
10.8 A Dynamic Node Architecture Scheme for Backpropagation Neural
Networks

This paper was presented at and published in the proceedings of the Artificial Neural

Networks m Engineering conference in November 1991.

CONF-9111215--2

DE93 010311

i

"i

ii

557

..

" A DYNAMIC NODE ARCHITECTURE SCHEME FOR

BACKPROPAGATION NEURAL NETWORKS

Eric Bartlett and Anujit Basu
Iowa State University

ABSTRACT

Typically, artificial neural network (ANN) training schemes
require network architectures to be set before training. However,
the learning speed and generalization characteristics of ANNs are
dependent on their architectures. Thus, the viability of a specific
architecture can only be evaluated after training. This work seeks
to reduce the dependence of ANN capabilities on the preselection
of network architectures. The present work describes an ANN
dynamic node architecture (DNA) scheme which determines the
appropriate number of nodes for a given network by defining an
importance function which assigns an importance to each node in
the network. Optimizing the network architecture becomes part of
the training objective. The backiaropagation learning algorithm has
been implemented with this new DNA scheme.

INTRODUCTION

Although promising, the application of ANNs is restricted due to
limitations such as slow learning, inefficient scaling to large problems and
uncertainty as to generalization results [1,2]. One cause of these symptoms is
the inability to predetermine the network architecture before training is attempted.
One approach, for example, is to train many different architectures on the same
problem and use one with the best post-training characteristics. This method
significantly increases training time, since many ANNs must be trained.
Furthermore, an optimal architecture is not necessarily obtained with this
technique since it may not be one of the initial selections. This approach is, in
effect, an attempt at an exhaustive search for a optimal ANN architecture.

This paper presents a systematic architecture optimization method which
eliminates the need to predetermine network architectures. The DNA scheme
presented requires little computational overhead and actually reduces learning
time in some cases. The method is applied to the backpropagation paradigm and
examples are given.

NETWORKS AND MAPPINGS

The networks used for this demonstration utilize layered continuous
perce.ptrons and the backpropagation learning algorithm [3]. A brief review of the
mapping problem and the backpropagation paradigm is given below. A mapping,
M which may be continuous or discrete, such that

M(XI.n)= Xt+l.n
(1)

is modeled by a network of layered nodes where

101

559

102
4

Xl,n = (x l,l.n, x 1.2,n.... ,Xl.I(l),n) T
(2) ..

is the input vector and

XI+I, n = (XI+l.l.n,XI+l,2. n XI+l,J(I+l),n) T
(3)

is the output vector, which corresponds to the output of the I'th layer of active
(hidden or output) nodes, and J(1) and J(I+l) are the number of nodes in the input
and output layers respectively. Note that the input nodes are inactive in that their
input is equal to their output. Also note that n is the training set exemplar (input-
output pattern) number. Each active node has the following input-output relation,

Xi.j,n = (1/_)'arctan(ui,j,n) + 1/2,
(g)

K

Ui,j,n -- g. Z (Wi,j,k.Xi.l,k,n).
k--1

(5)
The trainable parameterset is {wi,ik}. Note that the arctangent function is used
here rather than the usual exponen'tial sigmoid function.

The cost (energy, error, merit, objective) function has the form,

N J(l+l)
c(W) = { 1/(N.J(I+I)), Z -[Y_(k"]I+l.j, n - Xi+l,j,n) 2 111/2,

n=l j=l
(6)

where N is the total number of training exemplars in the training set, {f21,f2t+t},
This cost function is simply the root mean square (RMS) error of the network
output over the training set. Note that {f_t } is a subset of ali possible inputs
{Xt }, and {f_t+t} is a subset of ali correct or desired outputs {XDI+t} associated
with {Xr}. The problem is to reconstruct or approximate the unknown desired
mapping Z, such that,

XDI+I= Z(Xt),
(7)

from {f_l,i'2l+l 1. There are, however, many solutions MI+I, which satisfy the
training set

tat+t= M(f_t),
(8)

none of which are necessarily the desired solution

f_l+t= Z(llt).
(9)

Backpropagationis by farthe most widely used and understood neural
network paradigm. Its popularityarises from its simple architectureand easy to
understandlearningprocess, The backpropagationscheme consists of two major
steps. These are the forwardactivationand the backwarderror flows. If a DNA
scheme is not used, an architecture for the specific problem must be determined.
The training process begins with the assignment of random weights to the
connections between the nodes of the various layers. The various input patterns
are then presented to the network, and the forward activation flow produces the
output patterns. These output patterns will not be the same as the desired output
patterns. The errors in the outputs are calculated for the output layer nodes as the
difference between the desired and actual outputs. For the hidden layers, the

•' 560

103

errors are calculated by backpropagating the errors in the output layer to the
hidden layers. The errors of each of the nodes are summed over the whole set of
training patterns. These errors are used to change the weights in the
interconnections between the layers. The weights connecting to the output layer
are changed according to the delta rule, whereas for the weights in the hidden
layers the generalized delta rule is used. This process is continued untill the RMS
error falls belov; some preaccepted value. There are many good references which
describe the mathematics of the backpropagation approach in detail including
[3,4].

DYNAMIC NODE ARCHITECTURE THEORY

ANNs must be able to generalize information gained through training.
Without this ability, neural networks would be of little interest. Thus, networks
must be evaluated on not only their speed and depth of convergence but also their
generalization capabilities. Minimization of the recall set error is the ultimate
goal; however the recall set is rarely known a priori. Minimization of the error
over some training set does not necessarily imply minimization of the error over
the recall set [5], Mote than a simple optimization over an arbitrary training set
must be accomplished if good generalization characteristics are to be obtained.
This can be seen mathematically by comparing Equations (8) and (9) above.

Generalization is the ability to quantitatively estimate the characteristics of
a phenomenon never encountered before based on its similarities with things
already known. This implies the ability to distinguish between specifics and
generalities. The objective is to teach the computer only important characteristics
-- those which set apart the classes of interest. The mathematical solution to this
is to reduce the number of ways to interpret details. In the network
implementation, this means reducing the number of weights and nodes [6].
This approach seems reasonable since, when approximating functions, researchers
use polynomials of reasonable degree because high power polynomials tend to
oscillate about the desired interpolation values [7]. In this sense the size of a
neural network can be likened to the degree of an interpolation polynomial. But
since the appropriate number of nodes is unknown, a variable node architecture
approach should be used. The network to be trained can be started with a small
number of nodes and the network size can be increased or decreased until the

network can successfully ;dentify ali classes in the training set with the minimum
number of nodes and interconnections. The final network should be a better
generalizer, because it has the fewest ways to distinguish the classes learned.
Therefore, the network training procedure should seek to minimize both c(W) and

" the number of nodes. This can be achieved as follows. Start the network with
only a few nodes. Since the network is most likely too small to learn the desired
mapping add nodes until the network learns the training set to the desired
accuracy. Once this is achieved, eliminate a node which has near-zero nodal
importance, thus eliminating a nearly useless node. If the resulting error cost
function is larger than desired, retrain this smaller network and repeat. The final
network should give a more general implementation of the desired mapping.

The importance of a node is a function of the network outputs. If a small
change in the value of a hidden nodal output changes the activation of an output
node more than a similar change in another hidden nodal output, then that node is
more important to the dynamic function of the network than the other nodes.
Therefore, the importance of node (I,j), with respect to node (l+l,k) can be
defined as,

(lO)
I(Xl+l,k,Xl,j)= E[I _XI+l.k.n/_Xl,j,n I]'dxl,j max.

561

104

Where E[.] is the expected value over the training set and dxl.j max is the
maximum change in the activation of node (l,j), also over the training set. The
change in Xi+l,k.n due to a change in XI,j,n is,

_Xl+l.k.n/SXl.j. n = 1/{ _'(1 + Ul+l.k.n2) }*<_Ul+l.k.n/_Xl.j.n

= g,Wi.l.j.k/{/t,(1 + UI.l.k.n2)}
t,ll)

Similarly, the chain rule can be used to find I(Xl.l.k,Xi.j). An estimate of the
importance of any hidden node can be obtained by summing the effects of a
change in the output of that node on the activations of the nodes in the output
layer. Thus, the total importance of node (i,j) is the sum of the importance over
ali nodes in the output layer,

J(l+l)
l(xi.j)= E I(Xl+l.k,Xi.j).

k=l
(12)

If a node has little affect on the output of the network then it is of little dynamic
value to the network and has little importance. The importance of a network layer
can be similarly defined as the sum of the importance of each node in the layer of
interest.

COMPUTER SIMULATION RESULTS

This section illustrates how backpropagation networks learn with DNA.
Two examples are given; more examples and theory are given in [8].

The exclusive-nor problem

A straightforward example of network learning is the exclusive-nor
problem. The training data is shown in Table I. A DNA network was started with
a 2 X 1 X 1 architecture. Thus it has two input nodes, one node in one hidden
layer and one output node. After training, the resultant network has a minimal
architecture of 2 X 3 X 1. Table II shows the DNA history. This table shows the
RMS training error (cost) obtained by the network in the architecture listed. The
target cost is 0.05, therefore if the network learns the training set to this value the
network is assumed to have learned its task. Note the oscillation in the number of
hidden layer nodes. Apparently it requires more nodes to learn the training set
than are required for its correct recall.

Table I. Exclusive-nor trainingdata set.

Pattern Desired
Number Inputs Output

1 0.0 0.0 1.0
2 0.0 1.0 0.0
3 1.0 0.0 0.0
4 1.0 1.0 1.0

562

105

t

Table II. Exclusive-nor dynamic node architecture history,

RaMS Architecture RMS Architecture RMS Architecture
Error In Hdn Out Error In Hdn Out Error In Hdn Out

1) .4994 2 1 1 15) .0942 2 4 I 28) .0498 2 4 1
2) .3311 2 2 1 16) .0930 2 5 1 29) .0623 2 3 1
3) .1152 2 2 1 17) .0921 2 5 1 30) .0498 2 3 1
4) .1140 2 2 1 18) ,0911 2 6 l 31) .0979 2 2 1
5) .1116 2 3 1 19) .0902 2 6 I 32) .0876 2 2 1
6) .1029 2 3 1 20) .0892 2 7 1 33) .0861 2 3 1
7) .1009 2 4 I 21) .0884 2 7 1 34) .0852 2 4 1
8) .0495 2 4 1 22) .0873 2 8 1 35) .0844 2 5 1
9) .0544 2 3 1 23) .0492 2 8 1 36) .0836 2 6 1

10) .0494 2 3 1 24) .0485 2 7 1 37) .0829 2 6 1
11) .1061 2 2 1 25) .0483 2 6 1 38) .0823 2 7 1
12) ,0982 2 2 1 26) .0492 2 5 I 39) .0817 2 7 I
13) .0964 2 3 1 27) .0528 2 4 1 40) .0810 2 8 l
14) .0951 2 4 1

Gaussian distribution separation

' ANNs exhibit well known pattern classification capabilities. An example
of this is the ability to distinguish between two groups of numbers randomly
drawn from two different Gaussian (normal) distributions. In this example an
ANN is trained to reveal which of two populations a sample of five numbers
belongs. The two populations have means of 0.40 and 0.60 and standard
deviations of 0,10 and 0.10 respectively. The training data is shown in Table III.
The training was started with a 1 X 1 X 1 network. The resultant network has a 5
X 31 X 1 architecture. Table IV shows the DNA history for this example. This
table shows the RMS training error obtained by the network along with the
associated architecture. Note that the target cost is 0.05.

Table III. Gaussian distribution separation data set.

Pattern Desired
Number Inputs Output

1 0.2992 0.3949 0.4739 0.3733 0.2804 1.00
2 0.8346 0.6081 0.6707 0.4650 0.5755 0.00
3 0.3796 0.3880 0,4172 0.2840 0.3443 1,00
4 0.4519 0.6373 0.6055 0.5346 0.4797 0.00
5 0.3406 0.3318 0.4616 0.6410 0.3962 1.00
6 0.5784 0.6526 0.5508 0.5237 0.6557 0.00
7 0.3254 0.3917 0,4103 0.2119 0.320l 1.00

_ 8 0.6796 0.5932 0.8022 0,6165 0.5716 0.00
; 9 0.3347 0.3474 0.4502 0.4883 0.3693 1.00

10 0.6741 0.6495 0.5675 0.6239 0.4688 0.00

563

106

Table IV. Gaussian distribution dynamic architecture history.

RMS Architecture RMS Architecture RMS Architecture
Error In Hdr:.Out Error In Hdn Out Error In Hdn Out

1) .4989 1 1 i 13) .0607 5 9 1 25) .0530 5 21 1
2) .4990 2 1 I 14) .0596 5 l0 1 26) .0527 5 22 1
3) .1415 2 2 1 15) .0586 5 I1 1 27) .0523 5 23 1
4) .1275 2 3 1 16) .0578 5 12 1 28) .0520 5 24 1
5) .1175 3 3 1 17) .0571 5 13 1 29) .0517 5 25 1
6) .1130 4 3 1 18) .0564 5 14 1 30) .0514 5 26 1
7) .0916 5 3 1 19) .0557 5 15 1 31) .0511 5 27 1
8) .0898 5 4 1 20) .0551 5 16 I 32) .0508 5 28 1
9) .0877 5 5 1 21) .0547 5 17 1 33) .0505 5 29 I

10) .0860 5 6 1 22) .0541 5 18 1 34) .0502 5 30 1
11) .0839 5 7. 1 23) .0537 5 19 1 35) .0499 5 31 1
12) .0622 5 8 1 24) .0534 5 20 1

CONCLUSIONS

A DNA scheme is presented which varies the number of hidden nodes in a
feedforward backpropagation neural network during training. This new method
minimizes the number of nodes and interconnections in the network consistent
with the learning objective. Results show that the method can obtain the
appropriate network architecture for a given training task in a systematic way.
The method therefore eliminates the need to preselect network architectures.

REFERENCES

1. S. Judd, "Learningin Networksis Hard", IEEEFirstInternationalConferenceon Neural
Networks,2, 685-692(June 1987).
2. J. M. Mclnerney,K. G. Haines, S. Biafore,R. Hecht-Nieisen,"BackPropagationError
SurfacesCan Havea Local Minima",IJCNNInternationalConferenceon Neural Networks,2, 627
(Ju.ne1989)
3. R. Hecht-Nielsen,"Theoryof theBackpropagationNeuralNetwork", IJCNNInternational
Conferenceon NeuralNetworks,1,593-606 (June 1989)
4. D. E. Rumelhart,J. L. McClellandand the PDP ResearchGroup,Institute for Cognitive
Science,Universityof California,SanDiego,ParallelDistributedProcessing:Explorationsin the
Microstructureof Co_nitioll,(MIT Press,Cambridge,Mass. 1986)
5. M.T. Musavi,A. Rajavelu,A., Sahai, S., and Zhao,J., "AnalysisandGeneralizationof Back
PropagationinNeuralNetworks",NeuralNetworks,1, Supp.1, 118(1988)
6. T. Ash, "DynamicNode CreationinBackpropagationNetworks",LICNNInternational
Conferenceon NeuralNetworks,2, 623 (June 1989)
7. W. H. Press, B.P. Flannery,S. A. Teukolsky,andW.T. Vetterling,NumericalRecipes:The
Artof ScientificComputing,(CambridgeUniversityPress,New York 1986)
8. E,B. Bartlett,"NuclearPower PlantStatus DiagnosticsUsingSimulatedCondensation:An
Auto-AdaptiveComputerLearningTechnique",Ph.D.Dissertation,The Universityof Tennessee
at Knoxville(1990)

564

I

