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Small Angle Proton-Proton and Proton-Deuteron Elastic

Scattering at 800 Mev

by

Farokh Irom

ABSTRACT

By measuring the energy of recoil particles, the following data 
have been obtained at 800 MeV incident proton energy; (1) the 
differential cross section for elastic proton-proton scattering at 
laboratory angles ranging between 1.34° and 6.45°, (2) the analyzing 
power for elastic proton-proton scattering at laboratory angles 
ranging between 2.8° and 6.45°, and (3) the differential cross 
sections and analyzing powers for elastic proton-deuteron scattering 
at laboratory angles ranging between 3.97° and 13.1°. The data were 
analyzed to obtain information about the hadronic parts of the 
proton-proton and proton-neutron forward scattering amplitudes. The 
ratio p of the real to the imaginary parts of the forward p-p 
spin-independent amplitude was found to be 0.005 ± 0.04. The ratio R 
of the summed moduli squared of the forward p-p double-spin-flip 
scattering amplitude to the modulus squared of the forward p-p 
spin-independent amplitude was found to be 0.16 ± 0.03. The real and 
the imaginary parts of the p-p spin-orbit scattering amplitude divided 
by sin0 were found to be 0.79 ± 0.05 fm and 0.18 ± 0.11 fm, 
respectively. Finally, the real and the imaginary parts of the p-n 
spin-orbit scattering amplitude divided by sin0 were found to be
0.79 ± 0.09 fm and -1.6 ± 0.03 fm, respectively. These values were 
compared with the results of recent phase shift analyses and forward 
dispersion relation calculation.

xiv



INTRODUCTION

It has been clear experimentally that the forward angle 

differential cross section in proton-proton elastic scattering at 

energies in the GeV region is substantially larger than the 

theoretical minimum allowed by the optical theorem, where k 

is the center-of-mass wave number and is the total cross section- 

The optical theorem for proton-proton scattering may be written 

(Appendix A)

4^ aToT =

where ajj(O) denotes the spin-independent amplitude (complex). An 

excess of the forward differential cross section above the optical 

limit may arise because of the existence of a real part of the 

spin-independent amplitude or from spin dependent terms which are 

non-zero in the forward direction. In experiments at very small
_ o _o omomentum transfer 10 <|t|< 10 (Gev/c) the Coulomb scattering 

amplitude as well as its interference with nuclear scattering 

amplitude can be observed. In principle, by parameterizing the 

amplitudes appropriately, such measurements allow us to determine the 

magnitude and sign of the ratio, p, between the real and imaginary 

parts of the forward spin-independent nuclear amplitude as well as the 

magnitude of the contributions from spin-dependent amplitudes. Also, 

analyzing power measurements in the Coulomb-nuclear interference 

region can be used to determine additional information about the 

general nucleon-nucleon amplitude, in particular, information about

1



the single-spin-flip or spin-orbit amplitude. In fact, at 

intermediate energies at the Coulomb-nuclear interference region very 

few analyzing power measurements are available. The predictions for 

analyzing power parameters at these small angles are essentially 

extrapolations from measurements at larger angles by means of phase 

shift analyses (Arndt 74), (Bystricky 75) and have never been 

adequately tested. Thus small angle measurements of differential 

cross sections and analyzing powers can be used to obtain direct 

information on the nuclear interaction by taking advantage of the 

electromagnetic-nuclear interference.

The experiments described in this dissertation were performed at 

LAMPF, during the Summer of 1979 using the External Proton Beam (EPB) 

Line. Recoil particles were observed after their scattering from a 

target gas (hydrogen or deuterium) in a scattering chamber by using 

solid state detector telescopes. In this work, data on the 

differential cross sections, do/dt , for elastic proton-proton 

scattering in the range of the four momentum transfer squared 0.001 
<|t|< 0.03 (GeV/c)2, and on the analyzing powers, Ay(8), for elastic 
proton-proton scattering in the range 0.005 <|t|<0.03 (GeV/c)2 were 

collected. Also, with the same experimental apparatus differential 

cross sections and analyzing powers were measured for elastic 
proton-deuteron scattering in the range 0.01 <|t| <0.11 (GeV/c)2.

By parameterization of the p-d differential cross section and 

analyzing power data, we can extract information on the proton-neutron 

amplitude as well as on the proton-proton amplitude.
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The experiment described in this work provided high quality data 

on forward angle proton-proton and proton-deuteron elastic scattering 

at 800 MeV. In svramary, from the analysis of the p-p data we

determined:

1. The sign and magnitude for the ratio, p, between,the real and the 

imaginary parts of nuclear spin-independent amplitude in the 

forward direction.

2. The ratio between the summed moduli squared of double-spin-flip 

amplitudes at zero degrees and the modulus squared of the 

spin-independent amplitude at zero degrees.

3. The real and the imaginary parts of the proton-proton nuclear 

spin-orbit amplitude.

From the analysis of the proton-deuteron data we extracted 

the real and imaginary parts of the p-n nuclear spin-orbit

amplitude; and the effects of the spin-dependent nucleon-nucleon 

amplitudes and of the double scattering terms on the 

proton-deuteron cross sections and analyzing powers were also 

checked.

Theoretical concepts underlying the proton-proton and 

proton-deuteron analyses are discussed in Chapters I and II, 

respectively. Chapters III describes the experimental setup. In 

Chapter IV the experimental techniques are explained. The data 

reduction is discussed in Chapter V. In Chapter VI and Chapter VII we 

discuss the theoretical analyses for the proton-proton and

proton-deuteron data, respectively.

3



CHAPTER I

THEORETICAL ASPECTS FOR PROTON-PROTON DATA 

In this chapter a detailed exposition of the proton-proton 

elastic scattering is presented, reviewing known results. We will 

discuss the nucleon-nucleon scattering matrix, M, and parameterize the 

proton-proton elastic differential cross section, do/dt, and analyzing 

power, Ay( 0).

A. Nucleon-Nucleon Scattering Matrix

A complete description for the scattering of two spin 1/2 

particles is given by a 4 x 4 matrix:

Itfoj, o2, iq, Kf) (1-1)

-► -►

where Kj and Kf are the momenta of the incident and scattered
+ •+

particles in center-of-mass and and o2 are the Pauli spin operators 
acting on the first and second nucleon wave functions, respectively 

(i.e., Oj for the incident and scattered nucleon and o2 for target and 
recoil nucleon). The most general form of this matrix may be found by 

following a procedure similar to that used to find the most general 

form of the interaction Hamiltonian for two particles of spin 1/2 

(Eisenbud 41). Conditions placed on the matrix M are invariance under 

space rotations and reflections and time reversal.

4



Taking into account these conditions, the nucleon-nucleon elastic 

scattering matrix has the following general form (Goldberger 64)

+ + - + ~ ~ ■+*•*■*
M = a + iy(aj + ©2) • n + 3(a^ • n)(a2 • n) + 6(0^ • m)(a2 • m)

+ • 1) ($2 • A) + inCoj^ • n - a2 • n) . (1-2)

Here the amplitudes a, 3, Y, e, and n are complex functions of two

variables the center-of-mass energy /ss and the scattering angle 6, or

equivalently the momentum transfer q^(q^ = 2p^(l-cos8 )). a is the
cm cm

spin-independent (central) amplitude; Y and n are the spin-orbit 

amplitudes; and 3, 6, and e are the double spin flip amplitudes. The 

center-of-mass system unit vectors are:

l ki + Kf

IKj + Kf|

9

--------- -— ,
|Kf -

(1-3)

-»■
K, x

n
1^ x Kf |

which form an orthogonal Cartesian co-ordinate system. In non 

relativistic kinematics, they have a very convenient meaning in the

5



Alaboratory system, since H represents the direction of motion of the 

scattered nucleon, n is the direction perpendicular to the scattering 

plane, and (minus)m is the direction of motion of the recoil nucleon.

For proton-proton and neutron-neutron scattering in which the two 

particles are identical the sixth term in scattering matrix, n, is 

zero; and this is also true for neutron-proton scattering if charge 

independence is assumed.

A

Fig. (1-1): The orthogonal unit vectors %, m, n in c.m.f. 
n is an arrow out of the page.
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B. The Density Matrix Formalism

In a scattering experiment one prepares the two particles in 

certain states prior to scattering and subsequently measures the state 

of the particles after scattering. These processes can be 

conveniently formulated in terms of the density matrix rather than 

wave functions. An arbitrary spin state IXn> in a system of two 

particles with spin Sj and S2 is a linear combination of the (2sj + 
1)(2s2 + 1) basic states of the composite system and may be 
represented by a vector with (2sj + 1) (2s2 + 1) components. For 

example, if Sj * 62 “ 1/2, the four basic states could be the three 
triplet and one singlet states. For a given pure spin state IXn>, the 

density matrix is defined as:

P “ IXn><Xnl (1-4)

which is clearly a projection operator. In practice we deal with an 

incoherent mixture of pure spin states, as in the case of a nucleon 

beam from an accelerator. The density matrix is then defined as

P ■ 2 *Xn>Pn<Xnl (1-5)
n

where Pn is the relative probability of finding the system in state 

Xn« For a beam of particles, the sum may be considered as a sum over 

the states of the individual particles in the beam.



Any observable is represented by some Hermitian operator Q. The 

expectation value of Q in the mixed state is given by

<Q> = 1 VXn'Q'Vn
= ^ Pn<XnIQ|m><mlXn>
n,m

= £ <m|Qp|m>
m

or

<Q> = Tr(Qp) . (1-6)

The density matrix defined above characterizes a system at a given 

time. As time proceeds the density matrix changes. In particular, 

the initial spin state of the system xn is associated with a definite 

scattering state, which, in terms of the scattering state wave 

functions has the asymptotic form

(1-7)

In other words, the initial spin state IXn> is transformed into a 

certain final state

m mn
If ( Q, <)>) I Xm> = M | xn> (1-8)

8



where M is the spin-scattering matrix. For nucleon-nucleon system it 

is defined in Eq. (1-1). Thus we can construct the final density 

matrix

Of - l WIW*!,'"*
n

- Mp^

or, in the normalized form (Trp = 1) 

(MpjM^)
Pf " TWMpjMf) ' (1-9)

The density p is Hermitian and for the nucleon-nucleon system it can 
be expanded in terms of 16 independent matrices o which 

satisfy the following orthogonality relations

o^2) _ WMv«vp

Thus, we may write

l.
y.v

(1-10)

(i-n)

Here, o0, Oj, 02 and 03 are the unit matrix and Pauli spin matrices. 

We may write

Tr(oy/(1) p)

9



using the orthogonality relations [Eq. (1-6) and Eq. (1-10)] one 

obtains

<0U(1) °v(2)> 4a Vi,v » (1-12)

or

P j 42)> 42) (1-13)

In this form the spin density matrix is expressed directly in terms of 

the 16 expectation values . Six of these, the quantities

<a(l)0(2) > 5 <a(l)> and <a<1>o(?)> = <o(2)>
i ° i ° J j

are the components of the polarization vectors for the first and 
second particles, respectively; and the expectation values <o^^o^2) > 

= are nine parameters related to a correlation between spin

expectation in two particles.

Let us now proceed to calculate the differential cross section I 

for scattering of the incident particles described by the density 

matrix po, where the definition of this cross section involves a sum 

over the spin states of the final particles.

10



The differential cross section for scattering from any of the pure 

states xn is given by

1 - l '“nm'2
m

“ ^ ^nm ^mn 
m

- <XnIH+M|xn> (1-14)

which is indeed the expectation value of the operator in the state 

Xn« Thus, by Eq. (1-6) for a incoherent mixture of pure states with a 

density matrix p^, the differential cross section may be written as:

I - <M+M> - Tr(M+Mp1) - TrOlpjM^) . (1-15)

The initial polarization state is completely specified by the 
expectation value <o(1^ . By substituting Eq. (1-9) into

Eq. (1-6), we get a basic relation between incident and final 

polarization states (MacGregor 60).

<oJ1)oJ2)>f - TrtpfoJ15 o£2)J

 Tr(Mp1Mto(1)oJ2))
" Tr(MpiMl)

11



substituting for from Eq. (1-13) and using Eq. (1-15) one then 

obtains

Ko(1)
P >f =

1
S

l <oJ1Pa^) >i TrtMa^o^) M (1-16)

Let us now consider the scattering of an unpolarized beam on an 

unpolarized target. Then all the are equal to zero in 

Eq. (1-13) except for = 1 , and hence the differential 

cross section for the scattering of a unpolarized beam on a 

unpolarized target is given by

lo = (1-17)

The polarization vector of the scattered particle (1) is obtained by 

using (1-16)

^o^p °o "r •Lo^°p xf

= ^ Trj (1-18)

where is the polarization of the particles (1) produced in the 
scattering of an unpolarized beam on an unpolarized target. Its 

direction is along the normal to the scattering plane (Hoshizaki 68).

<a(1>>f = Pn

12



and

I0P -i.Tr(MM+ (1-19)

where is the normal component of o^^ .

Let us now consider the scattering of a polarized beam on a 

unpolarized target. Using Eq. (1-13) one obtains

Pi a<l)a(2) °p o (1-20)

+ - 3
We can define the polarization of the beam as Pg = Pg^ W = 1 

<o^ ' >^y ; and then the differential cross section I for this case 

given by:

1 +1I = -i Tr(MM ) + 4- 4 4
3
I

y=i
Tr (l^u1 ^°o2^^ ) (1-21)

The first term on the right-hand side is the differential cross 

section I0 for unpolarized beam-unpolarized target scattering, and the 
second is the contribution due to the initial polarization Pg . On 

the basis of invariance under time reversal we have the relation 

(Hoshizaki 68), (Wolfenstein 52)

Tr(Mo(1) M+) - Tr (MM+ o(1)) ; (1-22)

13



therefore Eq. (1-21) may be written in the form of

I = ^- Tr[(l + PB • o(1))MM+] (1-23)

using Eq. (1-19) one then obtains

I = IQ (1 + PB • nP) . (1-24)

The quantitv e = Pg • nP = PgPcos<j> (where <)> is the angle between the 

initial polarization vector, Pg, and the unit vector, n, normal to 

scattering plane) is called the asymmetry of the scattering. Its 

magnitude varies with both P (the magnitude of the polarization 

induced in the scattering) and Pg (the magnitude of the incident 

polarization). If, in a scattering experiment with known Pg, the 

asymmetry amplitude

£ = PPg cos<|>

is determined then the analyzing power A of the scattering is defined 

to be

A = £(<!> = 0)

For elastic scattering in the nucleon-nucleon system this reduces to

A = P .
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In order to measure the analyzing power A, we take the co-ordinate 

axes so that the initial polarization Pg is parallel to the z axis, 

and assume that the scattering plane Is set in the x-y plane 

Fig. (1-2). If the incident particles are scattered left (right) with 

respect to their initial direction, the angle $ between Pg and n is $ 

* 0 (n), and Eq. (1-24) becomes

yl h i(e,o) - i0(e)(i + PBP)

(1-25)

Yr £ 1(6,it) - I0(6)(l - PgP)

or, one obtains

Y
Y PBP •

Hence, the analyzing power A can be measured from the left-right 

asymmetry in the scattering process:

’ YR!
YL + V (1-26)
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Scattering to the left

Scattering to the right

Fig. (1-2): The scattering of polarized nucleons with their spin 
along the z-axis.
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C. Proton-Proton Elastic Scattering

In order to calculate the differential cross section for 

unpolarized beam-unpolarized targec scattering in terms of the 

scattering amplitudes, a, 3, Y, 6, and c, we substitute for M from 

Eq. (1-2) into Eq. (1-17) obtaining:

I0 - |a|2 + I3I2 + 2m2 + |6|2 + le|2 . (1-27)

In the case of polarized beam-unpolarized target scattering, using 
Eq. (1-21) one obtains:

I = I0 + 2PB • n Re {(a + 3)* (iy)}

or

I (1
-►

2Pr n Re{(a + 3)*(iy)}
) (1-28)

by comparison with Eq. (1-24) one gets

A(6) = P(6) = 2ReU° +
^o

(1-29)

This formula can also be obtained directly by substituting for M in 

Eq. (1-19).
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D. Small Angle Approximation

We are Interested in the small angle region where the 

contributions of the electromagnetic interaction due to Coulomb 

repulsion and nucleon magnetic moments cannot be neglected. Each 

scattering amplitude is expressed as a sum of a nuclear term and an 

electromagnetic term, i.e., a ■ <xN + aE . Considering the 

electromagnetic contributions and forming the bilinear combinations of 

the amplitudes, Eqs. (1-27) and (1-29) can be grouped into three 

different terms corresponding to the pure nuclear term, the pure 

electromagnetic term and an Interference term corresponding to the 

Interference between nuclear and electromagnetic terms.

*o “ *oN + *oE + *oI

where

*oN " •“Nl2 + 2IV2 + 'enl2 + |6N|2 + 'eNl2 

IoE - l“El2 + 2IYEI2 + I^e'2 + |6E|2 + leE'2

IoI m 2Re(ajjaE) + 4Re('YjgYg) + 2Re(3jj3E) (1—30)

+ 2Re(6jj6g) + 2Re(ejjeE) .

For the analyzing power we obtain 

I0A(6) - (I0A)n + (I0A)e +

18



where

(I0A)jj - 2Re{(oijj + 3n) (iYjj)}

= 2Re{(aE + gg) (iyE)}

(I0A)j = 2Re{(aj,j + gjj) (iYE)j + 2Re{(cxE + gE) (iYj^)}

(1-31)

where the subscripts N, E, and I represent the pure nuclear, the pure 

electromagnetic and the interference term, respectively.

Hie small angle behaviour of the amplitudes at 800 MeV which were 

obtained from the Arndt phase shifts analysis (Arndt 80) are shown in 

Fig. (1-3) and Fig.(1-4). One observes that except for the real part 

of the electromagnetic spin flip amplitude, HeYE, the real and 

imaginary parts of the electromagnetic spin-double-flip and spin-orbit 

amplitudes'(8e, 6e, eE, Yg) are negligible compared with those from 

the spin-independent Coulomb amplitude (“g). Using an approximation 

where these terms are neglected Eqs. (1-30) and (1-31) can be written 

in the form of

Iqn - I«nI2 + 2Iyn|2 + l%i2 + i6nI2 + I£n|2

^E “ •“E*2 

IoI S 2Re(oNaE)

(1-32)
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and

(I0A)jj “ 2ImajjReYjj + 2Im3jjReYjj — 2ReajgImY{ij ~ 2Re3jjIinYfj

(IqA)j7 — 2Imag RaYg 2RcagIniYg (l—33)

(I0A)i = 2ImaE ReY^ ~ 2ReaE ImYjj + 2ReY£ •

A further approximation can be made in (I0A)jj by neglecting 

contributions from ReaNImYN and Re3NImYjj [see Fig. (1-3)] . Tables 

(1-1), (1-2) and (1-3) show the Arndt predictions (Arndt 80) for each 

of the remaining terms in d0A)N , (I0A)E and (I{,A)I for the angular 

range observed in this experiment. These tables make it clear that 

with a very good accuracy contributions from Im8jj ReYjj in (IQA)N , 

ImOj, ReYft in (I0A)j and the pure electromagnetic term (I0A)E can be 

neglected.

(Iq^N “ 2Ima^ ReYu

(I0A)i = 2RbYe ImaN “ 2ReaE I,nYN (1-34)

or

IgA = 2Imajg(ReYjj + ReYg) — 2ReaE IidYjj •
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Fig. (1-3): The Arndt's phase shifts prediction for p-p hadronic 
scattering amplitudes at 800 MeV.
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Fig. (1-4): Electromagnetic scattering amplitudes for p-p at 800 MeV 
obtained from the Arndt phase shifts.
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6°cm ImOjj ReyN Im6jj ®-e^N

6 0.0920 -0.0028

8 0.1187 -0.0033

10 0.1443 -0.0033

12 0.1652 -0.0028

14 0.1855 -0.0018

16 0.1979 -0.0004

e°cm Rectg ImY-

6 -0.0013

1

00
i 

ioV

8 -0.0005 <10-9

10 -0.0002 <10-9

12 -0.0001 <10-9

14 0.0 <10-9

16 0.0 <10-9

Table (1-1) - The Arndt phase shifts Table (1-2) - The Arndt phase shifts 
prediction for pure nuclear terms prediction for pure electro­
in (I0A). magnetic terms in (I0A).

e°cm RfiOtg XmYjg Imag RgYj^

6 0.0587 0.0204 0.0021

8 0.0396 0.0148 0.0014

10 0.0266 0.0120 0.0010

12 0.0184 0.0101 0.0008

14 0.0127 0.0084 0.0005

16 0.0074 0.0072 0.0004

Table (1-3) - The Arndt phase shifts
prediction for interference terms in (I0A).
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E. Parameterization

The differential cross section Eq. (1-32) and analyzing power

Eq. (1-34) formulae can be written as a function of t , the

four-momentum transfer squared (-t = q2 = 2P2m(l--cos0 .) }, cur J y and a set

of parameters which have to be determined.

1. Cross Section

For the pure nuclear term in Eq. (1-32) we may use the following 

conventional parameterization known as the classical parameterization 

(Aebischer 77).

|aNl2 = |aN(0)|2eblt (1-35)

lf%l2 + |(SN|2 + leN|2 = (.l%(°)l2 + IV0) |2 + |eN(0) , (1-36)

where we make the traditional assumption that the slopes of the real 

and imaginary parts of the nuclear amplitudes are the same. It has 

been shown (Appendix B) that at t = 0

3(0) = 6(0) . (1-37)

Define p as the ratio of the real part of spin-independent amplitude 

at zero degrees to imaginary part of spin-independent amplitude at 

zero degrees and define R as the ratio between the summed moduli
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squared of the double-spin-flip amplitudes at zero degrees and the 

modulus squared of the spin-independent amplitude at zero degrees.

ReaN(0)
Imo^CO) (1-38)

2|0n(O)|2 + IeN(0)|2
R = -------------------- (1-39)

|“n(o)r

Substituting Eq. (1-35) and Eq. (1-36) into Eq. (1-32) and using 

Eq. (1-39) we may write:

!£|n = ^ [ivo)|2^ebit + Reb2tJ+ 2|yn|2j a-^o)
p

o
where da/dt = Tr/p da/dU and p is the center-of-mass momentum. But

! aN(0) 12 = (^0^(0) )2 + (ReoN(0))2

= (l + p2J(lmaN(0)j2 . (1-41)

Now the optical theorem gives a relation between O'Tq't , the total 

reaction cross section and Imo^(O) (Appendix A):

ImaN(0) = oToT
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Thus we may write:

It has been shown (Appendix 8) that the scattering amplitudes can be 

deconposed Into partial waves; for example, we may write:

y - I Y^pjce) • (1-43)
iodd

Here Yjj Is a coefficient which depends on the energy. This expansion 

is particularly useful when the number of partial waves is limited to 

some finite value ^mav, which is usually the case for the nuclear 

amplitudes. In Appendix B it has been shown that at small angles 

Eq. (1-43) can be reduced to the simple form

(1-44)Y * Y0sine .

Figure (1-3) shows Arndt prediction for the small angle dependence of 
the scattering amplitudes at 800 MeV. One observes that real and 

imaginary parts of the spin-orbit term show a sinusodal form that 

clarifies Eq. (1-44). Therefore we may parameterize the real and 

imaginary parts of YN in the following form,

ReYN * Yjsine

ImYjj = Y2sin®
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After substitution into Eq. (1-42) one obtains

do | 
dF IN

[JiL 0|oT (1 + p2J(eblt + Re^1] + 2(y12 + Y22Jsin2eJ .(1-45)
p2 16ir2

The spin-independent electromagnetic amplitude which corresponds 

to the one-photon exchange has been given by Bethe (Bethe 58):

aE 2hP
137f!Lt

el6c G|(t) (1-46)

where P is the momentum of the incident particle in the center-of-mass 

system, is the velocity of the projectile in the laboratory frame 
(in units of c) and ^^(t) is the electromagnetic form factor for 

proton^proton scattering. Gp(t) has the following empirical form

Gp(t) 1
(1 + 111/c)2

(1-47)

where c has been found from a dipole fit (Coward 68) 

c - 0.71 (GeV/c)2 .
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$c is the Coulomb angle, which is a modification to the nuclear phase 

shift due to the presence of the Coulomb potential. It has been 

calculated non-reiativistically by Bethe (Bethe 58) as

6 c
2

137Bl
Ln(-0.209j 

a/ft]
(1-48)

where a is the radius of interaction region (1 fm). A relativistic 

expression has been given by Locher (Locher 67),

1378t
[l4 - Ln(4j1/2RP - I] (1-49)

which yields a similar value of 6C . Here R ~1.5-fm is the effective 

strong interaction radius. Y = 0.577 is the Euler constant, and 0 and 

P are the center-of-mass scattering angle and momentum, respectively.
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From the above considerations the electromagnetic contribution to the

cross section is

do i 
dt '£ (137)2 B2t2

cj(t) (1-50)

The contribution to the cross section due to the interference 

term in Eq. (1-32) may be written in the form of

il [2Re(aNaE^]
UL p*

“ —r- (ReaNReaE + ImaNImaE] PZ

Using Eq. (1-38) and the parameterization given by Eq. (1-35) for the 

t dependence of lo^Ct)! we can write:

^\Im^ ImaN(o)eblt/2 (pReaE + ImoE)

= —0T0Te^lt^^PReaE + ^maE^ (1”51)
2p2

where in the last step we have used the optical theorem.
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Substituting the real and Imaginary parts of Og from Eq. (1-46) into 

Eq. (1-51) one obtains

do | 
dt I1 137eLt

(pcos6c + sin6c)e^>lt^ (1-52)

Now for an 800 MeV proton beam the value of 6C In the range of 
four-momentum transfer squared, t, covered in this experiment is very 

small. We will therefore write

do | 
dt I1

0ToTGp(t)
137eLt (p + 6 , b t/2 Je 1 (1-53)

where the approximations cos6c = 1 and sin6c - have been used.
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Combining Eqs. (1-45), (1-50), and (1-53), we obtain the elastic 

cross section for small angle proton-proton scattering in terms of p, 

R, ^ToT’ ^i» b£, 3s:

l^ = _!!tT(l + P2)^ +Reb2t] 
dt 16irfi2

1^3Lt
(P + <5c)eblt/2

+ 4 irfi
(137)2g2t2 Gp(t) Y22jsin2e (1-54)

2. Analyzing Power

Here again we may use the same functional form for Imo^ and 

defined in Eq. (1-35) and Eq. (1-44) respectively

ImaN = ImaN(o)eblt^2 

ReYfl = Yjsin6 

ImYN = Y2Sin6 .

The pure nuclear term in Eq. (1-34) can therefore be written in the 

form:

(I0A)n = 2YiImaN(o)eblt/2 sin0
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and by using the optical theorem, we obtain

Uo^N
kYj.
2n °ToTebit/2 slnG (1-55)

From Eq. (1-46) the real part of spin-independent electromagnetic 

amplitude has the form:

ReaE
2fcP

1376Lt
G?(t> (1-56)

The spin-orbit electromagnetic amplitude correspond to the one photon 
exchange is (Bourrely 74)

ReYE =
- m^ + l/4t Gp(t) {[2(o + m + ■ .r 1L 4(u + m)

2 x 137(o(<o + m)/111

+ [3u)((o + m) + t]tn

+ ~ 1)2 t[2io2 + 3(om + m2 + I t]} (1-57)
+ m)

where <o = 1/2 /s , p and m are the respective magnetic moment and mass 

of the proton and (t) is proton form factor defined in Eq. (1-47).
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Substituting for ImaN> loYfl, and ^eaE t^ie interference term

represented by Eq. (1-34), we obtain:

2, -ToT ebit/2 R6Ye + 4*PY2
T37^T Gp(t)sin6 (1-58)

where ReYE is given by (1-57) .

Combining Eqs. (1-55) and (1-58), we obtain the expression for 

(I0A) in terms of bj, Yj, and Y2 as:

(IqA) S (IqA)! + (I0A)n

> _k_ b t/2

+ kYi
2n °ToT ebit/2 sin6 (1-59)
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CHAPTER II

THEORETICAL ASPECTS FOR PROTON-DEUTERON DATA

In this chapter a brief exposition of the theory of 

hadron-deuteron scattering developed by Alberi elt al. (Alberi 79) is 

presented. We will discuss the essential aspects of this theory which 

was used in the analysis of the p-d data obtained in this work. We

also parametrize the p-d elastic analyzing power terms of

nucleon-nucleon amplitudes.

A. The Breit Frame (Hagedorn 73)

Most of the calculation for the proton-deuteron problem is 

performed in the Breit frame. Consider, an elastic scattering event 

and define the momenta before and after scattering, as shown in Fig.

(2-1).

I

A

k.'K.K.)

Fig. (2-1): Two Body Scattering Schemes.
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0.
+ +

We apply a Lorentz transformation such that + K2 =

Therefore and k2 will have the form

kx = (ui,K) (2-1)
->■

k2 = (u.-K) .

From energy conservation it follows that the energies of the particle

with mass m before and after the collision, and 62 must be equal,
-»■ -»•

el = e2 = e’ hence IP^I = IP2I and

Pi = (e,Pi)

P2 = (e,P2) (2-2)

with

IPil = |P2I = /e2 ~ m

From kj - k2 = P2 - Pj follows

+ + + 
kj - k2 = (0,2K) = P2 - Pi = (0,P2 - Pi)

2K is the "three-momentum transfer"-

(2-3)
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Equations (2-1), (2-2) and (2-3) yield the following picture. 

All particles seem to be reflected on a hard wall; the particle with 

mass w perpendicularly [see Fig. (2-2)].

Fig. (2-2): The Breit System.

The advantage gained by working in the Briet frame is; first, the use 

of a non-relativistic deuteron wave function is better justified, and 

second, the proton scattering angle is smaller in the Breit frame than 

in center-of-mass frame. Therefore, the Glauber theory is more valid.

B. Nucleon-Nucleon Amplitudes in Breit Frame

In the deuteron Breit frame the nucleon-nucleon amplitudes have 

the following general form:
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Here, the Pauli matrices Oj and 02 refer to the projectile and target, 
respectively. The unit vectors ®j»dj and nj are taken along the 
average projectile momenta, l/2(Pj + Pj), the momentum transfer, Pj - 

P2, and perpendicular to the scattering plane, Pj x P2* respectively. 

The superscript j is Introduced to indicate that the amplitudes are 

evaluated in different configurations, j ■ 0 refers to the single 

scattering, j ■ 1 to the first scattering in the double scattering
amplitude and j ■ 2 to the second one. The amplitudes of f£^---

are functions of energies and momentum transfers in the p-d scattering 

process (this is because in the single scattering process the nucleon 

which Interacts with the projectile recoils with the same momentum 

transfer as the whole deuteron system does) which is different for 

j ■ 0 and j ■ 1,2. The Breit amplitudes can be related directly to 

the nucleon-nucleon amplitudes in the center-of-mass (a, y, (3, 6, e)

defined in Chapter I, through a Wigner rotation (Gasiorowicz 66).

C. Proton-Deuteron Scattering Formalism

The p-d matrix is, in general composed of 12 independent complex 

amplitudes, as follows from time reversal and parity invariance 

symmetries. A convenient decomposition of the p-d collision matrix F 

in the deuteron Breit frame (deuteron reverses its three-momentum in 

the scattering) in terms of the spin-1/2 operators (proton) o , 0 , 0U iw jr
A A A A A

and oz, the spin-1 operators (deuteron) o0, jx, jy, jz, and the
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A A A A A A

quadrupole operators Qlk - + J^Ji) “ 2/36ik°o i*k “ x»y*z h?s
the form of (Albert 79):

F ■ F°ort + Fxo„ + Fyov + Fyo_ t o X y z

where

f° - FX + F?3y + fSx «xx + Fyyqyy ,

f* ■ rjj« + F^yV (2-5)

fF ** Foao + Fy3y + Fxx^xx + Fyy^yy

F2 - 13* + 1zQyz •

Here, x Is along the momentum transfer, z Is along the average of the 
Initial and the final momenta of the projectile and y is orthogonal to 

the scattering plane [see Fig. (2-2)]. Albert ejt al^. (Albert 80) 

have calculated all 12 amplitudes within the multiple scattering 

formalism based on invariant Feynman diagrams. They calculate the 

proton-deuteron scattering amplitude in the deuteron Breit frame, 

where the use of non-relativistic wave function for the deuteron is 

best justified. These calculations are rather lengthy and not 

transparent, and we will outline briefly their method of calculation.

In their approach, which is similar to that used in the Glauber 

model, only the single (Fg amplitude) and the double scattering (Fp 

amplitude) terms are Included. Fs and Fp, when written out in terms 

of the proton-proton amplitude, f, the proton-neuteron amplitude, g,
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and the deuteron wave function, ^(r), have the form of

P8(q) - / d3r e"1^^72 *+(0[f°(Q) + g°(Q)]*(0 (2-6)

and

Fd(Q) - - i (2ir)-3 / d3q G / d3r e-1^^ *+(0[g(2) (Q/2)f(1)(Q/2)

+ f2(Q/2)g(1)(Q/2)]*(r). (2-7)

G0, which appears In the double scattering term, Is the exact free 

wave propagator. The amplitudes f and g depend only on the three 

momentum transfer Q, (Q Is momentum transfer of p-d scattering 

process). The momentum dependence, q, of them Is neglected compared 

to that coming from the wave functions of deuteron. After 

substitution for f and g from Eq. (2-4) and performing the algebra on 

the Pauli matrices, the integral over r Is evaluated and expressed In 

terms of form factors. In the double scattering term the q Integral, 

involving a form factor and the propagator Is performed analytically 

by parametrizing form factor as a sum of Gaussians. After some 

algebra and symmetrlzation, the scattering matrix can be expressed in
A Aterms of the spin-1 operators j, The nucleon-nucleon amplitudes

defined In (2-4), can be obtained from the nucleon-nucleon amplitudes 

in the center-of-mass (a, y, 0, e and 6) through a Wigner rotation.
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For p-d scattering, the density matrix Is 6 x 6. In analogy with 

Eq. (1-20), the density matrix for the scattering of a polarized 

proton beam on an unpolarized deuteron target has the form of:

3
p - 1/6 0o + 1/6 l <o<1>> (2-8)

P-1

♦ p m ~where Pg - 2. <0^ '>P Is the beam polarization vector and, superscript
P-1

1 and 2 stands for projectile and target. As shown In Chapter I, the 

differential cross section is given by

I - Tr(FpFt) . (2-9)

After substitution for p in Eq. (2-9) from Eq. (2-8), one obtains:

3 +
I - 1/6 (FF+) + 1/6 l PB • pTrtFoJ1) o£2) F+J . (2-10)

P-1

The first term on the right-hand side Is the differential cross 

section, I0, for scattering of unpolarized proton beam on an

unpolarized deuteron, and the second term is the contribution due to
♦

the Initial polarization Pg. After substitution of the collision
A

matrix, F, one gets:

I - IQ + 2PB • nRe(Tr(F°+Fy)) , (2-11)

where

I0 - 1/6 Tr(F+F),
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and n is normal to the scattering plane. In Chapter I it was shown 

that

I = I0(l + PB • nP) ,

where P is the analyzing power. By comparison of this formula with 

(2-11), one gets the following expression for the proton-deuteron 

elastic analyzing power

Ay(0) = P(0) 2Re(Tr(FotFy)J 
Tr(FfF) (2-12)

After expressing the amplitudes F1 in terms of p-p and p-n amplitude 

in IQ and Ay(0), one gets a rather lengthy expression for differential 

cross section, IQ, and analyzing power, Ay(0). Figures (2-3) and 

(2-4) display the prediction of this theory for the elastic 

differential cross section and the analyzing power in p-d scattering, 

using the Arndt phase shifts prediction for the nucleon-nucleon 

amplitudes (Arndt 80) as input (solid lines). The dot-dashed curves 

were calculated in the single scattering approximation. The dashed 

curves were calculated without considering contribution of the 

double-spin-flip nucleon-nucleon amplitudes.
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P+d ELASTIC SCATTERING 
Tp ■ 800 MeV

----- FULL CALCULATION
-----NO DOUBLE SCATTERING
-----  NO DOUBLE SPIN FLIP

-t[{GeV/c)2]

Fig. (2-3) : Alberi et al. prediction for p-d elastic differential 
cross sectTcm using the Arndt phase shifts prediction for 
nucleon-nucleon amplitudes at 800 MeV as input.
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P+d ELASTIC SCATTERING 
Tp •800 MeV

----- FULL CALCULATION
----- NO DOUBLE SCATTERING
----- NO DOUBLE SPIN FLIP

0.0 002 004 0.06 008 0.10 0.12

-l[(GeV/c)J]

Fig. (2-4): Alberi et al. prediction for p-d elastic analyzing power 
using tKe Arndt phase shifts prediction for 
nucleon-nucleon amplitudes- at 800 MeV as input.
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It Is seen that, In contrast to the analyzing power where the double 
scattering term plays at most a ~5Z role, at |t| >0.1 (GeV/c)^, the 

differential cross section Is more strongly effected by the double 

scattering. The reason for this Is that the analyzing power, Ay(6), 
Is given as a ratio of two expressions (2-12), and the double 

scattering process will contribute approximately' equally to the 

denominator and numerator (Bleszynskl 80). Also, at small angles the 

d-wave part of the deuteron wave function gives a rather small 

contribution. Thus the analyzing power in p-d elastic scattering at 

small angles appears to be a very simple tool for extracting the 

spin-orbit part of the p-n amplitude.

All of this leads to the following simple result for the 

analyzing power, Ay(0) at small four-momentum transfer |t| X 0.1 
(GeV/c)2:

Ay(e) = 2Re[(a + B)*(iy)]/[|5|2 + 2|y|2 + |B|2 + |e|2 + |J|2] ,

(2-13)
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where

a

y

B

e

3

T ^°pp + ^pn^ *

2 ^pp + ^pn^ *

2 ^®pp + ^pn^ *

2 ^epp + epn^ *

2 (6PP + 6Pn) ’

are the Isospln averaged nucleon-nucleon amplitudes 

Chapter I. A further approximation can be made by 

contribution from the double-spin flip amplitudes [see Fig

Ay(6) -
2Re[(a)*(iy)]

' ■ 1 •

|a|2 + 21Y12

(2-14)

defined in 

neglecting 

(2-4)]

(2-15)



We may introduce the same parameterization used in Chapter I 

[Eq- (1-35) and Eq. (1-44)] for spin-independent and spin-orbit

nucleon-nucleon amplitudes

app = app(0)ebpt/2 *

apn = apn(0)ebnt:/2 * (2-16)

Ypp = (^ip + iY2p)sine ,

V = (Yin + iY2n)sine •

where 6 is center-of-mass scattering angle, and, -t, is the four

momentum transfer. We define p (p ) as the ratio of the real partpp pn
of the spin-independent pp(pn) amplitude to imaginary part of the 

spin-independent pp(pn) amplitude for t = 0. By making the

traditional assumption that the slopes of the real and imaginary parts 

of the spin-independent nuclear amplitudes are the same and using the 

optical theorem (Ima(O) = k/4Tr °^0^), Eq. (2-16) can be written in the 

form of:

Root + ilmot PP PP
kap
4if

(i + ppp>ebPt/2

and (2-17)

ko
Rcapn + ilmapn sr <i + ppn)ebnt/2
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where k is the center-of-mass wave number for nucleon-nucleon

scattering, and o^ and on are total reaction cross section for p-p and 

p-n scattering, respectively at 800 MeV.

After substitution for °pp» apn» ^pp and Ypn in Eq. (2-15) one 

obtains the expression for the elastic proton-deuteron analyzing power 

In terms of ppp, ppn, op, on, bp, bn, Ylp, y2p, yln, and Y2n:

. k[op(A-pppB)eV/2 + °n(A " PpnB)«bnt/2]sine
Ay(e)- - - - - - - - - - - - - - - - - -—- - - - - - - - - - - - - - - -  (2-18)

where

1 - |al2 + 2|Y12 [(o ebpt/2 + onebnt/2J2
64irz H

+ (pppOpebPt/2 + Ppn°nebnt/2)2] + 2(a2 + B2)sin2e

and

A " y ^lp + ^ln^

B “ Y ^2p + Y2n> * (2_19)
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CHAPTER III

EXPERIMENTAL SETUP

The experiment reported in this dissertation was performed on the 

External Proton Beam (EPB) facility at the Clinton P. Anderson Meson 

Physics Facility (LAMPF).

A beam of protons with an energy of 800 MeV traversed a volume of 

gas in the scattering chamber and the scattered recoil particles 

traversed a system of apertures before entering the detector 

telescope.

A. The Proton Beam

The LAMPF facility is an 800 MeV linear proton accelerator 
capable of simultaneously accelerating protons (H+) and negative 

hydrogen atoms (H~) and supplying them to several experimental areas. 

A H“ polarized beam is also available. The macroscopic duty factor is 

6%. This consists of a 500 ps macropulse at 120 cycles per second. 

Each macropulse has a microstructure consisting of 0.25 ns wide bursts 

every 5 ns. A chopped RF beam can run at 40 ns or 80 ns. 

"Experimental Area B", which contains several secondary beam lines, 

including EPB, is shown in Fig. (3-1). Line B brings an H“ beam from 

the LAMPF switchyard to EPB. Upstream from our scattering chamber the 
H“ beam was changed to an H+ (proton) beam by passing it through a 

thin foil. This was necessary since otherwise the H“ beam would have 

dissociated into a proton and two ~400 keV electrons after entrance 

window of the scattering chamber, and the 400 keV electrons could 

cause unwanted noise in our detectors. The EPB has three quadrapole
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Fig. (3-1): Experimental Area B at LAMPF.
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magnets which may be used to adjust the spot size of the beam at 

various locations in the line. Usually EPB provides a 3-mm diameter 

pencil beam with low intensity < 10 nA. Hie energy of the LAMPF 

accelerator was estimated to be 796 ± 2 MeV. This value was obtained 

from the magnetic field setting of the LAMPF High Resolution 

Spectrometer (HRS) for elastically scattered protons. The energy 

obtained from the HRS was found to agree to better than 1 MeV with a 

simultaneous determination made by laser dissociation of H- ions 

(Clark 79).

For the first part of this experiment a beam of unpolarized 

protons with an intensity of about 2 nA was used; and for the second 

part (time-of-flight) a chopped bursts 40 ns apart, unpolarized proton 

beam with an intensity of about 10 nA was used. In the third and 

fourth parts of this experiment a beam of polarized protons with an 

intensity of about 2 nA was used.

B. Scattering Chamber

A view of the scattering chamber is shown in Fig. (3-2). It is 

a box with dimensions 63 cm x 33 cm x 25 cm (width x length x height). 

The entrance and exit windows are 5 mil thick kapton. Two sets of 

solid state detector telescopes were mounted on movable arms. 

Directly in front of each detector telescope there is a circular slit 

of 6.3-mm thick brass with a radius of 3.96 mm. This radius is 

commensurate with the active areas of the solid state detectors placed 

behind it and the recoil particle trajectories through the collimation 

system. In the front, 5.08 cm from the beam line, there is an
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solid state detector telescope.
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adjustable collimation system consisting of vertical brass slits 19 mm 

thick with a narrow 1 mm thick step to minimize slit scattering. 

These slits were fixed to allow recoil particles from the interaction 

region with scattering angles between 0^ and 0mav. through the 

circular back slit. The upstream front slit was adjusted so that 6mi.n 
was somewhat smaller than the angle at which the recoil particles from 

elastic scattering have sufficient energy to penetrate through the AE 
and E detectors of the detector telescope. The downstream front slit 

was adjusted so that 0 was somewhat larger than the angle at which 

the recoil particles from elastic scattering have sufficient energy to 

penetrate through the AE detector and into the E detector. Note that 

the recoil energy decreases with increasing 0. In our discussion 0Q 

is defined as the angle between the center line of each telescope arm 

and the beam direction, and H is the perpendicular distance from the 

beam direction to a middle point in circular slit. Table (3-1) 

summarizes values of 0o and H for the four different parts of this 

experiment.

As is shown in Fig. (3-2) four pieces of brass were placed in 

the scattering chamber to provide shielding for the solid state 

detectors from particles which were produced by interactions between 

the beam and the entrance and exit windows. Upstream of the chamber 

lead bricks of sufficient thickness to stop 800 MeV protons were 

placed around the beam pipe; and downstream some lead bricks were 

placed around the beam pipe.
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In the second part of this experiment (time-of-flight) a system 

consisting of a thin brass tube which covered the path between the 

vertical front collimators and the circular back collimator along with 

two permanent magnets positioned at the left and right side of tube 

was added to the setup in order to reduce the background due to the 

fast electrons produced by beam gas target interactions.

Setup CD o 
o H cm

Time-of-flight 87.8 20.36

AE, E unpolarized 83.5 16.27

AE, E polarized 83.5 20.06

E, E polarized 79.00 19.82

Table (3-1) - Values of 0Q and H for different 
parts of experiment.

C. Solid State Detectors

A series of Ortec surface barrier detectors was used in this 

experiment. Under a special order these detectors were prepared by 

manufacturer for use in hydrogen atmospheres.

53



Tables (3-2) to (3-4) summarize the detector specifications in each 

arm for the different parts of the experiment.

Detector Serial No. Sensitive Depth pm

el 19-405E 49.9
VETOl 17-503B 300
er 19-404A 95.8

VETOj^ 17-503A 300

Table (3-2) - Detector specifications in each arm
for time-of--flight setup.

Detector Serial No. Sensitive Depth pm

ael 19-405E 49.9

el 18-246D 1400

VETOl 17-503B 300
aer 19-404A 95.8
er 18-246A 1400

VETO,,K 17-503A 300

Table (3-3) - Detector specifications in each arm 
for AE,E setup.
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Detector Serial No. Sensitive Depth pm

ael 18-246A 1400
el 18-246D 1400

VETOj^ 17-503B 300

Table (3-4) - Detector specifications for E,E setup.

D. Gas Handling System

With the advise of Mr. J. Novak of the LAMPF Staff, a gas 

handling system was designed and built for this experiment which 

satisfied the stringent LAMPF safety requirements for hydrogen gas 

targets. Figure (3-3) shows this system. The vacuum integrity of the 

system permits pressures of less than 10 * torr. Two Wallace and 

Tiernan pressure gauges with range of 0-800 mm Hg and 0-110 mm Hg were 

used in this system. They were calibrated against an MKS Baratron 

pressure transducer which had a system error of ±0.08%.
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E. Electronics

Each of the Silicon detectors was biased (AE,E positive and VETO 

negative) with sufficient voltage to extend the depletion layer to the 

full thickness of the device. Thus the entire volume of the detector 

was sensitive to charged particles, providing an optimum detection 

efficiency. The signal from the detector was a current pulse with a 

total charge proportional to the energy deposited by the particle 

which had crossed the detector. Figure (3-4) shows a block diagram of 

electronics. A solid state preamplifier (Ortec 142) was located near 

the detector to minimize the capacitance of the connecting cable. The 

analog signals (energy and timing) from AE,E and VETO detector 

preamplifiers were fed directly to the counting house. The

preamplifier energy signals corresponding to AE and E detectors were 

fed into an amplifying stage (Canberra 1413) and used for pulse-height 

measurements in a CAMAC ADC. The timing signal of each preamplifier 

(E, AE, VETO) was passed on for appropriate amplification (LRS 612). 

Amplifier outputs were passed through constant fraction discriminators 

(Ortec 934) and the resulting logic pulses for each arm were then fed 

into a coincidence unit (LRS 365AL) where the coincidence AE^ * *

VETO^ and AE^ • E^ VETO^ (in the case of time-of-flight setup E^ • 

VETO^ and ER • VETOR) were formed defining INTERRUPT signals for the 

right and left arm. As is shown in Fig. (4-3) when the INTERRUPT 

signal corresponding to either arm was in coincidence with the RUN 

signal provided by the computer (or in the case of the time-of-flight 

setup coincidence with the BEAM GATE signal) and in anti-coincidence 

with a computer busy signal, a STROBE signal was generated for that
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arm which was input to CAMAC register (LRS 2341). Left and right 

STROBE signals were fed into an inclusive OR gate and the output was 

used as a gate for the register and trigger for the computer. Also, 

after some pulse width and delay adjustment, the left and right STROBE 

signals were formed into gate signals for the ADC. The computer 

trigger allows the detector pulse height and time-of-flight 

information to be read into the computer for further processing. The 

CAMAC scalers, and various detectors and monitors were gated in 

several different ways. The following scaler gate/inhibit signals 

were generated:

RUN * BEAM * COMPUTER BUSY (for normal and reverse beam spin)

RUN * BEAM (for normal and reverse beam spin)

RUN (for normal and reverse beam spin).

These were made using the LAMPF Gate Generator which has the following 

facilities:

1. RUN and RUN flip-flop with TTL output.

2. TTL BEAM GATE output.

3. TTL-NIM, NIM-TTL, TTL-TTL converters.

4. TTL coincidences.

The ratio of the INTERRUPT (gated by RUN * BEAM) to STROBE (gated 

by RUN * BEAM) is the computer live time, a measure of the event 

taking rate capabilities of the system.
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F. Data Acquisition System

The CAMAC modules are linked to a PDP-11/45 computer through an 

MBD-micro programmed branch driver. The MBD controls the CAMAC branch 

and performs data transfer to the PDP11 memory by the LAMPF data 

acquisition program "Q". When a STROBE signal is sent to the MBD, 

approximately 40 data words associated with an event are read from the 

CAMAC into a 800 word software buffer. When this buffer is filled it 

is written out onto the 7-track, 800 bpi (byte per inch) magnetic type 

drive. When the computer is not busy with these transfers, some of 

the events are processed by a program called "the event processer" in

conjunction with a "TEST FILE". For example, from the raw detector

pulse height and time of flight data the "event processor" calculated 

the actual energy losses in MeV for the individual AE and E detectors,

the total energy AE + E in MeV, the particle mass for a given AE • E

VETO coincidence, and the actual time of flight in ns from the 

interaction volume to the detector.

The "TEST FILE" performs a set of logical tests on each event. 

These tests are of two types: "Micro-Tests" and "Macro-Tests." 

"Micro-Tests" are applied directly to raw or computed quantities. 

They can be cuts, boxes, or bit tests. "Macro-Tests" are logical 

"AND" or "OR" combinations of "Micro-Tests" or previous "Macro-Tests".

Raw or computed quantities from the processor may be displayed on 

line by a display package, either as a histogram or as a dot plot on 

the graphic display terminals.
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G. EP8 Polarimeter
In order to obtain the analyzing power, A^, from the 

experimentally observed asymmetry, e, It is necessary to know the beam 

polarization.

e - APb . (3-1)

The EPB polarimeter is a secondary standard of known analyzing power. 

A typical experiment measures the asymmetry for the reaction of 

interest relative to the asymmetry of the polarimeter. The 

polarimeter setup is shown in Fig. (3-5). Hie reaction chosen for 

the EPB polarimeter is pp pp elastic scattering. Primary and 

conjugate protons in coincidence elastically scattered from the 

hydrogen in a CH2 target are detected near the laboratory angles of 
17° and 66.4°, respectively, in each of four directions, left, right, 

up, and down, by four pairs of scintillation detectors. The 

left-right detectors measure the vertical (y) component of beam 

polarization, while the up and down detectors monitor the 

horizontal-transverse (x)component. Coincident events detected in 

this way are not only from the reaction pp + pp but also from C(p,2p) 

(quasi-free scattering) (McNaughton 80). Taking into consideration 

these quasi elastic coincidences the EPB polarimeter gives a 

calibrated total analyzing power A^ ■ 0.481 ± 0.002 at 796 MeV 

(McNaughton 80). For accurate work with this polarimeter random 

coincidences are measured in each direction by 20 ns delayed 

coincidences. When the true real coincidences are calculated from

61



O''N5

Fig. (3-5): EPB Polarimeter Setup



subtraction of these random coincidences the EPB polarimeter readings 

are reproducible to better than 0.5%.

The electronics setup for the polarimeter consists of high 

voltage power supplies for the phototubes, discriminators for the 

anode signals, and fast coincidence units. Each coincidence (L, R, U, 

D) is scaled in two CAMAC scalers, one gated for "normal" beam spin 

(N), the other for "reverse" (R).

Using formula (3-1) and the known analyzing power for the 

polarimeter, Ay, the beam polarization, PB may be determined by 

measuring the experimental left-right asymmetry e which is defined as

L - R
L + R (3-2)

where L is the geometrical mean of events that scatter left (the 
coincidence of 17° left and 66.4° right is known by convention as 

"left") when the beam polarization is up, LI, and right when the beam 

polarization is down, R+, L ■= /L+R+ ; similarly R = /RtL+. It is well 

known that use of this technique cancels instrumental asymmetries to a 

high order (Ohlsen 73).

H. EPB Faraday Cup (Barrett 75)

Figure (3-6) shows the general design of the EPB Faraday Cup. 

The EPB beam which has low emittance (<lmr-cm) and energy spread (±3.5 

MeV) is virtually free of contamination from other charged particles. 

This beam enters the main body of the Faraday Cup and is stopped by 45 

cm of lead (the range of 800 MeV protons in lead is 39 cm). The
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re-entrant tube has an outside diameter of 35 cm, an Inside diameter 

25 cm, and a length of 75 cm* The total length of the Cup Is 120 cm 

Including the beam stop.

The probability for a 800 MeV proton stopping without undergoing 

an nuclear inelastic collision is only 11% (Jannl 66) so that 

secondary protons must be considered, particularly those produced by 

(n,p) reactions near the surface of the lead and then lost from the 

Cup. A 1.25 cm thick graphite shell surrounds the lead to reduce this 
effect by virtue of the much smaller ^C(n,p) cross section.

The 75 cm long re-entrant cavity was designed to capture 

secondary emission electrons produced when the beam strikes the inner 

surface of the lead cup. At 800 MeV the secondary emission efficiency 

is about 2.5%; thus, since the cavity is 85% enclosed, at most 0.4% of 

the proton beam current could be lost through secondary electron 

emission. In order to reduce this effect still further a small magnet 

produces a field of ~15 Gauss across the entrance port. Overall, the 

total electron loss is estimated to be less than 0.1%.
A 50 cm diameter, 0.32 thick stainless steel electrostatic shield 

surrounds the Cup, as shown in Fig. (3-6), with lucite standoff 

insulators isolating the Cup from the shield. The Cup and the shield 

have separate electrical output leads through the other vacuum vessel. 

The entire assembly was connected directly to the accelerator vacuum 
system, maintained at a pressure of the order of 10-^ torr. This 

vacuum level reduced the possibility of the positive ions being 

produced by radiation in the gas surrounding the Faraday Cup to 

essentially zero.
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The charge collected by the Faraday Cup was fed through ~40 m 

long, coaxial cables to an Ortec 439 charge digitizer. Charge leakage 

due to insufficient impedance to ground may occur in either the 

Faraday Cup, the cables, or the associated electronics. Leakage 

current has been found to be less than 1 PA Dark current can also be 

induced through pickup from the RF fields associated with the 

accelerator. The ground shield and an RF filter at the input to the 

digitizer kept dark currents generally below 1 PA level

The EPB Faraday Cup has been calibrated and tested by different 

methods. These results indicate that the absolute calibration of the 

Faraday Cup has a maximum uncertainty of less than ±1%.
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CHAPTER IV

EXPERIMENTAL METHOD

In this chapter we will discuss some theoretical consideratins 

underlying the experimental techniques used in this experiment.

A. Reaction Considerations

For small angle elastic scattering in a process like

P + X - P + X . (4-1)

X has a laboratory angle near 90°; more exactly, 0^ approaches 90° as 

6p approaches zero degrees. If X has no excited states which are 

bound against particle emission, then in the inelastic scattering 

processes like P + X -► P + X*, X* will decay to X* -*■ A + B soon after 

its formation. Thus in inelastic scattering, in order to have X in 

final state we must produce another particle, y;P+X-*-P+ Y + X. 

However, from the kinematic relations for this type of reaction, there 

is a upper limit for the scattering angle, 0', for a particle of type 
X: 0 <90°. Figures (4-1) and (4-2) make this discussion clear for

the p + p and the p + d reactions respectively. Recoil particles with 
a scattering angle, 0, 0__„ <0<9O° , must come from an elastic event.

IDaX
/The maximum angles, ®max for the recoil particles with inelastic 

particle production in the p-p and the p-d reactions at 800 MeV are 
53.6° and 60.5° respectively. As was discussed in Chapter III, the 

interaction region in the scattering chamber is defined by a two slit 

collimation system. By adjusting the vertical front slits we can
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define an angular acceptance from 8m<n to 6mflV for recoil particle 

trajectories from the Interaction region through the circular back 

slit [see Fig. (3-2)]. As discussed in Chapter III, the values of

®min’ 6o an<* ®max were chosen to match the characteristics of the 

particular particle telescope being used in a given part of the 

experiment.

B. Geometrical Considerations

With the experimental setup explained in Chapter III we are able 

to measure the yield per kinetic energy interval, dY/dT , for the 

recoil particles which stop in the solid state detector telescope. 

For the given geometry in this experiment Whitten (Whitten 75) has 

shown that the elastic differential cross section in the laboratory 

system, do/dft (®x) for the process P + X ♦ P + X is:

do
dfi” (6x>

(dY/dTx)(dTx/dex)
nNsin0xA(ex) (4-2)

where Tx is the laboratory energy of the recoil particle. N is number 

of beam particles, and n is the number of target nuclei per unit 

volume in the target gas. The term A(0X) is a geometrical factor 

(dimension length) which depends on the geometrical specifications of 

the experiment.
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6pl
Fig. (4-1): Kinematic relation between TpL and Gp^ for the reaction 

p + p -► z + p, where the incident protons have a kinetic 
energy of 800 MeV. The curves represent various choices 
for Mz, the invariant mass of z. For elastic events 
Mz = Mp and for inelastic events M2 > Mp + M^o.
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Fig. (4-2): Kinematic relation between and 0^ f°r reaction
p + d -► z + p, where the incident protons have a kinetic 
energy of 800 MeV. Here z represents everything in the 
exit channel other than the deuteron particle. Each 
curve represents a choice for Mz, the invariant mass of 
z. For elastic events M = M^ and for inelastic events 
Mz > M + M^o.
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For our geometry Whitten (Whitten 75) has shown that to very good 

accuracy

A(ex) cos(ex - e0)
1 sine.. J (4-3)

where H>> dimensions of beam and H>> dimensions of back collimator.

Here A is the area of the circular back slit, and H and 6 are definedo
in Chapter III [see Fig. (3-2)].

C. Kinematic Calculations

Equation (4-2) expresses the differential cross section for 

elastic scattering in terms of the laboratory angle of the recoil 

particle. In this section, following the discussion by Whitten 

(Whitten 75), we will transform Eq. (4-2) to express the differential 

cross section in terms of the four momentum transfer squared -t; that 

is;

£<*> •

We may write

-t « qZ = 2MTlab (4-4)
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da(t)
dt

da(0x)
“anlab

d“lab
dt

Using Eq. (4-2) in (4-5) gives

dc(t) , dY/dTX dTX d%ab
dt nHsin8labA(8lab) d0lab dt

where all quantities correspond to the recoil particle.

dTV
lab

d^lab dT.
dt ) = 2Trsinelab ‘lab

dt

Using (4-4) we obtain:

Olab ' <J> lab

which substitution of (4-7) into (4-6) gives

do(t) = i" dY a .it. r 1 i~dt~ ldr~J 1mj l^nw;—yJ 
x xlab

(4-5)

(4-6)

But:

(4-7)

(4-8)
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The value of 0_ for the recoil particle can be obtained from the xlab
kinetic energy of the recoil particle, Tx, using the kinematic 

relation:

COS0xlab
(Eq + Pp)^/2

PQ(TX + 2M)1^2 (4-9)

where E0 and PD are the initial total energy and momentum of the 
incident projectile (in our case a proton) in the laboratory frame, 

and M is the rest mass for the recoil particle.

D. Method of Particle Identification

1. AE,E Setup

For the AE-E-VETO detector telescope which looked at events 

corresponding to AE • E • VETO coincidences, we measured the energy 

losses in the AE and E detectors for particle stopping in the E 

detector. Figure (4-3) shows a two-dimensional raw dot plot of energy 

loss of particle in the passing detector (AE) vs. E^, = E + AE where E 

is the energy deposited in E detector. Thus we have an energy 

spectrum for each particle type (proton or deuteron) within some 

energy range. This method of particle identification has some 

problems, since it uses a very large two-dimensional space in the 

co-ordinates AE and E.J,.
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In order to be able to derive a particle identification which is 

independent of the kinetic energy of the particle, we use the fact 

that the range of a charged particle in the matter over a wide energy 

region has a relationship of the form:

R ■ aEb + c (4-10)

where a, b, and c are constants.

The exponent b is a constant and for a very large dynamic range 

in both energy and particle type it lies between the limits 1.65 and 

1.74 (Skyrme 67). The constant a depends on the mass and charge of 

the particle and it is approximately inversely proportional to MZ . 

Now the passing detector (AE) has a thickness T, and this thickness is 

equal to the difference in the ranges of particles with energies E^, 

and E. This is summarized by the equation

T - R(Et) - R(E) = a(ET)b - a(E)b . (4-11)

When this relation is rearranged and the approximate dependence of a
Oon MZ^ is written into it, a particle identification function in terms 

of mass M and atomic number Z is obtained:

TMZ2 « (ET)b - (E)b 

or

MZ2 “ (E + AE)b - (E)b . (4-12)
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This particle identification function was used with the on-line 

computer. Figure (4-4) shows a two dimensional raw dot plot of mass M 

vs. total energy, E^,, for Z ■ 1 particles in the detector telescope 

corresponding to the interaction of 800 MeV protons with the deuterium 

gas. Figure (4-5) shows a typical mass spectrum [projection of Fig. 

(4-4) onto the M axis] with peaks corresponding to proton and 

deuteron. Software gates could be put on the mass region of interest 

(proton or deuteron) and we could then look at the total energy 

spectrum, Ep = AE + E, constrained by this mass cut.
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Fig. (4-3): A typical two-dimensional dot plot of energy loss of 
particle in AE detector vs the energy deposited in E
detector for the interaction of 800 MeV protons with the 
deuterium gas in AE,E setup.
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Fig. (4-4): A typical two-dimensional dot plot of mass M vs total 
energy deposited in detector telescope for the 
interaction of 800 MeV protons with the deuterium gas in 
AE,E setup.
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2. Time-of-Flight Setup

In this arrangement an E~VETO detector telescope was used 

(actually the AE detectors from the previous AE-E telescope vere used 

as the E detector here) and we looked at events which stopped in the E 

detector (E • VETO coincidences). The energy of the stopped particle 

and its time of flight, assuming a trajectory from the interaction 

region to the E detector were measured. Now from the measurement of 

the energy in the E detector and from the time of flight measurement, 

a particle mass identification can be determined. It is clear that 
the time of flight, t, is proportional to v-*, where v is the particle 

velocity. For non-relativistic velocities which we are dealing with, 

E £ 4 MeV, the product Et is independent of energy and dependent only 
on the mass of the particle, M, (E ■ 1/2 Mv^) and thus can be used as 

a particle identification function. The pulse in the E detector 

provided a start signal for the time of flight measurement while the 

stop signal was provided by a standard LAMPF unit which gave an output 

signal which was synchronized with the 40 ns chopped proton beam. 

Figure (4-6) shows a raw dot plot of time of flight vs. E. The line 

in this dot plot corresponds to protons. Figure (4-7) shows a mass, 

M, vs. energy, E, dot plot, while Fig. (4-8) shows a projection of 

Fig. (4-7) onto the mass M axis.
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Fig. (4-6): A typical two-dimensional dot plot of time-of-flight vs 
energy deposited in E detector for the interaction of 
800 MeV protons with the hydrogen gas in time-of-flight 
setup.
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Fig. (4-7): A typical two-dimensional dot plot of mass M vs energy 
deposited in E detector for the interaction of 800 MeV 
protons with the hydrogen gas in time-of-flight setup.
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CHAPTER V

DATA REDUCTION

In this chapter we will discuss the analysis of the raw data to 

obtain differential cross sections and analyzing powers for p-p and 

p-d elastic scattering at 800 MeV. After discussing the method of 

data reduction, we will present the resultant data.

A. Detector Calibration

The energy calibration of each solid state detector and its 

respective ADC was accomplished by the use of an alpha source. The 
alpha source was nominally ^^Cm, but it was found to contain alpha's 

from the decay of ^^Cm, 238pu> an(j 250^. reievant alpha decay

schemes are presented in Fig. (5-1) while a typical alpha spectrum is 

presented in Fig. (5-2). As is shown in Fig. (5-2) the strong peaks 

in the alpha spectra are the 6113 and 5499 keV lines from the alpha 
decay of ^^Cm an(j 238pu respectively; and these two peaks were used 

to determine an energy scale for each ADC. A linear relation between 

ADC channel number and energy deposited in the detector, E^, was 

assumed: E^ ■ a • C + b; and the linearity of the ADC's was checked

with the use of a calibrated pulser. A small correction to the alpha 

energy deposited in the sensitive region of the detector due to a thin 
dead layer, D, (20 pg/cm^ Ni) on the front of the detector was made:

dE% - E0 - D ^ 1^ . (5-1)
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This correction was 8 keV. Calibrations of each detector-ADC system 

were taken at various times during the total running period of this 

experiment. Comparisons of these calibration data would indicate that 

the AT bins are determined to an accuracy of ±0.5%. Also, for the 

detectors used in the time of flight measurement the absolute energy 

loss in the detector is determined to ±25 keV at 1 MeV and ±15 keV at 

3 MeV.
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Fig. (5-1): Alpha Decay Schemes.
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B. Replay

The first step in the data processing was to replay the data 

tapes Imposing criteria for good events. Gates were set around the 

recoil particle of Interest in the mass spectra corresponding to each 

arm. A typical mass spectra with gate on the proton peak is shown in 

(4-5). For the AE,E setup a good event for each arm is an event which 

satisfies the mass gate and electronic INTERRUPT corresponding to that 

arm. For the time of flight data a good event must also satisfy a box 

positioned around recoil protons in a two dimensional raw dot-plot of 

time of flight vs. E detector pulse height [Fig. (4-6)]. Figure 

(4-8) shows a mass spectrum for the time of flight data.

The energy resolution of the surface barrier detectors was about 

50 keV, and we therefore binned the energy spectra in 100-keV bins. 

The recoil particle energy spectra resulting from replay were used for 

the extraction of cross sections and analyzing powers. Figures (5-3) 

and (5-4) show a typical recoil proton energy spectra and recoil 

deuteron energy spectra, respectively in the AE,E detector setup 

obtained from one data run. Figure (5-5) is a typical recoil proton 

energy spectra for the time of flight setup.
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Fig. (5-3): A typical energy spectrum of recoil protons for 
interaction of 800 MeV protons with hydrogen gas in AE,E 
setup.
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Fig. (5-4): A typical energy spectrum of recoil deuterons for 
Interaction of 800 MeV protons with deuterium gas in AE,E 
setup.
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C. Background

The accurate determination of the background Is very Important in 

this experiment. A background event is deilned as an event whose 

characteristics (coincidence requirement, particle identification, and 

total energy signals) in the detector electronics system mimics the 

characteristics of the particle type of interest. One source of these 

background events could be reactions of the proton beam and its 

associated halo with the scattering chamber windows, walls, and any 

other material except the gas target. There could be two types of 

background events which are due to proton beam-target gas interactions 

outside of the interaction volume defined by the cross sectional area 

of the beam and the two slit collimation system. An Interaction 

outside this volume can produce a high energy particle of the recoil 

type which passes through the collimator slit material and into the 

detector telescope or there can be some beam halo in the region 

between the front collimator and the detector telescope which scatters 

particles directly into the detector telescope. The first type of 

background which is not associated with target gas was measured by 

keeping all conditions the same as in the associated data run except 

that the scattering chamber was evacuated. This was called a target 

empty background run. The sum of all the background events produced 

by the interaction of the beam with the gas and with all other 

material was measured by keeping gas pressure in the scattering 

chamber and all other conditions the same as in the data run except 

that the movable slits of the front collimation were completely 

closed. Here, closing the slit only removed the recoil particles
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produced in the interaction volume. This was called a slit closed 

background run. In the case of p-p elastic scattering measurements 

(hydrogen gas target) a comparison of these two kinds of backgrounds 

with each other indicate that there is a contribution to the 

background from events associated with interactions in the hydrogen 

gas. This conclusion is based on the fact that the target empty 

background is consistently smaller (3 to 20%) than the slit closed 

target full background. For p-d elastic scattering measurements 

(deuterium gas target) the background runs are the same to within the 

statistical uncertainty of the data. As a result of above comparison 

for the AE-E setup it was decided to use the slit closed background 

runs for the p-p data and target empty background runs for the p-d 

data. For data taken with the time of flight setup only the target 

empty background was measured and therefore these data were used in 

the analyses. Comparisons of the background runs with the data runs 

showed that in the case of the p-d data background events were a small 

percentage of good events (less than 3%) and in the case of the p-p 

data between 10% and 15%.

D. Extrapolation Back to the Center of Interaction

The measured energy spectra were extrapolated back to the 

interaction region in a series of steps. This extrapolation takes 

into account the energy losses in the dead layers of each detector 

where relevant and in path length of gas between the interaction 

region and the detector telescope.
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The stopping power function for each material that the recoil particle 

passed through in going from the Interaction volume to the active 

region of the detectors is represented by a function:

“ AE-B (MeV/g/cm2J (5-2)

The parameters A and B were determined for each material by fitting 

Eq. (5-2) to the stopping power data of Williamson (Williamson 66). 
For the AE - E setup the energy of the particle Ej, incident on the AE 

detector is given in terms of the total energy, E^, deposited in the 

detector telescope (both AE and E) by the formula: (APPENDIX C)

EA « Ed + DiAEj8 + A (D2 + D3)[eJ+1 - taA(B + i)]-B/(B+D (5-3)

where Dj, D2, and D3 are front and back dead layer of AE detector and 

front dead layer of E detector in g/cm respectively, tfl Is the 
thickness of AE detector in g/cm2, and A and B are the parameters in 

Eq. (5-2) for the energy loss of the recoil particle of interest in 

the dead layer material.

The recoil particle energy at the interaction region E, was 

calculated by adding to E^, the energy lost by recoil particle in 

passing through the target gas. (APPENDIX C)

{Ej® + 1 + pHA(B + 1)/[1- -- - ---]1/2| 1/(B+l) (5-4)
2MPp (1 + Ei/2M)
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where p is density of gas target in g/cm^, H is shown in Fig. (3-2); 

E0 and P0 are the total energy and momentum of incident proton beam in 
the laboratory frame; A and B are the constants of Eq. (5-2) for the 

recoil particle of Interest in the target gas; and M is the rest mass 

for the recoil particle.

Using Eqs. (5-3) and (5-4) the energies corresponding to the 

lower and upper limit of each energy bin for the energy deposited in 

the detector telescope were extrapolated back to the center of 

interaction. Tables (C-l), (C-2) and (C-3) show the energy loss 

correction for a p-p run with the AE-E setup and a target of 500 mm Hg 

hydrogen gas, for a p-p run with the time of flight setup and a target 

of 40 mm Hg hydrogen gas and for a p-d run with the AE-E setup and a 

target of 300 mm Hg deuterium gas, respectively.

E. Energy Binning in the Center of Interaction

Since the width of an energy bin at the center of interaction is 

changing from channel to channel; and for each particular channel it 

changes from run to run and from arm to arm, it was necessary to put 

the data into standard bins, in order to be able to sum up cross 

section and analyzing power data corresponding to a series of runs. 

The standard bin size was chosen to have a width of 100 keV, this 
corresponds to a width of 1.88 x 10”^ (GeV/c)^ in four-momentum 

transfer squared, -t. The procedure for putting the data in standard 

bins is now described.
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Suppose the lower and upper limits of a bin in the detector 

energy scale (Ed^, E^i+i) extrapolate back to E' and E", respectively 

at the center of interaction. If E' and E" fall into standard bins 

with lower limits E^+j and E^+2 respectively, then the yield of 

particles in the standard bin at the interaction region with the lower 

limit Ei+2 is:

Yi+2
E" “ Ei+2 E,-+o - E"

yj I -i- J yj
g" _ i ~E,TT,—- E" i+1

where Yd^ and Yd^+j are the yields of particle corresponding to the 

channel with lower limits Ed^ and Ed^+j, respectively in the detector 

energy scale. Figure (5-6) illustrates this procedure graphically.

DETECTOR
Yd, JL Ydul Ydus

Ed|-H's'* Ed|+^

CENTER OF I I l ''i l
INTERACTION I-- - - - - - - - - - - - - - - - - - - - 1- - --------- 1- - - - - - - - - 1----------- 1-------- 1- - - - - - - - - - - - 1

E| Ew E’ E,« E“ E,„ E" EM

e,«> e > E,.,

E.«> E"> E,„

Fig. (5-6): Graphical illustration of procedure used for energy 
binning in center of interaction.
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If E" and E"' fall within a standard bin with lower limit E^+2 in the 

center of interaction, then the yield of particle in this standard bin 

is:

E" - Ei+2 Ei+3 - E'"
^i+2 - g" _ g- ^^i + ^^i+2 + gnu _ gin ^i+3

F. Experimental Uncertainties

The breakdown of instrumental uncertainties can be made into four 

separate categories: the error associated with the energy calibration 

of the detectors, with the absolute normalization of the Faraday Cup, 

with the measurement of the number of the nuclei per volume, and with 

the measurement of the geometrical factor defined in Chapter IV.

We estimate the AT bins (energy bins) are determined to an 

accuracy of ±0.5%, this has to do with how well we measure coefficient 

ainE=a • C + b. Reproducibility of alpha data indicates that we 

can get to ±0.5%. From this, the uncertainty in dY/dT is about 0.6%, 

where the uncertainty in energy extrapolation is included.

The uncertainty in the measurement of the temperature and the 

pressure of the target gas is about 1%. Thus, the uncertainty in the 

number of target nuclei per volume is %1.5.

As was mentioned in Chapter III, the uncertainty in the Faraday 

Cup measurement is about 1%.

The uncertainty in the measurement of a, the area of the back 

collimator and H, the perpendicular distance from the beam direction 

to a middle point in circular collimator is 1%. Thus the error in the 

measurement of A, the geometrical factor is about %1.5.
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Overall, including all errors mentioned, we estimate that the 

instrumental uncertainty in our measurements is about 3%. These error 

bars given in all data tabulations are statistical, but the 

uncertainty due to the background substraction is included.

G. Presentation

Figures (5-7) and (5-8) present the differential cross sections, 

do/dt, and analyzing powers, Ay(0), respectively, for elastic 

proton-proton scattering at 800 MeV obtained in this work. Figures 

(5-9) and (5-10) present the differential cross sections and analyzing 

powers, respectively, for elastic proton-deuteron scattering at 800 

MeV obtained in this work.
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Fig. (5-7): The differential cross section for p-p elastic scattering 
at 800 MeV.
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CHAPTER VI

THEORETICAL ANALYSES FOR PROTON-PROTON DATA 

In this chapter we will describe the theoretical analyses for the 

data obtained from our proton-proton elastic scattering experiments. 

We will discuss the fitting procedures used for the proton-proton 

elastic differential cross section, do/dt, and analyzing power, Ay(0), 

data and compare the results obtained from these fitting procedures 

with theoretical predictions and other experimental results.

A. Functional Form of Differential Cross Section and Analyzing Power 

In Chapter I formulae were developed for the differential cross 

section and analyzing power data in the frame work of the classical 

parameterization model. In order to increase sensitivity of the fit, 

we reduced the number of variable parameters by fixing the total cross 

section, CTxoT’ anc* sl°Pe parameters, bj and b2« We introduced the 
value of oToT = 47.3 - 0.6 Mb, taken from the compilation of

proton-proton experimental data (Senary 70), which agrees well with 

the Arndt prediction (Arndt 80) through the optical theorem. There 

are many different inconsistent predictions and measurements for the 

slope parameters. Figure (6-1) shows a comparison of the

non-spin-flip nuclear slope parameter, b^, as a function of momentum 

in laboratory system from the proton-proton phase shifts analyses of 

Arndt (Arndt 80), Hoshizaki (Hoshizaki 79) and MacGregor (MacGregor 

69) and from experimental measurements of do/dt outside the
Coulomb-nuclear interference region, t>0.001 (GeV/c)^ (Benary 70).
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Fig. (6-1): A comparison of the nuclear spin-independent slope 
parameters as a function of laboratory momentum.
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There are also discrepancies between different measurements and 

predictions for the double-spin-flip slope parameter, b2» Thus, it 

has been decided to fit the data with different values of b^ and \>2* 

With these observations in mind, we can rewrite Eqs. (1-54) and 

(1-59) explicitly in terms of the variable parameters ,p, R, , and

Gp(t) + 114.3(1 + p2)(eblt + Reb2t J

2
0.410 (p + 0.0173 Ln 0,209jPb1t/2

^It|

+ 16.741 (y^ + YfjsinQ (6-1)

and

I0A(fm/sr) = 2.3375(Y1sin0)eblt/2 + 2.3375(ReYE)eblt/2

(6-2)

where
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and

*eYE “ / 0.3759 + l/4t (0.003520 + 0.01446t + 3.9 x 10“5t2jG2(t)
It|

B. Least Squares Method

A method of least squares was used to fit the data in which the 

quantity

(6-3)

where

is minimized by varying x i.e. p, R, Yj, and Y2* Here, 4^ is the 
deviation of the calculated from the measured value of the i'th 

observable, is experimental error in the measurements of the i'th 

observable, N is the number of data points used, and m is the number 

of free parameters. It can be shown from statistical theory (Orear 

58) that the minimized value of reduced chi-squared, xE(x), should be, 

for a good fit, equal to 1. In the case of m parameters, X (x)
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considered a continuous function of the m parameters describing a 

hypersurface in m-dimensional space as illustrated in Fig. (6-2).

b

Fig. (6-2): Hypersurface describing variation of vs two parameters 
a and b.

A valley may be found on this surface, and its bottom corresponds to

the minimum of x (x). There might be several such valleys,

corresponding to several solutions. If the value of Xr at the bottom

of a valley is very much larger than 1, the solutions may be

disregarded as a spurious one. It can be shown (Bevington 69) that
2the uncertainty in each parameter corresponds to an increase in Xg

of 1. That is, if we change one parameter, x^, by an amount, Ax^, and
2optimize all the other parameters for minimum Xr> then the new value 

2of Xr will be 1 greater than the old value.

Xr(x1 + Axi) “ XRCx-t) + 1 . (6-4)
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C. Analysis of the Differential Cross Section Data

A product of expression (6-1) and a renormalization parameter, N, 

was used to fit the cross section data corresponding to the 

Coulomb-nuclear interference region |t|<0.01 • N was usually fixed; 

and the parameters p, R, and Y = + Y2 were allowed to vary so as
to obtain the best fit to the data. The procedure was repeated for 

different values of b^ and b2» We found that fortunately p, R, and Y 

are insensitive to b2 and fairly insensitive to bj for all reasonable 

values of the slope parameters b^ and b2* Table (6-1) shows these 

results.

bl b2 P R Y fm XR

'9.3 6.0 0.005 0.156 0.73 0.90

9.3 9.3 0.007 0.156 0.77 0.85

9.3 2.0 0.004 0.153 0.70 0.85

8.0 6.0 0.000 0.146 0.69 0.85

10.5 6.0 0.005 0.157 0.88 0.85

Table (6-1) - Sensitivity of fit to the cross section to
slope parameters, b^ and b2-

As was discussed in Chapter V, we estimate the accuracy of our 

data normalization to be about ±3%. Comparison of our elastic 

proton-proton differential cross section data with those predicted by 

the Arndt (Arndt 80) phase shifts analysis gives a renormalization 

factor about 0.985. Also, these data are in good agreement with data
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taken at LAMPF using the High Resolution Spectrometer (HRS) 
(Wriekat 80) presented in Fig. (6-9). Thus, it is reasonable to 
repeat the fitting procedure with N fixed at 1 ± 0.03 and let p, R, 
and y vary. It was observed that p, R, and Y are sensitive to the 
value N. Table (6-2) shows these results.

N bl b2 P R Y fm Xr

0.97 9.3 6.0 -0.010 0.163 0.90 0.84
1.03 9.3 6.0 0.016 0.147 0.66 0.87

Table (6-2) - Variation of p, R, and Y with the normalization constant
N.

It was mentioned in Chapter V that the energy calibration of the 
solid state detectors is within ±30 keV, and this uncertainty in 
measurement of the energy E, is directly reflected in determination of 
four momentum squared transfer, -t. Therefore the fitting procedure 
was repeated for a shift in -t corresponding to a ±30 keV energy 
shift. The values of p, R, and Y are sensitive to the shift in -t; 
and the results are summarized in Table (6-3) .
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Shift (keV) bl b2 N P R Y fm XR

-30 9.3 6.0 1.0 0.048 0.184 0.5 1.0
+30 9.3 6.0 1.0 -0.035 0.133 0.84 0.76

Table (6-3) - Variation of p, R, and Y with a shift in the four 
momentum transfer squared, -t.

Table (6-4) shows the uncertainties in p, R, and Y due to the 

uncertainties in the normalization constant energy calibration, 

non-spin-flip slope parameter, b^ and the uncertainty corresponding to 

a variation of 1 in All these errors are approximately 

independent and hence added incoherently.

P R Y fm

Error due 
to normalization ±0.01 ±0.01 ±0.1
Error due 
to Shift in energy ±0.04 ±0.025 ±0.2
Error due to b^ ±0.005 ±0.012 ±0.15

OError due to Xr + 1 ±0.007 ±0.004 ±0.07

Error ±0.04 ±0.03 ±0.28

Table (6-4) - Uncertainties in p, R, and Y due to normalization, 
energy shift, slope parameter, bj and Xr + !•
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To compare our results with other available experimental results 

Wriekat 80), (Aeblscher 76), (Varobyov 72), we have also tried to fit 

our data using the functional form of (6-1), but neglecting the 
spin-flip (orbit) contribution; that Is, y was set equal to zero. The 

results obtained are shewn In Table (6-5).

bl b2 N P R XR

9.3 6.0 1.0 0,018 0.18 0.82

Table (6-5) - Results of a fit where the 
is neglected; that is, Y Is

spin-orbit 
set equal

contribution 
to zero.

Table (6-6) presents the values obtained for p, R, and y In this

work from the analysis of p-p elastic scattering data at 800 MeV.

P R Y fm

40.005 0.16 0.7

±0.04 ±0.03 ±0.28

Table (6-6) - Results obtained from this work for 
p, R, and y.

Figure (6-3) shows the fit to the data obtained by fixing bj ■ 9.3 
(Gev/c)-^ (Arndt prediction), b2 “ 6 (GeV/c)""^ , N ■ 1.0, no shift in 

It| and using the values of p, R, and Y presented in Table (6-6). 
Figures (6-4) and (6-5) show the Arndt (Arndt 80) and Hoshizaki
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Fig. (6-3): The differential cross section for elastic p-p 
scattering, da/dt, at 800 MeV. The solid line through 
the data represents our parameterization with = 9.3 (GeV/c)~2, b2 = 6.0 (GeV/c)”2, N = 1.0, p = +0.005,
R = 0.16, and Y = 0.7 fm.
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(Hoshizaki 79) phase shifts predictions, forward dispersion 

calculations (FDR)(Grein 78), and recent experimental values for p and 

R, respectively. The interesting qualititive feature of Fig. (6-4) is 

the rapid decrease and change of sign for p between 1 and 2 GeV/c 

followed by a more slowly decreasing behavior above 2 GeV/c. In fact 

Hoshizaki (Hoshizaki 78) suggests that the rapid fall and change of 
sign of p can be explained in terms of a ^2 resonance at ~1.2 GeV/c 

and a JFg resonance at ~1.5 GeV/c. Figure (6-4) shows, indeed, there 

is a good agreement between our measurement of p, the Arndt phase 

shifts prediction and the FDR calculation, but our value for p is 

somewhat higher than the value predicted by Hoshizaki. Our value of p 

is consistent with the energy dependence suggested by previous 

measurements [with the exception of Dutton's data (Dutton 67,68)]. 

Figure (6-5) presents FDR calculations (Grein 78) and Arndt (Arndt 80) 

and Hoshizaki (Hoshizaki 78) phase shifts predictions for R along with 

our determination of R at 1.46 GeV/c and other experimental 

determination in the range of from 0.9 to 1.7 GeV/c. Our 

experimental result and the experimental work of Aebischer (Aebischer 

76) and Wriekat (Wriekat 80), show quite reasonable agreement with the 

three theoretical predictions. The values of R and Y indicate that 

there is a sizable spin-dependent contribution to the forward 

differential cross section for elastic proton-proton scattering in 

this energy range.
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D. Analysis of the Analyzing Power Data

Expression (6-2) was used to fit the product of the cross section 

and analyzing power data In the region where they overlap. The value 

of the slope parameter, bj, was fixed at the Arndt prediction, 
bj m 9.3 (Gev/c)“^, 0x0x was at 4.73 (fm)^, which is the Senary 

value (Senary 70), and Yj and ^2 were allowed to vary to obtain the 

best fit to the data. The fitting procedure was repeated for 

different values of bj and Ox0x* Also, a renormalization factor, N, 

of 1 ± 0.03 was considered for the cross section data and the fitting 

procedure was repeated. It was observed that Yj and Y2 are quite 

insensitive to the assumed values for bj, Ox0x and N.
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Fig. (6-A): p, the ratio of the real and imaginary parts of the 
forward p-p spin-independent scattering amplitude as a 
function of laboratory momentum.
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modulus squared of the p-p spin-independent amplitude at 
forward direction as a function of the laboratory 
momentum.
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Table (6-7) shows these results. The error corresponding to a 

variation of 1 in for Yj and Y2 is 0.05 fm and 0.10 fm,

respectively.

(GeV/c)2 9
®ToT N Yi fm Y2 fm *R

9.3 A.73 1.0 0.72 0.18 0.92

9.3 4.67 1.0 0.73 0.20 0.92

9.3 4.8 1.0 0.71 0.17 0.92

8.0 4.73 1.0 0.71 0.24 0.92

10.5 4.73 1.0 0.74 0.16 0.88

9.3 4.73 0.97 0.70 0.16 0.90

9.3 4.73 1.03 0.74 0.23 0.90

Table (6-7) - Sensitivity of the product of the analyzing power times 
cross section to variation in the slope parameter, bj, 
total cross section, 0-r„-r. and N the normalization 
factor of the cross section.

Thus by considering the uncertainties in b^, o-pQ^, and N, we estimate 

the errors in the measurements of Yp and y2 to be 0.05 fm and 0.11 fm, 

respectively. Table (6-8) shows the results obtained for Yj and Y2 in 

this experiment.

Yj fm Y'2 fm

0.79 ± 0.05 0.18 ± 0.11

Table (6-8) - Results obtained from this work for Yj and Y2•
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Figure (6-6) shows the fit to the experimental values of IoA (product 

of cross section and analyzing power) obtained by fixing b^ = 9.3 

(GeV/c)-^, o-To-ji = A.73 (fm)^ and N = 1, and using the values for Yj 

and Y2 presented in Table (6-8); that is, Yj = 0.79 and Y2 = 0.18. As 

we have shown in Table (1-3) the contribution of Reo^ImY^ to (I0A)j in 

the angular range of our data is quite small, and some authors 

(Aebischer 77) disregard this in their expression for (IoA). Thus, in 

order to compare our result with their value for Y^, we set the value 

of Y2 to be zero, and let Yj, vary. With this procedure, we obtained 

Yj = 0.75 fm. Figure (6-7) shows Arndt (Arndt 80) and Hoshizaki 

(Hoshizaki 79) phase shifts prediction for Yj. The agreement of our 

value for Yj with Arndt prediction can be considered good if we 

consider error corridor in his prediction. Also our value of Yj is 

consistent with the energy dependence suggested by previous 

measurements (Aebischer 77). As was mentioned previously the only 

term depending on Y2 in our expression for (I0A) is ReaEImYfj which is 
considerable only in very small angle measurements. Our data for the 

p-p elastic scattering analyzing power at 800 MeV do not extend low 

enough in |t| to be really sensitive to Y2* Thus our determination of 

Y2 has a quite large error. Figure (6-8) shows Arndt (Arndt 80) and 

Hoshizaki (Hoshizaki 79) phase shifts prediction for Y2«
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Fig. (6-6): Product of p-p elastic differential cross section, da/dt, 
and the p-p elastic analyzing power, at 800 MeV. The 
solid line is the fit to the data with bj ■ 9.3 
(GeV/c)-2, oToT = A.73 (fm)2, N = 1, Yj = 0.79 fm, and 
Y2 - 0.18 fm.
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E. Discussion

Absolute differential cross section and analyzing power 

measurements for elastic proton-proton scattering at 800 MeV with an 

uncertainty of ±3% have been presented as a part of this dissertation. 

These measurements have been done in the region of four momentum 

transfer: 0.0012<|t|<0.027 (GeV/c)^ for the cross section data and 

0.005 <|t|<0.027 (GeV/c)^ for the analyzing power data which 

correspond to laboratory angles ranging between 1.34° and 6.45°, and 

between 2.80° and 6.45°, respectively. These data are more accurate 

and reliable than earlier measurements in this energy region. This is 

due to four features of the present experiment. First, the advantages 

of the recoil particle method used in this experiment over the 

conventional method of detecting scattered particles in the near 

forward direction. Second, the fact the EPB has a working Faraday Cup 

with an accuracy of about 1% allowed us to obtain excellent accuracy 

in our normalization. Third, in our method we measured the 

four-momentum transfer, t, directly [Eq. (4-41)] with good accuracy. 

Fourth, the quality of the EPB beam (phase space, arial dimension, 

small halo) is very good compared with that at other facilities. 

Figure (6-9) presents our data and Wriekat et al. measurements of 

elastic proton-proton cross section at 800 MeV in the region they 

overlap (Wriekat 80). Comparison of our differential cross section 

data for proton-proton elastic scattering at 800 MeV with those 

predicted by the Arndt (Arndt 80) phase shift analysis gives a 

renormalization factor about 0.985.

121



.o
E

§
o

bi -4--d|-o

500

400-

300-

200-

100 -

0000

P+P ELASTIC SCATTERING 
Tp = 800 MeV

x THIS WORK 
• WRIEKAT et. al.

ft
l
%

“'••■i.i.i,...

20 4.0 6.0 8.0 100 120x10r3

-t [(GeV/c)2 ]

Fig. (6-9): A comparison of our data for the cross section in p-p 
elastic scattering at 800 MeV with other data obtained at 
LAMPF using the HRS facility (Wriekat 80).
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Figure (6-10) shows a comparison of our data for the analyzing power 

in proton-proton elastic scattering at 800 MeV with other data 

obtained in LAMPF using the HRS facility (Pauletta 80) and the Arndt 

prediction for the analyzing power at 800 MeV. There is a good 

agreement between the two sets of measurements, although there is a 

disagreement between the measured analyzing power and the Arndt 

prediction at 800 MeV.

Fits to the data were made using the classical parameterization 

model to obtain value for p, the ratio between the real and imaginary 

parts of spin-independent amplitude in the forward direction, for R, 

the ratio between the summed moduli squared of the double spin-flip 

amplitudes at zero degrees and the modulus squared of spin-independent 

amplitude at zero degrees, and for y^, which is related to the real 

part of the spin-orbit amplitude by Eq. (1-44). From a measurement of 

p, one can obtain the real part of nuclear spin-independent amplitude 

in the forward direction, Reo^O). The total proton-proton 

cross-section data of Auer et al. (Auer 77,77,78) for transversely 

and longitudinally polarized beams and targets can be used to 

determine the imaginary parts of the double spin-flip amplitudes in 

the forward direction:

AoT = o(t+) - c(tt) = - -^ Im(2BN(0)J
*L

AaL = a(^) - a(*) = Im(2eN(0)} ,
*L
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and thus one can determine the sum of the squares of the real parts of 
spin double-flip amplitudes from a measurement of R. Such information 

on the real and imaginary parts of the double spin-flip amplitudes 

acquires particular significance in the light of recent speculations 

concerning the existence of the dibaryon resonances. A recent FDR 

calculation by Grien (Grien 78), suggests an energy dependence in the 

real parts of the forward amplitudes which is characteristic of 

resonance behavior and which is evidence in support of dibaryon 

resonances. Also Hoshizaki (Hoshizaki 78) has suggested a structure 

in the real and imaginary parts of 8(0) and e(0), which he explained 
in terms of D2 and resonances. Thus, it is clearly important to 

obtain independent verification of the real parts of all forward 

amplitudes.
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Fig. (6-10): The analyzing power for elastic p-p scattering at 
800 MeV. The crosses are this work. The open circles 
are data obtained using HRS facility (Pauletta 80). The 
solid line is the Arndt phase shifts prediction 
(Arndt 80).
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CHAPTER VII

THEORETICAL ANALYSES FOR PROTON-DEUTERON DATA 

In this chapter, we will describe the theoretical analyses for 

the data obtained from our p-d elastic scattering experiment. We will 

test if available nucleon-nucleon amplitudes are able to predict 

proton-deuteron scattering in the framework of the theory outlined in 

Chapter II, at 800 MeV. Also we will discuss the fitting procedure 

used for the p-d elastic analyzing power, Ay(0) data.

A. Analyses of the Analyzing Power and Differential Cross Section

In Chapter II the formulae developed for the analysis of

analyzing power data within the theoretical framework for p-d

scattering used isospin averaged nucleon-nucleon amplitudes. In order

to increase sensitivity of the fit, we reduced the number of variable

parameters by fixing and an (the total cross section for p-p and

p-n scattering, respectively), bp and bn (the slope parameters), and

Ppp and ppn (the ratio between the real and imaginary parts of the

spin-independent amplitude at zero degrees for p-p and p-n scattering,
respectively). The values of Op = 4.73 ± 0.06 (fm)^ and on = 3.79 ±

0.07 (fm)^ were taken from the compilation of proton-proton and

proton-neutron experimental data (Benary 70). Slope parameters were

fixed at the values predicted by the Arndt phase shifts analysis
bp = 9.3 (GeV/c)~2 and bn = 10.3 (GeV/c)-2. Forward dispersion

relation calculations (Grein 78) predicted an upper limit of -0.4 and

a lower limit of -0.8 for p and a value of 0.0 for P„_. Also, thepn pp
Arndt phase shifts predicted ppp = 0.02 and Ppn = -0.3. From our
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analyses of p-p data we obtained ppp = 0.005. Using these quantities, 

we can rewrite Eq. (2-18) in terms of only two variables, A and B, 

which were defined in Eq. (2-19)

Ay(0) =
0.247[op(A-pppB)ebpt/2 + on(A - ppnB)ebnt/2Jsinb

pn (7-1)

where

IQ = 0.0153 [(vbpt/2 s«b"t/2J' tppp‘,pebpt/2 ‘'pnVbr|t/2

+ 2(A2 + B2)sin20

and

A - y hip + Tin)

B - 7 h2p + t2„) -

This expression was used to fit the analyzing power data. A and B
were allowed to vary to obtain the best fit to the data. The fitting

procedure was repeated for different values of slope parameters (b

and b ) and total cross sections (a and cr). It was observed that A n' p n'
and B are fairly sensitive to the assumed values of b , b , o and a .J p ’ n’ p n
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Table (7-1) shows sensitivity for the fitted values for A and B when

different values of and Ppn are assumed.

A fm B fm PPP Ppn bp(GeV/c) 2 bn(GeV/c)"2 *R

0.86 -1.0 0.0 -0.8 9.3 10.5 0.9(

0.79 -1.0 0.0 -0.4 9.3 10.5 0.9;

0.77 -1.0 0.02 -0.3 9.3 10.5 0.9;

0.77 -1.0 0.005 -0.3 9.3 10.5 0.9;

Table (7-1) - Sensitivity of A and B to p and P„„.PP pn

The error corresponding to a variation of 1 in for A and B is 0.01 

fm and 0.03 fm, respectively. Thus by considering the uncertainties 

in Ppp and Ppn» we estimate the errors in the measurements of A and B 

to be 0.09 fm and 0.03 fm, respectively. Table (7-2) shows the 

results obtained for A and B in this work using the Arndt's prediction 

for P__ and pPP pn

A fm B fm

0.77 ± 0.09 -1.0 ± 0.03

Table (7-2) - Values of A and B obtained from p-d data.
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Now, by considering the definition of A and B and using the Arndt 

prediction at 800 MeV (Arndt 80) for Yj = 0.82 fm and Y2p = “0.4 fm 

(Yjp and Y2p are related to the spin-orbit amplitude for p-p by 

Eq. (2-17), one obtains the following values for Yjn and Y2n [related 

to the spin-orbit amplitude of p-n by Eq. (2-17)]

Yln = 0.72 ± 0.09 fm

Y2n = —1.6 ± 0.03 fm

In comparison with the Arndt prediction for Yin and Y2n at 800 MeV, 

our value for Yjn,Yin = 0.72 fm, is in good agreement with his 

prediction (Y^ = 0.6 fm). However, there is a considerable 

discrepancy between our value for Y2n>Y2n = -1.6 ± 0.03 fm, and the 

Arndt prediction, Y2n = -0.38 fm at 800 MeV.

Figure (7-1) shows the fit to the analyzing power obtained by 

fixing bp = 9.3 (GeV/c)-2, bn = 10.5 (GeV/c)-2, = 4.73 (fm)2, an = 

3.79 (fm)2, Pp = 0.02, pn = -0.3 and using the values for A and B 

presented in Table (7-2). We have also compared the data with the 

prediction of the theory of p-d elastic scattering outlined in Chapter 

II (Alberi 79) using as an input the Arndt phase shifts (Arndt 80) 

prediction for the nucleon-nucleon amplitudes at 800 MeV (solid 

curve). In Fig. (7-2) we show the comparison between our data for the 

elastic p-d differential cross section at 800 MeV with the prediction 

of the theory developed by Alberi (Alberi 79) using the Arndt phase
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Fig. (7-1): The analyzing power for elastic p-d scattering at 
800 MeV. The dashed line through the data represents the 
isospin averaged fit to the data by fixing 
b = 9.3 (GeV/c)-2, bn = 10.5 (GeV/c)"2, a = 4.73 (fm)2,
n = 3'79 ppp = 0*02> Ppn = -0*3> A = °*77 fm> and

B = -1.0 fm. The^solid curve is Alberi et al.
prediction using as an input the Arndt phase shifts 
prediction for nucleon-nucleon amplitudes at 800 MeV.
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Fig. (7-2): The differential cross section for elastic p-d scattering 
at 800 MeV. The solid line is Alberi et al. prediction 
using as input the Arndt phase shifts prediction for 
nucleon-nucleon amplitudes at 800 MeV.
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shifts (Arndt 80) prediction for the nucleon-nucleon amplitudes at 

800 MeV.

B. Discussion

Absolute differential cross section and analyzing power 

measurements for elastic proton-deuteron scattering at 800 MeV with an 

instrumental uncertainty 3% have been presented as a part of this 

dissertation. These measurements have been done in the region of four 

momentum-transfer-squared 0.OK|t|<0.017 (GeV/c)^ which correspond to 
laboratory scattering angles ranging between 3.97° and 13.1°, 

respectively. For the reasons discussed in Chapter IV, we believe 

data are quite accurate.

Recent work on the theory of hadron-deuteron scattering at 

intermediate energy (Alberi 79) provide us with a precise tool for 

studying the dependence of the proton-deuteron scattering observables 

on the p-n amplitudes. This approach has been applied in the 

theoretical analysis of the data. In the framework of this theory a 

fit to the analyzing power was made using isospin averaged 

nucleon-nucleon amplitudes, in order to extract information on the 

real and imaginary parts of the proton-neutron spin-orbit amplitude.

Elastic proton-deuteron scattering turns out to be a very good 

tool for obtaining some information on the values of the p-n 

amplitudes at small angles. The deuteron is the simplest few body 

system with a neutron constituent. Good knowledge of the deuteron 

wave function (at least at large r) and its small binding energy (the 

scattering process can be described very well in terms of the free 

nucleon-nucleon amplitudes) allow an accurate extraction of the 

proton-neutron amplitudes.
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APPENDIX A

OPTICAL THEOREM

The optical theorm for spinless particles has the form

Im f(0) (A-l)

where f(0) is the forward scattering amplitude, k is the relative 

momentum and is the total (transmission) cross section. For 

particles with spin, f is replaced by matrix M in spin space defined 

in Eq. (1-2) and the generalization of Eq. (A-l) is

Im Tr (pM(0) ] = oTot , (A-2)

where p is density matrix. To understand the form of Eq. (A-2), note 

that Eq. (A-l) applies equally to any single spin channel; that is, 

one may replace f(0) by the expectation value of M(0) in any pure spin 

state. For an incoherent mixture of pure spin states the expectation 
value of M(0) can be replaced by Tr(pM(0)J, and thus the general form 

of Eq. (A-2) results.

Now, let the quantization axis (z-axis) be along the direction of 

motion of incident beam The c.m.f unit vectors appearing in M are

n = (0,1,0), m = (cos0/2, 0, -sin0/2), H = (-sin0/2, 0, cos0/2)
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The matrix M at the forward direction has the form

M(0) = a(0) + 3(0)alyo2y + (S(0)alxa2x + e(0)alza2z . (A-3)

Suppose nucleons 1 and 2 initially have independent polarizations 
+

and P2. Thus

p = (1 + ?! • a1)(l + P2 • a2) .

After substitution for M(0) and p in Eq. (A-2), for the case Pj and 

parallel, transverse to the beem, one obtains

lm[a(0) + S(0)P!P2] = °ToT [Remember 3(0) = <S(0)] ,

and, for the case of Pj and P2 parallel, along the beam (z-axis) 

lm[a(0) + e(0)P1P2] - oToT .

In the case of unpolarized beam or target (Pj or P2 = 0), generalized 

optical theorem has the simple form of:

Ima(O) kW aToT
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APPENDIX B

PROTON-PROTON SCATTERING MATRIX ELEMENTS IN TERMS OF PHASE SHIFTS 

Let the quantization axis (z-axis) be along the direction of 

motion of incident beam. The c.m.f unit vectors appearing in M are

n = (0,1,0), m = (cos0/2, 0, -sin0/2), X, = (sin0/2, 0, cos0/2) . (B-l)

By operating M given by Eq. (1-2) on the spin state of two nucleons, 

we have

Mxs = (a - 3 -e - 6)xs ,

Mxi = (a + 6 sin20/2 + e cos20/2)xi + ^2 (~Y + j e sin6 “ J 6 sine)X0

+ ^ (-B + 6 cos20/2 + e sin20/2)x_j ,

Mx0 = ^ (Y + e sin0 - ^ sin0)x^ + (a + 0 - e cos© + <5 cos0)xo

+ /2 (-Y ~ j £ sin0 + ^ 15 sin0)x_1 ,
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MX_i = (-3 + 6 cos^0/2 + e sin^0/2)xj + >^2 (Y ~ i e sin0 + i ^

+ (a + e cos^0/2 + 6 sin^0/2)x_i ,

where

*• ' (ir3/2 K\ 02 - 02»

represents the singlet-spin state, and

*> ’ 0, 02 '

1 10 0 1Xo= KJ U + U L) 1 ,
z 0 1 1 2 1 1 u 2

0, ,0.M-g, (,)

are the spin wave functions for the triplet-spin state, 
subscripts 1 and 2 refer to the two nucleons 1 and 2. Eqs 

imply

Mss=a-e-e-6>

Mii= = a + 6 sin 0/2 + e cos20/2 ,

sin0)xo

(B-2)

The 
• (B-2)
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M10 = -M-10 = ^2 Y - ~ 6 sin6 + — e sin6 ,
/2 /I

Mi_i = = -3 + 6 cos^Q/2 + e sin^0/2 ,

Hoi = -Mq-I = “ ^2 Y ~ — sin0 + ~ sin0 ,
✓2 /2

M00 = a + 3 + 6cos0 - ecos0 (B-3)

The inverse relations of Eqs. (B-3) are

« “ y C2«il +M00 +Mss-> * 

g = ^_ (-2M1_1 + M00 - Mss) ,

/2
4
Ko “MoJ

6 = 1 [(Mn + Mj.! - Mssj - _J_ (Mn - Mj.! - M00J] ,

^ [(Mu +Mi_i -MSSJ +_J_ (Mu -Mi_i -MooJj - (B-4)
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Stapp et ad. (Stapp 57) have calculated the matrix elements 

for proton-proton scattering in terms of phase shifts. They have 

shown that; for example

MlO 2
Ik

1
odd a

*i(e) I /2 /2
-5- a£,£+l -5- ak.,x.-l

n ^+2,1/2 £+1 /2 /A-1^/2 £-1. dr nH 1 *

M01 I pice) i-
odd

/2
dr

(£ + 2}Lir+Tj a£,£+l
/2 f 2£ + 1 !
dr + DJ

/2 - I'i 4. ^ + 2'|1/2 p+1 /7 rX. - 1 \l/2 t 1+ T l—r-Ja£,£-l + TT iir+TJ a - S a"-1dr f } ,

2 v 2 / n \ if 1 I ,2£ + li 11-1 ‘ Tf J „ a( } “4(A +1)^ a*»*+l " Wi'+'ir3^^ +
odd k ’

^ [(£ + 1)(£ +2)] a y1/2 *+l - 1 [(£ - l)J6j'1/2 a*-1} . (B-5)

where P™(9) is the associated Legendre polynomial a^j and a^ are the 

scattering amplitude and expressed in terms of the bar phase shifts of 

Stapp et al. (Stapp 57).
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From Eqs. (B-4) at 6 = 0 we may write

0(0) = +M00 - MSSJ ,

6(0) +M00 -MSSJ .

However, from the definition of the associated Legendre polynomial

P^(l) = 0 .

Therefore at 0 = 0 we have

= 0

which implies

0(0) = 6(0) .

Now, after substututing for Hjq and Mq^ in the expression given 

for y in Eqs. (B-3), one obtains

Y = 3Tk l Pi<e> i
odd £

2SL + 3
i + T a^.Jt + i

21 , 2*, + 1 . 1(1 +"T) a^J

or

y = 1 iji pi(e>
A odd

(B-6)
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Here, is a coefficient which depends on the energy. Near forward

direction we may write:

P^(0) = £ £(A + l)sin0 [1 - [A + 2)(£ - 1)62 +----] .

After substitution of P^,(0) 

for the hadronic spin-orbit

in Eq. (B-6) one gets a simple 

amplitude at small angles.

expression

Y = Y()Sin0 •
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APPENDIX C

ENERRGY LOSS CORRECTIONS

In this section we will discuss in more detail the method used to 

calculate the energy of a recoil particle at the center of the 

interaction region from the energy deposited in the active region of 

the detectors. Let E be the energy of the particle at the center of 

the interaction region. It will lose energy in passing through the 

gas target; and it will reach the detector telescope with energy E^. 

The gas thickness which the recoil particle passed through is equal to 

the difference in the ranges for particles with respective energies E 

and E^ in the target gas. The range of a charged particle in matter 

is given by the following integral:

R = / 1 dE (C-l)
o

2where dE/d£ is the stopping power (MeV/g/cm ). Thus the thickness, A, 

of the target gas is:

A = / dE .
E. M 
1

Over the energy range of interest we have to a good approximation:

|^|(E)|=AE~B (C-2)

where A,B are determined for the recoil particle of interest in the 

target gas.
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Therefore:

A - / i E® dE 
E A

1
A(B + 1)

[E®+1 ]

and solving for E gives:

E
1/B+l+ AA(B + 1)] (C-3)

3Now, A is equal to the density of the gas, p, in g/cm multiplied by 

the path length, L, of the recoil particle from the interaction region 

to the detector telescope:

L = H
sinQ (C-4)

where H is defined in Fig. (3-2) and 0 is the laboratory scattering 

angle of the recoil particle. Now 0 is a function of the recoil 

particles energy [Eq. (4-9)]. Since E is approximately equal to E^, 

sin0 is given to a good approximation by:

(M + Ed)2E1 
2MP02 (1 + Eji/2M)

sin0 ~ [l ,1/2 (C-5)
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where M, Eo, P0 are defined in Chapter IV. Substituting Eqs. (C-5) 

and (C-A) Into Eq. (C-3) gives:

E - {ElB+1 + pHA(B + 1)/[1-
(M + E0)2E1

]1/2} 1/(B+l) (C-6)2MP02(1 + Ej^/aM)

In the next step we will calculate the energy incident on the 

detector telescope, E^, from the energy deposited in the active volume 

of the detectors for the AE - E setup. When the particle reaches the 

detector telescope it will pass through a dead layer of thickness 

on the front of the AE detector; and it then enters the active region 

of the AE detector with an energy In passing through the active

volume of thickness tg the energy of particle will be reduced and when 

it reaches the dead layer on the back of the AE detector it will have 

an energy E''^. The particle will then pass through the dead layers D£ 

and and have an energy E'^'when it reaches the active volume of the 

E detector. [See Fig. (C-l)]. The energy E^* will completely 

absorbed in the E detector. The total energy, E^, deposited in the 

active volumes will be given by:

(C-7)Ed - (E£ - EJ) + E£' .

The energy incident on the telescope extrapolated back from the energy 

deposited in the detector telescope is given by:

Ei " Ed + l|f(Ei)lDl + 'H <Ei>KD2 + D3> (C-8)
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With good accuracy the second term can be approximated as:

l||(El)|Di a I^E^ID! - D,A-EjB (C-9)

where A' and B' are determined for the recoil particle of interest on 
dead layer material. To calculate the last term in (C-8) we need a 

relation between E"^ and Ejj. The thickness of the AE detector, ta, is 

equal to the difference between the range of recoil particles at 

energies E£ and E'^ in silicon:

E

i

E
- /ta

E" i

or

[E'B'+1 _ e"B'+1]ta " A'(B' + 1)

to good accuracy we may use the approximation E'j * E^; and thus we 

may write:
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which then gives:

dE
3T(E-'i) A'[EdB'+l taA'(B'+l)] -B'/B'+l (C-10)

substitution of Eqs. (C-9) and (C-10) into Eq. (C-8) gives the

incident energy, E^., in terms of the energy, E^, deposited in the 

detector telescope:

Ei = Ed + Ed-B, + a,(d2 + D3)[Ed(B,+1) -B'/B'+ltaA'(B'+l)j • (C-11)

By substitution of Eq. (C-ll) into Eq. (C-6) we can relate the 

energy of the recoil particle at the center of interaction, E, to the 

experimentally measured energy, E^, deposited in the active volume of 

the detector telescope.

145



Uo
P?su°0 ®SO'7

o;



Energy Deposited in 
Detector Telescope 

(MeV)

Energy Incident on 
Detector Telescope 

(MeV)

Energy at Center 
of Interaction 

(MeV)

370 3.008 3751
4.0 4.006 4.25

5.0 5.004 5.21

6.0 6.004 6.18

7.0 7.003 7.16

8.0 8.003 8.14

9.0 9.003 9.13

10.0 10.003 10.12

11.0 11.002 11.11

12.0 12.002 12.10

13.0 13.002 13.10

14.0 14.002 14.09

15.0 15.002 15.08

Table (C-l) - Energy scale for 500 mm Hg of hydrogen in AE,E setup.
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Energy Deposited in 
Detector Telescope 

(MeV)

Energy Incident on 
Detector Telescope 

(MeV)

Energy at Center 
of Interaction 

(MeV)

0.8 g 3 OS

1.0 1.002 1.05

1.2 1.202 1.24

1.4 1.402 1.44

1.6 1.602 1.64

1.8 1.802 1.83

2.0 2.002 2.03

2.2 2.202 2.23

2.4 2.402 2.43

2.6 2.601 2.63

2.8 2.801 2.82

3.0 3.001 3.02

3.2 3.201 3.22

Table (C-2) - Energy scale for 40 mm Hg of hydrogen in time of flight i
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Energy Deposited in 
Detector Telescope 

(MeV)

Energy Incident on 
Detector Telescope 

(MeV)

Energy at Center 
of Interaction 

(MeV)

5.0 5.010 5.22

6.0 6.007 6.19

7.0 7.006 7.16

8.0 8.005 8.15

9.0 9.005 9.14

10.0 10.004 10.13

11.0 11.004 11.12

12.0 12.004 12.11

13.0 13.003 13.10

14.0 14.003 14.10

15.0 15.003 15.09

16.0 16.003 16.09

17.0 17.003 17.08

18.0 18.003 18.08

19.0 19.003 19.07

20.0 20.002 20.07

Table (C-3) - Energy scale for 300 mm Hg of deuterium in AE,E setup.
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