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Small Angle Proton-Proton and Proton—-Deuteron Elastic

Scattering at 800 Mev

by

Farokh Irom

ABSTRACT

By measuring the energy of recoil particles, the following data
have been obtained at 800 MeV incident proton energy; (1) the
differential cross section for elastic proton—-proton scattering at
laboratory angles ranging between 1.34° and 6.45°, (2) the analyzing
power for elastic proton-proton scattering at laboratory angles
ranging between 2.8° and 6.45°, and (3) the differential cross
sections and analyzing powers for elastic roton—-deuteron scattering
at laboratory angles ranging between 3.97° and 13.1°. The data were
analyzed to obtain information about the hadronic parts of the
proton-proton and proton-neutron forward scattering amplitudes. The
ratio p of the real to the imaginary parts of the forward p-p
spin-independent amplitude was found to be 0.005 * 0.04. The ratio R
of the summed moduli squared of the forward p-p double-spin-flip
scattering amplitude to the modulus squared of the forward p-p
spin—independent amplitude was found to be 0.16 *¥ 0.03. The real and
the imaginary parts of the p-p spin—orbit scattering amplitude divided
by sin6 were found to be 0.79 * 0.05 fm and 0.18 % 0.11 fm,
respectively. Finally, the real and the imaginary parts of the p-n
spin-orbit scattering amplitude divided by sinb® were found to be
0.79 £ 0.09 fm and -1.6 * 0.03 fm, respectively. These values were
compared with the results of recent phase shift analyses and forward
dispersion relation calculation.

xiv



INTRODUCTION
It has been clear experimentally that the forward angle
differential cross section in proton-proton elastic scattering at
energies in the GeV region is substantially larger than the
theoretical minimum (%%.GTOT)Z allowed by the optical theorem, where k
is the center-of-mass wave number and Oror is the total cross section.
The optical theorem for proton~proton scattering may be written

(Appendix A)

zk; Opor = Imoy(0)

where oy(0) denotes the spin-independent amplitude (complex). An
excess of the forward differential cross section above the optical
limit may arise because of the existence of a real part of the
spin-independent amplitude or from spin dependent terms which are
non-zero in the forward direction. In experiments at very small
momentum transfer 1073 1t1< 1072 (Gev/c)2 the Coulomb scattering
amplitude as well as its interference with nuclear scattering
amplitude can be observed. In principle, by parameterizing the
amplitudes appropriately, such measurements allow us to determine the
magnitude and sign of the ratio, p, between the real and imaginary
parts of the forward spin-independent nuclear amplitude as well as the
magnitude of the contributions from spin-dependent amplitudes. Also,
analyzing power measurements in the Coulomb-nuclear interference
region can be used to determine additional information about the

general nucleon-nucleon amplitude, in particular, information about



the single-spin-flip or spin-orbit amplitude. In fact, at
intermediate energies at the Coulomb-nuclear interference region very
few analyzing power measurements are available. The predictions for
analyzing power parameters at these small angles are essentially
extrapolations from measurements at larger angles by means of phase
shift analyses (Arndt 74), (Bystricky 75) and have never been
adequately tested. Thus small angle measurements of differential
cross sections and analyzing powers can be used to obtain direct
information on the nuclear interaction by taking advantage of the
electromagnetic-nuclear interference.

The experiments described in this dissertation were performed at
LAMPF, during the Summer of 1979 using the External Proton Beam (EPB)
Line. Recoil particles were observed after their scattering from a
target gas (hydrogen or deuterium) in a scattering chamber by using
so0lid state detector telescopes. In this work, data on the
differential <cross sections, do/dt , for elastic proton-proton
scattering in the range of the four momentum transfer squared 0.001l
<It1< 0.03 (GeV/c)?, and on the analyzing powers, Ay(a), for elastic
proton-proton scattering in the range 0.005 <Jt§<0.03 (GeV/c)2 were
collected. Also, with the same experimental apparatus differential
cross sections and analyzing powers were measured for elastic
proton—-deuteron scattering in the range 0.01 <|t| <0.11 (GeV/c)z.

By parameterization of the p-d differential cross section and
analyzing power data, we can extract information on the proton-neutron

amplitude as well as on the proton-proton amplitude.



The experiment described in this work provided high quality data
on forward angle proton-proton and proton—deuteron elastic scattering
at 800 Mev. In summary, from the analysis of the p-p data we
determined:

1. The sign and magnitude for the ratio, p, between.the real and the
imaginary parts of nuclear spin-independent amplitude in the
forward direction.

2. The ratio between the summed moduli squared of double-spin—-flip
amplitudes at =zero degrees and the modulus squared of the
spin-independent amplitude at zero degrees.

3. The real and the imaginary parts of the proton-proton nuclear
spin-orbit amplitude.

From the analysis of the proton—deuteron data we extracted
the real and imaginary parts of the p-n nuclear spin-orbit
amplitude; and the effects of the spin-dependent nucleon-nucleon
amplitudes and of the double scattering terms on the
proton-deuteron cross sections and analyzing powers were also
checked.

Theoretical concepts underlying the proton-proton and
proton-deuteron analyses are discussed in Chapters 1 and 1I,
respectively. Chapters III describes the experimental setup. In
Chapter IV the experimental techniques are explained. The data
reduction is discussed in Chapter V. In Chapter VI and Chapter VII we
discuss the theoretical analyses for the proton-proton and

proton-deuteron data, respectively.



CHAPTER I
THEORETICAL ASPECTS FOR PROTON-PROTON DATA
In this chapter a detailed exposition of the proton-proton
elastic scattering 1is presentea, reviewing known results. We will
discuss the nucleon-nucleon scattering matrix, M, and parameterize the
proton-proton elastic differential cross section, do/dt, and analyzing

powver, Ay(e).

A. Nucleon-Nucleon Scattering Matrix

A complete description for the scattering of two spin 1/2

particles is given by a 4 x 4 matrix:

+> +> +

<>
M(oy, 05, Ky, Kg) (1-1)

where Ei and Ef are the momenta of the 1incident and scattered
particles in center-of-mass and ;1 and ;2 are the Paulil spin operators
acting on the first and second nucleon wave functions, respectively
(1.e., ;1 for the incident and scattered nucleon and ;2 for target and
recoil nucleon). The most general form of this matrix may be found by
following a procedure similar to that used to find the most general
form of the interaction Hamiltonian for two particles of spin 1/2

(Eisenbud 41). Conditions placed on the matrix M are invariance under

space rotations and reflections and time reversal.



Taking into account these conditions, the nucleon~nucleon elastic

scattering matrix has the following general form (Goldberger 64)

> > “ > n > - > . > -
M= qa-+ iY(Ol + 02) *n + B(ol M n)(oz d n) + 6(01 ° m)(Oz * m)

+e(@ c ) Gy s D+ -3, 0 . (1-2)

Here the amplitudes a, B, Y, §, €, and n are complex functions of two
variables the center-of-mass energy Vs and the scattering angle 6, or
equivalently the momentum transfer qz(q2 = ZEi(l-cosecm)). a is the
spin-independent (central) amplitude; Y and n are the spin-orbit
amplitudes; and B, §, and € are the double spin flip amplitudes. The

center-of-mass system unit vectors are:

> >
- k; + K
- i f
> >
IKi + Kfl
> >
~ K = K
m = __E___;E_ R (1-3)
> >
le = Kil
> >
~ Ki X Kf
n =
> > ’

which form an orthogonal Cartesian co-ordinate system. In non

relativistic kinematics, they have a very convenient meaning in the



~

laboratory system, since £ represents the direction of motion of the
scattered nucleon, n is the direétion perpendicular to the scattering
plane, and (minus)m is the direction of motion of the recoil nucleon.
For proton-proton and neutron—neutron scattering in which the two
particles are identical the sixth term in scattering matrix, n, is
zero; and this is also true for neutron-proton scattering if charge

independence is assumed.

=>
(o)

Fig. (1-1): The orthogonal unit vectors %, m, n in c.m.f.
n is an arrow out of the page.



B. The Density Matrix Formalism

In a scattering experiment one prepares the two particles 1in
certain states prior to scattering and subsequently measures the state
of the particies after scattering. These processes can be
conveniently formulated 1in terms of the density matrix rather than
wave functions. An arbitrary spin state lxn> in a 'system of two
particles with spin 5y and s, is a linear combination of the (Zsl +
1)(2s, + 1) basic states of the composite system and may be
represented by a vector with (2s1 + 1) (2s2 + 1) components. For
example, if ] =8) = 1/2, the four basic states could be the three
triplet and one singlet states. For a given pure spin state lxn>, the

density matrix is defined as:

P = IXp><xXp! (1-4)

which is clearly a projection operator. In practice we deal with an
incoherent mixture of pure spin states, as in the case of a nucleon

beam from an accelerator. The density matrix is then defined as
p =) IXOPp<xy! (1-5)
n

where P, 1s the relative probability of finding the system in state
Xp* For a beam of particles, the sum may be considered as a sum over

the states of the individual particles in the beam.



Any observable is represented by some Hermitian operator Q. The

expectation value of Q in the mixed state is given by

Q> = % P <xn1Q1xy>
= %,m P <Xy !QIm><m|x,>
=) <m|QpIm>
m
or
Q> = Tr(Qp) - (1-6)

The density matrix defined above characterizes a system at a given
time. As time proceeds the density matrix changes. In particular,
the initial spin state of the system X, is associated with a definite
scattering state, which, in terms of the scattering state wave

functions has the asymptotic form

> >
Y ~et T x>+ ) F (6,9)
m mn

elqr

r

|xm> . (1-7)

In other words, the initial spin state |x,”> is transformed into a

certain final state

) F (9, > = MIxD 1-8
%mn( ) 1 Xy 1 Xq (1-8)



where M is the spin-scattering matrix. For nucleon—-nucleon system it
is defined in Eq. (1-1). Thus we can construct the final density

matrix

pe = L Mix>P <xy Mt
n

= Mp,MT

or, in the normalized form (Trp = 1)

(Mp 1M+)

pf = 7—7—1‘1‘ Mpi l) (1-9)

The density p is Hermitian and for the nucleon-nucleon system it can
be expanded in terms of 16 independent matrices ou(l) ov(z) which

satisfy the following orthogonality relations

Tr(oﬁl) o52) ogl) op(2)) = 48,6, - (1-10)

Thus, we may write

3
- (1) 4(2) 1-11
° E,v au.v % "% ’ ( )

Here, Gys 915 Oy and g4 are the unit matrix and Pauli spin matrices.

We may write

Tr(ou:(l) o(%) p) = % ) au’vTr(oﬁl) ogg) of1) osz))



10

using the orthogonality relations [Eq. (1-6) and Eq. (1-10)] one

obtains

<o,(1) 6 2> =da, , , (1-12)
or
1 1) o(2)y g(1) (2 -
pgzg’v@g)ogbof‘)as) : (1-13)

In this form the spin density matrix is expressed directly in terms of

the 16 expectation values <051) 052)> . Six of these, the quantities

<o(l)o(2) > = <o(1)> and <o(1)c(2)> = <o(2)>
i ° i ° 3

are the components of the polarization vectors for the first and
second particles, respectively; and the expectation values <0§l)o§2) >
= Cij are nine parameters related to a correlation between spin
expectation in two particles.

Let us now proceed to calculate the differential cross section Io
for scattering of the incident particles described by the density
matrix Pos Where the definition of this cross section involves a sum

over the spin states of the final particles.



The differential cross section for scattering from any of the pure

states X, is given by

1-) 1My 12

= <xg IMMIXD> (1-14)

+ﬁ in the state

which is indeed the expectation value of thé operator M
Xp* Thus, by Eq. (1-6) for a incoherent mixture of pure states with a

density matrix Pys the differential cross section may be written as:

1= <M+M> = Tr(Mfupi) = Tr(MpIM

. (1-15)

The initial polarization state 1is completely specified by the
expectation value <°£l) 062) >{ -+ By substituting Eq. (1-9) 1into
Eq. (1-6), we get a basic relation between incident and final

polarization states (MacGregor 60).

<o§1)o$2)>f - Tr(pfosl) 052))

Tr(Mp M 0 { ()
- Tr(Mp MT)

11



12

substituting for Py from Eq. (1-13) and using Eq. (1-15) one then

obtains

1¢o) 6@ 5, -

s
Q
<~

2) >4 Tr(Moi{)ogg) M oﬁl)osz)) . (1-16)

Let us now consider the scattering of an unpolarized beam on an
unpolarized target. Then all the <051) o$2)>i’s are equal to zero in
Eq. (1-13) except for <Ogl)ogz)>i =1, and hence the differential
cross section for the scattering of a wunpolarized beam on a

unpolarized target is given by

1, = ,(mt) . (1-17)

The polarization vector of the scattered particle (1) is obtained by

using (1-16)

1 2 1
Io<0£ )Og )>f = Io<0£ )>f
=1 t5(1)5(2) -
z_Tr(MM oy ag ) (1-18)
where <o£1)>f is the polarization of the particles (1) produced in the

scattering of an wunpolarized beam on an unpolarized target. Its

direction is along the normal to the scattering plane (Hoshizaki 68).

+ ~
<°(1)>f = Pn



and

1 +
1P = 7 Tr(1et" o{Do{2)) (1-19)
where ogl) is the normal component of o(l) .

Let us now consider the scattering of a polarized beam on a

unpolarized target. Using Eq. (1-13) one obtains

3
) <o{1>; o(Dal2), (1-20)

-

-+
We can define the polarization of the beam as Pg = PBu U=

3
L

- p=l1
<o£1) >i" ; and then the differential cross section I for this case
given by:

1 IR (1)5(2)yt
I=4 TrOm) +o ) Py, Tr(Moy log™m) . (1-21)

The first term on the right-hand side 1is the differential cross
section Io for unpolarized beamunpolarized target scattering, and the
second 1s the contribution due to the initial polarization ;B « On
the basis of invariance under time reversal we have the relation
(Hoshizaki 68), (Wolfenstein 52)

Te o) M) = 7r oot 1)y . (1-22)

b

13



therefore Eq. (1-21) may be written in the form of

I= %.Tr[(l + ;B « 51 et (1-23)

using Eq. (1-19) one then obtains

> IS
I=1I,( +Pg-=npP) . | (1-24)

~

The quantitv € = ;B * nP = PgPcos¢ (where ¢ is the angle between the

initial polarization vector, ;B’ and the unit vector, ;, normal to
scattering plane) is called the asymmetry of the scattering. Its
magnitude varies with both P (the maghitude of the polarization
induced in the scattering) and PB (the magnitude of the incident

polarization). If, in a scattering experiment with known PB, the

asymmetry amplitude

€ = PPy cos¢

is determined then the analyzing power A of the scattering is defined

to be




In order to measure the analyzing power A, we take the co-ordinate
axes 80 that the initial polarization PB is parallel to the =z axis,
and assume that the scattering plane is set in the x-y plane
Fig. (1-2). 1If the incident particles are scattered left (right) with
respect to their initial direction, the angle ¢ between PB and 5 is ¢

= 0 (n), and Eq. (1-24) becomes

Yy = 1(6,0) = I (6)(1 + PgP)

(1-25)

nd
=
1}

= 1(8,m) = I(6)(1 - PgP)

or, one obtains

Hence, the analyzing power A can be measured from the left-right

asymmetry in the scattering process:

Yy - Y
O g L) (1-26)
B 1Lt YR

15
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¢ /f/‘? : +A/e1 - /
/) S

Scattering to the left

Scattering to the right

Fig. (1-2): The scattering of polarized nucleons with their spin
along the z-axis.
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C. Proton-Proton Elastic Scattering

In order to calculate the differential cross section for
unpolarized beamunpolarized targec scattering 1in terms of the
scattering amplitudes, a, B, Y, 6, and €, we substitute for M from

Eq. (1-2) into Eq. (1-17) obtaining:

I, = 1al2 + 1812 + 21712 + 1612 + (€12 . (1-27)

In the case of polarized beamunpolarized target scattering, using

Eq. (1-21) one obtains:

* -~
I=1,+2P; *nRe {(a+B)* (1)}

or

> - *
2P; * n Re{(a + 8)"(1V)}

I=1,(1+ - ) s (1-28)
o
by comparison with Eq. (1-24) one gets
*
A(8) = (o) = Rella +18) an} (1-29)
o

This formula can also be obtained directly by substituting for M in

Eq. (1-19).

17



D. Small Angle Approximation

We are interested in the small angle region where the
contributions of the e}ectromagnetic interaction due to Coulomb
repulsion and nucleon magnetic moments cannot be neglected. Each
scattering amplitude 1is expressed as a sum of a nuclear term and an
electromagnetic term, 1i.e., a = ay + agp . Considering the
electromagnetic contributions and forming the bilinear combinations of
the amplitudes, Eqs. (1-27) and (1-29) can be grouped into three
different terms corresponding to the pure nuclear term, the pure
electromagnetic term and an interference term corresponding to the

interference between nuclear and electromagnetic terms.
I, = IoN + Iog *+ 1ot

where

Iy = lagl? + 20712 + 1812 + 16012 + 1ey12
Ig = logi? + 21vg12 + 18512 + 18512 + 1egl?

* *x * (1_30)
I,1 = 2Re(ayag) + 4Re(YyYg) + 2Re(ByBE)

+ 2Re(6y6p) + 2Re(egeg) -

For the analyzing power we obtain

I,A(8) = (T A)y + (T A + (T,A)y

18



where

(ToA)y = 2Re{(ay + By (i) }

(I,A)g = Re{(ag + Bp) (1Yg)] (1-31)

(I,A); = 2Re{(ay + B *(1¥p)} + Re{(og + 85 (i) |

where the subscripts N, E, and I represent the pure nuclear, the pure
electromagnetic and the interference term, respectively.

The small angle behaviour of the amplitudes at 800 MeV which were
obtained from the Arndt phase shifts analysis (Arndt 80) are shown in
Fig. (1-3) and Fig.(l1-4). One observes that except for the real part
of the electromagnetié spin flip amplitude, ReYE, the real and
imaginary parts of the electromagnetic spin-double-flip and spin-orbit
amplitudes‘(BE, 6p, €g, Yg) are negligible compared with those from
the spin-independent Coulomb amplitude (aE). Using an approximation
where these terms are neglected Eqs. (1-30) and (1-31) can be written

in the form of

Toy = logl? + 21vy12 + 18y12 + 16412 + 1eg1?
I 2 la [2 : (1-32)
oE E
. *
IOI = ZRe((!NaE)

19
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and

(IOA)N = ZImaNReYN + ZImBNReYN - ZRQQNImYN - 2Re BNImYN
(1,A)1 2 2Imag ReYy = 2Reap Imyy + 2Revg Imay .

A further approximation can be made in (I A)y by neglecting
contributions from ReayImyy and ReByImyy [see Fig. (1-3)] . Tables
(1-1), (1-2) and (1-3) show the Arndt predictions (Arndt 80) for each
of the remaining terms in (IOA)N » (I,A)g and (I,A); for the angular
range observed in this experiment. These tables make it clear that
with a very good accuracy contributions from Im8y Reyvy in (I A)y ,

ImaE Reyy in (IoA)I and the pure electromagnetic term (IOA)E can be

neglected.

(I,A)y = 2Imay Revy

(I,A)7 = 2ReYg Imay - 2Reag Imvy (1-34)
or

IA = ZImaN(ReYN + ReYE) - 2ReaE ImYN .
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Fig. (1-3): The Arndt’s phase shifts prediction for p-p hadronic

scattering amplitudes at 800 MeV.
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Fig. (1-4): Electromagnetic scattering amplitudes for p-p at 800 MeV

obtained from the Arndt phase shifts.



egm ImGN ReYy ImBN Revy egm Imap ReYg Reop Imyg

6 0.0920 ~0.0028 6 ~0.0013 <108
8 0.1187 -0.0033 8 -0.0005 <1072
10 0.1443 -0.0033 10 -0.0002 <1072
12 0.1652 -0.0028 12 -0.0001 <1079
14 0.1855 -0.0018 14 0.0 <1079
16 0.1979 ~0.0004 16 0.0 <1079

Table (1-1) ~ The Arndt phase shifts Table (1-2) - The Arndt phase shifts
prediction for pure nuclear terms prediction for pure electro-
in (IOA). magnetic terms in (I A).

60, ReYg Imoy Reap Imyy Imoag Reyy

6 0.0587 0.0204 0.0021
8 0.0396 0.0148 0.0014
10 0.0266 0.0120 0.0010
12 0.0184 0.0101 0.0008
14 0.0127 0.0084 0.0005
16 0.0074 0.0072 0.0004

Table (1-3) - The Arndt phase shifts
prediction for interference terms in (IOA).
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E. Parameterization

The differential cross section Eq. (1-32) and analyzing power
Eq. (1-34) formulae can be written as a function of t, the
four-momentum transfer squared (-t = q2 = ZPEm(l-cosecm)), and a set

of parameters which have to be determined.

1. Cross Section

For the pure nuclear term in Eq. (1-32) we may use the following
conventional parameterization known as the classical parameterization

(Aebischer 77).

lagl? = 1ay(0)12eP1t (1-35)

1812 + 16412 + Tegl? = (183(0) 1% + 184(0) 12 + 1ey(0) 12 )eP2t , (1-36)

where we make the traditional assumption that the slopes of the real
and imaginary parts of the nuclear amplitudes are the same. It has

been shown (Appendix B) that at t = 0

B(O) = 6(0) . (1-37)

Define p as the ratio of the real part of spin-independent amplitude
at zero degrees to imaginary part of spin-independent amplitude at

zero degrees and define R as the ratio between the summed moduli

24



squared of the doubie—spin—flip amplitudes at zero degrees and the

modulus squared of the spin-independent amplitude at zero degrees.

ReaN(O)
e = Imon, (0) (1-38)
2 2
21B(0) 1€ + 1e(0) |
R=_1 N i (1-39)

1y (0) 12

Substituting Eq. (1-35) and Eq. (1-36) into Eq. (1-32) and using

Eq. (1-39) we may write:

do m )
E€1N =.;§ [10y(0) 12(eP1t + ReP2T) + 27y ?] (1-40)

where do/dt = n/p2 do/dst and p is the center-of-mass momentum. But

lay(0) 1% = (Imay(0))? + (Reay(0))?
= (1 + 02)(Imay(0))? . (1-41)
Now the optical theorem gives a relation between Op,7 , the total

reaction cross section and ImaN(O) (Appendix A):

k N
Iman(0) = 5= Opor
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Thus we may write:

2
do | _ % rk 2 2)({ b1t byt 2 -
wh LIE;E o2 (1 +02)(eP1t + ReP2) + 21v12] . (1-42)

It has been shown (Appendix B) that the scattering amplitudes can be

decomposed into partial waves; for example, we may write:

Y= YgPE(8) . (1-43)
20dd

Here Yy is a coefficient which depends on the energy. This expansion
is particularly useful when the number of partial waves is limited to
some finite value 2max’ which is usually the case for the nuclear
amplitudes. In Appendix B it has been shown that at small angles

Eq. (1-43) can be reduced to the simple form

Y = Yosind . (1-44)

Figure (1-3) shows Arndt prediction for the small angle dependence of
the scattering amplitudes at 800 MeV. One observes that real and
imaginary parts of the spin-orbit term show a sinusodal form that
clarifies Eq. (1-44). Therefore we may parameterize the real and

imaginary parts of Yy in the following form,

ReYN = Ylsine

ImYN = stine .



After substitution into Eq. (1-42) one obtains

LU LA K’
dt | 2 16'"2

The spin-independent electromagnetic amplitude which corresponds
to the one-photon exchange has been given by Bethe (Bethe 58):
2hp

5 ) 2
Qp = = —5—— e ¢ Gp(t) (1-46)
137BLt

where P is the momentum of the incident particle in the center-of-mass
system, BL is the velocity of the projectile in the laboratory frame
(in wunits of ¢) and Gp(t) is the electromagnetic form factor for

proton—proton scattering. Gp(t) has the following empirical form

1
(1 + 1t1/¢)?

Gp(t) = (1-47)

where ¢ has been found from a dipole fit (Coward 68)

c = 0.71 (GeV/c)? .

o2, r (1 + 02)(eP1t + ReP2t) + 2(v,2 + v,2)s1n?0].(1-45)
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Gc is the Coulomb angle, which is a modification to the nuclear phase
shift due to the presence of the Coulomb potential. It has been

calculated non-reiativistically by Bethe (Bethe 58) as

5 = 2 1n(0:209)

(1-48)

where a is the radius of interaction region (1 fm). A relativistic

expression has been given by Locher (Locher 67),

2 2 2,12 Y
= - - -_ -4
8, 1378, [Lng Ln(3) RP 2] (1-49)

which yields a similar value of 6c . Here R ~1.5-fm is the effective
strong interaction radius. ¥ = 0.577 is the Euler constant, and 6 and

P are the center-of-mass scattering angle and momentum, respectively.



From the above considerations the electromagnetic contribution to the

cross section is

do 41*12

4 .
-G (t) - (1'50)
dt ‘g (137)2 B%tz P

The contribution to the cross section due to the interference
term in Eq. (1-32) may be written in the form of
do |

?E' |1 I .lz [ZRQ(G§GE)]
P

= E;—(R.euNReaE + ImaNImaE) .
P

Using Eq. (1-38) and the parameterization given by Eq. (1-35) for the

t dependence of laN(t)l2 we can write:

do 2n b,t/2
It ;I =-;E Imay(o)e”l (DReaE + ImaE)
= ;Ef oToTeblt/Z(pReaE + ImuE) (1-51)
p

where in the last step we have used the optical theorem.
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Substituting the real and imaginary parts of op from Eq. (1-46) into

Eq. (1-51) one obtains

2
Or,1C5(t)

g‘: 1= - —Tl%—s‘f—t— (pcoss, + siné_JeP1t/2 | (1-52)

L

Now for an 800 MeV proton beam the value of 6, in the range of
four-momentum transfer squared, t, covered in this experiment is very

small. We will therefore write

2
do | oro1Cp(t) b t/2 )
Tl -__1378Lt (p + Gc)e 1 (1-53)

where the approximations cosé. = 1 and sin6, = §; have been used.



Combining Egqs. (1-45), (1-50), and (1~53), we obtain the elastic
cross section for small anglé proton~proton scattering in terms of p,

R, OroTs P1s bgs Yy, and Y, as:

do OToT 24(. byt bot
S = (1 + p?)(eP1t + ReP2t)
at .7
167h
97070p(t) bit/2
- e (Pt St
L
4wﬁ2

4 2m( 2 2 52
+ Go(t) + Z_(v°) + v5)sin®6 . (1-54)
(137)2g%cZ P p2

2. Analyéing Power

Here again we may use the same functional form for ImaN and Yy

defined in Eq. (1-35) and Eq. (1-44) respectively

Imoy = ImOtN(o)eblt/2
ReYN = Ylsine
Imyy = stine .

The pure nuclear term in Eq. (1-34) can therefore be written in the

form:

(T,A)y = 27;Imoy(o)eP1t/2 gind
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and by using the optical theorem, we obtain

le
(IA)y = == opgreP1t/2 sino . (1-55)

From Eq. (1-46) the real part of spimindependent electromagnetic

amplitude has the form:

2hP

= - g2 -
Rea = - 37t Gp(®) - (1-56)

The spin-orbit electromagnetic amplitude correspond to the one photon

exchange is (Bourrely 74)

Yl - m2 + 1/4t

ReYp = G%(t){[Zw +m+ t

. 4(w + m)
2 x 137w(w + m)Y |t}

+-S-u—;_1—) [3w(w + m) + t]

+ (u- 1)2
4m2(w + m)

t[20? + 3um + n? + %. t]} (1-57)

where w = 1/2 ¥8 , ¥ and m are the respective magnetic moment and mass

of the proton and Gp (t) is proton form factor defined in Eq. (1-47).



Substituting for ImaN, Imyy, and Reag in the interference term

represented by Eq. (1-34), we obtain:

4ﬂP72

b,t/2
1777 Revg + T376 ¢

(IOA)I --%% OroT © G%(t)sine (1-58)

where ReYg is given by (1-57) .
Combining Egs. (1-55) and (1-58), we obtain the expression for

(I,A) in terms of or,p, by, Y;, and Yy as:

(IOA) (IOA)I + (IOA)N
k b t/2 M‘IPYZ

2
2“ OTOT e 1 ReYE 1378Lt p(t )Sin

n

ky
! o7 €P17/2 sind . (1-59)
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CHAPTER II
THEORETICAL ASPECTS FOR PROTON-DEUTERON DATA
In this chapter a brief exposition of the theory of
hadron-deuteron scattering developed by Alberi et al. (Alberi 79) is
presented. We will discuss the essential aspects of this theory which
was used in the analysis of the p-d data obtained in this work. We
also parametrize the p—d elastic analyzing power, Ay(e), in terms of

nucleon-nucleon amplitudes.

A. The Breit Frame (Hagedorn 73)

Most of the calculation for the proton-deuteron problem is
performed in the Breit frame. Consider,  an elastic scattering event
and define the momenta before and after scattering, as shown in Fig.

(2-1).

-

k= (w, Ky P, (€, 'Fz)
m m

AL

kf(“’nk’l) P (el:sl)

Fig. (2-1): Two Body Scattering Schemes.



> >
We apply a Lorentz transformation such that K; + K, = 0.

Therefore kl and kg will have the form

(0,8) (2-1)

k)

+
k2 (w,-K) .
From energy conservation it follows that the energies of the particle

with mass m before and after the collision, 81 and €9 must be equal,

> >

61 = €y = €; hence [Pyl = [Pyl and
+
Py = (g,Py)
*
Py = (€,Pp) (2-2)
with
> >
1Pyl = 1Pyl = Ve -~ n? .
From kl - k2 =Py - P follows
> > >
kl - kz = (O,ZK) = P2 - Pl = (O,Pz - Pl) - (2-3)

+
2K is the "three-momentum transfer'.
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Equations (2-1), (2-2) and (2-3) yield the following picture.
All particles seem to be reflected on a hard wall; the particle with

mass u perpendicularly [see Fig. (2-2)].

-

-
xa R-R
|
]
i
]

Brick wall

fig. (2-2): The Breit System.

The advantage gained by working in the Briet frame is; first, the use
of a non-relativistic deuteron wave function is better justified, and
second, the proton scattering angle is smaller in the Breit frame than

in center-of-mass frame. Therefore, the Glauber theory is more valid.

B. Nucleon-Nucleon Amplitudes in Breit Frame

In the deuteron Breit frame the nucleon-nucleon amplitudes have

the following general form:

£ = 6D 445D ay . ;1 + 6§ ay oy + £§9 (ny ;1)(3j . ;2)

+efVa, - ;1)(21J . ap) + £§D (n * 31)(€:J e o) . (2-4)



Here, the Paulil matrices % and 0, refer to the projectile and target,
respectively. The unit vectors mj,dj and ny are taken along the
average projectile momenta, 1/2(;1 + ;2), the momentum transfer, ;l -
;2, and perpendicular to the scattering plane, ;l x ;2, respectively.
The superscript j 1is introduced to indicate that the amplitudes are
evaluated in different configurations. j = 0 refers to the single
scattering, J = 1 to the first scattering in the double scattering
amplitude and j = 2 to the second one. The amplitudes of fij)—--fgj)
are functions of energies and momentum transfers in the p-d scattering
process (this is because in the single scattering process the nucleon
which 1interacts with the projectile recoils with the same momentum
transfer as the whole deuteron system does) which 1s different for
J=0 and j=1,2. The Breit amplitudes can be related directly to

the nucleon-nucleon amplitudes in the center-of-mass (a, v, B, &, ¢€)

defined in Chapter I, through a Wigner rotation (Gasiorowicz 66).

C. Proton-Deuteron Scattering Formalism

The p-d matrix is, in general composed of 12 independent complex
amplitudes, as follows from time reversal and parity invariance
symmetries. A convenient decomposition of the p-d collision matrix ;
in the deuteron Breit frame (deuteron reverses its three-momentum in

the scattering) in terms of the spin-1/2 operators (proton) 80, Sx, Sy

and Gz’ the spin-1 operators (deuteron) 80, ix, Sy’ 32, and the
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quadrupole operators 6ik - 1/2(313k + 3k31) - 2/361k8° i,k = x,y,2 has

the form of (Alberi 79):

F = FOo_ + F¥o, + Fyay + Fo, ,

where

3>
o
N

FOo_ + F%3, + FO, Q.. + F° 2
o o yJy XX ‘xx nyyy »
Ax - x. x - -
F Foie + nyQxy (2-5)

=3
<
]

-~ ~ -~ y
Flo, + FJ3, + FLQu, + FY Q0

-1‘»
L]

F:Ez + F;zayz ¢
Here, x is along the momentum transfer, z is along the average of the
initial and the final momenta of the projectile and y is orthogonal to
the scattering plane [see Fig. (2-2)]. Alberi et al. (Alberi 80)
have calculated all 12 amplitudes within the wmultiple scattering
formalism based on invariant Feynman diagrams. They calculate the
proton-deuteron scattering amplitude in the deuteron Breit frame,
where the use of non-relativistic wave function for the deuteron is
best justified. These calculations are rather 1lengthy and not
transparent, and we will outline briefly their method of calculation.
In their approach, which is similar to that used in the Glauber
model, only the single (F8 amplitude) and the double scattering (FD
amplitude) terms are included. Fs and Fp, when written out in terms

of the proton-proton amplitude, f, the proton—neuteron amplitude, g,



and the deuteron wave function, w(;), have the form of

I > + + -+ >

F(0) = | a3r e 10 E/2 1) [£9Q) + g°(Q)]w(r) (2-6)
and

Fp(@ = - L @03 [ g6, [ O 18 F v () (/22 Mcar2)

+ £2(q/2)g() (/2 Jv(r). (2-7)

Go» which appears in the double scattering term, 1is the exact free
wave propagator. The amplitudes f and g depend only on the three
momentum transfer 6, (6 is momentum transfer of p-d scattering
process). The momentum dependence, q, of them is neglected compared
to that coming from the wave functions of deuteron. After
substitution for f and g from Eq. (2-4) and performing the algebra on
the Pauli matrices, the integral over T is evaluated and expressed 1in
terms of form factors. In the double scattering term the q integral,
involving a form fa?tor and the propagator is performed analytically
by parametrizing form factor as a sum of Gaussians. After some
algebra and symmetrization, tﬁe scattering matrix can be expressed in
terms of the spin-1 operators 3, 6ik' The nucleon~nucleon amplitudes

defined in (2-4), can be obtained from the nucleon-nucleon amplitudes

in the center-of-mass (a, Y, B, € and §) through a Wigner rotation.
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For p-d scattering, the density matrix is8 6 x 6. In analogy with
Eq. (1-20), the density matrix for the scattering of a polarized

proton beam on an unpolarized deuteron target has the form of:

3
p=1/6 o, +1/6 ] <ol1)> o{1)g(2) (2-8)
u=1

+ -
where Pg = 2 <o£l)>u is the beam polarization vector and, superscript
p=1
1 and 2 stands for projectile and target. As shown in Chapter I, the

differential cross section is given by

I = Te(FoFD) . (2-9)

After substitution for p in Eq. (2-9) from Eq. (2-8), one obtains:

3 >
1=1/6 (FFD +1/6 ] Py« uTr(Fo{l) of2) £7) . (2-10)
u=1
The first term on the right-hand side 1is the differential cross
section, Io’ for scattering of unpolarized proton beam on an
unpolarized deuteron, and the second term is the contribution due to

L 4 s
the initial polarization Pg. After substitution of the collision

matrix, F, one gets:

’ -~
I = I, + 2Py » nRe(Tr(FOTFY)) , (2-11)

where

I, = 1/6 Te(FIF),



and n is normal to the scattering plane. In Chapter I it was shown

that

> -
I-= Io(l + Pg nP) ,

where P 1is the analyzing power. By comparison of this formula with
(2~11), one gets the following expression for the proton—deuteron

elastic analyzing power

2Re (Tr (FOTFY) )

Tr(FTF) (2-12)

Ay(e) = P(8) =

After expressing the amplitudes Fi in terms of p—-p and p—n amplitude
in I and Ay(e), one gets a rather lengthy expression for differential
cross section, Io, and analyzing power, Ay(e). Figures (2-3) and
(2-4) display the prediction of this theory for the elastic
differential cross section and the analyzing power in p~d scattering,
using the Arndt phase shifts prediction for the nucleon-nucleon
amplitudes (Arndt 80) as input (solid lines). The dot~dashed curves
were calculated in the single scattering approximation. The dashed
curves were calculated without considering contribution of the

double-spin—-flip nucleon—nucleon amplitudes.
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- P+d ELASTIC SCATTERING T
T =800 MeV

— FULL CALCULATION
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Fig. (2-3): Alberi et al. prediction for p-d elastic differential
cross section using the Arndt phase shifts prediction for
nucleon-nucleon amplitudes at 800 MeV as input.
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Tp*800 MeV
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Fig. (2-4): Alberi et al. prediction for i;-d elastic analyzing power
using ~ the Arndt phase shifts prediction for
nucleon-nucleon amplitudes-at 800 MeV as input.
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It is seen that, 1in contrast to the analyzing power where the double
scattering term plays at most a ~5% role, at |t| = 0.1 (GeV/c)z, the
differential cross section 1is more strongly effected by the double
scattering. The reason for this is that the analyzing power, Ay(e),
is given as a ratio of two expressions (2~12), and the double
scattering process will contribute approximately equally to the
denominator and numerator (Bleszynski 80). Also, at small angles the
d-wave part of the deuteron wave function gives a rather small
contribution. Thus the analyzing power in p~d elastic scattering at
small angles appears to be a very simple tool for extracting the
spin-orbit part of the p-n amplitude.

All of this leads to the following simple result for the
analyzing power, Ay(e) at small four-momentum transfer |t] £ 0.1

(GeV/c)z:

Al8) = Re[(G + B UD]/[1&@12 + 2712 + B2 + T2 + 1512]

(2-13)



where

Ql
]

3 (app + o)

2 PP pn

B~ %-(s +8.), (2-14)

PP pn

(epp + epn) ,

N =

PP pn

are the 1isospin averaged nucleon-nucleon amplitudes defined in
Chapter 1I. A further approximation can be made by neglecting

contribution from the double~spin flip amplitudes [see Fig. (2-4)]

Re[(@D*'UN)] (2-15)
1512 + 21712

A _(6)
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We may introduce the same parameterization used in Chapter-1I
[Eq. (1-35) and Eq. (1-44)] for spin-independent and spin-orbit

nucleon-nucleon amplitudes

app = app(0ep/2

Apn = o:pn(o)ebnt/2 R (2f16)
Ypp = (Y1p + 1¥p,)sind ,

Ypn = (Y1 + 1Yp,)siné ,

where 6 is center-of-mass scattering angle, and, -t, is the four
momentum transfer. We define ppp (ppn) as the ratio of the real part
of the spin-independent pp(pn) amplitude to6 imaginary part of the
spin-independent pp(pn) amplitude for t = O. By making the
traditional éssumption that the slopes of the real and imaginary parts
of the spin-independent nuclear amplitudes are the same and using the

optical theorem (Ima(0) = k/47 Opor)s Eq- (2-16) can be written in the

form of:
ko
eapp 1Imapp in (i Ppp)e P ’
and (2-17)
ko
. _on b t/2
Reapn + 1Imapn = o (1 + ppn)e n s



where k 1is the center-of-mass wave number for nucleon-nucleon

scattering, and 0_ and o, are total reaction cross section for p-p and

P
p-n scattering, respectively at 800 MeV.

After substitution for « in Eq. (2-15) one

pp* %pn» Ypp 274 Ypn
obtains the expression for the elastic proton-deuteron analyzing power

in terms of ppp, Ppns ps Ons bp, b, Yips Y2ps Yine and Yo,

B)ePpt/2 + o (A - o B)ePnt/2]s1n0

k[o (A-p
L SL%p A"Ppp _
Ay(0) i, (2-18)
where
_ 2 t/2 2
1, = 1312 + 2712 = X (0P + opePnt/2)
64n2
b,t/2 bat/2)? 2 4 B2)s1n2o
+ (pppope pt/e + o p0pen )7] + 2(A% + B®)sin
and
1
A= 7 (Ylp + Y1)
l -
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CHAPTER III
EXPERIMENTAL SETUP

The experiment reported in this dissertation was performed on the
External Proton Beam (EPB) facility at the Clinton P. Anderson Meson
Physics Facility (LAMPF).

A beam of protons with an energy of 800 MeV traversed a volume of
gas in the scattering chamber and the scattered recoil particles
traversed a system of apertures before entering the detector

telescope.

A. The Proton Beam

The LAMPF facility 1is an 800 MeV linear proton accelerator
capable of simultaneously accelerating protons (H+) and negative
hydrogen atoms (H ) and supplying them to éeveral experimental areas.
A H polarized beam is also available. The macroscopic duty factor is
6%. This consists of a 500 us macropulse at 120 cycles per second.
Each macropulse has a microstructure consisting of 0.25 ns wide bursts
every - 5 nmns. A chopped RF beam can run at 40 ns or 80 ns.
"Experimental Area B", which contains several secondary beam 1lines,
including EPB, is shown in Fig. (3-1). Line B brings an H  beam from
the LAMPF switchyard to EPB. Upstream from our scattering chamber the
H~ beam was changed to an ut (proton) beam by passing it through a
thin foil. This was necessary since otherwise the H- beam would have
dissociated into a proton and two ~400 keV electrons after entrance
window of the scattering chamber, and the 400 keV electrons could

cause unwanted noise in our detectors. The EPB has three quadrapole
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magnets which may bé used to adjust the spot size of the beam at
various locations in the line. Usually EPB provides a 3-mm diameter
pencil beam with low intensity < 10 nA. The energy of the LAMPF
accelerator was estimated to be 796 * 2 MeV. This value was obtained
from the magnetic field setting of the LAMPF High Resolution
Spectrometer (HRS) for elastically scattered protons. The energy
obtained from the HRS was found to agree to better than 1 MeV with a
simultaneous determination made by 1laser dissociation of H ions
(Clark 79).

For the first part of this experiment a beam of unpolarized
protons with an intensity of about 2 nA was used; and for the second
part (time-of-flight) a chopped bursts 40 ns apart, unpolarized proton
beam with an intensity of about 10 nA was used. In the third and
fourth parts of this experiment a beam of polarized protons with an

intensity of about 2 nA was used.

B. Scattering Chamber

»

A view of the scattering chamber is shown in Fig. (3-2). It is
a box with dimensions 63 cm x 33 ecm x 25 cm (width x length x height).
The entrance and exit windows are 5 mil thick kapton. Two sets of
solid state detector telescopes were mounted on movable arms.
Directly in front of each detector telescope there is a circular slit
of 6.3-mm thick brass with a radius of 3.96 mm. This radius is
commensurate with the active areas of the solid state detectors placed
behind it and the recoil particle trajectories through the collimation

system. In the front, 5.08 cm from the beam line, there is an
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adjustable collimation system consisting of vertical brass slits 19 mm
thick with a narrow 1 mm thick step to minimize slit scattering.
These slits were fixed to allow recoil particles from the interaction
region with scattering angles between ©_. and © through the

min max
circular back slit. The upstream front slit was adjusted so that emin
was somewhat smaller than the angle at which the recoil particles from
elastic scattering have sufficient energy to penetrate through the AE
and E detectors of the detector telescope. The -downstream front slit

was adjusted so that ema was somewhat larger than the angle at which

X
the recoil particles from elastic scattering have sufficient energy to
penetrate through the AE detector and into the E detector. Note that
the recoil energy decreases with increasing 9. In our discussion 60
is defined as the angle between the center line of each telescope arm
and the beam direction, and H is the perpendicular distance from the
beam direction to a middle point in circular slit. Table (3-1)
summarizes values of 60 and H for the four different parts of this
experiment.

As is shown in Fig. (3-2) four pieces of brass were placed in
the scattering chamber to provide shielding for the solid state
detectors from particles which were produced by interactions between
the beam and the entrance and exit windows. Upstream of the chamber
lead bricks of sufficient thickness to stop 800 MeV protons were

placed around the beam pipe; and downstream some lead bricks were

placed around the beam pipe.
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In the second part of this experiment (time-of-flight) a system
consisting of a thin brass tube which covered the path between the
vertical front collimators and the circular back collimator along with
two permanent magnets positioned at the left and right side of tube
was added to the setup in order to reduce the background due to the

fast electrons produced by beam gas target interactions.

Setup 98 H cm
Time-of-flight 87.8 20.36
AE, E unpolarized 83.5 16.27
AE, E polarized 83.5 20.06

E, E polarized 79.00 19.82

Table (3-1) - Values of 90 and H for different
parts of experiment.

C.A Solid State Detectors

A series of Ortec surface barrier detectors was used in this
experiment. Under a special order these detectors were prepared by

manufacturer for use in hydrogen atmospheres.
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Tables (3-2) to (3-4) summarize the detector specifications in

arm for the different parts of the experiment.

Detector Serial No. Sensitive Depth um
EL 19-405E 49.9

VETOL 17-503B 300

ER 19-404A 95.8

VETOR 17-503A 300

Table (3-2) - Detector specifications in each arm
for time-of-flight setup.

Detector Serial No. Sensitive Depth um
AEL 19-405E 49.9

EL 18-246D 1400

VETOL 17-503B 300

sE, 19-404A 95.8

ER 18-246A 1400

VETOR 17-503A 300

Table (3-3) - Detector specifications in each arm
for AE,E setup.

each



Detector Serial No. Sensitive Depth um

8E, 18-246A 1400
Eg 18-246D 1400
VETO, 17-503B 300

Table (3-4) - Detector specifications for E,E setup.

D. Gas Handling System

With the advise of Mr. J. Novak of the LAMPF Staff, a gas
handling system was designed and built for this experiment which
satisfied the stringent LAMPF safety requirements for hydrogen gas
targets. Figure (3-3) shows this system. The vacuum integrity of the
system permits pressures of 1less than 1072 torr. Two Wallace and
Tiernan pressure gauges with range of 0-800 mm Hg and 0-110 mm Hg were
used in this system. They were calibrated against an MKS Baratron

pressure transducer which had a system error of *0.08%.
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E. Electronics

Each of the Silicon detectors was biased (AE,E positive and VETO
negative) with sufficient voltage to extend the depletion layer to the
full thickness of the device. Thus the entire volume of the detector
was sensitive to charged particles, providing an optimum detection
efficiency. The signal from the detector was a current pulse with a
total charge proportional to the energy deposited by the particle
which had crossed the detector. Figure (3-4) shows a block diagram of
electronics. A solid state preamplifier (Ortec 142) was located near
the detector to minimize the capacitance of the connecting cable. The
analog signals (energy and timing) from AE,E and VETO detector
preamplifiers were fed directly to the counting house. The
preamplifier energy signals corresponding to AE and E detectors were
fed into an amplifying stage (Canberra 1413) and used for pulse-height
measurements in a CAMAC ADC. The timing signal of each preamplifier
(E, AE, VETO) was passed on for appropriate amplification (LRS 612).
Amplifier outputs were passed through constant fraction discriminators
(Ortec 934) and the resulting logic pulses for each arm were then fed
into a coincidence unit (LRS 365AL) where the coincidence AEL . EL .
VETB; and AER * Ep VETEE (in the case of time-of-flight setup E,
VETGZ' and Ep VEEBE) were formed defining INTERRUPT signals for the
right and left arm. As is shown in Fig. (4-3) when the INTERRUPT
signal corresponding to either arm was in coincidence with the RUN
signal provided by the computer (or in the case of the time-of-flight
setup coincidence with the BEAM GATE signal) and in anti-coincidence

with a computer busy signal, a STROBE signal was generated for that
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arm which was input to CAMAC register (LRS 2341). 1Left and right
STROBE signals were fed into an inclusive OR gate and the output was
used as a gate for the register and trigger for the computer. Also,
after some pulse width and delay adjustment, the left and right STROBE
signals were formed into gate signals for the ADC. The computer
trigger allows the detector pulse height and time-of-flight
information to be read into the computer for further processing. The
CAMAC scalers, and various detectors and monitors were gated in
several different ways. The following scaler gate/inhibit signals

were generated:

RUN * BEAM *# COMPUTER BUSY (for normal and reverse beam spin)

RUN * BEAM (for normal and reverse beam spin)

RUN (for normal and reverse beam spin).
These were made using the LAMPF Gate Generator which has the following
facilities:

1. RUN and RUN flip-flop with TTL output.

2. TTL BEAM GATE output.

3. TTL-NIM, NIM~TTL, TTL-TTL converters.

4. TTL coincidences.

The ratio of the INTERRUPT (gated by RUN * BEAM) to STROBE (gated
by RUN * BEAM) is the computer live time, a measure of the event

taking rate capabilities of the system.
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F. Data Acquisition System

The CAMAC modules are linked to a PDP-11/45 computer through an
MBD~micro programmed branch driver. The MBD controls the CAMAC branch
and performs data transfer to the PDPll memory by the LAMPF data
acquisition program "Q". When a STROBE signal is sent to the MBD,
approximately 40 data words associated with an event are read from the
CAMAC into a 800 word software buffer. When this buffer is filled it
is written out onto the 7-track, 800 bpi (byte per inch) magnetic type
drive. When the computer is not busy with these transfers, some of
the events are processed by a program called "the event processer" in
conjunction with a "TEST FILE". For example, from the raw detector
pulse height and time of flight data the "event processor" calculated
the actual energy losses in MeV for the individual AE and E detectors,

the total energy 4E + E in MeV, the particle mass for a given AE ¢ E

VETO coincidence, and the actual time of flight in ns from the
interaction volume to the detector.

The "TEST FILE" performs a set of logical tests on each event.
These tests are of two types: 'Micro-Tests" and 'Macro-Tests."
"Micro-Tests" are applied directly to raw or computed quantities.
They can be cuts, boxes, or bit tests. ‘'"Macro-Tests" are 1logical
"AND" or "OR" combinations of "Micro-Tests" or previous '"Macro-Tests".

Raw or computed quantities from the processor may be displayed on
line by a display package, either as a histogram or as a dot plot on

the graphic display terminals.



G. EPB Polarimeter

In order to obtain the analyzing power, Ay, from the
experimentally observed asymmetry, €, it is necessary to know the beam

polarization.

E = APB . (3“1)

The EPB polarimeter is a secondary standard of known analyzing power.
A typical experiment measures the asymmetry for the reaction of
interest relative to the asymmetry of the polarimeter. The
polarimeter setup is shown in Fig. (3-5). The reaction chosen for
the EPB polarimeter 1is pp + pp elastic scattering. Primary and
conjugate protons in coincidence elastically scattered from the
hydrogen in a CHZ target are detected near the laboratory angles of
17° and 66.40, respectively, in each of four directions, left, right,
up, and down, by four pairs of scintillation detectors. The
left-right detectors measure the vertical (y) component of beam
polarization, while the wup and down detectors monitor the
horizontal-transverse (x)component. Coincident events detected 1in
this way are not only from the reaction pp + pp but also from C(p,2p)
(quasi-free scattering) (McNaughton 80). Taking into consideration
these quasi elastic coincidences the EPB polarimeter gives a
calibrated total analyzing power Ay = 0,481 % 0.002 at 796 MeV
(McNaughton 80). For accurate work with this polarimeter random
coincidences are measured in each direction by 20 ns delayed

coincidences. When the true real coincidences are calculated from
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(3-5):

EPB Polarimeter Setup



subtraction of these random.coincidences the EPB polarimeter readings
are reproductble to better than 0.5%.

The electronics setup for the polarimeter consists of high
voltage power supplies for the phototubes, discriminators for the
anode signals, and fast coincidence units. Each coincidence (L, R, U,
D) is scaled in two CAMAC scalers, one gated for "normal" beam spin
(N), the other for "reverse" (R).

Using formula (3-1) and the known analyzing power for the
polarimeter, Ay, the beam polarization, Pgp may be determined by

measuring the experimental left-right asymmetry € which is defined as

=
!
=

(3-2)

=
+
s

where L 1s the geometrical mean of events that scatter left (the
coincidence of 17° left and 66.4° right 1s known by convention as
"left") when the beam polarization is up, L4, and right when the beam
polarization is down, R+, L = VYL+R+ ; similarly R = VRtLv. It 1s well
known that use of this technique cancels instrumental asymmetries to a

high order (Ohlsen 73).

H. EPB Faraday Cup (Barrett 75)

Figure (3-6) shows the general design of the EPB Faraday Cup.
The EPB beam which has low emittance (<lmr-cm) and energy spread (*3.5
MeV) is virtually free of contamination from other charged particles.
This beam enters the main body of the Faraday Cup and is stopped by 45

cm of lead (the range of 800 MeV protons in 1lead 1is 39 ecm). The
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re-entrant tube has an outside diameter of 35 em, an inside diameter
25 cm, and a length of 75 cm. The total length of the Cup is 120 cm
including the beam stop.

The probability for a 800 MeV proton stopping without undergoing
an nuclear inelastic collision 1is only 11% (Janni 66) so that
secondary protons must be considered, particularly those produced by
(n,p) reactions near the surface of the lead and then 1lost from the
Cup. A 1.25 cm thick graphite shell surrounds the lead to reduce this
effect by virtue of the much smaller 12C(n,p) cross section.

The 75 cm long re-entrant cavity was designed to capture
secondary emission electrons produced when the beam strikes the inner
surface of the lead cup. At 800 MeV the secondary emission efficiency
is about 2.5%; thus, since the cavity is 85% enclosed, at most 0.4% of
the proton beam current could be lost through secondary electron
emission. In order to reduce this effect still further a small magnet
produces a field of ~15 Gauss across the entrance port. Overall, the
total electron loss is estimated to be less than 0.1%.

A 50 cm diameter, 0.32 thick stainless steel electrostatic shield
surrounds the Cup, as shown in Fig. (3-6), with 1lucite standoff
insulators isolating the Cup from the shield. The Cup and the shield
have separate electrical output leads through the other vacuum vessel.
The entire assembly was connected directly to the accelerator vacuum
system, maintained at a pressure of the order of 10°% torr. This
vacuum level reduced the possibility of the positive ions being
produced by radiation in the gas surrounding the Faraday Cup to

essentially zero.
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The charge collected by the Faraday Cup was fed through ~40 m
long, coaxial cables to an Ortec 439 charge digitizer. Charge leakage
due to insufficient 1impedance to ground may occur in either the
Faraday Cup, the cables, or the assoclated electronics. Leakage
current has been found to be less than 1 PA Dark current can also be
induced through pickup from the RF fields associated with the
accelerator. The ground shield and an RF filter at the input to the
digitizer kept dark currents generally below 1 PA level

The EPB Faraday Cup has been calibrated and tested by different
methods. These results indicate that the absolute calibration of the

Faraday Cup has a maximum uncertainty of less than *1Z.
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CHAPTER 1V
EXPERIMENTAL METHOD
In this chapter we will discuss some theoretical consideratins

underlying the experimental techniques used in this experiment.

A. Reaction Considerations

For small angle elastic scattering in a process like

P+X-+P+X . v (4-1)

X has a laboratory angle near 90°; more exactly, Oy approaches 90° as
9p approaches zero degrees. If X has no excited states which are
bound against particle emission, then 1in the inelastic scattering
processes like P + X + P + X*, X* will decay to X* + A + B soon after
its formation. Thus 1in inelastic scattering, in order to have X in
final state we must produce another particle, y; P+ X+ P+ Y + X.
However, from the kinematic relations for this type of reaction, there
is a upper limit for the scattering angle, 6‘, for a particle of type
X: e;ax <90°. Figures (4-1) and (4-2) make this discussion clear for

the p+ p and the p + 4 reactions respectively. Recoil particles with

a scattering angle, 6, 8.

max <6<90° , must come from an elastic event.

The maximum angles, e;ax for the recoil particles with 1inelastic
particle production 1in the p-p and the p-d reactions at 800 MeV are
53.6° and 60.5° respectively. As was discussed in Chapter III, the

interaction region in the scattering chamber is defined by a two slit

collimation system. By adjusting the vertical front slits we can
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define an angular acceptance from emin to 6., for recoil particle

X

trajectories from the interaction region through the circular back

slit [see Fig. (3-2)]. As discussed in Chapter I1I, the values of

) 6 and ema were chosen to match the characteristics of the

min? o x

particular particle telescope being used in a given part of the

experiment.

B. Geometrical Considerations

With the experimental setup explained in Chapter III we are able
to measure the yield per kinetic energy interval, dY/dT , for the
recoil particles which stop 1in the solid state detector telescope.
For the given geometry in this experiment Whitten (Whitten 75) has
shown that the elastic differential cross section in the laboratory

system, do/d? (6 ) for the process P + X + P + X is:

dy/dT, )| dT,/d6
o (8 . Lavran)anyas,) (4-2)
nNsianA(ex)

where T, is the laboratory energy of the recoil particle. N is number
of beam particles, and n 1is the number of target nucleil per unit
volume in the target gas. The term A(ex) is a geometrical factor
(dimension 1length) which depends on the geometrical specifications of

the experiment.
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For our geometry Whitten (Whitten 75) has shown that to very good

accuracy

cos(Bx - 60)

ae) = 2 | ] (4-3)

sinex

where H)>> dimensions of beam and H>> dimensions of back collimator.
Here A is the area of the circular back slit, and H and 60 are defined

in Chapter III [see Fig. (3-2)].

C. Kinematic Calculations

Equation (4-2) expresses the differential cross section for
elastic scattering in terms of the 1laboratory angle of the recoil
particle. In this section, following the discussion by Whitten
(Whitten-75), we will transform Eq. (4-2) to express the differential
cross section in terms of the four momentum transfer squared —-t; that
is;

do

-E(t) .

We may write

2 _ -
-t = q% = MTy (4-4)
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do(t) _ do(ex) dsi o

dt dﬂiab dt

Using Eq. (4-2) in (4-5) gives

dt nNsinBlabA(elab) dglab dt

where all quantities correspond to the recoil particle. But:

( Tx ) (dﬂlab) C omeind Txtap
dBrap” ~ dE tab

dt

Using (4-4) we obtain:

dT as .
(35)1ab (FF)1ab = G sintiap

which substitution of (4-7) into (4-6) gives

do(t) _ (dY m 1
dt (de) ) [nNA I

X1ab

(4-=5)

(4-6)

(4=7)

(4-8)



The value of le b for the recoil particle can be obtained from the
a .

kinetic energy of the recoil particle, Ty» using the kinematic

relation:

1/2
(E, + P)Ty

cos® (4-9)

X1ab 172
lab p (1, + 21)!/

where E, and P, are the initial total energy and momentum of the
incident projectile (in our case a proton) in the laboratory frame,

and M is the rest mass for the recoil particle.

D. Method of Particle Identification

1. AE,E Setup

For the AE-E-VETO detector telescope which 1looked at events

corresponding to AE ¢ E ¢ VETO coincidences, we measured the energy

losses in the AE and E detectors for particle stopping in the E
detector. Figure (4-3) shows a two-dimensional raw dot plot of energy
loss of particle in the passing detector (AE) vs. E;r = E + AE where E
is the energy deposited in E detector. Thus we have an energy
spectrum for each particle type (proton or deuteron) within some
energy range. This method of particle identification has some
problems, since it uses a very 1large two-dimensional space in the

co-ordinates AE and ET’
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In order to be able to derive a particle identification which is
independent of the kinetic energy of the particle, we use the fact
that the range of a charged particle in the matter over a wide energy

region has a relationship of the form:

R = aEb +c (4-10)

where a, b, and ¢ are constants.

The exponent b is a constant and for a very large dynamic range
in both energy and particle type it lies between the limits 1.65 and
1.74 (Skyrme 67). The constant a depends on the mass and charge of
the particle and it is approximately inversely proportional to MZz.
Now the passing detector (AE) has a thickness T, and this thickness is
equal to the difference in the ranges of particles with energies ET

and E. This is summarized by the equation

T = R(Ey) - R(E) = a(Ep)® - a(E)P . (4-11)

When this relation is rearranged and the approximate dependence of a

on MzZ 1s written into it, a particle identification function in terms

of mass M and atomic number Z is obtained:

™z « (Ep)P - (B)P
or

Mz2 « (E + AE)P - (E)P . (4-12)



This particle identification function was wused with the on-line
computer. Figure (4-4) shows a two dimensional raw dot plot of mass M
vs. total energy, ET’ for Z = 1 particles in the detector telescope
corresponding to the interaction of 800 MeV protons with the deuterium
gas. Figure (4-5) shows a typical mass spectrum [projection of Fig.
(4-4) onto the M axis] with peaks corresponding to proton and
deuteron. Software gates could be put on the mass region of interest
(proton or deuteron) and we could then 1look at the total energy

spectrum, ET = AE + E, constrained by this mass cut.
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of 800 MeV protons with the deuterium gas in
AE,E setup.
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2. Time-of-Flight Setup

In this arrangement an E-VETO detector telescope was used
(actually the AE detectors from the previous AE-E telesccre vere used
as the E detector here) and we looked at events which stopped in the E
detector (E ¢ VETO coincidences). The energy of the stopped particle
and its time of flight, assuming a trajectory from the interaction
region to the E detector were measured. Now from the measurement of
the energy in the E detector and from the time of flight measurement,
a particle mass identification can be determined. It i1s clear that
the time of flight, t, 1is proportional to v'l, where v is the particle
velocity. For non-relativistic velocities which we are dealing with,

2 is independent of energy and dependent only

E £ 4 MeV, the product Et
on the mass of the particle, M, (E = 1/2 Mvz) and thus can be used as
a particle 1identification function. The pulse 1in the E detector
provided a start signal for the time of flight measurement while the
stop signal was provided by a standard LAMPF unit which gave an output
signal which was synchronized with the 40 ns chopped proton beam.
Figure (4-6) shows a raw dotlplot of time of flight vs. E. The line
in this dot plot corresponds to protons. Figure (4-7) shows a mass,

M, vs. energy, E, dot plot, while Fig. (4-8) shows a projection of

Fig. (4-7) onto the mass M axis.
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protons with the hydrogen gas in time-of-flight setup.
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CHAPTER V
DATA REDUCTION
In this chapter we will discuss the analysis of the raw data to
obtain differential cross sections and analyzing powers for p-p and
p-d elastic scattering at 800 MeV. After discussing the method of

data reduction, we will present the resultant data.

A. Detector Calibration

The energy calibration of each so0lid state detector and its
respective ADC was accomplished by the use of an alpha source. The

alpha source was nominally 242Cm,

but it was found to contain alpha’s
from the decay of 2420m, 238Pu, and 250Cf. The relevant alpha decay
schemes are presented in Fig. (5-1) while a typical alpha spectrum is
presented in Fig. (5-2). As is shown in Fig. (5-2) the strong peaks
in the alpha spectra are the 6113 and 5499 keV lines from the alpha
decay of 2820 ang 238p, respectively; and these two peaks were used
to determine an energy scale for each ADC. A linear relation between
ADC channel number and energy deposited 1in the detector, ED, was
assumed: E; = a ¢ C+ b; and the linearity of the ADC’s was checked

with the use of a calibrated pulser. A small correction to the alpha

energy deposited in the sensitive region of the detector due to a thin

dead layer, D, (20 ug/cm2 Ni) on the front of the detector was made:

dt 'Ey - (5-1)
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This correction was 8 keV. Calibrations of each detector-ADC system
were taken at various times during the total running period of this
experiment. Comparisons of these calibratfion data would indicate that
the AT bins are determined to an accuracy of 20.5Z. Also, for the
detectors used in the time of flight measurement the absolute energy
loss in the detector is determined to %25 keV at 1 MeV and %15 keV at

3 MeV.
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B. Replay

The first step in the data processing was to replay the data
tapes 1imposing criteria for good events. Gates were set around the
recoil particle of interest in the mass spectra corresponding to each
arm. A typical mass spectra with gate on the proton peak is shown in
(4-5). For the AE,E setup a good event for each arm is an event which
satisfies the mass gate and electronic INTERRUPT corresponding to that
arm. For the time of flight data a good event must also satisfy a box
positioned around recoil protons in a two dimensional raw dot-plog of
time of flight vs. E detector pulse height [Fig. (4-6)]. Figure
(4-8) shows a mass spectrum for the time of flight data.

The energy resolution of the surface barrier detectors was about
50 keV, and we therefore binned the energy spectra in 100-keV bins.
The recoil particle energy spectra resulting from replay were used for
the extraction of cross sections and analyzing powers. Figures (5-3)
and (5-4) show a typical recoil proton energy spectra and recoil
deuteron energy spectra, respectively in the AE,E detector setup
obtained from one data run. Figure (5-5) is a typical recoil proton

energy spectra for the time of flight setup.
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Fig. (5-3): A typical energy spectrum of recoil protons for
interaction of 800 MeV protons with hydrogen gas in AE,E
setup.
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Fig. (5-4): A typical energy spectrum of recoil deuterons for
interaction of 800 MeV protons with deuterium gas in AE,E
setup.
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C. Background

The accurate determination of the background is very important in
this experiment. A background event 1is detined as an event whose
characteristics (coincidence requirement, particle identification, and
total energy signals) 1in the detector electronics system mimics the
characteristics of the particle type of interest. One source of these
background events could be reactions of the proton beam and its
associated halo with the scattering chamber windows, walls, and any
other material except the gas target. There could be two types of
background events which are due to proton beam-target gas interactions
outside of the interaction volume defined by the cross sectional area
of the beam and the two slit collimation system. An 1interaction
outside this volume can produce a high energy particle of the recoil
type which passes through the collimator slit material and into the
detector telescope or there can be some beam halo in the region
between the front collimator and the detector telescope which scatters
particles directly into the detector telescope. The first type of
background which is not associated with target gas was measured by
keeping all conditions the same as in the associated data run except
that the scattering chamber was evacuated. This was called a target
empty background run. The sum of all the background events produced
by the interaction of the beam with the gas and with all other
material was measured by keeping gas pressure 1in the scattering
chamber and all other conditions the same as in the data run except
that the movable slits of the front collimation were completely

closed. Here, closing the slit only removed the recoil particles
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produced in the interaction volume. This was called a slit closed
background run. 1In the case of p-p elastic scattering measuremeunts
(hydrogen gas target) a comparison of these two kinds of backgrounds
with each other indicate that there i1is a contribution to the
background from events associated with interactions in the hydrogen
gas. This conclusion is based on the fact that the target empty
background 1is consistently smaller (3 to 20%) than the slit closed
target full background. For p-d elastic scattering measurements
(deuterium gas target) the background runs are the same to within the
statistical uncertainty of the data. As a result of above comparison
for the AE-E setup it was decided to use the slit closed background
runs for the p-p data and target empty background runs for the p-d
data. For data taken with the time of flight setup only the target
empty background was measured and therefore these data were used in
the analyses. Comparisons of the background runs with the data runs
showed that in the case of the p-d data background events were a small
percentage of good events (less than 3%) and in the case of the p-p

data between 10% and 15%.

D. Extrapolation Back to the Center of Interaction

The measured energy spectra were extrapolated back to the
interaction region in a series of steps. This extrapolation takes
into account the energy losses in the dead 1layers of each detector
where relevant and in path 1length of gas between the interaction

region and the detector telescope.



The stopping power function for each material that the recoil particle
passed through in going from the interaction volume to the active

region of the detectors is represented by a8 function:

%‘% = AEB (Mev/g/en?) . (5-2)

The parameters A and B were determined for each material by fitting
Eq. (5-2) to the stopping power data of Williamson (Williamson 66).
For the AE - E setup the energy of the particle Ei' incident on the AE
detector 1s given in terms of the total energy, Ed, deposited in the

detector telescope (both AE and E) by the formula: (APPENDIX C)

Eq = Eq + DjAEgE + A (D, + D3)[ER*] - ¢ a(B + 1)]7B/(B+D) (5-3)

where D;, Dj, and D3 are front and back dead layer of AE detector and
front dead layer of E detector in g/cm2 respectively, t, is the
thickness of AE detector in g/cmz, and A and B are the parameters in
Eq. (5-2) for the energy loss of the recoil particle of interest in
the dead layer material.

The recoil particle energy at the interaction region E, was
calculated by adding to E;, the energy lost by recoil particle in

passing through the target gas. (APPENDIX C)

(M + E,)2E, j1/2) 1/ (B+D)

3 (5-4)
2P °(1 + E;/2M)

E= {EB* 1+ pnAGB+ 1)/[1-
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where p is density of gas target in g/cmz, H is shown in Fig. (3-2);
Eo and P, are the total energy and momentum of incident proton béam in
the laboratory frame; A and B are the constants of Eq. (5-2) for the
recoil particle of interest in the target gas; and M is the rest mass
for the recoil particle.

Using Eqs. (5-3) and (5-4) the energles corresponding to the
lower and upper limit of each energy bin for the energy deposited in
the detector telescope were extrapolated back to the center of
interaction. Tables (C~1), (C-2) and (C-3) show the energy loss
correction for a p-p run with the AE-E setup and a target of 500 mm Hg
hydrogen gas, for a p-p run with the time of flight setup and a target
of 40 mm Hg hydrogen gas and for a p-d run with the AE-E setup and a

target of 300 mm Hg deuterium gas, respectively.

E. Energy Binning in the Center of Interaction

Since the width of an energy bin at‘the center of interaction is
changing from channel to channel; and for each particular channel it
changes from run to run and from arm to arm, it was necessary to put
the data into standard bins, in order to be able to sum up Cross
section and analyzing power data corresponding to a series of runms.
The standard bin size was chosen to have a width of 100 keV, this
corresponds to a width of 1.88 x 1074 (GeV/c)2 in four-momentum
transfer squared, -t. The procedure for putting the data in standard

bins is now described.



Suppose the lower and upper limits of a bin in the detector
energy scale (Edi’ Ed; ;1) extrapolate back to E’ and E", respectively
at the center of interaction. If E’ and E" fall into standard bins
with lower limits Ei+1 and Ei+2 respectively, then the yield of

particles in the standard bin at the interaction region with the lower

limit Ei+2 is:

E" - E
Yo = i+2 Eiey = BV
1 Yd; + g™ Uit

E _E
where Ydj; and Ydj4] are the yields of particle corresponding to the
channel with lower limits Ed; and Edj4;, respectively in the detector

energy scale. Figure (5-6) illustrates this procedure graphically.

l Yd, I Ydi,2 I Ydi,s |
DETECTOR _ L \ -
Bd "~ Ediei~_ Edie~_ Ediss
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ N
~ ~o ~
CENTER OF | R | ] | N |
INTERACTION | L L L
E Ew E Ewa E Eus E° Eug
Eie2 ) E') €

Eies) En) Eiv2

Fig. (5-6): Graphical illustration of procedure used for energy
binning in center of interaction.
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If E" and E'"™ fall within a standard bin with lower limit Ei+2 in the
center of interaction, then the yield of particle in this standard bin

is:

_ E" ‘_ Ei+2 Ei+3 - EIII
i+2 — “ET = E7 i

F. Experimental Uncertainties

The breakdown of instrumental uncertainties can be made into four
separate categories: the error associated with the energy calibration
of the detectors, with the absolute normalization of the Faraday Cup,
with the measurement of the number of the nuclei per volume, and with
the measurement of the geometrical factor defined in Chapter IV.

We estimate the AT bins (energy bins) are determined to an
accuracy of *0.5%, this has to do with how well we measure coefficient
a inE =a * C+ b. Reproducibility of alpha data indicates that we
can get to *0.5%. From this, the uncertainty in dY/dT is about 0.6%,
where the uncertainty in energy extrapolation is included.

The uncertainty in the measurement of the temperature and the
pressure of the target gas is about 1%. Thus, the uncertainty in the
number of target nuclei per volume is 71.5.

As was mentioned in Chépter ITI, the uncertainty in the Faraday
Cup measurement is about 17%.

The wuncertainty in the measurement of a, the area of the back
collimator and H, the perpendicular distance from the beam direction
to a middle point in circular collimator is 1%Z. Thus the error in the

measurement of A, the geometrical factor is about %1.5.



Overall, including all errors mentioned, we estimate that the
instrumental uncertainty in our measurements is about 37%. These error
bars given in all data tabulations are statistical, but the

uncertainty due to the background substraction is included.

G. Presentation

Figures (5-7) and (5-8) present the differential cross sections,
do/dt, and analyzing powers, Ay(e), respectively, for elastic
proton-proton scattering at 800 MeV obtained in this work. Figures
(5-9) and (5-10) present the differential cross sections and analyzing
powers, respectively, for elastic proton-deuteron scattering at 800

MeV obtained in this work.
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Fig. (5-7): The differential cross section for p-p elastic scattering

at 800 MeV.
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Fig. (5-8): The analyzing power for p-p elastic scattering at |

800 Mev.

99



00T

P+d ELASTIC SCATTERING
Tp=800 MeVv

_— .
) e
o 100 ., -
Ea | .
\9 '-..
b-t— 3 .'n' 7
oo ",
] ."
ll . l
b ' ' e
' 1 [ 1 o | [
. %.O 002 004 006 008 0.10 0.2
2
-t [(Gev/c) ]

Fig. (5-9): The differential cross section for p-d elastic scattering

at 800 Mev.



10T

o8

P+d ELASTIC SCATTERING
— T =800 MeV =
06 -
i | }
_ iyl [ I i
sl
1z
1§
L i! -
it
02 -
00 | 1 1 1 |
00 002 004 006 008 0.0 0] 74
-t [(Gev/e)']
Fig. (5-10): The analyzing power for B—d elastic scattering at

800 MeV.



CHAPTER VI
THEORETICAL ANALYSES FOR PROTON-PROTON DATA
In this chapter we will describe the theoretical analyses for the
data obtained from our proton-proton elastic scattering experiments.
We will discuss the fitting procedures used for the proton—-proton
elastic differential cross section, du/dt, and analyzing power, Ay(e),
data and compare the results obtained from these fitting procedures

with theoretical predictions and other experimental results.

A. Functional Form of Differential Cross Section and Analyzing Power

In Chapter I formulae were developed for the differential cross
section and analyzing power data in the frame work of the classical
parameterization model. In order to increase sensitivity of the fit,
we reduced the number of variable parameters by fixing the total cross
section, Oror» and slope parameters, by and by. We introduced the
value of Opor = 47.3 % 0.6 ﬁb, taken from the compilation of
proton—-proton experimental data (Benary 70), which agrees well with
the Arndt prediction (Arndt 80) through the optical theorem. There
are many different inconsistent predictions and measurements for the
slope parameters. Figure (6-1) shows a comparison of the
non-spin-flip nuclear slope parameter, bl’ as a function of momentum
in laboratory system from the proton-proton phase shifts analyses of
Arndt (Arndt 80), Hoshizaki (Hoshizaki 79) and MacGregor (MacGregor

69) and from experimental measurements of do/dt outside the

Coulomb-nuclear interference region, t>0.001 (GeV/c)2 (Benary 70).
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Fig. (6-1): A comparison of the nuclear spin-independent slope

parameters as a function of laboratory momentum.
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There are also discrepancies between different measurements and
predictions for the double-spin-flip slope parameter, b2. Thus, it
has been decided to fit the data with different values of b; and b,.
With these observations in mind, we can rewrite Eqs. (1-54) and

(1-59) explicitly in terms of the variable parameters.p, R, Yi» and

Y-
dt “(gev/c)? 2
c5(t) 0.209) b.t/2
- 0.410 ftl (p + 0.0173 Ln —=227)eP1
7lt]
+ 16.741 (¥3 + 3 )sind (6-1)
and

T A(fm/st) = 2.3375(y;sin8)eP1t/2 + 2.3375(Revg)eP1t/2

c2(t)

+ 0.0041 Ttl (Y,sinb) (6-2)

where

1
(1 + 1t1/0.71)?

Gp(t) =
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and

Y 0.3759 + 1/4¢t
t]

Reyg = (0.003520 + 0.01446t + 3.9 x 1077t2)c2(t)

B. Least Squares Method

A method of 1least squares was used to fit the data in which the

quantity
2
2,y = X(x) -
XR(‘x) N-m - 1 (6-3)
where

Y
x2(x) = (0—1)2
1 %

is minimized by varying x i.e. p, R, ¥v;, and v,. Here, &4; 1is the
deviation of the calculated from the measured value of the i’th
observable, 0, is experimental error in the measurements of the i’th
observable, N is the number of data points used, and m is the number
of free parameters. It can be shown from statistical theory (Orear
58) that the minimized value of reduced chi-squared, x%(x), should be,

for a good fit, equal to 1. 1In the case of m parameters, xz(x) may be

105



considered a continuous function of the m parameters describing a

hypersurface in m~dimensional space as illustrated in Fig. (6-2).

2

Fig. (6-2): Hypersurface describing variation of ¥
a and b.

vs two parameters

A valley may be found on this surface, and its bottom corresponds to
the minimum of xz(x). There might be several such valleys,
corresponding to several solutions. If the value of x% at the bottom
of a valley is very much larger than 1, the solutions may be
disregarded as a spurious one. It can be shown (Bevington 69) that
the uncertainty in each parameter corresponds to an increase in x%
of 1. That is, if we change one parameter, X4, by an amount, Axy, and
optimize all the other parameters for minimum x%, then the new value

of X% will be 1 greater than the old value.

xZ(xg + Bxg) = x&(xg) +1 . (6-4)
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C. Analysis of the Differential Cross Section Data

A product of expression (6-1) and a renormalization parameter, N,
was used to fit the cross section data corresponding to the
Coulomb-nuclear interference region {t|<0.01 * N was wusually fixed;
and the parameters p, R, and Y = /Y% + Y% were allowed to vary so as
to obtain the best fit to the data. The procedure was repeated for
different values of b1 and by. We found that fortunately p, R, and Y
are insensitive to b2 and fairly insensitive to b; for all reasonable

values of the slope parameters b1 and by. Table (6-1) shows these

results.

by by P R Y fm )qz{

9.3 6.0 0.005 0.156 0.73 0.90
9.3 9.3 0.007 0.156 0.77 0.85
9.3 2.0 0.004 0.153 0.70 0.85
8.0 6.0 0.000 0.146 0.69 0.85
10.5 6.0 0.005 0.157 0.88 0.85

Table (6-1) - Sensitivity of fit to the cross section to the
slope parameters, b; and bj.

As was discussed in Chapter V, we estimate the accuracy of our
data normalization to be about *37%. Comparison of our elastic
proton-proton differential cross section data with those predicted by
the Arndt (Arndt 86) ﬁhase shifts analysis gives a renormalization

factor about 0.985. Also, these data are in good agreement with data
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taken at LAMPF using the High Resolution Spectrometer (HRS)
(Wriekat 80) presented in Fig. (6-9). Thus, it 1is reasonable to
repeat the fitting procedure with N fixed at 1 * 0.03 and let p, R,
and Y vary. It was observed that p, R, and Y are sensitive to the

value N. Table (6-2) shows these results.

N b, by P R Y fm X®
0.97 9.3 6.0 -0.010 0.163 0.90 0.84
1.03 9.3 6.0 0.016 0.147 0.66 0.87

Table (6-2) - Variation of p, R, and Y with the normalization constant
N.

It was mentioned in Chapter V that the energy calibration of the
solid state detectors is within *30 keV, and this uncertainty in
measurement of the energy E, is directly reflected in determination of
four momentum squared transfer, —t. Therefore the fitting procedure
was repeated for a shift in -t corresponding to a %30 keV energy
shift. The values of p, R, and Y are sensitive to the shift in -t;

and the results are summarized in Table (6-3).
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Shift (keV) bl by N p R Y fm XR
-30 9.3 6.0 1.0 0.048 - 0.184 0.5 1.0

Table (6-3) - Variation of p, R, and Y with a shift in the four
momentum transfer squared, -t.

Table (6-4) shows the uncertainties in p, R, and Y due to the
uncertainties in the normalization constant energy calibration,
non—-spin—-flip slope parameter, b1 and the uncertainty corresponding to
a variation of 1 in xﬁ. All these errors are approximately

independent and hence added incoherently.

P R Y fm
Error due
to normalization +0.01 $0.01 0.1
Error due
to Shift in energy 30.04 *0.025 0.2
Error due to b1 +0.005 +0.012 +0.15
Error due to X3 + 1 +0.007 $0.004 +0.07
Error 0.04 +0.03 30.28

Table (6-4) - Uncertainties in p, R, and Y due to norpalization,
energy shift, slope parameter, bl and xp + 1.
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To compare our results with other available experimental results
Wriekat 80), (Aebischer 76), (Varobyov 72), we have also tried to fit
our data using the functional form of (6-1), but neglecting the
spin-flip (orbit) contribution; that 1s, Y was set equal to zero. The

results obtained are shown in Table (6-5).

bl bz N [ R x12{

9.3 6.0 1.0 0.018 0.18 0.82

Table (6-5) - Results of a fit where the spin-orbit contribution
is neglected; that is, Y is set equal to zero.

Table (6-6) presents the values obtained for p, R, and Y in this

work from the analysis of p-p elastic scattering data at 800 MeV.

p R Y fm

+0.005 0.16 0.7

$0.04 30.03 10.28

Table (6~6) — Results obtained from this work for
P, R, and Y.
Figure (6-3) shows the fit to the data obtained by fixing b, = 9.3
(Gev/c)™2 (Arndt prediction), b, = 6 (GeV/c)~2 , N = 1.0, no shift in
It] and using the values of p, R, and Y presented in Table (6-6).

Figures (6-4) and (6-5) show the Arndt (Arndt 80) and Hoshizaki
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Fig. (6-3): The differential <cross section for elastic p-p
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(Hoshizaki 79) phase shifts predictions, forward dispersion
calculations (FDR)(Grein 78), and recent experimental values for p and
R, respectively. The interesting qualititive feature of Fig. (6-4) is
the rapid decrease and change of sign for p between 1 and 2 GeV/c
followed by a more slowly decreasing behavior above 2 GeV/c. 1In fact
Hoshizaki (Hoshizaki 78) suggests that the rapid fall and change of
sign of p can be explained in terms of a 1D2 resonance at ~1.2 GeV/c
and a 3F3 resonance at ~1.5 GeV/c. Figure (6-4) shows, indeed, there
is a good agreement between our measurement of p, the Arndt phase
shifts prediction and the FDR calculation, but our value for p is
somewhat higher than the value predicted by Hoshizaki. Our value of p
is consistent with the energy dependence suggested by previous
measurements [with the exception of Dutton’s data (Dutton 67,68)].
Figure (6-5) presents FDR calculations (Grein 78) and Arndt (Arndt 80)
and Hoshizaki (Hoshizaki 78) phase shifts predictions for R along with
our determination of R at 1.46 GeV/e and other experimental
determination in the range of P1ab from 0.9 to 1.7 GeV/c. Our
experimental result and the experimental work of Aebischer (Aebischer
76) and Wriekat (Wriekat 80), show quite reasonable agreement with the
three theoretical predictions. The values of R and Y indicate that
there 1is a sizable spin-dependent contribution to the forward
differential cross section for elastic proton-proton scattering in

this energy range.
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D. Analysis of the Analyzing Power Data

Expression (6-2) was used to fit the product of the cross section
and analyzing power data in the region where they overlap. The value
of the s;ope parameter, bl, was fixed at the Arndt prediction,
bl = 9,3 (Gev/c)’z, Opor Was fixed at 4.73 (fm)z, which is the Benary
value (Benary 70), and Y, and Y, were allowed to vary to obtain the
best fit to the data. The fitting procedure was repeated for
different values of bl and Op,r- Also, a renormalization factor, N,
of 1 % 0.03 was considered for the cross section data and the fitting
procedure was repeated. It was observed that Y; and Yy, are quite

insensitive to the assumed values for b, o, and N.
»
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a

Table (6-7) shows these results. The error corresponding

variation of 1 in xé for Yy and Y9 1is 0.05 fm and 0.10 fm,

respectively.

by (Gev/c)? opor (Fm)? N Y, fm Y, fm X3
9.3 4.73 1.0 0.72 0.18 0.92
9.3 4.67 1.0 0.73 0.20 0.92
9.3 4.8 1.0 0.71 0.17 0.92
8.0 4.73 1.0 0.71 0.24 0.92
10.5 4.73 1.0 0.74 0.16 0.88
9.3 4.73 0.97 0.70 0.16 0.90
9.3 4.73 1.03 0.74 0.23 0.90

Table (6-7) - Sensitivity of the product of the analyzing power times
cross section to variation in the slope parameter,

by,

total cross section, OroT? and N the normalization
factor of the cross section.

Thus by considering the uncertainties in bl’ OpoT> and N, we estimate

the errors in the measurements of Yy and Yy to be 0.05 fm and 0.11 fm,

respectively.

this experime

Table (6-8) - Results obtained from this work for Y, and Y,.
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Table (6-8) shows the results obtained for Yq and Yo in

nt.

Yl fm

Y2 fm

0.79 % 0.05

0.18 + 0.11




Figure (6-6) shows fhe fit to the experimental values of IoA (product
of cross section and analyzing power) obtained by fixing b1 = 9.3
(GeV/c)_z, Oror = 473 (fm)2 and N = 1, and using the values for Y,
and Y, presented in Table (6-8); that is, vy = 0.79 and Yy = 0.18. As
we have shown in Table (1-3) the contribution of‘ReaEImYN to (IOA)I in
the angular range of our data is quite small, and some authors
(Aebischer 77) disregard this in their expression for (IOA). Thus, in
order to compare our result with their value for Y1, we set the value
of Yo to be zero, and let Y;, vary. With this procedure, we obtained
Y; = 0.75 fm. Figure (6-7) shows Arndt (Arndt 80) and Hoshizaki
(Hoshizaki 79) phase shifts prediction for Y;. The agreement of our
value for Y; with Arndt prediction can be considered good if we
consider error corridor in his prediction. Also our value of Y, is
consistent with the energy dependence suggested by previous
measurements (Aebischer 77). As was mentioned previously the only
term depending on Y, in our expression for (I,A) is ReopImyy which is
considerable only in very small angle measurements. Our data for the
p-p elastic scattering analyzing power at 800 MeV do not extend low
enough in |t| to be really sensitive to Yo9. Thus our determination of
Yo has a quite large error. Figure (6-8) shows Arndt (Arndt 80) and

Hoshizaki (Hoshizaki 79) phase shifts prediction for Yo
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E. Discussion

Absolute differential cross section and analyzing  power
measurements for elastic proton—-proton scattering at 800 MeV with an
uncertainty of *3% have been presented as a part of this dissertation.
These measurements have been done in the region of four momentum
transfer: 0.0012<|t]<0.027 (GeV/c)Z for the cross section data and
0.005 <1t1<€0.027 (GeV/c)2 for the analyzing power data which
correspond to laboratory angles ranging between 1.34° and 6.45°, and
between 2.80° and 6.45°, respectively. These data are more accurate
and reliable than earlier measurements in this energy region. This is
due to four features of the present experiment. First, the advantages
of the recoil particle method used in this experiment over the
conventional method of detecting scattered particles in the near
forward direction. Second, the fact the EPB has a working Faraday Cup
with an accuracy of about 17 allowed us to obtain excellent accuracy
in our normalization. Third, in our method we measured the
four-momentum transfer, t, directly [Eq. (4-41)] with good accuracy.
Fourth, the quality of the EPB beam (phase space, arial dimension,
small halo) is very good compared with that at other facilities.
Figure (6-9) presents our data and Wriekat et al. measurements of
elastic proton-proton cross section at 800 MeV in the region they
overlap (Wriekat 80). Comparison of our differential cross section
data for proton—proton elastic scattering at 800 MeV with those
predicted by the Arndt (Arndt 80) phase shift analysis gives a

renormalization factor about 0.985.
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Fig. (6-9): A comparison of our data for the cross section in p-p
elastic scattering at 800 MeV with other data obtained at
LAMPF using the HRS facility (Wriekat 80).
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Figure (6-10) shows a comparison of our data for the analyzing power
in proton-proton elastic scattering at 800 MeV with other data
obtained in LAMPF using the HRS facility (Pauletta 80) and the Arndt
prediction for the analyzing power at 800 MeV. There is a good
agreement between the two sets of measurements, although there is a
disagreement between the measured analyzing power and the Arndt
prediction at 800 MeV.

Fits to the data were made using the classical parameterization
model to obtain value for p, the ratio between the real and imaginary
parts of spin-independent amplitude in the forward direction, for R,
the ratio between the summed moduli squared of the double spin—-flip
amplitudes at zero degrees and the modulus squared of spin-independent
amplitude at zero degrees, and for Yi5 which is related to the real
part of the spin-orbit amplitude by Eq. (1-44). From a measurement of
p, omne can obtain the real part of nuclear spin-independent amplitude
in the forward direction, ReaN(O). The total proton-proton
cross-section data of Auer et al. (Auer 77,77,78) for transversely
and 1longitudinally polarized beams and targets can be wused to
determine the imaginary parts of the double spin-flip amplitudes in

the forward direction:

4w

Bop = o(44) = o(44) = - —— Im(2By(0) )
L
soy, = o() - o) = 2% mm(2e9(0))
L
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and thus one can determine the sum of the squares of the real parts of
spin double-flip amplitudes from a measurement of R. Such information
on the real and imaginary parts of the double spin-flip amplitudes
acquires particular significance in the light of recent speculations
concerning the existence of the dibaryon resonances. A recent FDR
calculation by Grien (Grien 78), suggests an energy dependence in the
real parts of the forward amplitudes which 1is characteristic of
resonance behavior and which 1is evidence in support of dibaryon
resonances. Also Hoshizaki (Hoshizaki 78) has suggested a structure
in the real and imaginary parts of B(0) and €(0), which he explained
in terms of 1D2 and 3F3 resonances. Thus, it is clearly important to
obtain independent verification of the real parts of all forward

amplitudes.
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Fig. (6-10): The analyzing power for elastic ;—p scattering at
800 MeV. The crosses are this work. The open circles
are data obtained using HRS facility (Pauletta 80). The
solid line is the Arndt phase shifts prediction
(Arndt 80).
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CHAPTER VII '
THEORETICAL ANALYSES FOR PROTON-DEUTERON DATA
In this chapter, we will describe the theoretical analyses for
the data obtained from our p-d elastic scattering experiment. We will
test if available nucleon-nucleon amplitudes are able to predict
proton-deuteron scattering in the framework of the theory outlined in
Chapter II, at 800 MeV. Also we will discuss the fitting procedure

used for the p~-d elastic analyzing power, Ay(e) data.

A. Analyses of the Analyzing Power and Differential Cross Section

In Chapter II the formulae developed for the analysis of
analyzing power data within the theoretical framework for p—d
scattering used isospin averaged nucleon-nucleon amplitudes. In order
to increase sensitivity of the fit, we reduced the number of variable
parameters by fixing % and o, (the total cross section for p-p and
p-n scattering, respectively), bp and b, (the slope parameters), and
[ and p

PP

spin-independent amplitude at zero degrees for p—p and p-n scattering,

pn (the ratio between the real and imaginary parts of the
respectively). The values of Gp = 4.73 £ 0.06 (fm)2 and o, = 3.79 %
0.07 (fm)2 were taken from the compilation of proton-proton and
proton-neutron experimental data (Benary 70). Slope parameters were
fixed at the values predicted by the Arndt phase shifts analysis
bp = 9.3 (GeV/c)"2 and b, = 10.3 (GeV/c)_Z. Forward dispersion
relation calculations (Grein 78) predicted an upper limit of -0.4 and
a lower 1limit of -0.8 for ppn and a value of 0.0 for Ppp* Also, the

Arndt phase shifts predicted ppp = 0.02 and Pon = -0.3. From our
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analyses of p-p data we obtained ppp = 0.005. Using these quantities,

we can rewrite Eq. (2-18) in terms of only two variables, A and B,

which were defined in Eq. (2-19)

0.247[0_(A-p_ B)ePpt’2 + 6 (A - p_ B)ePnt/2 |sins
Ay(e) - [ p ppp e’p _ n ppn en J51n -1

o

where

2 .
I, = 0.0153 [(cpebpt/Z + onebnt/Z) + (pppopebpt/z + ppnonebnt/2”

+ 2(A2 + B2 )sinZe
and

1
A=y (p * Yn)

1

This expression was used to fit the analyzing power data. A and B
were allowed to vary to obtain the best fit to the data. The fitting
procedure was repeated for different values of slope parameters (bp
and bn) and total cross sections (0p and cn). It was observed that A

and B are fairly sensitive to the assumed values of bp’ b,, o, and o

n* p
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Table (7-1) shows sensitivity for the fitted values for A and B when

different values of ppp and ppn are assumed.

-2 -2 2
A fm B fm ppp Pon bp(GeV/c) b (GeV/c) XR
0.86 -1.0 0.0 -0.8 9.3 10.5 0.96
0.79 -1.0 0.0 -0.4 9.3 10.5 0.95
0.77 -1.0 0.02 -0.3 9.3 10.5 0.95
0.77 -1.0 0.005 -0.3 9.3 10.5 0.95

T -1) - i .
able (7-1) Sensitivity of A and B to ppp and ppn

2

The error corresponding to a variation of 1 in g g for A and B is 0.01

fm and 0.03 fm, respectively. Thus by considering the uncertainties
in Dpp and pp
to be 0.09 fm and 0.03 fm, respectively. Table (7-2) shows the

n» ve estimate the errors in the measurements of A and B

results obtained for A and B in this work using the Arndt’s prediction

for -
o ppp and ppn

A fm B fm

0.77 * 0.09 -1.0 + 0.03

Table (7-2) - Values of A and B obtained from p-d data.
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Now, by considering the definition of A and B and using the Arndt
prediction at 800 MeV (Arndt 80) for Ylp = 0.82 fm and Yop = -0.4 fm
(Ylp and sz are related to the spin-orbit amplitude for p-p by
Eq. (2-17), one obtains the following values for Yin and Yy [related

to the spin-orbit amplitude of p—n by Eq. (2-17)]

Yip = 0.72 * 0.09 fm

0.03 fm .

]
+

Yo, = 1.6

In comparison with the Arndt prediction for v;, and Y, at 800 MeV,

our value for v, ,v;, = 0.72 fm, is in good agreement with his
prediction (Yln = 0.6 fm). However, there 1is a considerable
discrepancy between our value for Yonr Yo = -1.6 £ 0.03 fm, and the

Arndt prediction, Yon = -0.38 fm at 800 MeV.

Figure (7-1) shows the fit to the analyzing power obtained by
fixing by = 9.3 (GeV/c)™2, b, = 10.5 (GeV/c)72, o, = 4.73 (fm)?, o =

3.79 (fm)z, by = 0.02, o, = -0.3 and using the values for A and B
presented in Table (7-2). We have also compared the data with the
prediction of the theory of p-d elastic scattering outlined in Chapter
IT (Alberi 79) using as an input the Arndt phase shifts (Arndt 80)
prediction for the nucleon-nucleon amplitudes at 800 MeV (solid
curve). In Fig. (7-2) we show the comparison between our data for the

elastic p—-d differential cross section at 800 MeV with the prediction

of the theory developed by Alberi (Alberi 79) using the Arndt phase
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Fig. (7-1): The analyzing power for elastic E—d scattering at

800 MeV. The dashed line through the data represents the

isospin averaged fit to the data by fixipng
by = 9.3 (Gev/g) 2, by = 10.5 (GeV/e)™2, o = 4.73 (fm)%,
o_ = 3.79 (fm)“, o p = 0.02, Pon = -0.3, A= 0.77 fm, and
B =-1.0 fm. The solid curve is Alberi et al.

prediction using as an input the Arndt phase shifts
prediction for nucleon-nucleon amplitudes at 800 MeV.
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shifts (Arndt 80) prediction for the nucleon—nucleon amplitudes at

800 MeV.

B. Discussion

Absolute differential Cross section and analyzing power
measurements for elastic proton~deuteron scattering at 800 MeV with an
instrumental wuncertainty 37 have been presented as a part of this
dissertation. These measurements have been done in the region of four
momentum—transfer-squared 0.01<|t}<0.017 (GeV/c)2 which correspond to
laboratory scattering angles ranging between 3.97° and 13.10,
respectively. For the reasons discussed in Chapter IV, we believe
data are quite accurate.

Recent work on the theory of hadron—-deuteron scattering at
intermediate energy (Alberi 79) provide wus with a precise tool for
studying the dependence of the proton-deuteron scattering observables
on the p-n amplitudes. This approach has been applied in the
theoretical analysis of the data. In the framework of this theory a
fit to the analyzing power was made using isospin averaged
nucleon~nucleon amplitudes, in order to extract information on the
real and imaginary parts of the proton-neutron spin-orbit amplitude.

Elastic proton—-deuteron scattering turns out to be a very good
tool for obtaining some information on the values of the p-n
amplitudes at small angles. The deuteron is the simplest few body
system with a neutron constituent. Good knowledge of the deuteron
wave function (at least at large r) and its small binding energy (the
scattering process can be described very well in terms of the free
nucleon~nucleon amplitudes) allow an accurate extraction of the

proton—neutron amplitudes.
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APPENDIX A
OPTICAL THEOREM

The optical theorm for spinless particles has the form

k
Im £(0) = 47 Oqor » (A-1)

where f(0) is the forward scattering amplitude, k is the relative
momentum and OpoT is the total (transmission) cross section. For
particles with spin, f is replaced by matrix M in spin space defined
in Eq. (1-2) and the generalization of Eq. (A-1) is

Im Tr(oM(0)) = Iki Oper > (A-2)

where p is density matrix. To understand the form of Eq. (A-2), note
that Eq. (A-1) applies equally to any single spin channel; that is,
one may replace f(0) by the expectation value of M(0) in any pure spin
state. TFor an incoherent mixture of pure spin states the expectation
value of M(0) can be replaced by Tr(pM(O)), and thus the general form
of Eq. (A-2) results.

Now, let the quantization axis (z-axis) be along the direction of

motion of incident beam The c.m.f unit vectors appearing in M are

n= (0,1,0), mn = (cos6/2, 0, -sin6/2), & = (-sin6/2, 0, cos6/2) .
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The matrix M at the forward direction has the form

M(0) = a(0) + i:S(O)olyozy + 6(0)01499, + €(0)0,09, . (A-3)

Suppose nucleons 1 and 2 initially have independent polarizations P,

+
and P2. Thus

+ > > >
p=(1+P1'01)(1+P2°02) .

> >

After substitution for M(0) and p in Eq. (A-2), for the case Py and P,

parallel, transverse to the beem, one obtains

In[a(0) + B(0)P Py] = ;& opgy  [Remember B(0) = 8(O)] ,

> >
and, for the case of P; and P, parallel, along the beam (z-axis)

- k
In[a(0) + €(0)P1Py] = o~ Opop -

> >
In the case of unpolarized beam or target (P; or P, = 0), generalized

optical theorem has the simple form of:

k
Ima(0) = R OToT
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APPENDIX B
PROTON-PROTON SCATTERING MATRIX ELEMENTS IN TERMS OF PHASE SHIFTS
Let the quantization axis (z-axis) be along the direction of

motion of incident beam. The c.m.f unit vectors appearing in M are

n = (0,1,0), m = (cos6/2, 0, -sinb6/2), £ = (sin8/2, 0, cos6/2) . (B-1)

By operating M given by Eq. (1-2) on the spin state of two nucleons,

we have

Mxg = (@ - B =& = 8)xg »

(a+ & sin29/2 + € cos29/2)x1 + V2 (-y + 1 € sinb -~ 1 ) sine)xo

Mxy Vi Vi

+ % (-8B + 6 cos?6/2 + ¢ sin26/2)x_1 R

My, = Y2 (y + ; € sinb - ;_6 sine)x1 + (a+ 8 - € cosb + ¢ cose)ko

+ V2 (~y - ;.s sinb + ;.6 sine)x_1 y
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Mx.q = (-B + § cosze/z + € sin26/2)x1 + V2 (y - -~ € sin® + %.6 sinb)xq

N}

+ (a + ¢ c0526/2 + 6 sin26/2)x_1 . (B-2)
where
a2 1 00 0
e (G SN

1. 1
x1= () ()

07 0

NI T 0, 1

0 0
X1 % (1) ( J
1 2
are the spin wave functions for the triplet-spin state. The

subscripts 1 and 2 refer to the two nucleons 1 and 2. Egqs. (B-2)

* imply

M11= M—l—l = o+ § sin29/2 + € cosze/z .
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VZy -2 6sin6+ L € sind ,
V2 V2

Mo = Moy0

Ml—l =M_y1 = -8 + 6 c0529/2 + € sin26/2 ,

Mgy = Moy = - 2 y - Ji,sine + = sind s
V2 V2
My, = @+ B + 8cosb - ecosb . (B-3)

The inverse relations of Eqs. (B-3) are

1
a5 (), + Mgy + M)

1
B =g (=21 +Mpy - Mgo)
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Stapp et 31, (Stapp 57) have calculated the matrix elements Mij

for proton-proton scattering in terms of phase shifts. They have

shown that; for example

_ 2 1 V2 V2
Mi0 = 3¢ od% , Pe(®) {5 ag g41 ~ 7 24,41

vZ 42 /2 g V2 a-131/2 4
tr ) AT o ) T

2 - 1 V2 L+ 2 V2 28+ 1
Mo1 = 1% d% , T - G e Y Gey) 2
(o]
V7 4 -1 2o+ Y2 a0 s 12
t gt ) e '7?(,‘1) a7y
2 - 2 1 28 + 1
Mi-1 = g d}l . P3O {grgsTy) 20,041 = Ggrreyloe,e + (Z%Jax -1
o ]

1

~1/2 -1/2
7 LG+ D+ )] /2 w1 ] (¢ - 1)x] / ¥l .(B-5)

I

where P%(e) is the associated Legendre polynomial axj and a* are the
scattering amplitude and expressed in terms of the bar phase shifts of

Stapp et al. (Stapp 57).
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From Eqs. (B-4) at 8 = 0 we may write

8(0) = é'(_ZMl—l + Mo ~ Mgg)

1
8(0) = 5 (2M)_; + Mgy ~ Mgg) -

However, from the definition of the associated Legendre polynomial

PR(1) =0 .

Therefore at 6 = 0 we have

Mj-p =0

which implies

B(0) = 6(0) .

Now, after substututing for Mjg and Mp; in the

for vy in Eqs. (B-3), one obtains

22 + 3 2% 1

Y = ! X Pl(e) { a - a +
I 2O e+ 1 T 2,1 Y E Ty

odd £

or

Y= ) vy PR .
% odd

expression given

2% + 1

axz}

(B-6)
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Here, Y, 1is a coefficient which depends on the energy. Near forward

direction we may write:

1

g (£ + D - 162 + ——-] .

Ph(8) = 2 &(4 + Dsind [1 -

After substitution of Pi(@) in Eq. (B-6) one gets a simple expression

for the hadronic spin-orbit amplitude at small angles.

Y = Yosine .



APPENDIX C
ENERRGY LOSS CORRECTIONS

In this section we will discuss in more detail the method used to
calculate the energy of a recoil particle at the center of the
interaction region from the energy deposited in the active region of
the detectors. Let E be the energy of the particle at the center of
the interaction region. It will lose energy in passing through the
gas target; and it will reach the detector telescope with energy Ei'
The gas thickness which the recoil particle passed through is équal to
the difference in the ranges for particles with respective energies E
and E; in the target gas. The range of a charged particle in matter

1

is given by the following integral:

E
R=/ (%) « (c-1)
. |

where dE/d& is the stopping power (MeV/g/cmz). Thus the thickness, A,

of the target gas is:

(dE

)_1 dE
T .

>
[
e ~—

Over the energy range of interest we have to a good approximation:

dE

1SS (E)| = AE™B (C-2)

where A,B are determined for the recoil particle of 1interest in the

target gas.
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Therefore:

- 1 B+l _ B+l
A(B+ 1) LE Ey 7l

and solving for E gives:

1/B+1
E= [E}*! + 2a + 1] el (c-3)

Now, A 1s equal to the density of the gas, p, in g/cm3 multiplied by
the path length, L, of the recoil particle from the interaction region

to the detector telescope:

H
L= — c-4
sin6 ( )

where H 1is defined in Fig. (3-2) and 6 is the laboratory scattering

angle of the recoil particle. Now © 1is a function of the recoil

particles energy [Eq. (4-9)]. Since E is approximately equal to E,,

sinb is given to a good approximation by:

M+ ED%E; 172

sind ~ [1 - (c-5)

2
MP “ (1 + E;/2M)



where M, E,, P, are defined in Chapter IV. Substituting Egs. (c~5)

and (C-4) into Eq. (C-3) gives:

M + E)%E; ]1/2}1/(B+1)

(c-6)
2 2(1 + E;/2M)

E= {E8* + oHA(B + D/[1-

In the next step we will calculate the energy incident on the
detector telescope, E;, from the energy deposited in the active volume
of the detectors for the AE - E setup. When the particle reaches the
detector telescope it will pass through a dead layer of thickness D,
on the front of the AE detector; and it then enters the active region
of the AE detector with an energy E'i. In passing through the active
volume of thickness t, the energy of particle will be reduced and when
it reaches the dead layer on the back of the AE detector it will have
an energy E"i' The particle will then pass through the dead layers Dy
and D3 and have an energy Eg'when it reaches the active volume of the
E detector. [See Fig. (c-1]. The energy Eg“will completely

absorbed in the E detector. The total energy, Ed, deposited in the

active volumes will be given by:

Eq = (E{ - EY) +EY" . (c-7)

The energy incident on the telescope extrapolated back from the energy

deposited in the detector telescope is given by:

Ef = Eg + |%§.(Ei)|D1 + %’g (E)1(Dy + D3) . . (c-8)
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With good accuracy the second term can be approximated as:

dE dE =B’
"&(Ei)lnl ~ lEE(Ed)'DI = D;A'E,

(c-9)

where A and B’ are determined for the recoil particle of interest on

dead layer material. To calculate the last term in (C-8) we need a

relation between E"i and Ej. The thickness of the AE detector, t,, is

equal to the difference between the range of recoil particles at

energies Ei and EI in silicon:

ta=] S EP CE

or

1 B+ wB’+1
= - E
ta " TEEFT) [*r:i . ]

to good accuracy we may use the approximation E‘y = E4;

may write:

. 1/B°+1
By = [E ! - a7 (37 4D)]

and thus we



which then gives:

-B’/B’+1

BEn) = a7 [B 2! - e a7 (3741 ] (c-10)

dg

substitution of Eqs. (C-9) and (C-10) into Eq. (C-8) gives the
incident energy, Ei’ in terms of the energy, E4, deposited in the

detector telescope:

’ ’ ~B’/B’+1
’ -B ’ B +1 ’ ’
Ey = Eg + DjA’ EgB  + A7 (Dy + D) [E(B D) - e A’ (B74+D) ] .(c-11)

By substitution of Eq. (C-11) into Eq. (C-6) we can relate the
energy of the recoil particle at the center of interaction, E, to the
experimentally measured energy, Ed’ deposited in the active volume of

the detector telescope.
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Energy Deposited in Energy Incident on Energy at Center

Detector Telescope Detector Telescope of Interaction
MeV) (MeV) (MeV)
3.0 3.008 3.31
4.0 4.006 4.25
5.0 5.004 5.21
6.0 6.004 6.18
7.0 7.003 7.16
8.0 8.003 8.14
9.0 9.003 9.13
10.0 10.003 10.12
11.0 11.002 11.11
12.0 12.002 12.10
13.0 13.002 13.10
14.0 14.002 14.09
15.0 15.002 15.08

Table (C-1) - Energy scale for 500 mm Hg of hydrogen in AE,E setup.
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Energy Deposited in Energy Incident on Energy at Center

Detector Telescope Detector Telescope of Interaction
(MeV) (MeV) (MeV)
0.8 0.803 0.86
1.0 1.002 1.05
1.2 1.202 1.24
1.4 1.402 1.44
1.6 1.602 1.64
1.8 1.802 1.83
2.0 2.002 2.03
2.2 2.202 2.23
2.4 2.402 2.43
2.6 2.601 2.63
2.8 2.801 2.82
3.0 3.001 3.02
3.2 3.201 3.22

Table (C-2) - Energy scale for 40 mm Hg of hydrogen in time of flight setup.
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Energy Deposited in Energy Incident on Energy at Center

Detector Telescope Detector Telescope of Interaction
(MeV) (MeV) (MeV)
5.0 5.010 5.22
6.0 6.007 6.19
7.0 7.006 7.16
8.0 8.005 8.15
9.0 9.005 9.14
10.0 10.004- 10.13
11.0 11.004 11.12
12.0 12.004 12.11
13.0 13.003 13.10
14.0 14.003 14.10
15.0 15.003 15.09
16.0 16.003 16.09
17.0 17.003 17.08
18.0 18.003 18.08
19.0 19.003 19.07
20.0 20.002 20.07

Table (C-3) - Energy scale for 300 mm Hg of deuterium in AE,E setup.
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