pipe
of different diameter (1 ft to 5 ft) as a function of scaled standoff
distance. In each case results are given for three different charge
weights (102, 103 and 104 1b) and four different pipe length (20, 30, 40
and 50 ft). For fixed charge weight and pipe length, the impulses differ
by more than a factor of three over the range of pipe diameters from 1 ft
to 5 ft. It is also readily apparent that the impulses are not directly

proportional to the charge weight as is the case for a flat wall (see Fig. 6).
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The analysis method outlined in Appendix A assumes two major forms
of deformation for pipes under air blast loading. These are a beam like
bending with no cross~sectional distortion and a local "ring'" deformation
of the pipe. For the latter no interaction between adjacent pipe sections
is assumed. Similarly interactions between the two forms of deformation
are neglected. For each type of deformation both a plastic mode and a
bound or limit analysis method are employed to estimate the deflections
and response times. To make the analysis simple a sine distribution
of the transverse impulse is assumed. This leads in the case of the mode
analysis method, which is expected to yield more realistic results, to

the following maximum (central) deflection formulas:

Beam Deflection

I
b * 2 -
4p° M 5
o
Ring Deformation
2
; (1,/2)
§ =u, = 0.0286 (68)
T * 3 2
ogp_ h g
y's

Here eq. (67) is identical to eq. (Al2a) of Appendix A and eq. (68)
corresponds to eq. (A26a). TFor the latter IT/2 was substituted for the

of Appendix A so that the symbol I_ always has the unique meaning of

IT T
total transverse impulse. Oy is the yield stress of the pipe material,
Py the pipe material density, h the pipe wall thickness and % the half
length of the pipe. The fully plastic moment M0 and mass per unit length

of pipe B, which includes both the steel pipe and water, are given by

the following expressions:
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P N

M= 3(Ro R;™) oy (69)
and
‘ - 2 2 2

o =T (RO - Ri )pS + ﬂRi Py (70)

where o is the liquid (water) density and RO and Ri are respectively the
outer and inner radius of the pipe.

Cnce the total transverse impulse IT on a pipe is determined, it
becomes a simple matter to calculate both the beam and ring deformation
using eqgs. (67) and (68). Deflection results for a fixed charge weight
of W= lO3 1b and five different pipe diameters (1, 2, 3, 4 and 5 ft)
are presented in Figs. 33 to 37. 1In each figure both the beam and ring
mode deformations are given each for four different pipe length (20, 30,

40 and 50 ft.). The pipes approximate Schedule 80 piping with the wall
thickness assumed to be h = D/20, where D is the pipe diameter. A yield
stress for steel at 600°F was used; its value is Oy =2x 104 psi.

The calculations clearly indicate that the ring deformation is only
weakly dependent on the pipe length. Based on physical considerationms,
this is an expected result. In fact, if the proper local impulse rather
than the total impulse were used in the computations, then the dependence
of the ring deformation on pipe length should be negligible. The crossover
observed in ring deformation curves can be explained by the variation of the
term (IT/22)2. At close-in standoffs where the impulse depends only weakly
on pipe length (see Figs. 28-32), the Qz term dominates and ring deformations
obtained from eq. (68) are smallest for the longest pipe. At far distances
where IT is strongly affected by pipe length, there is little difference in
the deformations or they increase with pipe length.

As expected, beam deflections at a fixed pipe diameter increase with
increasing pipe length. If the pipe length is held constant, both ring

deformations and beam deflections decrease with increasing pipe diameter.
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It is the strong (cubic) inverse dependence of the deformations on the
pipe diameter (or wall thickness) that leads to this result. The effect
is more clearly illustrated in Fig. 38 which gives the deflections for a
30 ft. pipe at five different pipe diameters.

In the graphical presentation of the results, maximum ring deformations
were limited to one pipe diameter and beam deflections were restricted to
the smaller of %/2 or 10 feet. Since both types of analysis are based
on the assumption of small deflections (see Appendix A), the true range of
applicability is probably much more restrictive. In general, the results
are much more uncertain for small standoff distances. Here the deformations
are large and are strongly influenced by local impulse intensity rather
than the total impulse on the pipe. Based on the magnitude of the deflections
it appears that the results for large pipe diameters may be more reliable
than those for smaller pipes.

At the current stage of analysis development it is not possible to
arrive at any precise failure criteria. Some intuitive notion on the
severity of damage may be arrived at based on the physical appearance of
the pipe. Thus at a ring deformation of one half the pipe diameter, one
would expect severe pipe damage. For beam deflections a damage criterion
must consider both the deflection itself and the pipe length. The ratio
6b/2 which is a measure of the hing rotations both at the supports and
the pipe center may therefore provide an appropriate criterion. However,
no information on allowable magnitudes of hinge rotations exist and arbitrary
limits must be selected. Since both in the analysis and in reality the pipe
is not restrained longitudinally at the supports, no failure criterion based

on pipe elongation can be formulated.
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7. DISCUSSION AND CONCLUSION

The analysis methods and results presented in the foregoing sections
provide a means for estimating the susceptibility of nuclear power plant
structures and equipment to air blast loading generated by high explosives
detonations. As indicated before, the effort was limited to investigating
the response of only a few critical items such as containment and shield
structures and important piping located outside of containment.

No developmental effort was undertaken during the course of this
study, and the results are based on a synthesis of state of the art methods.
In many cases extreme simplifying assumptions were made to permit the
derivation of simple structural response relationships. In the presenta-
tion of results no attempt was made to cover the complete range of values
which may be of interest in analyzing nuclear power plant susceptibility.
However, sufficient blast loading data is presented so that response
estimates for specific cases may be calculated using the simple equations
given in the report.

It should be obvious that if more precise structural response data
are required then additional effo?t must be expended to improve the analysis
methods. Both the blast load determination and the response calculations
can be improved. Concerning the first, the inconsistencies in impulse
loading arising from the assumption of a one to one correspondence between
reflected pressure and impulse should be eliminated. The structural
response analysis for flat walls and plates can be iImproved by considering
not only perfectly plastic bending and hinge formation but also the membrane
and strain rate effects. An analysis which takes into account wall curvature
would further improve the response predictions. An area that merits
particular attention is the response of piping under blast loading.

Neglecting the interaction between bending and local ring deformation makes
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the validity of the results in certaln cases very questionable. An analysis

procedure which takes into account the coupling between these deformation
modes should therefore be developed.

A significant limitation on the applicability of the analysis pro-
cedures is the lack of appropriate failure and damage criteria. Some
attempts were made to establish approximate relationships between the
computed deformations and allowable (rupture) strains. However, much more
effort is required to determine the damage levels which are unacceptable
for a particular structure. In establishing such limits both the local
structural deformations and the functional aspects of the structure should
be considered.

Finally it is again pointed out that only air blast loading from
explosive detonation was taken into account in the current study. For
large charges placed close to the structure ground shock and cratering
effects may prove as damaging as the air blast. Regardless of charge
weight the contact placement of explosives may produce the severest local
damage. Thus in an overall analysis of nuclear power plant vulnerability

these loading mechanisms should also be considered.
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APPENDIX

Methods for Estimating Pipe

Deformation Due to Explosive Loading

The basic problem is to obtain engineering estimates of the total
plastic deformation which results when a segment of piping is subjected
to explosive loading from a known charge weight located a fixed distance
from the pipe., The methods outlined below utilize recent results in dy-
namic plasticity to obtain such deformation estimates. It should be noted,
however, that no entirely satisfactory method is currently available for
analysis of this problem. The methods outlined provide only rough approxi-
mations in many cases of importance. 1In particular, when the loading is the
result of a nearby charge, many of the assumptions used in this analysis are
open to question. Further, since no controlled experiments on explosive
loading of piping are available, validation of this analysis is not currently
possible.

It is assumed that the total transverse impulse, I is known and that

T
this is a pure impulse., That is, it produces instantaneous velocities pro-
portional to the local impulse (per unit length or per unit area, depending
on the formulation). The analysis is further simplified by splitting the

"antisymmetric" as shown in

impulsive loading into two parts, "symmetric" and
Fig. Al. The symmetric impulsive loading causes no translation of the trans-
verse diameter pp' of the cylinder, hence it produces shape changes of the type
sketched in Fig. A2(a). The antisymmetric loading produces a rigid-body transla-
tion of each ring section, together with some deformations out of the initial

circular shape. If the latter deformations are neglected, the antisymmetric

impulsive loading produces mainly bending of the pipe as a beam constrained
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at its supports, as in Fig. A2(b).

A method of damage calculation that is crude, but should be adequate
in certain circumstances, is to treat the two loadings and responses as in-
dependent of each other, and to obtain the total displacement of the point
of the cylinder nearest the charge point W as the sum of the "ring deformation”
due to the symmetric loading and the "beam bending' deformation due to de-
flection of the pipe as a beam between supported sections. The interactions
being neglected are (1) the effect of the compressive beam-bending stresses
in augmenting the local ring deformations in the area closest to the charge
location; and (2) the effect of the inward deflection of the ring in decreasing
the effective plastic section modulus. These interactions would be important
in a thin-walled cylinder.

The first type of interaction is compensated for qualitatively by
treating the deformation of the central ring section as indépendent of those
of the adjacent ring sections. These deform less and hence constrain the
deformations of the section closest to the charge point. In the "isolated ring"
calculation these constraints are neglected. In the region of maximum de-
formation this can be regarded as roughly equivalent to the weakening effect
of the compressive stresses involved in the bending of the cylinder as a beam.
It should also be noted that this discussion presupposes that the two types
of deformation - local damage at the central ring section and bending as a
beam between supports - are of approximately equal importance., This may not
be the case when the impulse distribution is localized near the center of the
pipe span or when the charge is very near the pipe.

The known transverse impulse IT produces instantaneous velocities

proportional to impulse per unit distance along the pipe axis in the treat-
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ment as a '"beam', and per unit area in the treatment as a "ring". This
isn't entirely satisfactory since IT depends on the dimensions of the pipe
(radius R, length 2% between supports) as well as on the stand-off distance;
however, without more detailed information on actual impulse distributions
as a function of dimensions and charge weight, no more exact treatment can
be justified.

The mode and the bound approximation methods are employed to estimate
deflections and response times. In both cases these have been used in their
simplest forms - first for the pipe treated as an ordinary beam, hinged at
the supports and at midsection, and then treated as a ring deforming as shown
in Fig. A2(a).

The distribution of total impulse is needed in order to apply the mode
technique, while the total initial kinetic energy is needed to calculate the
deflection bound. Lacking better information, a simple sine distribution of

transverse impulse per unit length iT (x) along the beam axis is assumed:

i = rx (A1)
1T(x) =1 siny .
L
. _ ¢ i TX _ 4
Since IT = 2 [o 1m51n ) dx pranl S
I
m T
i =- — . A2
m 4R (42)
This gives initial transverse velocities at the beam axis of
i I
*0 T . T X . m T
= — - 1 —_—— s = - — A3
w (x) 5 w sin 5 o3 w0 AR (A3)
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where p

densities Pg and Py respectively:
- _ _ 2 2 2
p = Asps + A.wpw 'n(R0 Ri) Py + @ Ri

The total initial kinetic energy Ko of transverse

mated as
2
2 21
- Lo ey dx = = L
K0 2 IO 5 P (w(x)) dx = 32 %
1. '"Beam'" Deflections: The pipe is treated as an

must be developed for maximum central deflection.

a. Mode Approximation

is mass per unit length, including steel pipe and water, with mass

P (A4)

motion then can be esti-

(A5)

ordinary beam and estimates

With the initial transverse velocity of the beam axis given by (A5),

the mode velocity field is:

e e . \ -0
The initial velocity magnitude, w, ,

technique as

Sl

The acceleration Wy

(A6)

is obtained by the mode matching

(A7)

is obtained from the energy-dissipation rate equation
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and hence,

% -, X . X ‘:T*
-2 Plwyg ) (wy ) dx = 4M, -,
0
6M
o= - =2
* —
220

The final midpoint displacement, wi , and stopping time, tf, are

2
ST (V}o)z T
% * -
12 M, 42 M5
2.
¢ =4p o0 _ 1 My
f oM * 2w M, ’

b. Upper Bound Estimate

An upper bound on the midpoint deflection is given by

(48)

(49)

(A10)

(A11)

(A12a)

(A12b)

(A13)
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where Ko is the kinetic energy due to the impulse and P is the limit load ‘

L

magnitude of a force applied at the midsection. Assuming small deflections

this is

4M
P = —°
L L (Al4)
Taking K0 from Eq. (A5),
2 2
qu - EE. Ez_ L nz Iy (A15)
m 32 &p 4M, 128 MOB

A comparison of (Al5) with (Al2a) shows that the two estimates are quite
close. The upper bound is probably quite close to the mode technique since
the latter is itself an overestimate when compared to a complete rigid-
plastic solution. The overstimate compared to such a solution is probably
about 15%. Strain rate sensitivity could reduce the deflection by as much
as 507 in the case of a mild steel,

The defect of taking the load magnitude as specified by the total im-

pulse I is indicated by the form of the expressions for final deflection.

T
2 - .
Both methods give this as proportional to IT/Mop , with no dependence on 2.

The result would be mpre useful if the dependence on pipe dimensions, ex-—

plosiye charge weight, and stand~off could bz shown explicitly.

2. "Ring'" Deflection Estimate:

To estimate deformations of the central ring section from its initial
circular shape, there is need for a distribution of impulse per unit area
around the circumference. TFor lack of better information, the radial impulse

is taken as a cosine function of central angle .
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i' (¢) = i; cos ¢. (A16)

At the midsection of the span the impulse per unit length is im’ S0

i =2 [ i' cos¢ Rd¢ = 2i J cos ¢ Rdp = — Ri' (A17)
m o 2 o)
0 0
where R is the mean radius. Thus
I I
2 T T T
£ - “~ n _x =
T TR L 1 2RY ° (a18)

The total impulsive loading on the middle ring section can be split into
"anti-symmetric" and "symmetric" parts as in Fig. Al, each with half the
intensity magnitude of the supposed distribution 1'(¢). Intuitively, the
antisymmetric loading produces mainly translation of the section without
large changes of the circular shape, while the symmetric loading produces
the shape changes of the ring we are interested in, the transverse diameter
remaining stationary. This is not rigorous since no superposition principle
can be claimed; however, it seems to be a reasonable assumption if the
impulse isn't too localized.

The initial velocity field due to the impulse can be expressed in terms

of components u

;, u, shown in Fig. A3(a). The equations relating these

velocity components to the total impulse are:



Fig. A3.

Velocity Components of Local Ring Deformation
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\]
u; = u, sing = = $¢) sing = 4 cos¢ sing (A19a)
L0 _ i'(¢9)
u, =u cosd = o cosd = 1 cos ¢ (A19Db)
ot '3 ]
where a = ig = "o = IT
o p' pSh 2p ShRS

(A20)

Mode Approximation

where p' = psh is the mass density per unit area of the pipe wall, thickness h.
a.

The mode form deformation is taken to be symmetric in each half of
the ring, as shown in Fig. A3(b).

This has plastic hinges at A, B, B', with
rigid-body rotation rate 6

about the instantaneous center at C.
velocity field has components

Thus the
o . . y' .
a = -y'0 = 4, (- ) = 1u, (-1 + cos¢) (A21a)
LK ' .ox' . R
U, = X 6 = Uy T = Uy (1 - sing) (A21b)
Here G, (t) 1is the mode form velocity amplitude, whose initial value &: is
found by the standard technique from the assumed initial field, as
© o TA=1/2 00 T (A22)
* o 3n/2 - 4 ' p GhRL :

The acceleration magnitude U

« of the mode deformation is obtained from the
energy rate equation

w2 LK%
-2 p'(ul a

+ ;
1 u u
[0}

(A23)
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where p' = ph is mass per unit area of wall and M‘; is fully plastic bending .

moment per unit length along the pipe axis,

h2
R
MO =3 Oy (A24)
Using eqs. (A21) we obtain
-ﬁ=__ﬂ_2_=___ﬂv2_ . (A25)
(31-8)R7pg 1.425Rp g

Integrating gives the following results for the final deformation and

stopping time:

2
f IT
u, = 0.0286 s (A262)
ag h322
YpS
RIT
tf = (0.285 5 (A26D)
o hg
y

The intuitive argument illustrated in Fig. A1 suggests that the deformation

out of the circular shape is due to the symmetric loading with amplitude

li'. This corresponds to replacing I

1
5 by EiT in Eqs. (A26).

T
b. Upper Bound Estimate

Alternatively the deflection bound method can be applied. This

requires the initial kinetic energy K; per unit length at the span mid-

]

section and the plastic collapse load PL

of the half ring subjected to a

pair of forces at the middle diameter of the ring. These are

CPEENTL, (A27)
s
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AMA hzo
s S (a28)

2

K' I

£ fu o Ll T

< = —_— = — —
U =% P! 16 32 (429)
L gph g
y's
where again one replaces IT with EIT to account for only the symmetric

impulsive loading producing ring deformation.

The upper bound is much larger than the final displacement predicted
by the mode method. This may be traced to the small value, 0.401, of the
ratio ﬁ:/ﬁo , which implies that the mode method underestimates the final
deflection. In the bound method, the distribution of kinetic emergy is
never specified. Thus the bound must allow for cases where the maximum de-
flection is sensitive to the distribution of kinetic energy.

The deformation estimates developed above may be summarized as follows:

Beam: £ 3 I%
Ve T To W3 e (mode) {Al12a)
M7
4 o
fu "2 Ii
wo T iig-ﬁgf , (bound) (Al5)
. 2
Ring: £ IT
u, = 0.0286 373 (mode) (A26a)
o P hg
y s
fu T I%
u = — ———F— , (bound) (A29)
o 16 32
ogp h™g
y s

In summary, the two deflection estimates, (a) treating the structure

as a beam, and (b) treating the mid-section as an isolated ring, are here
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assumed independent of each other, based on a conjectural splitting of the
impulsive load into an anti-symmetric and a symmetric part, with the former
causing mainly translational motion of the whole ring, and the latter pro-
ducing deformations of the initial circular shape. The two types of response
are obviously not independent; energy used in local deformation is not
available for producing translational (beam type) deformations. A mode ap-
proximation could be developed which couples the bending and ring deformations;
however, such a development effort is not consistant with the overall objec-
tives of the current study.

The deformation estimates contained in the body of this report are
based on eqs. (Al2a), (A15), (A26a), (A29) above - suitably modified to

include charge weight and standoff distance by proper substitution for IT'

3. Sample Calculations

To compare the various deformation estimates, the following sample problem

is considered:

I,=14.72 x 1031b—sec
2 = 120 inches

R, = 10 in., RO = 12 in., h = 2 in.

i
oy = 40 x 103 psi

p, = 0.73 x 1073 1b. in.”* sec?
p = 0.0% x 1073 1b. in.”* sec?

M0 = 38.8 x lO6 in. 1b.

? = 0.131 1b. in.”2 sec?

This corresponds approximately to a 20 ft. span of 2 ft. outside dia., sch 140,

®
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water-filled pipe subjected to a 1000 1b. charge detonated 10 ft. from the

pipe center. The various estimates are as follows:

Beam: w£ = 3,24 in. (mode)
wi“ = 3.29 in. (bound)

. f .
Ring: u, = 0.46 in. (mode)
ugu = 3,16 in. (bound)

For this particular case, the beam response would appear to dominate (using the
mode approximation) and the predicted deformation are small enough that the
small strain response limitation of the theory is probably a good approximation.
The previously mentioned differences in the ring approximations can also be

seen.

4, Possible Modification due to Impulse Distribution

All of the above computations were based on simple sine and cosine dis-
tributions of impulse. Clearly the distribution of impulse can deviate from
such distributions by wide margins - particularly in the case of close-in
detonations. To illustrate this point consider a larger diameter pipe sub-
jected to a close-in detonation. Using a pipe of 24 in. radius, 2 in. wall
thickness and a stand-off distance of 2 ft. produces a more concentrated
impulse pressure. Local damage becomes more pronounced than beam bending
deformation and calculations based on an isolated ring appear unsatisfactory -
probably leading to gross overestimation of local deformation.

To illustrate this, consider the following impulsive loading distribution:

x= 0 1 2 4 10 ft

]

Case 1: 2 ft stand-off i'(x,0) 33 24 10.2 3.0 1,0 psi-sec

IT = 14,7 x 1031b—sec
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Case 2: 10 ft stand-off X = 0 5 10 15 ft

I, =6.7 x 1031b-sec i'(x,0)

T 3.5 3.0 1.5 0.8 psi-sec

where i'(x,6) is the impulsive pressure (psi-sec) at a point x from the
central section and at angle 6 from the "horizontal" diameter. The ring

deformations are predicted to be:

Case 1: 2 ft stand-off

ﬁ: = %%4%-= 4690 in.—sec_l
s
uf = 3.74 x 107% 9% = 82.4 in.
Case 2: 10 ft stand-off
GZ = ;;Si = 524 in.-—sec_l
s
uf = 3.74 x 107 @)% = 1.03 1n.

The very large value of displacement in Case 1 (2 ft stand-off) is

meaningless quantitatively, since the analysis is valid for small deflections.

Qualitatively it indicates only that in this mode of deformation the local
(out-of-circular) displacement is of the order of the pipe radius, and would
probably lead to failure by rupture.

A similar calculation can be performed for the beam mode. To account
for the localized nature of the impulse, a bell shaped distribution of im-
pulse is used. Tabulated impulse per unit area data at x = 0 is computed

to give im where

¢



109

/2
i =2 Jﬂ i' (0,8) cosb RdS8
m o o

and the axial distribution is assumed to be
i(x) = im exp (—x2/202).
Knowing the total impulse

X 2,,2 _ .
IT = Jiw i exp (-x“/20°) dx = V27 ¢ i

allows computation of the parameter o as

Iy

1
Y2n i

g =

m

Applying the mode technique gives the following results:

Case 1 (2 ft stand-off):

806 1b-sec—in ©

i

m
IT =14.7 x 103 1lb-sec
o =17.3 in.

.Z = 493 in—sec—1
wi = 0,61 in.

Case 2 (10 ft stand-off):

118 1b sec in-l

e
I

m
IT = 6.7 lb-sec
g = 22,7 in.
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201 in-sec T

* th % O

0.10 in

Evidently for these examples the local (out-of-circular) deformation
of the central ring section greatly exceeds that of the beam bending mode.
The present estimated deflections are smaller than those of the previous
section in part because of the change of dimensions of the pipe (R = 24 in.
instead of R = 11 in.) and because of the change of the initial mode am-
plitude; the latter is due both to the change of dimensions and to the use
of more detailed data on impulse distribution.

Clearly, to obtain definitive estimates of final plastic deformation
requires development of more exact impulse data and development of refined

analysis methods.
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