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Abstract: Simulations and ongoing measurements indicate that SSD results in

small degradation to the near field beam quality. The measured effect of SSD

bandwidth on conversion to the third harmonic and smoothing of the target

illumination will also be described.
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Inertial confinement fusion (ICF) utilizing direct or indirect laser drive

requires the target illumination to be uniform over a wide range of spatial

frequencies. A number of approaches have been suggested to achieve the

desired level of illumination uniformity.1-4 Angular dispersion of phase

modulated (FM) light (termed smoothing by spectral dispersion - SSD)4 is

attractive for ICF using glass lasers, since pure phase modulation preserves the

uniform intensity profiles necessary for high power laser amplification. ID SSD

has been demonstrated on the NOVA laser,5 however the National Ignition

Facility (Nil?) will require much more efficient and reliable operation. Therefore,

it is of interest to investigate the performance of ID SSD on the Beamlet laser,

which is a NIF prototypical multipass laser system.

Numerical simulations of the Beamlet laser using PROP92 have been

performed for 1 ns pulses with &200 krad main cavity spatial filter pinholes.

These simulations show that the critical parameter for the laser performance is

the amount of additional divergence imposed on the beam by SSD in comparison

to the size of the spatial filter pinholes. Figure 1 shows the results of the PROP92

calculations of the contrast of the near field intensity at 10 as a function of pulse
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SSD divergence. One sees that the degradation of the beam is

enhanced slight with increasing amounts of SSD. For example, with SSD

divergence of 25 wad, the contrast calculated is the same as a beam without SSD,

but with pulse energy less by about 5%.

Figure 2 shows measurements of the 10 Schlieren far field taken on Beamlet

for a 3.5 KJ, 1 ns pulse with (left) and without (right) SSD present. In this

measurement the divergence of SSD was -25 ~rad. One sees that frequency

components generated by Gibbsphenomena near the pinhole edge (indicated by

the arcle) are not significantly enhanced with or without SSD present. Near field

measurements at this pulse energy also show that SSD does not significantly

impact the beam contrast, as predicted in Fig. 1. The only effect of SSD which is

clearly apparent in Fig. 2 is that the speckle structure in the far field is smoothed

in the vertical SSD direction, which is the desired effect on the illumination in the

target plane. Measurement of the 10 laser performance at higher energies and

the -20 ns pulse lengths required for ignition will also be described.

The 1.053 pm beam is converted to the thrid harmonic by a 11/9 mm pair of

type I KDP / type II KD*P crystals. It is expected that the harmonic conversion

efficiency will be reduced by the addition of the large bandwdith associated with

SSD. Figure 3 shows the calculation of the peak conversion efficiency in the

presence of SSD bandwidth for a fundamental input intensity of 3.0 GW/cm2.

Measurements of the conversion efficiency, bandwidth at the third harmonic,

and the effect of SSD on the Beamlet focal distribution (smoothing of speckle and

broadening of the focal envelope) will also be discussed.
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Figure Captions

Figure 1: PROP92 calculations showing the contrast (RMS variation as a

fraction of the average) of the near field intensity just after the

transport spatial filter, at the end of a 1 ns pulse of varying energy,

and with the indicated amount of SSD divergence. The cavity

spatial filter is assumed to “use~00 prad pinholes. The effect of

SSD is to reduce the effective pulse energy where breakup occurs --

by -5% for 25 ~rad of SSD and by -10% for 50 prad of SSD.

Figure 2: Measured Schlieren far field images of lo Beamlet beam for a 3.5 KJ,

Ins pulse with (left) and without (right) SSD present. The ring shows

the location of the cavity spatial filter pinhole edge. No additional

nonlinear enhancement of angular components near the pinhole edge

is apparent with SSD implemented. However, one sees the effect of

smoothing of the speckle structure in the vertical SSD direction.

Figure 3: Calculation of the conversion efficiency from 1.053 ym to 351 nm at

3.o GW/cm2 as a function of the bandwidth at 1.053 Pml using a 11

mm type I KDP doubler and 9.0 mm type II KD*P tripler.
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Figure 1: PROP92 calculations showing the contrast (RMS variation as a

fraction of the average) of the near field intensity just after the

transport spatial filter, at the end of a 1 ns pulse ~ t

and with the indicated amount of SSD divergence. The cavity

spatial filter is assumed to use HOO prad pinholes. The effect of

SSD is to reduce the effective pulse energy where breakup occurs --

by -5% for 25 prad of SSD and by -10% for 50 pad of SSD.
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WithSSD WithoutSSD

Figure 2: Measured Schlieren far field images of 10I Beamlet beam for a 3.5 KJ,

Ins pulse with (left) and without (right) SSD present. The ring shows

the location of the cavity spatial filter pinhole edge. No additional

nonlinear enhancement of angular components near the pinhole edge

is apparent with SSD implemented. However, one sees the effect of

smoothing of the speckle structure in the vertical SSD direction.
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A&
Calculation of the,,conversion efficiency from 1.053 pm to 351 nm at ~-~~ lkk’-

2
3.o GW/cm2 as a function of ~ bandwidth at 1“053 Yml using a 11

mm type I KDP doubler and 9.0 mm type 11KD*P tripler.
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