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PHYSICAL AND MECHANICAL PROPERTIES OF CAST 17-4 PH

*
STAINLESS STEEL

H. J. Rack
Mechanical Metallurgy Division 5835
Sandia National Laboratories,’ Albuquerque, New Mexico 87185 =

ABSTRACT

The physical and mechanical properties of an overaged 17-4 PH
stainless steel casting have been examined. The tensile and compressive
properties of cast 17-4 PH are only influenced to a slight degree by
changing test temperature and strain rate. However, both the Charpy
impact energy and dynamic fracture toughness exhibit a tough-to-brittle
transition with decreasing temperature--this tranéition being related
to a change in fracture mode from ductile, dimple to cleavage-like.
Finally, although the overaged 17-4 PH casting had a relatively low room
temperature Charpy impact energy when compared to wrought 17-4 PH, its
fracture toughness was at least comparable to that of wrought 17-4 PH.
This observation suggests that prior correlations between Charpy impact
energies and fracture toughness, as derived from wrought materials, must

be approached with caution when applied to cast alloys.
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INTRODUCTION

Prior studies of 17-4 PH stainless steel (1-11) have generally
considered the mechanical and physical properties of wrought product
forms, that is roclled plate, forgings, etc. There are, however, many
instances where, because of economic considerations, 17-4 PH stainless
steel castings might be an attractive alternative. Unfortunately,
little information exists on the mechanical and physical properties of
17-4 PH stainless steel castings. This report presents the results of
an evaluation of such a casting. Where available, direct comparison
with data obtained from wrought 17-4 PH stainless steel is also

included.
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Figure 1. Top and Side Views of 17-4 PH Stainless Steel Seal Casting.



EXPERIMENTAL PROCEDURE

Figure 1 shows the 17-4 PH stainless steel casting evaluated in
this study. This casting was selected since it is currently being
considered as the primary metallic seal for a liquid metal breeder
reactor spent fuel shipping container. As such, the seal must operate
at temperatures between 233 and 473K. In addition, it must be able to

withstand applied strain rates approaching 10 sec_l.

Physical Properties

Physical property measurements of the 17-4 PH stainless steel
casting involved determinations of the linear expansion, specific heat
and thermal diffusivity as a function of temperature. A dual fused
silica pushrod Theta dilatometer”™ operating in a room temperature
environment was used to obtain linear expansion measurements in the
temperature range 298 to 1173K (12). Measurements between 298 to 217K
were made with a single fused silica pushrod dilatometer, again main-
tained in a room temperature environment. Finally, the linear expansion
samples, 25.4 mm in length x 2.54 mm square, were equilibrated for one
hour at each test temperature prior to expansion measurements.

Specific heat determinations utilized a Perkin Elmer Model DSC 2
differential scanning calorimeter connected to a PRL minicomputer-
based digital data acquisition system (13). The thermal diffusivity
results were obtained using a computer controlled laser flash diffu-
sivity technique (13). Knowing the specific heat, Cp and the thermal

diffusivity a, the thermal conductivity, A, was then calculated from

= c ik
A apCy (1)

where p is the density corrected for changes in temperature relative

to room temperature (298K).

*
The dilatometer was calibrated using standard fused silica and platinum
samples.
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Mechanical Behavior

The elastic properties of the 17-4 PH stainless steel casting were
measured over the temperature range 233 to 1073K using standard ultra-
sonic techniques (14). These techniques require that the travel time,
t, for an ultrasonic wave to propagate through a known specimen length,
L, be obtained as a function of temperature. Once this travel time is

known, the ultrasonic velocity, V, can be determined from

vV = L/t

where the length L is corrected for temperature changes using the
thermal expansion data described above. ''nhe elastic moduli were calcu-

lated from the longitudinal velocity, V and the shear velocity, V_,

T s
from
S 2
Gi= p¥Z (2)
E = 2G(1 + v) (3)
g Y T
, [1 T VL/VS,],
W = 557 (4)
[1 2 VL'/VS]

where G, E, v and p are the shear moduli, Young's moduli, Poisson's
ratio and density, respectively. Again, the latter was corrected for
changes due to increasing/decreasing temperature about 298K.

The plastic behavior of the 17-4 PH stainless steel casting was
evaluated using standard tensile, compression and Charpy (blunt V-notch
and fatigue precracked) test procedures. Fiqure 2 illustrates the
location of these samples as removed from the 17-4 PH stainless steel
seal casting.* Tensile and compression tests were performed between

6 1

strain rates of 1.3 x 10 ° and 1.2 sec — over a temperature range 215

to 435K.

* ; . . .
The actual sample configurations are given in more detail in Appendix
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The Charpy impact samples were tested in either the V-notched or
fatigue precracked condition. Fatigue precracking utilized methods (15)
where the final stress intensity during precracking, Kf, was always
controlled at less than one-half of the dynamic fracture toughness,

Kg- Both the notched and fatigue precracked samples were tested using
an instrumented impact machine with the initial impact velocity being
maintained at 3.3 m/s (16,17).

When the fracture was elastic, that is, no general yielding was

observed, the fracture toughness, KId’ was obtained from the precracked

Charpy samples as calculated from (18):

4p 1/2 3/2 S/2
ra = ooy 2987 - w6 @)+ 203
= 37.6(%)7/2 + 38.7(%)9/2] (5)

where PM is the maximum load, B = W = 10 mm, and a is the crack length.
When general yielding was observed, i.e., at the higher test tempera-
tures, an estimate of the fracture toughness was obtained trom a
knowledge of the energy-based value of the J integral, i.e.,

1/2
Kap

(BT g) (6)

where JID is given by

JTD

ZEM/Bb (7)

where b = W - a and EM was taken as the true specimen energy to

maximum load (18).



RESULTS AND DISCUSSION

General

The chemical composition of the 17-4 PH stainless steel casting
examined in this study is given in Table 1. Before machining, this
casting had been homogenized at 1422K and then solution treated at
1311K. Final aging involved a four hour exposure at 922K. Optical
microscopy indicated that the casting possessed an aged o-martensite
matrix with é-ferrite stringers, Figure 3. High magnification examina-
tion of the o-martensite matrix, Figure 4, indicated that the casting
was in the overaged heat treatment condition; that it contained a
rather coarse dispersion of the primary strengthening phase, spherical
face centered cubic Cu particles. Further examination, Figure 5,
revealed the presence of rod-shaped precipitates within the §-ferrite
stringers. X-ray energy dispersive analysis, Figure 6, indicated that
these particles were relatively rich in Cu when compared to the &-
ferrite matrix. The appearance of these rod-shaped Cu rich particles
within the §-ferrite stringers seems to be restricted to 17-4 PH
stainless steel castings since their presence has not been reported

in previous studies of wrought 17-4 PH stainless steel (1-11).

Table 1

Chemical Composition of 17-4 PH Casting

Element Weight Percent
Cr 16.94
Ni 4.0
Cu 3.0
Mn 0.5
C 0.044
S 0022
53 0.7
Nb 0.3
Fe Bal.

1.3
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Figure 3.

Figure 4.

Optical Micrograph of 17-4 PH Stainless Steel
Casting. White Areas d6-Ferrite Stringers; Darker
Matrix Aged oa-Martensite. Original Magnification
100X.

Transmission Electron Micrograph of Aged
o-Martensite in 17-4 PH Stainless Steel Casting
Containing Spherical Cu Precipitates.

Original Magnification: -40,000X.



Figure 5.

Transmission Electron Micrograph of §-Ferrite
Stringer Containing Rod-Shaped Cu-Rich Precipitate.
Original Magnification: 52,000X.

15
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Figure 6.

5@

HE= 40V 1AB

OXi10~88 40 B0 K 56 :
Uss 4K 1A+ H H%a 408V 1A8

X-Ray Energy Dispersive Spectra From (a) 6-
Ferrite Matrix and (b) Rod-Shaped Particles
Shown in Fig. 5.



Physical Properties

The results of the thermal expansion measurements are tabulated
in Table 2 and plotted in Figure 7. This figure shows that the thermal
linear expansibn of the 17-4 PH stainless steel casting, as represented
by the individual data points, agreed quite well with the average
liﬂear expansion data previously obtained for wrought 17-4 PH stainless
data (19-21), the latter being described by the dashed line in Figure
7.

This agreement between the properties of wrought and cast 17-4 PH
stainless steel was not observed when the thermal properties were
considered. The results of the specific heat and thermal diffusivity
measurements are tabulated in Tables 3 and 4, respectively, with the
corresponding calculated values of the thermal conductivity being
presented in Table 5. This tabulated ‘data is plotted in Figures 8
through 10, with the dashed lines in Figures 8 and 10 representing the
average of previous data obtained from wrought 17-4 PH stainless steel
(21) . In general, these results indicate that the thermal properties
of cast 17-4 PH stainless steel appear to be much more sensitive to
changes in temperature than would be expected from the wrought 17-4 PH
stainless steel data. Comparison of typical microstructures from cast
énd wrought 17-4 PH stainless steel suggests that this difference
between the two products may be due to the increased volume fraction

of §-ferrite in cast 17-4 PH relative to that in the wrought alloy.

17



Table 2

Thermal Lincar Expancion of 17-1 PH
Stainless Steel Casting

Temperature (K) AL/Lo (Pet)

279 -0.030
208 n.000
474 0.194
476 ©0.199
568 0.313
626 0.373
627 . 0.372
643 0.409
776 0.546
781 0.562
783 0.386
917 0.711
919 0.671
925 0.703
1064 0.824

1212 1.107



Table 5

Specific Heat of 17-4 PH Stainless Steel Casting

Temperature (XK)

350
375
400
425
450
460
475.
500 .
525
550
575
600
625
650
675
700
725
750
775.
795
800
825
850
875
200
925

‘Specific Heat (W sec gm—‘l

K

-1

)

0.4750
0.4884
0.4973
0.5054
0.5147
0.5220
0.5228
0.5335
0.5396
0.5477
0.5548
0.5636
0.5726
0.5805
0.5885
0.5978
0.6080
0.6343
0.6594
0.6812
0.6875
0.7246
0.7409
0.7576
0.7672
0.7789

19



Table 4

Thermal Diffusivity of 17-4 PH Stainless Steel Casting

Temperature (K) Diffusivity (cm2 secfl)
294 0.0458 '
461 0.0452
627 | 0.0457
794 . 0.0430
961 : 0.0475
1127 ' 0.0548
Table 5

Thermal Conductivity of 17-4 PH Stainless Steel Casting

Temperature (K) Conductivity (W cmﬁ1 K_l)
294 0.152
461 0.180
627 .19y
194 : 0.206

961 0.281
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Mechanical Behavior

The elastic properties of the overaged 17-4 PH stainless steel
casting as a function of temperature are tabulated in Tables 6 and 7
and plotted in'Figure Ll. Typical ﬁalues of the Young's modulus,
shear modulus and Poisson's ratio for wrought‘l7—4 PH stainless steel
have also been included in this figure. In general, the agreement
between the room temperature values of the Young's modulus and Poisson's
ratio(forAcést and wrought 17-4 PH stainless steel was quite good.
However, the measurements of the shear modulus and the elevated
temperature Young's moduli for the 17-4 PH casting all tended to be
higher than those reported for wrought 17-4 PH stainless steel. Not-
withstanding these differences the results all indicate that both the
Young's moduli and the shear moduli decrease with increasing tempera-
ture.

Representative tensile and compressive stress-strain curves for
the overaged 17-4 PH stainless steel casting are presented in
Appendices B and C. The influences of test temperature and strain
rate on selected plastic properties of the 17-4 PH stainless steel:
casting have been summarized in Figures 12 and 13. These results show
that above a critical temperature, Tc' the compressive and tensile
yield strengths are essentially independent of both test temperature
and strain rate. Below TC, the compressive and tensile yield strengths
increase with either decreasing temperature or increasing strain rate.
Finally, the rate of compressive and tensile yield strength increase
with test temperature helow Tc is a function of strain rate. For
example, at slow stréin rates, e.g., 1.6 x 10_45-1 in tension, the rate
of increase do/dT was -0.44 MPa/K, while at high strain rates, e.g.,

1 in tension, the rate of increase was -0.88 MPa/K.

1.2 s~
The tensile ductility, as represented by the uniform elongation

and Lhe total elongation, was, to some degree, a function of test

25
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Table 6

Young's Modulus and Poisson's Ratio

Temperature (K)

248
297
298
301
494
501
580
582
650
650
728
742
798
017
ges
957
1031
1067
1151
ll62

of 17-4 PH Casting

Yougg'vaodulqsv(GPa)

211.0
1 204.2
204.1
202.8.
194.6
- 191.5
186.7
186.2
182.2
181.9
176.3
174.0
167.8
164.7
153.3
142.3
134.0
128.8
118.0
117.3

Poisson's Ratio
0.283
0.291
0.291
N.72HK
0.295
0.296
0.296
0.294
0.306
0.304
0.316
0.307
0.309
n.321
0.322
0.332
0.344
0.348
0.359
0.361




Table 7

Shear Modulus of 17-4 PH~Casting

Temperature (K).
249
298
301
382
495
523
568
582
632
675
696
749
777
793
841
881
885
934
982

1028
1077

Shear Modulus (GPa)

82.18
79.07
78.73
76.32
74.94
70.53
69.97
71.9

68.73
68.8

67.01
65.42
64.1

64.39
59.91
57.63
59.98
54.39
52.26
49.78
47.50

27
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temperature and strain rate. Figure 12fb) shows that the uniforﬁ
elongation decreased with both increasing test temperature and strain
rate. This figure further indicates that, except at the lowest strain
rate, 1.6 x 10°% 571, and the highest test temperature, 433K, the
total elongation was independent of test temperature and decreased
with increasing strain rate. Finally, fractographic examination showed
that the tensile failure mode was, in all cases, characterized by the
formation of transgranular dimples, with the larger dimplés being
associated with various inclusions and §-ferrite, Figure 1l4.

Classically, the fracture toughness behavior of low strength
ferrous alloys has been examined by coﬁsidering the influence of test
temperature on the energy absorbed during impact fracturé of a standard
Charpy V-notch specimen. These investigations have typically shown
that these steels undergo a tough-to-brittle transition with decreasing
temperature, that is, there is a large reduction in absorbed energy
over a relatively small temperature region. Figure 15 shows that the
Charpy impact energy of the overaged 17-4 PH stainless steel c¢asting
presently under study also underwent such an energy related transi;ion,
although both the values of the upper shelf energy and rate of energy
decrease with decreasing temperature were less than those normally
reported for lower strength alloys (26). If a typical 20 joule absorbed
energy tough-to-brittle transition temperature criteria were applied to
overaged cast 17-4 PH, the T20J transition‘temperature would’have been
approximately 350K, i.e., well above room temperature. Finally, com-
parison of the room temperature Charpy lmpact eneryy oblained for the
overaged cast 17-4 PH (E ~1l1l joules) with that reported for wrought 17-4
PH aged at 866K (7) (E ~ 37 joules) suggests that cast 17-4 PH will
absorb two-thirds less energy during impact loading than wiil wrought
17-4 Ph.

Although the dynamic fracture toughness measurements--as shown in

Figure l6--also exhibited such a tough-tq-brittle transition behavior,



Figure 14.

Scanning Electron Fractographs of Cast 17-4 PH
Stainless Steel Tensile Samples Tested at:

(a) 1.6 x 1074 s=1, 7 = 233k;
(b) 1.6 x 1074 s71, 7 = 423k;
(c) 1.2 871, 7 = 423K,
Original Magnification: 400X.
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the fracture toughness of the overaged 17-4 PH casting, even at the
lowest test temperature examined, was still quite high, approximately

60 MPaml/z. In addition, the room temperature toughness (~ 90 MPaml/2

)

was at least comparable to that observed in wrought, overaged 17-4 PH
(27:)" KIc =~ 130 MPaml/z. These observations reinforce those of Floreen
(28) , wherein he concluded that Charpy impact energy-fracture toughness
correlations previously suggested for wrought products are generally not
applicable to castings, that is, the latter's Charpy impact values are
typically quite low, even though their fracture toughness properties

may be high.

Finally, fractographic examination of tﬁe Charpy V-notch and pre-
cracked samples indicated that the fracture toughness transitions
described above could be related to a change in fracture mode. At
temperatures above 350K, failure in both types of samples involved
microvoid initiation and growth, Figure 17(a). Decreasing the test

temperature below 350K resulted in the introduction of increasing

amounts of cleavage-like failure, Figure 17(b).



Figure 17.

Scanning Electron Fractrographs of V-Notch Charpy
Samples Tested at (a) 423K and (b) 233K.
Original Magnification: 400X.
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SUMMARY AND CONCLUSIONS

This investigation has examined the physical and mechanical
propertieé of an overaged 17-4 PH stainless steel casting and has
compared these properties, where available, with those for wrought

17-4 PH stainless steel. The study has shown that--

a) The linear expansion behavior of cast 17-4 PH is
identical to that of the wrought alloy.

b) The thermal properties, specific heat, thermal
diffusivity and thermal conductivity, of cast
17-4 PH stainless steel are more sensitive to
temperature than is wrought 17-4 PH, that is,
they vary in a more complicated fashion with
temperature than. do the thermal- properties of
wrought 17-4 PH. ‘

c) The elastic properties, Young's moduli and shear
moduli, tend to be higher in cast 17-4 PH stainless
steel than in the wrought alloy, although they both

decrease with increasing temperature.

d)- The tensile and compressive properties of cast 17-4
PH were to some degree a function of test tempera-
ture and strain rate, although not to the same

degree as for lower strength ferrous steels.

e) The Charpy V-notch impact energy and the dynamic
fraoturc toughnecs both cxhibited a tough-to-
brittle transition with decreasing test tempera-
ture. This transition was related to a change in
fracture mode from ductile, dimple to cleavage-like.

f) While the Charpy impact energy for cast 17-4 PH
was less Lhan one-third that of wrought 17-4 PH,
the dynamic fracture toughness of cast and
wrought 17-4 PH were comparable. This reinforces
previous suggestions that Charpy impact-fracture
toughness correlations obtained for wrought

products may not be applicable to castings.
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APPENDIX A

Mechanical Property Sample Configurations
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Figure A-1. Subsized Tensile Specimen.
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Figure A-2.
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All dimensions in inches.

Cylindrical Compression Specimen.
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Figure A-3. ASTM Standard Charpy Impact Specimen.



~ APPENDIX B .

Representative Tensile Stress-Strain Curves for Overaged
17-4 PH Stainless Steel Casting

Figure Test memperatufe (K) Strain Rate (A-l)
B-A ' : 233 1.6 x 1074
BB . 233 1.2
B-C o 297 . - ‘1.6 x107%
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B-F : . 433 1.2
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APPENDIX C
~

Representative Compreséiﬁe.Stiess—strain Curves
for Overaged 17-4 PH Stainless Steel Casting

Figure
C-A
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