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I t  is ,  of course, not possible fn four lectures to present a -?ate 

survey of tha maw aspects of the interaetfon of e n a m t i e  hadrons isfth nuclei. 

I have therefore selected a n M e r  o f  topics whf eh suffjee Eo Illllstmb the 

pmwnted at tk International khool of  Physics *EnrCrCm Fernu w l l  ran* of pham?na of fntemt, that a t  the saet tim i m l w  fsslees oT 
Yamna. Lake CDIRD, I t ~ l y .  July 1980, mtra l  larportanee that can be addrasaed mlng broadly epplfeabte theoretical 

mth&. fha first lecture will consider the elasne and inelastit scattering 

o f  Inbrmdfate energy ('4 1 6eV) protons by nuelef, 'Ihe d i s ~ s i o n  wfl'l tocw 

tn3s wrk 1s supported in  part thmugh funds p&&d b the 
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on the ckbrnrlnation of the pmton-nucleus optleal potential i n  eras o f  the 

e l m t s r y  nudeon-nucleon sestterhg anplitudas and the propertias o f  Mar 

target and resf dual nucleus. The result wfll be a series af tern for tha 

optical potential o f  which we wf 11 evalme the first W f llustrated i n  Mg. 1. , 
(1.1) for the case of elastfc scatbring. In Fjg. (l.la) the n u c l ~ n u c l r w n  

InteraECion. indicated by a broken f he,  acts an@, the target nucleus resalndng 

In  f ts ground staa.  I n  Flg. (I .l b) the Earget nucleus i s  axcfted by the 

f i r s t  Interactton mtuming to  its ground s t a t e  as a rssult o f  the s e r c ~ d  inter- 

acffan. 1P inelastFc scattering b s parti cutrr ffnal state 4s under consfder- 

aMon, diagra~rs tn which the target nucleus can also return to that state i n  - 
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the f inal step o f  Mg. tl.?a) and Flg, I l . lb )  should be.Inclu&d. Hence fn 

Inelastic seatterlng them are four diagram acwrdtng to whether the tatget 

&urns to fhe ground or excited state. The optical  potentfa1 these represent 

are suitably iterated by the Sehmedtnger equatfbn to produce the crTastie and 

inel astl  c anpll tudes . 
The approximation used tu evaluate the potential mrmspondiw to Mg. 

(l.lb) i s  m%md to as llS closure appmfmation, It a s s w s  ffmt tht the 

in temdia ta  rxefted target stabs. which eontribuw substantially have energies 

whfch am smll mupared to. the ftlcfdent energy, and second that amng these 

#re are MI spatially fmportant states whfch would need corr$spondlngly 

spedal consideration. Our applicatl~n o f  this fowalislh, referred to as the 

multqpla scattering approxllAbtlon, nil1 be nmde to protan-nuclear scatbrtng 

for protons who= energies am d the order o f  1 LY. Hmwr, the s- 

procadurn should be equal ly val f d fo r  sufff cf ently e n e m t i  c hadrOns wneral ly. 

ThB remd topic t o  be considered In t h e  lacturns i s  th Interactton 

of pions rrith nuclei for ertergfes tn the ndghborhwd of the ~-msonanoe. fn 

thin anergy -In an inctcbnt pion dl1 with high pmhbi l t ty  b absorbed by 

a nucleon, p d u c i n g  the A-mSOnW3a? and'fonlng thgrab~ .a b-partlcle hole 

state 4" the nucleus. I n  thts case, the E ~ ~ S U E  appmxfmtlon of multiple 

scatterfng thy I s  not valfd for, as we shal7 sw, the A-particle b l a  s t s t e  

can act as a doonqy s t a h  having a partfcutarly lam o*r?ap ntth the fnd- 

Qerrt channel. This mechanim' gmmsed by KfsslTnget and Lng a& dalrnloped 

by h a t  and &nfz and tlreir mll@rators I s  RmMn as tha *Ispbar Doonwm 

m&h frola the consequent analysts rre have an inslght Into tha fmpatt oQ the 

nuclear envirwraent oa the propcrtles o f  ttae A Insfda nuclei and bow +t depends 

upan the natum o f  that end-nt. I t  f s  clear that thfs analysis can be 
#.  

wad to dlscwr the behavior of o,-r baryonfc resonances suck as the Y* Instbe 

nuclei and thafr use as probes of nuclear proper*iss. 

The stable baryons can be wed as probes. The A hypernuclef (cons4sting 

o f  a cow nucleus and a A)  and the recently observed t hypernuder provide us 

with s3tuatIotls fn nhfch the core nuclaw can be probsd by a baryon of roughly 

the raw mass as a nucleon, w i t h  simflar albeft  not tbent-lcal fnkracttons 

rAth nucleons. But, and thfs i s  an 1mrtant point, the A (or E) does not 

need to satisfy the Paul1 exclu$fon principle w i t h  respect to the nucleons 

and therefom can be Qn orbits forbidden to I t  if .  it wpm n uueleon. Thfs 

snbject o f  hypernucld ~ $ 1 1  be the third topic taken up Cn these Tectures. 

As the energy of the prqfectlle incwastls, jt be- eorraspondingly 

-re irportant to take ralativjstic effects i n t o  ac~rrnt .  The Saiporbnce bT' 

W e  effects Is strlkf ngly revealed by experfrents Involving ti'@ eolllsion 

of u t t m r e l a t f v i s t t c  hadmns, protons, pfons. haons (up to Ferraflab encrgfesl 

nuclef. This ph-mn dl1 f i lm part of the fourth topic h l e h  wf 11 

luda as well ttm collision o f  mlattvfstfc heavy ton projectiles wlth 

A nuclear Wels9acke~Yflliaprs mWd developed for dealing with 

partpheml eollXsions will ba described. 

11. P1Ptrm-YlrcIear Seatbring f n  the k l t i p f e  Scattering Approdmtfon @ .Z] 

Fomlly the & o t y  o f  multiple scattaring p t m t a  to solve the follpwing 

prob lm Let the potentla1 actfng ktlreerl the incident projecfj le and the 

nucleus be gfven by a srs of -body potmtfals: 

Irhem vj 9s the patentla1 actlng b e b a n  the jncfdent pawicle and the r o t h  

nwleon'of % Rrget nutlaus. d I s  t t ~  a n t i - s m t r f z a t i o n  projection oper 

ator Ifmitfng th actfon uf the intemetlon to the Hilkrt spam f o n d  by 

antl-symnatrle waw functions &scribing varlws sta ter  oJ the target nucleus. 

The interactton given by Eq. (2.1) i s  mm-mlatlvlstic, The only relat~vtstfc 
* 



e f f e c t s  which are e x p l i c i t l y  inc luded i n  the theory t o  be described below are 

p r i m a r i l y  k inemat ic  i n  nature,  tak ing  i n t o  account the v a r i a t i o n  o f  mass w i t h  

energy.* Since the p o t e n t i a l  d e s c r i p t i o n  i s  used, e f f e c t s  o f  the v i r t u a l  

boson f i e l d s ,  nucleon isobars,  e tc .  are no t ' comp le te l y  included. However, 

the  formal ism can be extended t o  take these a d d i t i o n a l  d q r e e s  o f  freedom 

i n t o  account. 

' Two methods have been used t o  so lve  the  s c a t t e r i n g  generated by the i n t e r -  

a c t i o n  g i ven  by Eq. (2.1). We s h a l l  l i m i t  t he  d iscuss ion here t o  t h a t  developed 

by Watson [3] and.by Kerman, McManus and Thaler  [I]. The o t h e r  qssociated w i t h  

~ l a u b e r  [4] i s  descr ibed i n  many t e x t s  [5]. 

The Lippman-Schwinger equat ion f o r  the t r a n s i t i o n  m a t r i x  J . i s  g iven by 

where . 

HN = t a r g e t  Hami l ton ian 

K = the  k i n e t i c  energy opera t ion  f o r  the i n c i d e n t  

p r o j e c t i l e  r e l a t i v e  t o  the cen te r  o f  mass o f  the 

t a r g e t  nucleus 

N = number o f  nucleons i n  the' ta rge t -nuc leus .  ' 

Our goal i s  t o  r e l a t e  J and the two body s c a t t e r i n g  t r a n s i t i o n  ampli tude 

desc r ib ing  the s c a t t e r i n g  o f  the i n c i d e n t  p r o j e c t i l e  by a f r e e  nucleon. The 

Lippman-Schwinger equat ion f o r  t h a t  t r a n s i t i o n  m a t r i x  desc r ib ing  the s c a t t e r i n g  

from the  i ' t h  nucleon i s  

 where'^^ i s  the k i n e t i c  energy dpera to r  f o r  the  i n c i d e n t  p r , o j 8 ~ t i l ~ : . t e l a t i v e '  
; , :  '.. . 

. . 

. . 

A Klein-Gordon equat ion i s  used w i t h  the o p t i c a l  p o t e n t i a l  being t r e a t e d  as 

the  f o u r t h  component o f  a  f o u r  vector . '  

t o  rhe i ' t h  nucleon: 
' 

As an in termediate step, KMT in t roduce the many-body operator  i de f ine~d  I 
by: 1 

I a r='zqa N + 2 z q 7 . ~  (2.5) 

Very roughly, T i s  g iven by ti averaged over t h e ' s c a t t e r e r s .  A p rec ise  r e l i -  

t i o n  between T and ti w i l l  be g i ven  l a t e r .  Eq. (2.5) can be used t o  e l i m i n a t e  

vi i n  the  equat ion f o r  J . W r i t i n g  

and n o t i n g  t h a t  

I 

s u b s t i t u t i o n  i n  Eq. (2.2) y i e l d s  

'or 

Using Eq. (2.2) again, one obta ins i n  terms of r:. . 

J Z  N t  t h f - l ) z . $  J . : 

L e t -  - ' 

Then 

J 1  ( + N-V'f J' 
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This i s  j u s t  a  Lippman-Schwinger equat ion where the i n t e r a c t i o n  i s  an e f f e c t i v e  

one being g iven n o t  by a sum o f  two body operators vi b u t  by the many-body 

opera to r  T. The p r i n c i p a l  advantage o f  t h i s  t rans fo rmat ion  i s  t h a t  T i s  more 

c l e a r l y  r e l a t e d  t o  ti than vi. I n  the . fo l l ow ing  we s h a l l  o b t a i n  a Schroedinger 

equat ion whose t r a n s i t i o n  ampli tude i s  3 '. To o b t a i n  t h a t  r e s u l t  w i l l  

need t o  be m u l t i p l i e d ,  by N/N-1. 

One can r e w r i t e  Eq. (2.8) as a Schroedinger equa t i cn  f o r  the wave 

f u n c t i o n  o f  the  system Y :  

( E  - K  - di - ( N - 1 ) ' ~ )  @ =  0 
(2.9) 

. We now proceed t o  d e r i v e  the  o p t i c a l  model p o t e n t i a l .  Two poss ib le  forms 

w i l l  be obtained. One i n  which we are concerned w i t h  o n l y  a s i n g l e  channel. 

the e l a s t i c .  A second form p e r t a i n s  t o  a two channel s i t u a t i o n ,  an e l a s t i c  

channel and say one i n e l a s t i c  channel. I n  t h i s  case the  o p t i c a l  p o t e n t i a l  

becomes a two by two mat r i x ,  the  non-diagonal components coupl ing the  e l a s t i c  

and i n e l a s t i c  channels. It i s  easy t o  genera l i ze  the r e s u l t s  t o  i nc lude  severa l  

i n e l a s t i c  channels. L e t  P be a p r o j e c t i o n  opera to r  which p r o j e c t s  Y onto these 

r e a c t i o n  channels, the e l a s t i c  and the  i n e l a s t i c  one o f  i n t e r e s t .  E x p l i c i t l y  

where 10> and I l >  are the  s t a t e  vectors f o r  the  ground and e x c i t e d  s t a t e  

respec t i ve ly .  L e t  t h e  complementary p r o j e c t i o n  opera to r  be Q so t h a t  

Q = 1 - P  , P Q = O  , P 2 = P  , Q 2 = Q  

I n t r o d u c i n g  the n o t a t i o n  

tpp = P r p ,  rpe ' P 7Q 

[ E - K  - ( J ~ H ) ~ ~  - ( N - 1 )  ~-, ] (QP) = ( ~ - d r ~ ~ ( ~ e l  (2.12b) 

So lv ing  the  second equat ion f o r  Q Y  and s u b s t i t u t i n g  i n  Eq. ,(2:12a) y i e l d s  

The e f f e c t i v e  o p t i c a l  p o t e n t i a l  i s  g iven by the terms i n  T i n  t h i s  equation. 

So f a r  no approximations have been made. We s h a l l  however even tua l l y  neg lec t  

the e f f e c t  o f  the  Pau l i  exc lus ion  p r i n c i p l e  when the  i n c i d e n t  p r o j e c t i l e  

conta ins nucleons. I n  t h a t  case the e r r o r  f o r  fon ra rd  s c a t t e r i n g  ampl i tude i s  

small .  (See Watson and Takeda [6] f o r  discussion.) A second approximation 

t o  be employed below and t o  which w'e r e f e r r e d  i n  the  i n t r o d u c t i o n  as the  

c losu re  approximation invo lves  rep lac ing  (N- l ) lQQ by an average p o t e n t i a l  V 

and (HN)QQ by an average energy ;. Under these circumstances, the propagator  

i n  the  l a s t  term i n  the square b racke t  i n  Eq. (2.13) i s  diagonal i n  the  coord i -  

nates 6 f  the  t a r g e t  nucleus. I n  t h i s  approximation, the "c losure approximation," 

any e x p l i c i t  re ference t o  the  s ta tes  i n  t h e  H i l b e r t  space p ro jec ted  by Q 

disappeqrs. 

To o b t a i n  an o p t i c a l  p o t e n t i a l  i n  te rns  o f  ti it i s  necessary t o  r e l a t e  ' 

T and ti. Toward t h i s  end d e f i n e  the operators T ~ :  

- Comparing w i t h  Eq. (2.5) we have . 

Rather than deal ing immediately w i t h  ti we de f ine  ti1 t o  which ti w i l l .  reduce 

one can r e w r i t e  Eq. (2.9) as fo l l ows :  

.. 

i n  the  l i m i t  o f  h igh  energies. 

2.' - u;. 4 u;. -$ d&' . . 



We may e l im ina te  vi between these l a s t  two equations us ing a method i d e n t i c a l  

t o  t h a t  wh'ich l e d  from Eq. (2.2) t o  Eq. (2.6). The r e s u l t  i s  

Q - I  
7 = A  r t , ' ~  +-$ ~t'' -q oc (2.17) 

I n  order  t o  i n s e r t  t h i s  r e s u l t  i n t o  the o p t i c a l  p o t e n t i a l  i t  i s  most 

.convenient t o  replace ( l / a )  by ( l /G) .  where' 

2 5 E (" - & - UN - (#-I)T 

Comparing ( l / a )  and ( l / a )  one o b t a i n j  

But .then the  r a t h e r  remarkable r e s u l t  fo l l ows :  

s ince (a- l)a = 0. Hence i n  Eq. (2.17) one can replace a by a. To the 

second order  o f  approximation ( i n  t ' )  Eq. (2.17) becomes 

It i s  important t o  r e a l i z e  t h a t  the second term has as one o f  i t s  funct ions 

guaranteeing t h a t  the f i n a l  r e s u l t  takes proper account o f  the Pau l i  p r i n c i p l e  
. . 

f o r  the ta rge t  nucleons. 

. I t  i s  inconvenient '  t o  cont inue t o  ca r ry  the operator  a . Since 

(1 /~ )z t ; '  i s  a symmetric operator, the a i n  the  f i r s t  term i s  superf luous. 
. . 

Hence the  operator  ( N - 1 ) ~  i s  approximately g iven by 

. . 
Returning t o  Eq. (2.13). rep lac ing  T by expression Eq. ' (2.19), rep lac ing  - 
( N - ~ ) T ~ ~  by V and (HN)QQ by E as described above', and keeping on ly  terms which 

-9- . 

are b i l i n e a r  i n  ti' y i e l d s  a f t e r  some c 'a lcu lat ion 
' 

A t  t h i s  p o i n t  we s h a l l  replace ti.' by ti. Comparison o f  Eq. (2.16)..with (2.4) 

p e m i t s .  the  c a l c u l a t i o n  o f  a - c o r r e c t i p n  f o r  t h i s  approximation. 

We now consider two s i tua t ions .  The f i r s t  i s  e l a s t i c  sca t te r ing ,  

(a) E l a s t i c  Sca t te r ing  , 

For t h i s  case ? p r o j e c t s  on ly  on the  e l a s t i c  channel. Consider the  

f i r s t  term i n  Eq. (2.20) -in the momentum representat ion:  

whzre the s t a t e  vector  descr ib ing the  t a r g e t  nucleus i n  the ground s t a t e  and 

the p r o j e c t i l e  s t a t e  one o f  momentum r f i s  10%'>. Because o f  the second term 

i n  Eq. (2.4), ti . is general ly  a non-.local operator :  

-C * 
where h,, and a re  the coordinates o f  the  p r o j e c t i l e ,  4 and .T. .the 

coordinates o f  t h e  t a r g e t  nucleon w i t h  which i t  i n t e r a c t s .  can then be 

w r i t t e n  -. -. 
v t ~  = / d ~ . l d <  [&b<' ~ " [ x  I ' :;*)e a - i k .  4, 

(2.22) 

. .. X 4 (4-4, - - 4:- - 5, 6(!/z+3-f R+ ~ , ) e  

where p!') i s  the dens i t y  mat r i x :  

-. - e -  - p 0 ' c 4 i , ~ )  = \c'(< ..,. A'- , ,  4, Q ;.-. )t (7,. ... <".. ) (2.23) 
I I 

A d& d<-, ddn?,, .... 
Ve b r i e f l y  summarize the  steps taken t o  evaluate Eq. (2.22). I t  i s  convenient 

C .. 
t o  in t roduce . the  Four ie r  t ransform o f - p "  ) :  . 



+ I +  and the r e l a t i v e  and center  o f  mass va r iab les  =20 - li and R = q(no + z i )  

together  w i t h  s i m i l a r  coord inates f o r  the primed va r iab les .  The c a l c u l a t i o n  

where 
-i3:p , ;zc 7 '  

t G Z ' , ' ~ )  = J e 4 (7, ~ ~ ' ) d p  dp.  

The phys ica l  i n t e r p r e t a t i o n  o f  Eq. (2.25) i s  s t r a i g h t f o r y a r d .  The p r o j e c t i l e  

prov ides a ,momentum t' the  t a r g e t  5 ' .  A f t e r  the c o l l  i s i o n  the  p r o j e c t i l e  has 

a momentum k and the  t a r g e t  5. The d e l t a  f u n c t i o n  guarantees t h a t  the  momentum 

t r a n s f e r r e d  t o  the  ta rge t ,  'ij -a t ,  equals the momentum l o s t  by the p r o j e c t i l e  .. ̂ .. . ,.. .<'.':. . . . . . . 

r t -  rtl. 

To o b t a i n  the f a m i l i a r  Rayleigh-Lax expression, we assume t h a t  

One then ob ta ins  the r e s u l t  

~2 (x, Z') 2: ( ~ - r ) ~ ( g ' -  c) ti(i!-x3 GL 

and 

I n  Eq. (2.28) we have made the  energy dependence o f  t E ( E  - t l )  e x p l i c i t .  Th is  
* .  

ampli tude i s  i n  f a c t  the  f u l l  o f f -energy s h e l l  t - m a t r i x .  Thus more than the  

emp i r i ca l  values o f  the p r o j e c t i l e - n u c l e o n  s c a t t e r i n g  which prov ides o n l y  the  

- 

on-shel l  arnpli tudes i s  requi red.  I n  fact ,  the complete c h a r a c t e r i z a t i o n  of 

the  pro ject i le- 'nuc leon i n t e r a c t i o n  i s  needed. I n  p rac t i ce ,  one has proceeded 

by f i t t i n g  the nuc leon-p ro jec t i l e  t r a n s i t i o n  ampli tude on the  energy s h e l l ,  

genera l l y  us ing a f u n c t i o n  o f  t - x '  employing parameters which are a l lowed 

t o  vary w i t h  E. This form i s  then used t o  c a l c u l a t e  the  of f -energy s h e l l  

values r e q u i r ~ d  by Eq'. (2.28). A t y p i c a l  form i s  

We now t u r n  t o  the  nex t  approximation cons t ruc ted . f rom the l a s t  two 

tenns on the  r i g h t  hand s ide  o f  Eq. (2.20). I n  making t h i s  c a l c u l a t j o n  we 

s h a l l  immediately make approximations Eq. (2.26) and the  equ iva len t  o f  Eq. 

where 
- 9 -  -. -. 

p ( l I  = /g' (̂ ; -,... A',^',;  A j  . . c$,.hi..J4...d<<,;... 

and 

We, g i v e  the  f i n a l  resu l t .  f o r  the  second o rder  tenns: 



where c ( ~ )  the second o rder  c o r r e l a t i o n x  i s  .defined by 

' L l ( f ,  g) z p($; g) - p$~y-f) (2.35) 

The t h i r d  o rder  c o n t r i b u t i o n  has been ca lcu la ted  by U l lo .  As one might  

expect the t h i r d  o rder  c o r r e l a t i o n  f u n c t i o n  occurs b u t  i n  c o n t r a s t  w i t h  the 

and i t s .  F o u r i e r  transform: . . - 
-7 3 x &,,*,) = ' & , , : ~ f [ d f ' ~ ( $ f )  4)-' . ( # , z  + T / . Z ~ -  (2.381 

Taking the z d i r e c t i o n  t o  be t h a t  o f  the vec to r  b + b', and denot ing the  

perpendicu lar  d i r e c t i o n  by $, l e t  

second o rder  t e n  g iven above the re  are a d d i t i o n a l  t e n s  which depend upon p  

and p (2 )  which are o f  importance f o r  l i g h t  t a r g e t  nuc le i .  

( a ' )  A  Local Approximation 

The p o t e n t i a l  v;;! i s  non- local .  making i t s  use i n  the Schroedinger where 
d s cS'+ 5') 

equation comparat ive ly  d i f f i c u l t ,  a l b e i t  w i t h  modern computers poss ib le .  An 

approximate method which replaces the Schroedinger equat ion w i t h  the non- local  

p o t e n t i a l  by a  p a i r  o f  coupled Schroedinger equations i n v o l v i n g  o n l y  l o c a l  and 

p o t e n t i a l s  has been developed [2]. We s h a l l  o n l y  quote the r e s u l t s .  The 

equations have the fohn: 

(E- K - v ~ ~ )  4 = A +') 

(E- E - k -  V,, ) + ( I ) =  A 4 
where 

Wi th these d e f i n i t i o n s  the coupl ing p o t e n t i a l  i s  g i ven  by 

. 7 p / ( n * c l y d L  A f d = - Z  -- 
As one can see from t h i s  equation, $('I ;lays the r o l e  o f  an e f f e c t i v e  i n t e r -  

mediate i n e l a s t i c  s ta te .  'The cons t ruc t ion  o f  the coup l ing  p o t e n t i a l  i nvo lves  

the  f o l l o w i n g  steps. 

One advantage o f  t h i s  procedure i s  t h a t  i t  avoids the common p r a c t i c e  o f  

neg lec t ing  the l o n g i t u d i n a l  momentum t r a n s f e r  which would l i m i t  a p p l i c a b i l i t y  

t o  s m a l i  angle sca t te r ing .  

(a")  Spin E f f e c t s  

The above di.scussion f o r  ?(2)  i s  v a l i d  o n l i  when t i s  s p i n  independent. 
*If approximation Eq. (2.31 ) and Eq. (2.26) are n o t  made c ( ~ )  i s  rep laced .by 

This  i s  o f  course n o t  the  case when the i n c i d e n t  p r o j e c t i l e  i s  a  nucleon. The 
.- , 

necessary genera l i za t ions  have jeen c a r r i e d , o u t  by Lambert [2] and r e c e n t l y  
' w h i l e  the t ' s  are r e p 1 a c e d . b ~  the more accurate t ( t , z1 ' ;E )  and t ( ~ " ' , t l ; E )  

by Parmentola. W2 s h a l l  n o t  de;cribe t h e i r  r e s u l t s  her?. Instead,  a  s i inp ler  
respec t i ve ly .  

" 



ana lys i s  appropr ia te  when the nucleus can be descr ibed by LS coupl ing w i l l  

be presented. . 

I The nucleon-nucleon t m a t r i x  has the fo l l ow ing  form 

1 where & and zi are the Pau l i  sp in-operators f o r  the  p r o j e c t i l e  and t a r g e t  

1 nucleus nucleon respec t i ve ly .  The vectors z, and ;.are 

I I n  e v a l u a t i n g  the  f i r s t  term i n  Eq. (2.30), the Rayleigh-Lax t e n ,  one takes 

I t he  expec ta t ion  va lue w i t h  respec t  t o  the t a r g e t  nucleus. I f  t h a t  nucleus 

has zero s p i n  the r e s u l t  as f a r  as the  sp in  operators are concerned i s  

-C .. A +- C 

A l l  o t h e r  expec ta t ion  values vanish. This r e s u l t  t r a n s l a t e s  i n t o  a  c e n t r a l  

p1us.a s p i n - o r b i t  o p t i c a l  p o t e n t i a l ,  a  r e s u l t  which can be a n t i c i p a t e d  f rom 

I i nva r iance  p r i n c i p l e s .  The phys ica l  reason f o r  the  absence o f  any c o n t r i b u t i o n  
I 

f rom the o t h e r  t e n s  can be r e a d i l y  formulated. Roughly speaking, a  term l i k e  

~ $ ~ - z ~  r e s u l t s  i n  a  s p i n  f l i p  o f  t h e  t a r g e t  nucleus nucleon, changing the 

I ' 
s t a t e  o f  t h e  t a r g e t  nucleus. I n  o rde r  t o  r e s t o r e  the  s p i n  o r i e n t a t i o n  a  second 

s c a t t e r i n g  i s  necessary. Thus the  B, D and E  term; i n  Eq. (2.41) w i l l  c o n t r i -  

bute t o  v${ and n o t  t o  VRL. Since the  r e l a t i v e l y  smal l  energy change invo lved  

i n  the s p i n  f l i p . c a n  be neglected, i t i s  c l e a r  t h a t  v ( ~ )  w i l l  be b i l i n e a r  i n  

I t h e  d e n s i t y  i n  a d d i t i o n  t o  i t s  expected dependence on the  second o rder  co r re -  

1 l a t i o n .  I t  i s  u s e f u l  t o  combine these dens i t y  dependent t e n s  w i t h  the f i r s t  

o r d e r  term, Eq. (2.30), so t h a t  the  remainder w i l l  depend o n l y  upon the corre-  
.- . 

l a t i o n .  As we s h a l l  see t h i s  can be done r e l a t i v e i y  e a s i l y .  

Only a  simple example w i l l  be discussed. Suppose ti has the  form: 

Then 

The c a l c u l a t i o n  o f  ~6i+ w i l l  i nvo lve  the eva lua t ion  o f  the quan t i t y :  

Mf ?, $')z (0 /fi '75,4'< .: (~ I$~ ]R  + 3 .3 tfNt$,)]/ o> 
#"I) t9 ,  (2.45) 

- f 'g) ff9'/.+7$, e" r y:, 
Doing the s p i n  algebra one obta ins:  

/-/ /$, f 9 ; t'"$ip, &*)/f) ~"'f?, p) .-- . 
. . 

. . i (7,z, ' - / r  
+ df4rg) tW/+$ ~ r # - 9  (+. r (ofcf.5 e f ' f . ,lo> 

J 

Assuming t h a t  the t a r g e t  nucleus, has zero spin, and can be descr ibed by LS 

coupl ing, one can evaluate the  sum 

o r  us ing 

M becomes 

We can now reo rder  the  terms i n  VopT SO t h a t  v ( ~ )  i nvo lves  on ly  co r re la t ions .  
1 

t h a t  i s  the  second t e n  i n  Eq. (2.46). ,Thus i n  Eq.. (2.34) the  terms 

t(5)t(5')c(;,;i1) ? re  replaced by [ t (O)(<) t (O)(< ' )  - ( 3 / ~ - l ) t ( ~ ) ( ~ ) t ( ~ ) ( < '  ) ]  



w h i l e  Eq. (2.28) becomes: 

f l )  v0, = @ - l ) ~ ~ ~ , j l p ( $ )  + ) ( N  J / J ~  / d ~ ' ' ' * ' ? { ! t ~ ' ~ ) ~ $ * ) ~  '$9 
(2.47) 

Because the  f a c t o r  m u l t i p l y i n g  (El,' [!-I t '")  f a c t o r i z e s  i n t o  a f u n c t i o n  o f  

+ 
q and o f  3 ' .  t he  Schroedinger equat ion w i t h  t h i s  p o t e n t i a l  can be e x a c t l y  

w r i t t e n  as a p a i r  o f  coupled equations as g iven i n  Eq. (2.36) w i t h  

As one can see from Eq. (2.47) t h i s  sp in  c o r r e c t i o n  i s  impor tant  when 

where kF i s  the Fermi momentum i n  u n i t s  o f  k. The expression on the  l e f t  i s  

a conservat ive est imate o f  the  r a t i o  o f  the  second t o  the f i r s t  term in .  Eq. 

(2.47). 

(b) I n e l a s t i c  Sca t te r ing  

I n  t h i s  case, the  p r o j e c t i o n  operator ,  P, p r o j e c t s  on t o  the  space 

c o n s i s t i n g  o f  the  t a r g e t  nucleus i n  the ground s t a t e  and i n  an e x c i t e d  s ta te .  

The Schroedinger equat ion now becomes a p e i r  o f  coupled equations i n v o l v i n g  

these two channels, the e l a s t i c  and the i n e l a s t i c .  The diagonal components 

o f  the  coupled channel are i d e n t i c a l  w i t h  + ~6;: o f  Eq. (2.20). Agprox- 

imat ions Eq. (2.28) and Eq. (2.34) apply =o the diagonal e l a s t i c  channel 

p o t e n t i a l .  For the i n e l a s t i c  channel p o t e n t i a l  one need o n i y  rep lace  p by 

where 

w i t h  

The second order  term i s  g iven by 

The b racke t  replaces the  second o rder  c o r r e l a t i o n  f u n c t i o n  o f  the  diagonal 

p o t e n t i a l .  The q u a n t i t y  ;(2) i s  
PO 

These equat ions '  have been used by Ul l o  [2] t o  discuss i n e l a s t i c  sca t te r ing .  

I t  i s ,  f o r  example, poss ib le  t o  extend the  f a c t o r i z a t i o n  procedure o f  

sec t ion  (a ' )  t o  the coupled equations. 

( c )  App l i ca t ions  

The Rayleigh-Lax p o t e n t i a l ,  Eq. (2.28). has been used t o  analyze t h e  

s c a t t e r i n g  o f  h i g h  energy (-1 GeV) protons by nuc le i .  Other  examples were t o  

II the  p f o r  the  e x c i t e d  s tate.  The coup l ing  p o t e n t i a l  between the  two channels be prov ided by another l ec tu re r .  The f i r s t  two o f  these i s  taken from Bor idy  I 
.,. : : .: 

can be s i m i l a r l y  evaluated. L e t  the  e x c i t e d  s t a t e  be designated by h, the 

ground s t a t e  as before by 0, then the  coupl ing p o t e n t i a l  (VopT)po i s  g iven by 

, . . C71. Fig. (2.1) compares the e l a s t i c  s c a t t e r i n g  c a l c u l a t e d  us ing  VRL.for two . ' 

d i f f e r i n g  neutron dens i t y  d i s t r i b u t i o n s ,  pn. One i n  which p . does n o t  equa l -  

po, the  charge d i s t r i b u t i o n  obta'ined from a Hartree-Fock c a l c u l a t i o n  us ing  a ~ 
I - 



dens i t y  dependent Hami l ton ian [8]. I n  the o t h e r  pn i s  p laced equal t o  p,. 

We see subs tan t ia l  d i f f e rences  a t  t h e  l a r g e r  angles o f  sca t te r ing .  I n  Fig. , .  I .  -/. :. . ..- 
(2.2) one can compare the theory us ing the VRL f o r  e l a s t i c  s c a t t e r i n g  and the 

Tassie model f o r  the  i n e l a s t i c  coupl ing p o t e n t i a l  r a t h e r  than the less  model 

dependent r e s u l t  o f  Eq. (2.50). As one can see, the agreement i s  e x c e l l e n t  

i n d i c a t i n g  t h a t  one can i n  f a c t  determine the neutron .density. This i s  more 

cogent ly  and c l e a r l y  seen i n  Fig. (2.3) i n  which the d i f f e r e n c e  between the  
' 

,,.. . 

neutron and p ro ton  rad ius  i.s g iven f o r  the even s tab le  isotopes o f  Ca [8]. 

The f i r s t  t h r e e  p o i n t s  are obta ined from 1  GeV e l a s t i c . p r o t o n  sca t te r ing .  

We see t h a t  t h i s  d i f f e r e n c e  i s  determined t o  about *0.03 fm. 

The e f f e c t s  o f  s h o r t  range c o r r e l a t i o n  do n o t  make t h e i r  appearance u n t i l  

one gets  t o  l a r g e r  s c a t t e r i n g  angles measured exper imenta l ly .  However, i n  

o rde r  t o  e x t r a c t  c ( ~ )  i t  w i l i  be necessary t o  c a r e f u l l y  est imate the e r r o r s  

i n  the  ca lcu la t ion .  We note t h a t  the  sma l le r  angle d i f f r a c t i o n  p a t t e r n  i s  

i n  e x c e l l e n t  agreement w i t h  the  p r e d i c t i o n s  us ing the d z n s i t i e s  o f  the Pb, 

Ca and N i  n u c l e i  obta ined w i t h  the dens i t y  dependent Hartree-Fock method. 

111. Pion-Nucleus Sca t te r ing  [10,11] 

I n  the  preceding d iscuss ion o f  h igh  energy hadron-nucleus sca t te r ing ,  

none o f  the in termediate s ta tes  were presumed t o  have a  p a r t i c u l a r  impor tance. .  

The v a l i d i t y  o f  the c losu re  approximation r e s t s  upon t h i s  hypothesis. We 

t u r n  now t o  a  case i n  which a  p a r t i c u l a r  in termediate s t a t e  o r  b e t t e r  i n  

which a  few such s ta tes  are a l l  important. I n  the presefi t  s i t u a t i o n ,  p ion  

s c a t t e r i n g  by nuc le i ,  t h i s  occurs because these in termediate s ta tes  are COI~~C- 

t i v e  and are r e a d i l y  e x c i t e d  by the, i n c i d e n t  p r o j e c t i l e .  I n  o t h e r  words, 

these c o l l e c t i v e  s ta tes  form doorway s ta tes  f o r  the  react ion.  

I s o l a t e d  doorway s ta tes  such as the  g i a n t  m u l t i p l e  resonances, the i sobar  

analog resonances, nuc lea r  molecular  resonances, Gaaow-Teller resonances, shape 

isomer resonances and so on are f a m i l i a r .  The c o l l e c t i v e  s t a t e  responsib le 

f o r  the doorday s t a t e  resonance i s  roughly  described as a  p ro ton  p a r t i c l e -  

p ro ton  ho le  s t a t e  and a  p ro ton  par t i c le -neu t ron  ho le  s t a t e  i n  the e l e c t r i c  

d i p o l e  and i sobar  analog resonance respec t i ve ly .  The r e l a t i v e l y  l ong  1  i f e t i m e  

o f  these s ta tes  can f o l l o w  from an approximate symmetry as i n  the  case o f  the . 

i sobar  analog resonance o r  from dynamical considerat ions as i n  the  case o f  

the shape isomers ( t h e  l a r g e  p o t e n t i a l  b a r r i e r  which i n h i b i t s  shape changes). 

Of course, one should remember t h a t  the doorway s ta tes  are n o t  exact  eigen- 

func t ions  o f  the nuclear  Hamiltonian. Under examination w i t h  s u f f i c i e n t l y  

good r e s o l u t i o n  they fragment i n t o  a  f i n e  s t ruc tu re .  This has been observed 

i n  each o f  the  examples c i t e d  above. 

I n  the  example t o  be discussed i n  these lec tu res ,  the  c o l l e c t i v e  s t a t e  

o f  the nuclear  system i s  a  A pa r t i c le -nuc leon  ho le  s ta te .  This c o l l e c t i v e  

s t a t e  i s  formed when a  p ion  s t r i k e s  a  nucleon i n  the nucleus, the p i o n  being 

absorbed by i t  t o  form a  A (an e x c i t e d  s t a t e  o f  the nucleon w i t h  J = 3/2 and 

T = 3/2, ER = 1232 MeV, r = 115 MeV) leav ing  a  "hole". A s  we s h a l l  see, a  

c o n s t r u c t i v e l y  coherent A-hole s t a t e  i s  formed when the  i n c i d e n t  p ion  energy 

i s  i n  the A resonance region. Although the re  i s  a  s t r i k i n g  s i m i l a r i t y  t o  the  

p a r t i c l e - h o l e  s t a t e s  menti.oned i n  the  preceding paragraph, the re  i s  a l s o  a  

most s i g n i f i c a n t  d i f f e rence .  I n  the.present .case,  the p a r t i c l e ,  the  A, i s  

unstable. Thus, i n  t h i s  process, i t  becomes poss ib le  f o r  the  f i r s t  t ime t o  

d i r e c t l y  consider  the impact o f  a  s t r o n g l y  i n t e r a c t i n g  nuc lea r  environment on 

a  partiile resonance. The mqthods, which a re  developed f o r  the  A case, can 

genera l l y  be employed i n  consider ing.  the  behavior  o f  o t h e r  p a r t i c l e  resonances 

such as the .Y* i n s i d e  nuc le i .  

For  the most p a r t  many o f  t h e - t h e o r e t i c a l  approaches t o  pion-nucleus . .. 
s c a t t e r i n g  have n o t  examined and e x p l o i t e d  the  po ;s ib i l i t y  o f  the. format ion 

o f  c o l l e c t i v e  s ta tes  by the i n c i d e n t  p i o n  b u t  have proceeded us ing  some v a r i a n t  



o f  the m u l t i p l e  s c a t t e r i n g  theory descr ibed i n  Sect ion 11. I t was f i r s t  

p o i n t e d o u t  by K i s s l i n g e r  and Wang [ I23 t h a t  the isobar-hole s t a t e  i s  a  door- 

way s t a t e  and could be e s p e c i a l l y  impor tant  f o r  e l a s t i c  and i n e l a s t i c  p ion  

s c a t t e r i n g  and more genera l l y  i n  reac t ions  i n  which A format ion has an impor- 

t a n t  ro le .  The f a c t  t h a t  'the s ta tes  formed are c o l l e c t i v e  i s  the d iscovery 

o f  H i ra ta ,  Koch, Lenz and Moniz [ l o ] .  I t  i s  t h e i r  work, as w e l l  as the r e s u l t s  

o f  Lenz, Horikawa and Thies [ll] upon which I s h a l l  r e p o r t  i n  t h i s  sec t ion .  

As a  f i r s t  s tep we s h a l l  develop an expression f o r  the r ~ s o n a n t  p ion-  

nucleon sca t te r ing ,  a  representat ion which w i l l  be 'use fu l  f o r  t h e  l a t e r  

d iscuss ion o f  the pion-nucleus sca t te r ing .  The p r o j e c t i o n  operator  method 

w i l l  be used [13,14]. The equat ion we wish t o  so lve  i s  the Schroedinger 
: 

equat ion 

= E S !  
(3.1) 

L e t  the .opera to r  P  be a  p r o j e c t i o n  operator  which se lec ts  a t  l e a s t  the i n c i d e n t  

channel as w e l l  as o t h e r  s ta tes  o f  the  system exc luding t h a t ' o n e  which w i l l  

g i v e  r i s e  t o  the resonance as we s h a l l  see. L e t  the p r o j e c t i o n  operator  

which se lec ts  a t  l e a s t  t h a t  s t a t e  be Q so t h a t  

'?'+ q = l  , P % p ,  q z z Q  , PQ = D  ' 

Eq. (3.1.) then becomes a  p a i r  o f  coupled equations f o r  PY and QY 

( E  - dpp) ( @ & I  = ~ ( P Q  (Q g 
(3.3a) 

where 

where S a t i s f i e s  the hom~geneous'equation 

(3.5) 

w i t h  the i n d i c a t e d  boundary cond i t i on .  7 I!) i s  the s c a t t e r i n g  ( o r  r e a c t i o n )  

ampli tude generated by H p p  The prompt non-resonant processes w i i l  be conta ined 

i n  t h i s  term. The wave f u n c t i o n  Y!+) i s  the s o l u t i o n  o f  Eq. (3.1 1 w i t h  the  

appropr ia te i n c i d e n t  wave i n d i c a t e d  by the  s u b s c r i p t  and outgoing wave 
. . 

boundary c o n d i t i o n  i n d i c a t e d  by the  supersc r ip t .  

To determine Q Y ~ + )  we r e t u r n  t o  ~ q :  (3.3) ' ~ s o l v i n g " '  ~ q .  (3.3a) as f ~ l l o w s :  

.. . 

where $I+) i s  a l sa  a  s o l u t i o n  d f  Eq. (3.5). I n s e r t i n g  t h i s , r e s u l t  i n t o  Eq. 
I 

. . . . 

(3.3b). y i e l d s  . . .. . . . . . 
I 

. ( E - ~ ~ ~ - ~ ~ ~ - ~ P Q ) (  E "'- /fPP QC) =.qiT4s - - - - - . . . - -. . . . 

. . 
I n v e r t i n g ,  making u;e o f  th? f a c t  t h a t  Q conta ins no open channels, and 

i n s e r t i n g  the  r e s u l t  i n t o  Eq. (3.4) y i e l d s :  

This  expression i s  completely general. L e t  us now s p e c i a l i z e  t o  

pion-nucleon sca t te r ing .  Then the i n c i d e n t  system w i l l  be designated by the  

subscr ip t ,  nn , The i n t e r a c t i o n  Hpq w i l l  connect the n + n  system w i t h  the  

A (and o t h e r  resonances). I n  the  n o t a t i o n  o f  HKLM, 

r" and 

From Eq. (3.3a) i t  fo l l ows  t h a t  the  J m a t r i x  i s  



The f i r s t  term 1:;) j u s t  g ives the  non-resonant sca t te r ing .  Assuming t h a t  
. . 

on ly  one resonant s ta te ,  the A,  i s  important  and t h a t  i t s  wave funct ion-  *A 

i s  a s o l u t i o n  o f  

Eq. (3.6) becomes 

the doorway stases as i s  i l l u s t r a t e d  by Fig. 3.1. 

For pion-nucleus sca t te r ing ,  the J m a t r i x  g iven by Eq. (3.6) becomes , 
a f t e r  i n s e r t i n g  assumption Eq. (3.11) 

where 

2 &Q = uDp- H P D  = wDp C '  E -' klpp 
(3.13) 

t Note t h a t  the  " s e l f  energy" operator  T i s  complex and there fo re ,  i n  the  deno- We now must ca lcu la te  D[~I(E--H~~)ID where HQQ 'HQQ + WQQ. To t h i s  end 
. . 

minator  o f  the  second term. ($hl"$A) w i l l  s h i f t  the  resonance energy and 

w i l l  a l so  add an imaginary term p ropor t iona l  t o  the w i d t h  o f  the  resonance. 

l e t  

However, note t h a t  s ince T' i s '  energy dependent, t h i s  w i d t h  w i l l  have an energy 

dependence. This i s  o f  some importance because o f  the subs tan t ia l  w id th  o f '  ' o r  

the  resonance and r e s u l t s  i n  some d i s t o r t i o n  from the Breit-Wigner form. Eq. ( F - ~ Q  ) 6~~ 5 Q 
(3.9) needs t o  be rev ised  because o f  the requirements o f  spec ia l  r e l a t i v i t y .  

We s h a l l  r e t u r n  t o  t h i s  p o i n t  i n  the  course o f  the  development which fo l lows .  M u l t i p l y i n g  from the r i g h t  by D y i e l d s  

He t u r n  n e x t  t o  pion-nucleus s c a t t e r i n g  i n  the isobar-hole doorway 

approximation. We employ the methods of'my paper w i t h  Keman and Lemmer 1141. 
F i r s t  we separate ou t  the  doorway s t a t e  component by f u r t h e r  p a r t i t i o n i n g  Q 

space: 

Mu l t ip l y ing . f rom.  the  l e f t  by D y i e l d s  the  equation 

w h i l e  m u l t i p l y i n g  Eq. (3.15) from the l e f t  b y ' q  y i e l d s  

C where D ' i s  the  p r o j e c t i o n  operator  f o r  t h e  doorway state.  space. Secondly, the  
(E- '9%) $9 ' . ''%O 6, 

s t rong  doorway s t a t e  assumption i s  made; namely t h a t  

C .. 
b u t  HpD and H and t h e i r  a d j o i n t s  do no t  vanish. This assumption s ta tes  t h a t  

Dq 

l n k r t i n g  t h i s  equation and s u b s t i t u t i n g  i n  Eq. (3.16) y i e l d s  
h 
Y 

G P O  = E-*l.. -4- s 
the  Hamiltonian connects the open channel subspace p ro jec ted  by P on ly  w i t h  where 



Hence 

This i s  the fundamental formula w i t h  which ,we s h a l l  work. The imaginary 

t p a r t s  o f  q u a n t i t i e s  WDD and wD; are p ropor t i ona l  t o  the escape and spreading 

widths respec t i ve ly .  

I t  i s  now necessary t o  f i l l  i n  t h i s  expression tak ing  the Pau l i -b lock ing  

e f f e c t  and in t roduc ing  the necessary mod i f i ca t ions  requ i red  by r e l a t i v i t y .  

L e t  us s t a r t  w i t h  HpD. I n  the i s o b a r  doorway model t h i s  i s  g iven 'by 

: g, the ve r tex  f u n c t i o n  descr ibed above which conver ts  a nucleon . in the t a r g e t  

nucleus by the absorpt ion o f  a  pion. This i n t e r a c t i o n  i s  summed over  a l l  the 

t a r g e t  nucleons tak ing  due account o f  , isospin.  The m a t r i x  element o f  g  i s  

cN ( Q )  = 4 9 (b)'.... a l l  g ( / / 2 . . . .  A ) )  
(3.20) 

where oo i s  the ground s t a t e  o f  the t a r g e t  and 0 i s  the s t a t e  produced by p ion  

absorpt ion where 5 i s  the p i o n  momentum.. I n  an independent p a r t i c l e  model 

where Q- i s  the i n i t i a l  nucleon wave f u n c t i o n  w i t h  momentum t. $A i s  the A -. 
wave funct ion w i t h  momentum ($ + q) ' i n  u n i t s  o f  h.  The momentum K i s  the 

momentum o f  the p ion  r e l a t i v e  t o  the center  o f  mass o f  the nucleon p lus p ion  

where w,, i s  the p ion  energy/c2. The q u a n t i t y  6 i s  

where f i s  the coup1 i n g  constant  mod i f i ed .  by some k i n e r a t i c  faccors,  h  i s  

the ver tex form f a c t o r  parametrized as fo l l ows  

w i t h  A = 25.5 and a = 1.8 fm- 1 

+ 1 S i s  a  vector  operator  connecting the sp in  7 and s p i n  $ systems a j  f o l l o w s :  

vhere 

€ 2 ,  

A * . .  

where x, y ,  z  are u n i t  vectors i n  the i n d i c a t e d  d i r e c t i o n s .  

A second problem i s  connected ni t h  the propagator  ( E  - HOD.. . i n  Eq. 

(3.19) which needs t o  be g iven an appropr ia te  r e l a t i v i s t i c  form. Th is  cou ld  

have been accomplished a t  the beginning o f  o u r  ana lys i s  by rep lac ing  the 

Schroedinger expression (E - H) by the quadra t i c  Klein-Gordon opera to r  and 

subsequently employing the  p r o j e c t i o n  opera to r  analys is .  The energy denomi- 

n a t o r  i n  the t r a n s i t i o n  ampli tude f o r  the  p ion - f ree  nucleon resonance i s  then 

n o t  t h a t  g iven i n  Eq. (13.9) b u t  i s  r g t h e r  0 - I  where . 

where P i s  the  s.quare o f  the t o t a l  energy and ( A - mi)- '  i s  -he "bare" 

operator  w h i l e  the i n t e g r a l  i s  the " s e l f  energy" corre,ction, w i t h  the imaginary 

p a r t  p ropor t i ona l  t o  the  width.  

I n  the expression f o r  p ion  nuclear  s c a t t e r i n g  we replace (1 - HOD) by 

D(E - HA) where HA i s  the Hami l ton ian f o r  the A-nuclear system 
..... . -  

dA = 4 vd C(A-, 
.- . - .. . 

w i t h  TA the k i n e t i c  energy and VA the  p o t e n t i a l  energy o f  the A i n s i d e  the 



nucleus, w h i l e  HA_1 i s  the Hami l ton ian f o r  the r e s t  o f  the nuc lea r  system 

c o n s i s t i n g  of A-1 nucleons. HKLM use a s h e l l  model p o t e n t i a l  f o r  VA. 

I n  app l i ca t ion ,  D(E - HA) i s  l i n e a r i z e d :  

J ( E - c l , ) = p f d -  42/,(~1 U, e N ~ Y , (  F-E,,+L/ - ~ f ~ ) k / ~ )  
(3.25) 

where 
2 0 / 2 €  N* YIE) 

Next, consider  wD;, Eq. (-3:13). We again repl.ace the propagator  by i t s  

Klein-Gordon form and t h e r e f o r e  w r i t e  

. where F i s  g i ven  by Eq. (3.21). 

To evaluate the spreading,width wD;, we adopt the  o p t i c a l  model s t r a t e g y  

o f  r e p l a c i n g  i t  by an energy average and then us ing  a phenc.menologica1 poten- 

t i a l .  Upon the  assumption t h a t  the  major  source o f  the  spreading w i d t h  i s  

the  absorp t ion  r e a c t i o n  

HKLM p a r a m e t r i s e . ~ o f )  by W = .  VOp(b)/pO where p i s  the  h a t t e r  dens i t y  and Vo i s  

a parameter. As we s h a l l  see Horikawa, Theis, and Lenz found i t  important  t o  

i n c l u d e  a sp in -o rb i  t term.. They use 

where p and v[:) are emp i r i ca l  parameters. For f u t u r e  conven ieke ,  we w r i t e  

Eq. (3.27) as fo l l ows :  
" .  

w =  v, 4 2 L . Z  q ,  

F i n a l l y ,  an ad hoc term i s  added t o  take the Pau l i -b lock ing  e f f e c t  i n t o  

account. P a ~ l i - b l o c k i n g  r e f e r s  t o  the forbidden decay o f  the i sobar  by p ion  

emission i n  which the nucleon ends up i n  an occupied s i n g l e  p a r t i c l e  o r b i t .  

The f r e e  w i d t h  i n  D(E), Eq. (3.27), must be co r rec ted  f o r  t h i s  e f f e c t .  The 

c o r r e c t i o n  i n  the independent p a r t i c l e  model i s  g i ven  by 

where E and E are the  ho le  energies. . 

Wi th the  i n t r o d u c t i o n  o f  6 ~ .  Eq. (3.19) becomes 

where the m a t r i x  elements o f  a l l  t he  operators'  which occur have been de f ined  

above. 

The doorway s ta tes  a re . in t roduced  as the  e igenstates o f  t h e  denominator 

o f  the propagator: 

so t h a t  

The c a l c u l a t i o n  o f  ] nN thus require; the determi l la t ion o f  the  s o l u t i o n s  o f  
. 

Eq. (3.30) f o r  the  doorway s ta tes  and then s u b s t i t u t i o n  i n  Eq. (3.31). The 

opera to r  i n  Eq. (3.30) contq ins VA which i s  taken t o  be p ropor t i ona l  t o  the  

nucleon dens i t y  by HKLM w i t h  a depth o f  55 MeV. The o n l y  parameter (complex!) 

which remains, o m i t t i n g  the  s p i n , o r b i t  term i n  Eq. (3.27) i s  Wo. 

The numerical r e s u l t s  revealed a remarkable feature; f o r  example, i n  t h e  

c a l c u l a t i o n  o f  the t r a n s i t i o n  ampli tude f o r  t h e ' s c a t t e r i n g  o f  140 MeV p ions by . 

160 f o r  the  0- p a r t i a l  wave. Harmonic o s c i l i a t o r  wave func t ions  were used. 



The A-hole space was 17 dimensional.  The c o n t r i b u t i o n  o f  each o f  the doorway 

s t a t e  so lu t ions  i s  presented i n  Table 3.1. One immediately sees t h a t  one 

s t a t e  Dl provides by f a r  the l a r g e s t  c o n t r i b u t i o n  t o  the  t r a n s i t i o n  mat r i x .  

Moreover, t h e l m a t r i x  element1;f the i n t e r a c t i o n  w i t h  the i n c i d e n t  channel 

de f ined  by 

tu rns  o u t  t o  be 0.9. Dl i s  thus a  c o l l e c t i v e  s t a t e  s i m i l a r  t o  those seen i n  

the  g i a n t  m u l t i p o l e  resonances. 

The f a c t  t h a t  the  over lap  as g iven by Eq. (3.32) i s  so l a r g e  suggests 

t h a t  i t  would be more economical t o  use a  complete s e t  based upon 

r a t h e r  than upon harmonic o s c i l l a t o r  wave func t ions .  There i s  a ,s tandard 

procedure develope'd by Lanczos (see Morse and Feshbach [15], p. 1155) f o r  

developing such a coinplete set .  
4 

L e t  #( = 7 ( ~ )  U, + V/4& + w:d +gWDp 

Form the s t a t e  dl from do as f o l l o w s :  

(2) H Id,\ 
d , ;  scd. - <Zo I do> O 

~ o t e  the o r thogona l i t y :  

S ta te  d2 i s  formed by opera t ing  on dl and o r thogona l i z ing  w i t h  respect  t o  dl 

and do: 

d, 3. %d, - (3.36) 

More genera l l y  

14-0 
Not on ly  i s  da e x p l i c i t l y  or thcgonal  t o  do-l and.da-2, b u t  i t  i s  or thogonal  t o  

da--for - 5  a  as w e l l .  The p roo f  i s  l e f t  as an exerc ise.  I t  a l s o  f o l l o w s  

from Eq. (3.37) t h a t  the chain ing c o n d i t i o n  i s  s a t i s f i e d  by the  s e t  da: 

From Eq. (3.29) we see t h r t  f o r  e l a s t i c  s c a t t e r i n g  f o r  a  g iven p a r t i a l  

wave one can w r i t e  

where 

and 

Our problem i s  thus reduced t o  .a c a l c u l a t i o n  o f  6 , o r  more s p e c i f i c a l l y .  t o  

expressing 5 i n  terms o f  the :set da. Oefine the m a t r i x  element o f  $ t o  be 

(3.4:) 
. . 

I n  term; o f  t h i s  d e f i n i t i o n  Eq. (3.40) can be r e w r i t t e n  

- Using the  chain ing cond i t i on ,  Eq. (3.38), t h i s  equat ion becomes . 
,. . 



where 

; < Z I H I + ~ )  

Let  a be the value of a f o r  which 6 = 0. Eventual ly  we s h a l l  l e t  

i -. m. Then Eq. (3.42) becomes 
I 

S u b s t i t u t i n g  t h i s  r e s u l t  i n  the equat ion f o r  G i-l,O y i e l d s  

Therefore 

Repeating t h i s  process successively  and thus reducing the  index o f  by one 

u n i t  each s tep  one even tua l l y  a r r i ves .a t . the  f i n a l  expression i n  the  form o f  

a continued f r a c t i o n . f o r  Goo 

The zeros o f  the denominator i n  Eq. (3.43) w i l l  y i e l d  t h e  eigenvalues zi o f  

Eq. (3.30). 
. 

The e f f i c a c y  o f  t h i s  procedure i s  i l l u s t r a t e d  by Table 3.2, i n  which the . 
;> 

r e s u l t s  obta ined w i t h  N i t e r a t i o n s  are compared w i t h  d iagone l i za t ion  us ing the 

harmonic o s c i l l a t o r  space. The p ion  i s  p o s i t i v e  w i t h  an energy o f  163 MeV and 

the  t a r g e t  nucleus i s  160. It i s  c l e a r  t h a t  the  process i s  r a p i d l y  convergent. 

and t h a t  even the  f i r s t  term, N = 1, g ives e x c e l l e n t  agreement w i t h  the exact  

Table 3.1 



Table 3.2 

r e s u l t .  These examples r e f e r  t o  one o f  the eigenvalues and e igenstates Oi. 
. - 

The number requ i red  t o  ob ta in  t h e  t o t a l  )or  the J m a t r i x '  fir each p a r t i a l  
' 

wave i s  genera l l y '  very few i n  number. I n  t h i s  case two. s t a t e s  were r e q u i r e d  
. . 

fc.r an accurate descr ' ip t ion o f  the 4- t r a n s i t i o n  ampli tude and on ly  one f o r  

the 0- p a r t i a l  wave. 

The c o n t r i b u t i o n  o f  the var ious terms i s  shown i n  F ig.  (3.2) i n  which 

The comparison o f  tha  r e s u l t s  o f  t h i s  ana lys i s  as c a r r i e d  o u t  by HTL ; 

the imaginary p a r t  o f  the expectat ion va lue o f  var ious terms are .p lo t ted  as , 

L" = 0- L" = 4- a f u n c t i o n  o f  p ion  energy. We see t h a t  the  dominant term o;iginates i n  the  

w i t h  e x i e r i h e n t  i; shown i n  ' the fo l l ow ing '  f i g u r e s  (F ig.  (3.7) - (3.13)). 

Re s N - - ; (MeV) 
, . 

1 . I55 + .490i -53.1 - 154.5i 

. 2 . I59 + .372i -68.7 - 138.5i 

. 1 5 4 + . 3 8 1 i  -68 .7 -138 .O i  . 3 

"EXACT" . I54  + .381i -68.7 - 138.0i 

~ i ~ .  (3.7) compares the computed and experimental absorp t ion  cross-sect ion:  

Fig. (3.8), (3.9) and (3.10)-compare the c a l c u l a t e d  a n g u l a i  d i s t r i b u t i b n  w i t h  

Re s - . E ( M ~ ~ v )  escape width.  The & u l i  term does r e d u i e  the  f r e e  space w i d t h  w h i l e  the  

. 0 6 0 + . 2 8 0 i  1 3 . 9 - 1 4 . 4 i  sp read ing  w i d t h ' i s  o f ' t h e  same or'der o f  magnitude as the f ree 'space width.  . 

.062 + .246i -2.7 - 17.7i 
' 

I n  HLKM, o n l y  the  f i r s t  term i n  the  expression f o r  the  spreading pbten- 

. 0 5 9 + . 2 5 i i  -3 .4-22.71 '  t i a l  W ,  Eq. (3;27) i s  used. The r e s u l t i n g  emp i r i ca l  v a r i a t i o n  f o r  V ip (0 )  = 
. . ! 

.059 + .25Oi -3.5 - 2 3 . l i  p(O)W(O) i s  q u i t e  severe as 'can b e  seen f rom Fig. (3.3). Horikawa., Theis and 
. . 

Lenz inc lude  the s p i n  o r b i t . t e r m  as w t l l .  The r e s u l t s  are shown i n  Fig. (3.4). 

experiment f o r  p ion  energ ies o f  120, 148, 162, 226, and 260 MeV. The agreesent 

As' we.see, the  Re Wo and the Im Wo are now roughly  independent o f  p i o n  energy? . 

a muth more s a t i s f a c t o r y  r e s u l t .  Table 3.3 g ives the s t reng th  v!:) and range 

parameters p f o r  the  s p i n  o r b i t  term. i.. .; 
I n  Fig. (3.5) and Fig.  (3.6) the  volume i n t e g r a l  o f  the c e n t r a l  term i n  " .  - 

',-, 

and the sur face i n t e g r a l  are g i ven  f o r  d i f f e r i n g  values o f  the mass number :.' 
. . 

A and compared w i th '  values obta ined f o r  the nucleon-nucleus i n t e r a c t i o n :  



i s  good except f o r  the back angles p a r t i c u l a r l y  f o r  the 162 MeV case. Figures 

(3.11). (3.12) and (3.13) compare the s c a t t e r i n g  from :6Cl, '+He, and 1 2 C  a t  

the  i n d i c a t e d  energies. From these one can see the ;cry l a r g e  improvement 

which r e s u l t s  because o f  the i n c l u s i o n  o f  a s p i n - o r b i t  term i n  Eq. (3.27). 

The s o l i d  l i n e  i s  the r e s u l t  o f  c a l c u l a t i o n s  w i th ,  the broken one wi thout ,  

s p i n - o r b i t  t e n s .  We see the impor tant  e f f e c t s  a t  o r  near  the minima i n  the  

angular  d i s t r i b u t i o n s ,  f i l l i n g  i n  o r  a deepening under d i f f e r e n t  circumstances. 

Some d iscrepancies t h e r e f o r e  remain, and one would even tua l l y  ' r e q u i r e  

a microsc'opic c a l c u l a t i o "  o f  the  A-nucleus i n t e r a c t i o n  as conta ined i n  $d , 

r a t h e r  than the  present  semi-empir ical treatment. Nevertheless i t  seems f a i r  

t o  say t h a t  the  e l a s t i c  p ion-nuclear  ampli tude i s  w e l l  understood, and t h a t  

one knows how t o  c a l c u l a t e  the  behavior  o f  the  A-resonance i n s i d e  the nucleus. 

Obviously the  t h e o r e t i c a l  . t reatment  o f  var ious processes i n  which the  p i o n  i s  

i nvo lved  must take  advantage o f  t h i s  increased understanding. The doorway 

s ta tes  need n o t  decay o n l y  i n t o  the  e l a s t i c  channel. I n  o t h e r  words, i n e l a s t i c  

s c a t t e r i n g ,  p i o n  p roduc t ion  o r  absorption, photoproduct ion and r a d i a t i v e  

capture may pass through the'doorway s ta tes  revealed by the above d iscuss ion 

o f  e l a s t i c  sca t te r ing .  

F i n a l l y ,  r e t u r n i n g  t o  a theme 'discussed e a r l i e r ,  t he  same methods developed 

i n  t h i s  s e c t i o n  should a l s o  prove use fu l  f o r  o t h e r  baryon rsson.ances such a s  . 

. t he  Y *  which i s  produced when a K- i s  absorbed by a nucleon. Moreover, i t  may 

a l s o  be a' use fu l  way i n  which t o  t r e a t  the  f a m i l i a r  g i a n t  resonances. 

IV. Hypernucle i  [16]. 

We t u r n  nex t  t o  the  case where the baryon probe i s  the r e i a t i v e l y  s t a b l e  

s t range p a r t i c l e ,  the  A ,  o r  p o s s i b l y  the  z. This i s  t o  be con t ras ted  vr i th  

the s i t u a t i o n  discussed i n  Sec. 111, i n  which the baryon i s  t h e  much less  . . 

s t a b l e  A. - 



Although A hypernucle i  were known from exoeriments i n v o l v i n g  emulsions 

f o r  some t ime, i t  was n o t  u n t i l  the use o f  a near l y  reco i less  method of pro- 

duc t ion  i n  the p ioneer ing experiments o f  Bressani e t  a l .  [17] and Povh e t  a l .  

1181 t h a t  hypernucleus phys ics a t t r a c t e d  the a t t e n t i o n  o f  the nuclear  phys ics 

community. 'The r e c o i l e s s  method [19] i s  based on the observat ion t h a t  ir: the 

elementary process 

K - + N  - no + < -  
(4.1) 

when the  p ion  i s  observed i n  the  forward d i r e c t i o n  a kaon momentum e x i s t s  f o r  
P 

which the, A O  produced i s  a t  r e s t .  This  r e s u l t  i s  i l l u s t r a t e d  i n  ~ a ' b l e  4.1 

and Fig. (4.1). F ig .  (4.1) a l s o  conta ins a p l o t  o f  the cross-ssct ion f o r  : .'' 
P, 

forward product ion .of pions accord ing . to  process, Eq. (4.1 ) i n d i c a t i n g  some 

advantage i n  us ing kaon beams whose momentum i s  n o t  e x a c t l y  a t  the c r i t i c a l  

540 MeV/c. 

It would be expected t h a t  the p rdduc t ion  o f  A hypernucle i  w i l l  be 

enhanced when the  kaon momentum i s  near 540 MeV/c and the  p ions are observed 

i n  the  forward d i r e c t i o n .  The r e a c t i o n  i s  

z z - 
I(-+. A -r ,,A + ? -  (4.2) 

Because o f  the smal l  momentum t r a n s f e r  a neutron i n  the  t a r g e t  nucleus i s .  

s imply  rep laced by a lambda. By observing the spectrum o f  the  p ions one w i l l  

be a b l e  t o  determine the spectrum o f  the  hypernucleus formed, sub jec t  o f  course 

.. t o  whatever s e l e c t i o n  r u l e s  apply  a t  OO. 

S i m i l a r l y  z hypernucle i  can be formed. The elementary i n t e r a c t i o n s  are 

Table 4.1 



Note the poss ib le  format ion o f  a nt which has an enhanced detect ion.  The 

i n c i d e n t  kaon beam genera l l y  conta ins many negat ive p ions and negat ive p ions 

are produced by the decay o f  the K- i n  f l i g h t .  

Examples o f  the format ion o f  A hyperoucle i  [21] are shown i n  Fig. (4.2). 

R e l a t i v e l y  sharp s t a t e s  have been observed. The fo rmat ion  o f  z h y p e r n u c l t i  

i s  i n d i c a t e d  i n  Fig. (4.3) [22]. The peak corresponding t o  the z  hypernucleus 

should occur  a t  the  same e x c i t a t i o n  energy whether the process invo lves  the 

p roduc t ion  o f  a n- o r  a r+. This  i s  c e r t a i n l y  the case f o r  a t  l e a s t  one o f  

t h e  s t r u c t u r e s  involved.  I n  these experiments pk = 720 MeV/c w h i l e  the momen- 

tum t r a n s f e r  i s  130 MeV/c. & s ta tes  were seen i n  9Be and 'Li as w e l l .  

I s h a l l  n o t  attempt t o  summarize a l l  t he  experimental and t h e o r e t i c a l  

issues o f  i n t e r e s t .  Two p a r t i c u l a r  p o i n t s  seem t o  me t o  be e s p e c i a l l y  i n t e r e s t i n g .  

(a )  The f i r s t  r e f e r s  t o  the quest ion:  Why are the re  z  hypernuclear 

.s ta tes i n  :Be, i L i ,  and 1;C which a re  r e l a t i v e l y  tiarrow? The ex is tence  o f  

these s t a t e s  i s  a s u r p r i s e  because o f  the expected r a p i d  conversion t o , a  A 

hypernucleus v i a  t h e  s t rong  i n t e r a c t i o n  process & + n + A + n. An est imate 

ob ta ined  by B a t t y  i s  conf i rmed by Gal and Dover [23] f o r  the  case o f  n u c l e a r .  

mat ter .  I n  t h a t  case the  w i d t h  i s  g i v e n  by 

where Y i s  the  v e l o c i t y  o f  the  & - p p a i r  conver t i ng  w i t h  t o t a l  cross- 

sec t ion ,  a,. The b a r  represents the average over  the Fermi gas used t o  

descr ibe the  A hypernucleus. The wave f u n c t i o n  JI i s  t h a t  o f  the hyper- 

. . 
nucleus. The r e s u l t s  are g iven i n  Table 4.2. 

According t o  Gal and Dover, the  reduc t ion  i n  the  conversion r a t e  from 

t h a t  c a l c u l a t e d  us ing Eq. (4.4) i s  a consequence o f  the  f a c t  t h a t  the elemen- 

1 t a r y  process, z + n + A + n, i s  dominated by the T = 2, S = 1 channel 

(Engelmann [24]). One should t h e r e f o r e  replace ($lzb(% -;,.)I$) b y  
t 

nucleus 

Table 4.2 

r f  = 22 MeV 

6.8 8.8 15.0 14.7 MeV 



1 
where the s p i n  and i s o s p i n  f a c t o r s  p r o j e c t  upon the t r i p l e t  sp in  and T = q 

i s o s p i n  f o r  the (z,n) p a i r .  Note t h a t  TE i s  chosen so t h a t  t: = 2. 

Under the experimental cond i t i ons  the s ta tes 'mos t  l i k e l y  t o  be e x c i t e d  

a t  .On f o r  the l2C t a r g e t  are g iven i n  Table 4.3. I n  t h i s  tab le,  the nucleon, 

E c o n f i g u r a t i o n  i s  g iven toge ther  w i t h . t h e  poss ib le  i sosp ins  o f  the f i n a l  Z 

hypernucleus. The quenching f a c t o r .  Q, t h a t  i s  the f a c t o r  m u l t i p l y i n g  the 

values obta ined us ing Eq. (4.4) g iven i n  Table 4.2,which i s  generated i f  t h a t  

expression i s  rep laced by Eq. (4.5) i s  g iven i n  Table 4.4. From t h i s  ana lys i s  

one would expect t h a t  o n l y  the  T = 3/2 0' s t a t e  should be v i s i b l e  w i t h  a 

: w i d t h g i v e n b y 0 . 4 ~ 1 4 . 7 % 6 M e V .  P r e s u m a b l y t h i s i s t h e s t a t e s e e n i n F i g .  

(4.3). 

Dover and Gal have c a r r i e d  o u t  s i m i l a r  c a l c u l a t i o n s  f o r  'Li and 9Be. 

These a re  sunnnarized i n  Table 4.5,. where TN ' re fe rs  t o  the i i o s p i n  of tha core 

nucleus t o  which the z i s  bound. The two l i n e s  i n  the 9Be case correspond t o  

the  assumption t h a t  the  s p i n  o f  the  core nucleus i s  zero f o r  the  upper l i n e  

and o'ne f o r  the  lower l i n e .  I n  .'Li one ~ o u l d  expect the T = 2 s t a t e  t o  be 

observable w h i l e  f o r  98e, the  l e v e l s  seem t o  be SN = 1, TN = 1 and T = 2 f o r  

the  upper peak and SN = 0, TN = 0, and T = 1 f o r  the lower peak. 

P red ic t i ons  f o r  an 160 t a r g e t  are g iven i n  Table 4.6. A t  l e a s t  one 

s t a t e  should be observable. I f  t h e - z  sp in  o r b i t  f o rce  i s  weak, two would be 

expected,. C l e a r l y  i t  i s  o f  g rea t  i n t e r e s t  t o  understand .the mechanism 

' responsib le f o r  the narrow'z  hypernuclear s ta tes  and i n  p a r t i c u l a r  t o  sze i f  

the  c o r r e c t  one i s  t h a t  suggested by Dover and Gal. That understanding w i l l  

r e V l e c t  i t s e l f  i n  a g rea te r  i n s i g h t  i n t o  the na tu re  o f  the  t r a n s i t i o n  

Table 4.3 



Table 4.4 

Table 4.5 

1 ower 
u p p e r  p e a k  



Table 4.6 

w i t h  s t rong z sp in o r b i t  
coup1 i n g  

( b )  I n  t h i s  second sect ion on hypernuclear physics, I wish t o  pay 

especial a t t e n t i o n  t o  the r o l e  o f  the A i n  the  hypernucleus as a probe o f  

nuclear  s t r u c t u r e  [25]. The condi t ions under which the A does a c t  as a probe 

can be formulated as fo l lows.  A O ' th  order  a?proximation f o r  the  hypernuclear 

wave func t ion  i s  

where x(n) i s  the s i n g l e  p a r t i c l e  s t a t e  o f  the  A, i s  the  wave f u n c t i o n  f o r  

the  nuclear  core i n  the  s t a t e  a. Consider the  f i r s t  o rder  c o r r e c t i o n  t o  t h i s  

ze ro th  order  wave f u n c t i o n  as given by f i r s t  o rder  per tu rba t ion  theory. This 

co r rec t ion  w i l l  i n v o l v e  e x c i t a t i o n s  o f  the s t a t e  o f  the  A and t h a t  o f  the core. 

Since the s i n g l e  p a r t i c l e  l e v e l s  a re  separated by much g rea te r  values o f  the  

energy than the  core exc i ta t ions ,  the l a t t e r  w i l l  dominate unless o f  course 

some spec ia l  condi t ions reduce the value o f  the e x t i t a t i o n  mat r i x  element. 

Assuming t h i s  does n o t  occur the expression f o r  yaa good t o  the f i r s t  order  

has the  form: 

CE,, 
aqG (4.7) 

where 

. . 
The probing p o t e n t i a l  a c t i n g  on  the .nuc lear  core i s ,  i n  t h i s  approximation, 

g iven by the res idua l  A-nucleon p o t e n t i a l  average over the  A densi ty .  As a 

consequence the energy l e v e l s  and the  electromagnetic t r a n s i t i o n  p r o b a b i l i t i e s  

w i l l  be a l tered.  It i s  c l e a r  t h a t  t h i s  e f f e c t  w i l l  be most dramatic when 

$Lcore) are low l y i n g  c o l l e c t i v e  states.  That t h i s  derc r ip t i ' on  i s  q u a l i t a -  

t i v e l y  co r rec t  i s  demonstrated by Gal a n d ' o a l i t z  [26] inore ca re fu l  , c a l c u l a t i o n  
I 

o f  the l e v e l s  o f  12C as seen i n  Fig. (4.4): Moreover, t h e  DWIk c a l c u l a t i o n s  
A i. - 



o f  Dover e t  a l .  [27] shown i n  Fig. (4.5) and Fig. (4.6) g ive  e x c e l l e n t  f i t s  

t o  the  angular d i s t r i b u t i o n  o f  the  react ions 12~(r-,n-)12~*. The i r  magnitudes 

must however be .reduced by the ind ica ted  factors.  The 1- s t a t e  i s  c l e a r l y  

resolved. I n  F ig.  (4.6) one assumes t h a t  the measured e x c i t a t i o n  i s  a sum o f  

the e x c i t a t i o n  o f  the  0' and the two 2' s tates.  Note t h a t  the c o n t r i b u t i o n  

o f  the  *p3/2 and Ap1/2 o r b i t a l s  z r e  included. The l e v e l s  associated w i t h  the 

l a t t e r  a re  shown i n  Fig. (4.4). A t  small angles the  angular d i s t r i b u t i o n  i s  

dominated by the 0' s tate.  The presence o f  the 2' c o n t r i b u t i o n  i s  i n d i c a t e d  

by the  shoulder i n  the  experimental angular d i s t r i b u t i o n .  The need f o r  sub- 

s t a n t i a l  co r rec t ions  t o  the magnitude i s  no t  s u r p r i s i n g  i n  view o f  the  rough 

charac te r  o f  these ca lcu la t ions .  

. For heavier  n u c l e i  one can expect the A t o  modify the c o l l e c t i v e  para- 

meters such as the rad ius  o r  the  moment o f  i n e r t i a .  The m o d i f i c a t i o n  o f  the 

rad ius  i s  s i m i l a r  t o  the  isotope s h i f t  i n  atoms. The change i n  the  parameter 

i n t h e f o r m u l a R = n ~ ~ ' ~ f r o m i t s A f r e e v a l u e  A, i s g i v e n b y  . 

where A i s  the mass number o f  the  core, K i s  t h e  nuclear  compress ib i l i  t y ,  

B_ and BA(A) are the  b ind ing  energies f o r  t h e  A f o r  A i n f i n i t e  and f o r  A 

f i n i t e .  Taking K = 150 MeV, ( f i  - n,)/n, f o r  15N = .026. I t  i s  a n t i c i p a t e d  

t h a t  t h i s  e f f e c t  would be v i s i b l e  i n  the  Coulomb energies o f  hypernuclei once 

the  n u c l e i  are s u f f i c i e n t l y  l a r g e  so t h a t  the charge symmetry breaking fo rce  

becomes unimportant. The i n f l u e n c e  o f  three-body forces has a lso  been 

neglected i n  d e r i v i n g  Eq. (4.9). 

As a second example o f  the  e f f e c t  o f  the A I s h a l l  discuss the moment 

o f  i n e r t i a  o f  a hypernucleus us ing the  deformed harmonic o s c i l l a t o r  model. 

The change i n  the moment o f  i n e r t i a  due t o  the  A i s  g iven by 

where as usual R and 6 are def ined by the equations 
0 

so t h a t  6 measures the deformation. The values o f  n 'and nZ g i v e  the quantum 
Y 

numbers o f  the  A o r b i t a l .  The f i r s t  term i n  Eq. (4.10) i s  the so c a l l e d  

i r r o t a t i o n a l  f l ow term so t h a t  there i s  an op?or tun i t y  t o  observe t h i s  term 

. d i r e c t l y .  One should note t h a t  Eq. (4.10) does n o t  g ive  the t o t a l  change i n  

the  moment o f  i n e r t i a  s ince the deformation 6 w i l l  change because o f  the 

presence o f  the  A. 

It should be q u i t e  c l e a r  from these examples t h a t  the  A w i l l  change 

the  p roper t ies  o f  the  core nucleus. I t i s  n o t  so c l e a r  t h a t  i t  w i l l  be exper- 

i m e n t a l l y  poss ib le  t o  observe the spectra o f  the appropr iate hypernuclei.  

Looking f o r  the  y-decays seems t o  be the most ' a t t r a c t i v e  p o s s i b i l i t y .  

V. The C o l l i s i o n  o f  U l t r a - R e l a t i v i s t i c  Hadron P r o j e c t i l e s  With Nucle i  [28,29] 

The c o l l i s i o n  o f  u l t r a - r e l a t i v i s t i c  hadron p r o j e c t i l e s  w i t h  n u c l e i  

appears t o  invo lve  reac t ion  mechanisms which d i f f e r  q u a l i t a t i v e l y  from those 

which, govern the th ree  types o f  reac t ions  we have discussed i n  ~ec t i ' ons  11, I 1 1  

and IV. We w i l l  be deal ing w i t h  p r o j e c t i l e s  whose energies a re  a t  l e a s t  

several  times the  r e s t  energy o f  the  p r o j e c t i l e .  Not unexpectedly, spec ia l  

r e l a t i v i t y  p lays an important ,  ro le .  But i n  a d d i t i o n  the i n t e r a c t i o n  between 

the  i n c i d e n t  hadron and the nucleon i n  the t a r g e t  nucleus i s  q u a l i t a t i v e l y  

d i f f e r e n t  i n  nature from the i n t e r a c t i o n  which p r e v a i l s  a t  a lower e n e G .  

The evidence. f o r  these remarks i s  presented i n  (a). 

(a) We present  f i r s t  the  r a t h e r  s t a r t l i n g  r e s u l t s  obta ined'by studying 

the c o l l i s i o n  o f  h igh energy protons w i t h  nuc le i .  General ly, the t a r g e t  n u c l e i  

a re  heavy, e.g. U o r  Au, the p a r t i c l e s  detected are fragments o f  the  ta rge t ,  



and the  means o f  de tec t ion  are radiochernica.1 a l though one o f  the experiments . 

t o  be 'reported employs counter  detectors.  

The phenomena o f  i n t e r e s t  are i l l u s t r a t e d  i n  Figs. (5.1). (5.2) and (5.3) 

[30,31]. I n  the f i r s t  o f  these the average energy o f  a r e c o i l i n g '  fragment 

i n  the labora to ry  frame o f  re ference formed i n  the r e a c t i o n  p + U i s  p l o t t e d .  

We see t h a t  beginning a t  a few GeV as the p ro ton  energy increases the average 

fragment energy decreases. This  i s  the opposi te  o f  what happens a t  lower  

. p ro ton  energ'ies where an increase i n  p ro ton  energy i s .  r e f l e c t e d  by an increase 

i n  fragment energy. The fragment a n g u l a r . d i s t r i b u t i o n  as. i n d i c a t e d  b4 t he  

forward t o  backward r a t i o ,  F/8, o f  F ig.  (5.2) becomes more peaked i n  the  forward 

d i r e c t i o n  as the p ro ton  energy increases from 1 GeV t i l l  about 5'GeV. , For  

g rea te r  p ro ton  energies the angular  d i s t r i b u t i o n  has been obta ined a t  28 GeV. 

I n  Fig. (5.3) we see t h a t '  the angular. d i s t r i b u t i o n  o f  the Fourine fragment i s  

ra the ' r  f l a t  w i t h ' a  peak a t  70' i n  the l a b o r a t o r y  frame. These r e s u l t s  imp ly  

t h a t  c o l l i s i o n s  o f  the p ro ton  w i t h  the  nucleons i n s i d e  the nucleus do n o t  ' 

r e s u l t  i n  enerqy' be ing t r a n s f e r r e d  t o  nuc lea r  degrees o f  freedom. ~ h ' e ' f i r s t  

surmise i s  t h a t  i n  f a c t  the  i n t e r n a l  degrees o f  freedom being e x c i t e d  are. 

those o f  the  nucleon and t h a t  the 'exc i ted  nucleon does n o t  i n  f a c t  t r a n s f e r  

i t s  e x c i t a t i o n  t o  o t h e r  nucleons i n  t h e  form o f  k ine t9c  energy. 

I t  i s  i n  f a c t  w e l l  known tha t ,  a t  l e a s t  a t  h igh  energies (>60 GeV), 

t h i s  process o f  n u c l e o n o r  more genera l l y  hadron e x c i t a t i o n  i s  dominant i n  

the  k inemat ic  reg ion  corresponding t o  non-peripheral react ions;  The evidence , 

i s  prov ided 'by measurement o f  the m u l t i p l i c i t y  of h igh  energy (6 > 0.7) 

charged p a r t i c l e  product ion.  These measurements show t h a t  the number o f , such  
I .. ' 

p a r t i c l e s  r i s e s  very s low ly  w i t h  i nc reas ing  mass number as shown by Fig. (5.4) i .., ' 

'< ' 1  

and Table 5.1 [32]'. No cascad;ng i s  i n d i c a t e d  as cascading would r e s u l t  i n  

a much more r a p i d  r i s e  i n  the m u l t i p l i c i t y  w i t h  i nc reas ing  mass number. The 

exp lana t ion  i s  again t h a t  very l i t t l e  energy i s  deposi ted i n  the nucleus. 

* 

Tsble 5.1 

' T h e a v e r a g e m u l t i p l i c i t i e ~ o f ' r e l a t i v i s t i c c h a r g e d p a r t i c l e s  

produced i n  100 - GeV/c hd ron-nuc leon  c o l l i s i o n s .  From Ref. [32], 

Target  P r o j e c t i l e  Average ~ u i t i p l i c i  t y  

Hydrogen 

(bubble chamber) 



E m p i r i c a l l y  the  m u l t i p l i c i t y  r a t i o ,  R, the r a t i o  o f  the m u l t i p l i c i t y .  i n  

n u c l e i  t o  t h a t  i n  hydrogen i s  g iven by 

2 ,= 1 + 1 (9-1) 
Z 

I 
I where v i s  the mean number o f  c o l l i s i o n s .  

The exp lana t ion  i s  q u i t e  i n t e r e s t i n g .  Upon the c o l l i s i o n  o f  the  i n c i d e n t  

hadron w i t h  a t a r g e t  nucleon, the  hadron and the t a r g e t  nucleon a re  exc i ted.  

As a consequence the  wave f u n c t i o n  f o r  the  e x c i t e d  hadron can be decomposed 

i n t o  a l i n e a r  combination o f  s t a t e s  each w i t h  i t s  own c h a r a c t e r i s t i c  l i f e t i n e  

T f o r  decay i n t o  i n c i d e n t  hadron p lus  a number o f  pions. This l i f e t i m e  i s  
0 

o f  course g i ven  i n  t h e  r e s t  frame. I n  the  labora to ry  frame the l i f e t i m e  i s  

I where E i s , t h e  t o t a l  k i n e t i c  energy o f  the  s t a t e  w i t h  l i f e t i m e  r There can 
0 '  

ve ry  w e l l  be severa l  T ~ ' S  corresponding t o  the many e x c i t a t i o n  p o s s i b i l i t i e s ;  

I However a rough average energy can be obta ined by assuming t h a t  t h i s  new 
I 
I e n t i t y ,  the e x c i t e d  hadron, i s  a t  r e s t  i n  the cen te r  o f  mass system ~f the 

1 hadron p l u s  nuc lea r  nucleon. Under these circumstances 

The corresponding va lue o f  T, ;, i s  

- 
s &* / tx.c*)vL r,, 

e (5.4) 

The c r i t i c a l  va lue o f  ; i s  g iven  by c; s e % x where x i s  the  m a n  f r e e  

pa th  o f  a hadron i n s i d e  a nucleus. I f  e i s  l a r g e r  than A ,  t he  e x c i t e d  hadron 

w i l l  n o t  have decayed apprec iably  before i t  has i t s  second c o l l i s i o n .  The 

second c o l l i s i o n  r e c o n s t i t u t e s  the e x c i t a t i o n  i n  the hadron and the  decay i s  

ha l ted .  Under these circumstances, e > A, the hadron w i l l  pass through the  

- 

-41 - 

nucleus w i t h c u t  decaying, decaying by emission o f  a number o f  p ions on ly  

a f t e r  i t  has l e f t  the nucleus. The r e s u l t  f o r  R i s  obta ined i f  one assumes 

t h a t  the re  i s  a component generated a t  each c o l l i s i o n ,  which decays a f t e r  

l eav ing  the nucleus, w i t h  an average energy .given by E~ and the m u l t i p l i c i t y  

by l o g  E~ where a = 1/2. 

The c r i t i c a l  energy a t  which nucleon e x c i t a t i o n  should dominate i n  the  

p roduc t ion  o f  f a s t  secondaries.can be obta ined. f rom a ?. A.  P lac ing  e % 2 fm 

and e 1. 1 fm, one obta ins Elab % 8 GeV. This i s  i n  rough accord w i t h  exper i -  

ment, b u t  o f  course a more q u a n t i t a t i v e  development o f  these ideas i s  requ i red  

before, a c r i t i c a l  eva lua t ion  i s  poss ib le  and be fo re  one can say t h a t  the  

under ly ing causes o f  the  phenomena noted i n  Figs. (5.1)-(5.3) and Fig. (5.4) 

i d e n t i c a l  . , 
The momentum t ransf .er  t o  the nucleus by the i n c i d e n t  hadron i s  thought . .  

t o  be r e l a t i v e l y  small .  The t r a n s f e r r e d  t ransverse momentum, on the  bas is  
' 

o f  experimental data p resen t l y  ava i lab le ,  i s  r e l a t i v e l y  independent o f  the  

p r o j e c t i l e  energy. It i s  thought t o  b e . o f  the o rder  o f  about 400 MeV/c 

lead ing  t o  an energy o f  80 MeV p e r  nucleon. The va lue p f  the  l o n g i t u d i n a l  

momentum t r a n s f e r  i s ,  n o t  c lea r .  . I f  i t  i s  subs tan t ia l ,  the i n c i d e n t  hadron 

would d r i l l  a ho le  through the nucleus. I f  i t  i s  r e l a t i v e l y  smal l  t he  nucleons 

i n  the  nucleus would ins tead  be pushed aside. The model descr ibed above, 

which i s  based upon G o t t f r i e d ' s  analys is ,  presumes a r e l a t i v e l y  smal.1 l o n g i t u -  

d i n a l  momentum t r a n s f e r ,  the  generat ion o f  the  observed r e l a t i v i s t i c  mu1 ti- 

p a r t i c l e  s tates.  be ing associated w i t h  the lead ing  i n c i d e n t  p a r t i c l e .  However 

o t h e r  models which have been used would p r e d i c t  the  format ion o f  a h o l e . i n  

the  t a r g e t  nucleus. The ques t ion  of. t he  magnitude o f  the  t r a n s f e r  o f  longi: 

t u d i n a l  momentum needs experimental i n v e s t i g a t i o n .  I t s  va lue i s  i n t i m a t e l y  . .. 
r e l a t e d  w i t h  the  magnitude ;f the  average e x c i t a t i o n  o f  the  nucleon. . 



(b)  The c o l l i s i o n  o f  a r e l a t i v i s t i c  heav j  i o n  w i t h  a nucleus may 

i n v o l v e  a " c e n t r a l "  c o l l i s i o n  character ized by the product ion o f  a  l a r g e  

number o f  p a r t i c l e s  w i t h  subs tan t ia l  values o f  the t ransverse momentum [27,32]. 

I t  may invo lve  a "pe r iphera l "  r e a c t i o n  which leads t o  a f ragmentat ion of the 

i n c i d e n t  p r o j e c t i l e .  The fragments, i n  t h i s  case, move w i t h  the v e l o c i t y  o f  

the  i n c i d e n t  p r o j e c t i l e  and i n  the  forward d i r e c t i o n  i n  the labora to ry  re fe r -  

ence frame. As' a  consequence t h i s  component o f  the r e a c t i o n  can be r e a d i l y  

se lec ted  exper imenta l ly .  A t  the present  t i n e  the f ragmentat ion process i s  

understood a t  the l e v e l  o f  the p r e v a i l i n g  experimental uncer ta in t i es .  There 

i s  no corresponding l e v e l  o f  understanding o f  the c e n t r a l  c o l l i s i o n .  The 

" f i r e  b a l l "  hypothesis f i r s t  invoked has proven inadequate, being unable t o  

p rov ide  an explanat ion o f  the experimental data. A subs tan t ia l  improvement 

has been made by adding an i n i t i a l  b l a s t  wave [33]. b u t  the  theory s t i l l  

i nvo lves  the  unwarranted assumption o f  thermal equ i l i b r ium.  

This  l e c t u r e  w i l l  r e s t r i c t  i t s e l f  t o  the pe r iphera l  react ions.  Not 

enough t ime i s  a v a i l a b l e  f o r  an adequate d e s c r i p t i o n  o f  the  c e n t r a l  c o l l i s i o n s ,  

. t h e  f i r e b a l l  and i t s  mod i f i ca t ions  as w e l l  as o f  the  o t h e r  models which a re  

being developed. 

The method t o  be descr ibed below [28,29] i s  r e f e r r e d  t o  as the "nuc lear  

Weiszlcker-Wil l iams method". F i r s t  l e t  us s u m a r i z e  the experimental f a c t s  

obta ined by experiments performed a t  the  Bevalac f a c i l i t y  [34]. Experiments 

were performed w i t h  a beam o f  energe t i c  p r o j e c t i l e s  (e.g. 150) a t  energies 

o f  1.05 ' G ~ V / A  and 2.1 GeV/A. P r o j e c t i l e  f ragmentat ion was detected by observ ing 

r e a c t i o n  products  i n  the  forward d i r e c t i o n .  I n c l u s i v e  cross-sections, t h a t  i s  

.cross-sections f o r  the  product ion o f  a  p a r t i c u l a r  nuc lea r  fragment w i t h o u t  a  

determinat ion o f  the  c o r r e l a t e d  product ion o f  o t h e r  fragments were measured. ... . 

The r e s u l t s  obta ined are most s imply  expressed w i t h  respect  t o  the p r o j e c t i l e  

frame o f  re ference de f ined  as t h a t  frame i n  which the i n c i d e n t  p r o j e c t i l e  i s  

a t  r e s t  and the t a r g e t  nuc le i  e f f e c t i v e l y  form the inc ide,nt  beam. 

a. I n  the p r o j e c t i l e  frame, the momentum o f  a  fragment i s  r e l a t i v e l y  

small .  For example, i f  the t a r g e t  nucleus i s  Pb, i t s  momentum i n  the  p ro jec -  

t i l e  frame i s  (208) x (2.1) s 437 GeV/c when the p r o j e c t i l e  has an energy o f  

2.1 GeV/A. The l o n g i t u d i n a l  momentum, pL, d i s t r i b u t i s n  of loEe fragments 

produced by fragmentation o f  the  p r o j e c t i l e ,  12C, i n  the p r o j e c t i l e  f r m e  i s  

shown i n  Fig. (5.5). We see t h a t  the  l.OBe average l o n g i t u d i n a l  momentum i s  

o n l y  about 50 MeV/c, w h i l e  the d i spers ion  o f  the  p d i s t r i b u t i o n  i s  about . L 
100 MeV/c, which should be compared w i t h  the  437,000 FkV/c c a r r i e d  by the Pb 

nucleus. Thus a very smal l  f r a c t i o n  of the  momentum o f  the  l e a d  

nucleus i s  t r a n s f e r r e d  t o  the  p r o j e c t i l e .  

b. The d i s t r i b u t i o n ,  w(pL,SfT), i n  the  l o n g i t u d i n a l ,  pL, and t ransverse 

components, 6, o f  the momentum i s  Gaussian i n  each. E m p i r i c a l l y  one f i n d s  

t h a t  

where pL as mentioned above i s  genera l l y  severa l  tens o f  MeV/c. 

c. The angular  d i s t r i b u t i o n  i s  approx imate ly  i s o t r o p i c ,  t h a t  i s  

q N q  
(5.6) 

However because o f  the  much g r e a t e r  experimental d i f f i c u l t y  i n  the  determine- 

t i o n  of the  t ransverse momenta, Eq. (5.6) must be considered as approximate. 

d. The d ispers ion,  aL, i s  e m p i r i c a l l y  independent o f  AT . ( the .  t a r g e t  

mass number) depending o n l y  on AF ( t h e  fragment mass number) and Ap ( t h e  

.p . ro jec t i l e  mass number). This  i s  a  f i r s t  example o f  independence o f  the pro-  

j e c t i l e  f ragmentat ion o f  A 
T' * 1 

e. A second i s  g iven by the f a c t  t h a t  t h e  branching r a t i o ' f o r  t i l e  r e l a -  

t i v e  p r o b a b i l i t y  f o r  the  product ion o f  a  fragment t ype  i s  independent o f  the  



t a r g e t  nucleus. The cross-sect ion f o r  the product ion o f  a fragment F, upon 

the c o l l i s i o n  o f  a t a r g e t  T w i t h  a p r o j e c t i l e  P i s  'ound t o  be 

The ra ' t io ,  m u l t i p l y i n g  o h ,  i s  the  branching r a t i o  f o r  the p roduc t ion  o f  

fragment F. 

f. The i n c l u s i v e  cross-sect ion oincl i s  p r o p o r t i o n a l  t o  the  rad ius  o f  

the i n t e r a c t i o n .  E m p i r i c a l l y  

g. Cross-sections and aL a t  1.05 GeV/A and 2.1 GeVjA a re  approx imate ly  

the  same i n d i c a t i n g  w i t h i n  t h i s  energy range independence w i t h  respect  t o  

the  energy. 

h. The momentum d i s t r i b u t i o n  o f  the emergent protons i s  n o t  Gaussian. 

I t  i s  b e t t e r  descr ibed by an exponent ia l ,  e-P/PO, where po 1 65 MeV/c. 

We s h a l l  now discuss the  momentum d i s t r i b u t i o n  o f  the fragments. 

(a )  Momentum D i s t r i b u t i o n  o f  P r o j e c t i l e  Fragments 

The model we s h a l l  use was f i r s t  suggested i n  Ref. [35]. The der iva-  

t i o n  employed below f o l l o w s  - e s s e n t i a l l y  t h a t  o f  A. Goldhaber [36]. The model 

assumes t h a t  the  fragment of.mass number, AF, i s  formed from the  p r o j e c t i l e  

o f  mass Ap by removing the  b ind ing  o f  a group o f  AF nucleons. The n e t  momen- 
+ 

turn PF of the fragment i s  then obta ined by adding up. the momentum o f  each o f  
+ 

these nucleons. The va lue o f  PF w i l l  vary according t o  which group o f  AF 
+ 

nucleons i s  se lec ted  from the p r o j e c t i l e  g i v i n g  r i s e  t o  a d i s t r i b u t i o n  i n  PF. 

I f  the  mean square momentum o f  a nucleon i n  the  p r o j e c t i l e  i s  (p2) , the  
+ 

mean square va lue o f  PF i s ,  accord ing t o  a s imple s t a t i s t i c a l  considera- 

-, 
tion,*  g iven by A~ ( p2) . The d i s t r i b u t i o n  i n  PF, f o l l o w i n g  again from 

s t a t i s t i c a l  considerat ions [35], i s  Gaussian** a t  l e a s t  i n  the neighborhood o f  

the maximum o f  the d i s t r i b u t i o n .  This occurs near PF = 0 s ince  the average 

momentum o f  the fragments i s  so c lose  t o  zero. Note t h a t  t h i s  model auto- 

m a t i c a l l y  assumes t h a t  the  p r o j e c t i l e  fragment d i s t r i b u t i o n  does n o t  depend 

upon the  nature o f  the ta rge t .  

Suppose then t h a t  the p r o j e c t i l e  breaks u p , i n t o  fragments o f  mass 

number Ai so t h a t  

+ 
L e t  the  momentum o f  each fragment be Pi. Assume t h a t  the d i s t r i b u t i o n  o f  

+ 
momenta f o r  the  i ' t h  fragment,depends o n l y  upon Pi and i s  Gaussian. Then the 

momentum d i s t r i b u t i o n ,  -tq, f o r  a g iven s e t  o f  Ai i s :  

TO' ob ta in  the  observed i n c l u s i v e  momentum d i s t r i b u t i o n  we must i n t e g r a t e  over  

a l l  momenta except t h a t  o f  the observed fragment, say Ai, sub jec t  t o  the  

c o n d i t i o n  

+ 
*Assume t h a t  PF = zif where if are the momenta o f  the nucleons making up the 

u u 

fragment. Then P; = zp2 + F j; Averaging over  the momentum d i s t r i b u t i o n  u u-v u v .  

o f  the  p r o j e c t i l e  nucleons, we f i n d  (ujvifu.cv) = 0. Hence 

< p i ,  = < f C )  = A ,  (9%) 
**This r e s u l t  f o l l ows  s imply  from the assumption t h a t  the momentum d i s t r i b u -  

t i o n  i s  symmetric about the maximum. 



As shown by experiment the average momentum o f  a p r o j e c t i l e  fragment, i n  the 

p r o j e c t i l e  frame o f , re fe rence  i s  very small  j u s t i f y i n g  t o  some e x t e n t  Eq. 
+. 

(5.11). Hence the s i n g l e  fragment d i s t r i b u t i o n ,  w(P1), i s  g iven by 

This i n t e g r a l  may be e a s i l y  performed t o  y i e l d  

where 

6'2 $ <p'> (A,--A,)A, / A ~  
(5.14) 

I f  we adopt the  Fermi-Gas,model as a d e s c r i p t i o n  o f  the p r o j e c t i l e  nvcleus. 

I - , : <I1> = +- b: (5.15) 

where pF i s  the Fermi momentum. 

The experimental r e s u l t s  a re  shown i n  F ig.  (5.,6). As can be seen from 

Fig. (5.61, the dependence o f  a2 on Ap and AF, g iven by Eq. (5.14), i s  v e r i f i e d  

by experimental data. However t h a t  d a t a - y i e l d s  a va lue f o r  pF (accord ing t o  

Eq. (5.14)) equal t o  190 MeV/c whereas the va lue o f  pF determined from quasi -  

e l a s t i c  e l e c t r o n  s c a t t e r i n g  i s ,  f o r  160, g iven by 225 MeV/c. As suggested by . .- 

HUfner t h i s  discrepancy may occur because f ragmentat ion occurs on ly  a f t e r  the  
. . 

emission o f  'a number o f  nucleons. The fragmenting nucleus i s  n o t  16D b u t  a 

l i g h t e r  'nucleus w i t h  a correspondingly  lower  va lue o f  pF. 

The d i s t r i b u t i o n  g i ven  by Eq. (5.10) can a lso  be used t o  c a l c u l a t e  the 

.angular c o r r e l a t i o n  between two fragments, A1 and A2, which e x i s t s  i n  v i r t u e  

o f  Eq.. (5.11). One obta ins . . 
2 I 

A; ' - 

This imp l ies  a g rea te r  p r o b a b i l i t y  f o r  the 'two fragments t o  go o f f  i n  opposi te  

d i r e c t i o n s .  Determinat ion o f  t h i s  angular  c o r r e l a t i o n  wculd p rov ide  a t e s t  

o f  . the independence hypothesis as fo rma l i zed  by Eq. (5.10). I t  appears ' ' 

however t o  be very d i f f i c u l t  t o  c a r r y  o u t  t h i s  experiment. 

(b)  The Nuc:ear Weisz lcker-Wi l l iams Method [29] 

The Weisz lcker-Wi l l iams method r e l a t e s  the  r e a c t i o n  i r o s s - s e c t i o n  

induced by a charged p a r t i c l e  t o  t h a t  induced by a d i s t r i b u t i o n  o f  photons. 

The e lect romagnet ic  f i e l d  of.  a r a p i d l y  moving charged p a r t i c l e  can be shown 

t o  be approximately equ iva len t  t o  a beam o f  photons w i t h  the frequency 

d i s t r i b u t i o n  I 

where Z i s  the  charge o f  the p a r t i c l e  and a i s  the  f i n e  s t r u c t u r e  constant. 

The cross-sect ion f o r  a r e a c t i o n  induced by a charged p a r t i c l e  i s  .given then 

i n  t e n s  .o'f t he  cross-sect ion a ( w )  f o r  the  photon.'induced r e a c t i o n  by. 
Y 

I n  t h i s  s e c t i o n  a t h e o r y . o f  the  f ragmentat ion o f  a r e l a t i v i s t i c  heavy 

i o n  p r o j e c t i l e  w i l l  be developed., The express ion f o r  the ,c ros j - sec t ion ,  which 

w i l l  be obtained, w i l l  have a s t r u c t u r e  s i m i l a r  t o  t h a t  o f  Eq. (5.17) so t h a t  

the ' t heory  w i l l  be r e f e r r e d  t o  as the "Nuclear Weisz lcker-Wi l l  iams" method. 
' 

 he p r o j e c t i l e  re ference frame w i l l  be used. I n  t h a t  frame i t  w i l l  be 

'assumed t h a t  the t a r g e t  'nucleus t r a v e l s  w i t h o u t  d e v i a t i o n  and w i t h o u t  i n t e r n a l  i 

e x c i t a t i o n  i n  a s t r a i g h t  l i n e .  This  assumption i s . i n d i c a t e d . b y  experimental . .. 

r e s u l t  (a)  which demonstrates t h a t  the momentum t r a n s f e r r e d  t o  the  p r o j e c t i l e  

nucleus by the t a r g e t  nucleus i s  small .  I t  i s  i d e n t i c a l  w i t h  t h e  assumptions 

made i n  developing the e lect romagnet ic  Weisz lcker-Wi l l iams r e s u l t .  However, 

* 



a f t e r  the  t a r g e t  n u c l e i  has penetrated i n t o  the p r o j e c t i l e  a d is tance,  A, 

approx imate ly  equal t o  a nucleon mean f r e e  path, a s t rong  c o l l i s i o n  w i t h  

l a r g e  momentum t r a n s f e r  w i l l  occur. This  c o l l i s i o n  w i l l  n o t  c o n t r i b u t e  t o  

the process being considered s ince  the r e a c t i o n  products w i l l  f s l l  ou ts ide  

o f  the  small  forward cone where the f r a ~ c e n t s  are detected. This  compet i t i ve  

process i s  taken i n t o  account by assunling t h a t  the p r o b a b i l i t y  o f  f i n d i n g  

the  t a r g e t  nucleus i n t a c t  a t tenuates du r ing  the c o l l i s i o n  w i t h  a sca le  

measured by the mean f r e e  path, A.  

I t  i s  assumed t h a t  the c o l l i s i o n  i s  pe r iphera l .  Th is  r e s v l t  i s  jmp l ied  

very d i r e c t l y  by experimental r e s u l t  ( f )  as g iven i n  Eq. (5.8). The mean 

f r e e  path, X, used i s  the va lue v a l i d  on the  ,sur face r e g i ~ n  o f  the i n t e r a c t i n g  

nuc le i .  

' A  q u a l i t a t i v e  d e s c r i p t i o n  of the consequences o f  thsse assumptions can 

be given.. The p r o j e c t i l e  nucleons feel.  a pu lse o f  f o r c e  % the . t a r g e t  nucleus 

passes by. .The d u r a t i o n  o f  the pulse, T, i s  g i ven  by the  scale,  A. Lorentz 

con t rac ted  to, A/y, d i v i d e d  by the v e l o c i t y  of the  p r o j e c t i l e ,  v, which i s  

ve ry  c lose  t o  c, the  v e l o c i t y  o f  l i g h t .  Thus 

'r h xlifv 

where v i s  the v e l o c i t y  o f  the t a r g e t  and E i s  i t s  energy. From the  du ra t ion  

o f  the  pu lse  one can c a l c u l a t e  the  maximum* energy t r a n s f e r  I w c  which can occur: 

*By "maximum" we s h a l l .  mean the va lue of HW a t  which the cross-sect ion i s  l / e  

For a t a r g e t  energy o f  2.1 GeV/A and A = 1.75 fm the  maximum energy t r a n s f e r  

i s  , found from t h i s  equat ion t o  be 365 MeV: 'We see inmediate ly  t h a t  we are 

i n  f a c t  dea l ing  w i t h  a comparat ive ly  low energy phenomenon. There w i l l  be' 

o t h e r  e f f e c t s  t o  be discussed below which w i l l  reduce the maximum energy 

t r a n s f e r  t o  even considerably  lower  values. 

Fo l low ing  an argume'nt o f  Brown and Oeutchmann one can est imate 

the corresponding momentum t r a n s f e r  hqLlc. That momentum t r a n s f e r  ' i s  g iven 

rough ly  by 

'k ue /u (5.20) 

This  i s  thus a r e l a t i v e l y  small  momentum. For  the case discussed above, the  

maximum momentum t r a n s f e r  i s  thus 365 MeV/c. Recal l  t h a t  the  Fermi momentum 

f o r  a heavy nucleus i s  about 260 MeV/c w h i l e  f o r  the  160 nucleus i t  i s  

225 MeV/c as mentioned above. Re la t iqnsh ip  (5.20) i s  v a l i d  more genera l l y  

as we ' sha l l  show below; t h a t  i s  the l o n g i t u d i n a l  moment t r a n s f e r ,  IqL.  i s  

r e l a t e d  t o  the energy t r a n s f e r  as f o l l o w s  

x fL = W/V (5.21) 

The maximum value o f  t ransverse momentum t r a n s f e r ,  HqT, i s  determined 

by the  t ransverse sca le  ,o f  the  t a r g e t  densi ty ,  namely 2, t he  parameter measuring 

t h e  th ickness o f  the  nuc lea r  surface.   he maximum t ransverse momentum t r a n s f e r  

i s  thus 

For  a 4 . 6  fm, )lqT,c i s  about 333 MeV/c. 

I n  a d d i t i o n  t o  these c u t - o f f s  i n  qT and qL which come from the  shape o f  

the i n t e r a c t i n g  nuc le i ,  a d d i t i o n a l  c u t - o f f s  which have a dynamic o r i g i n  must 

be taken i n t o  account. The most obvious o f  these i s  the  momentum t r a n s f e r  

of i t s  val'ue f o r  very smal l  values o f  nu.' 



which the nucleon-nucleon p o t e n t i a l  w i l l  a l l ow  before a  subs tan t ia l  reduc t ion  

i n  the ampli tude w i l l  bccur. From t i le  ec ip i r i ca l  expression f o r  the nucleon- 

nucleon ampli tude [37],  we f i n d  t h a t  the nucleon-nucleon p o t e n t i a l  produces 

a  momentum c u t - o f f ,  f o r  both the t ransverse and l o n g i t u d i n a l  components, o f  

370 MeV/c. 

The two f a c t o r s  so f a r  described, the geometric f a c t o r  and the p o t e n t i a l  

f a c t o r  when combined y i e l d  a  momentum c u t - o f f  f o r  both components of about 

F i n a l l y  i t  i s  necessary t o  consider  the  a b i l i t y  o f  the p r o j e c t i l e  

nucleus t o  absorb the  energy pw and the momentum pq. I f  the energy i s  
' 

absorbed by a  s i n g l e  nuclebn i t  w i l l  be ve ry  f a r  o f f  the energy she1 1. I f  

i t  absorbs the f u l l  energy n w  i t  wi 11 have a  momentum m. This however 

i s  very much l a r g e r  than .the rnomen'tum t r a n s f e r r e d  which as we have seen i s  

o f  the  'order o f  )Iw/c, t h a t  i s  

J'-tw >> +-/. 

This i n e q u a l i t y  i s  s a t i s f i e d  by the  IW o f  i n t e r e s t ,  t h a t  < 260 MeV. The 

absorbing nucleon must t h e r e f o r e  i n t e r a c t  w i t h  a  second nucleon i n  the p ro jec -  

t i l e .  This  absorpt ion by two nucleons can proceed because it i s  then poss ib le  

t o  conserve both momentum and energy. The momenta o f  the  two nucleons w i l l  

be opposi te  and near l y  equal so t h a t  the t o t a l  momentum i s  small  b u t  the 

t o t a l  energy w i l l  be a  sum o f  the energies o f  each nucleon. 

The p r o b a b i l i t y  f o r  two nucleon absorpt ion w i l l  t he re fo re  depefid 

c r i t i c a l l y  upon the c o r r e l a t i o n  length,  rc, the mean d is tance betweern the 
, . 

f i r s t  nucleon and the  second. From the u n c e r t a i n t y  p r i n c i p l e ,  the l i f e t i m e  

- 

o f  the nucleon absorbing the momentum and energy i s  o f  the . the  o rder  o f  ( 1 / ~ ) .  

This nucleon moves w i t h  a v e l d c i  t y  e q u a l  t o  4 i n d  dhus covers i n  the  t ime 

(I/,) the d is ta"ce . This  d i s tance  must be o f  the o rder  o= o r  g r e a t e r  

than rc: 

( A  /M W)f > 

I f  we take  rc as 1/2 1 , one h a l f  o f  the  @ i o n  Compton wav81en3th', t h i s  
'"llc 

i n e q u a l i t y  becomes 

Combining t h i s  r e s u l t  w i t h  the  geometrix and i n t e r a c t i o n  p o t e n t i a l  g ives a' 

l o n g i t u d i n a l  momentum c u t - o f f  o f  120 MeV/c; o f  the  same o rder  as the  exper i -  

mental value. It a l s o  i m p l i e s  a  maximum value f o r  the  energy which can be 

t r a n s f e r r e d  t o  t h e  p r o j e c t i l e e q u a l ~ t o ' 1 2 0  MeV. This  energy i s  s p l i t  between 

the  I& absorbing'nucleons so that '  t he  c k - o f f  energy ?or  one o f  these - 

nucleons i s  approx imate ly  60 MeV and the c u t - o f f  momentum o f  the  o r d e r  o f  

60 MeV/c.* 

The low' va lue of the  momentum t r a n s f e r r e d  (s)lw/c) i n d i c a t e s  t h a t  the  
. . . . 

*It has been suggested by A'. ~ o l d h a b e r  t h a t  i n  a d d i t i o n  t b  the  two nu'cleoli 

mechanism, the re  i s  the  p o s s i b i l i t y  07 i iuclebn e x c i t a t i o n  t o  f o n  a  A. -. 

  ow ever the  momentum change would then be of '  t he  orde; o f  30.0 KeV/c. This  

combined w i t h  the o t h e r  f a c t o r s  would y i e l d  a  c u t - o f f  o f  190.MeV/c which 

wduld be t o o  l a r g e  t o  ekp la i "  the fragmentatibn data.  o ow ever as Deutchmann 

ahd  row" po in tea  out, i t  could be an impor tan t  k c h e n i s m  f o r  p i o n  product ion.  



angular  d i s t r i b u t i o n  of the nucleons w i l l  be roughly  i s o t r o p i c .  I n  the 

c o l l i s i o n  o f  the two nucleons as discussed above, t h e i r  f i n a l  l i n e a r  momentum 

is .nw/c.so t h a t  t h e i r  angular, momentum eC i s  o f  the  o rder  o f  ( Iw /c ) rc  so t h a t  

I n s e r t i n g  a maximum value f o r  MU o f  120 MeV and rc = 0.7 fm y i e l d s  

demonstrat ing t h a t  f o r  n e a r l y  a l l  values o f  I w  the angular  d i s t r i b u t i o n  o f  

the  nucleon p a i r  wi  11 be i s o t r o p i c . *  
. . 

These q u a l i t a t i v e  cons ide ra t ions  prov ide a s imple exp lana t ion  o f  the  

p r o j e c t i l e  f ragmentat ion as a consequence o f  the a c t i o n  o f  the  " f r i n g i n g  

f i e l d "  o f  the  t a r g e t  nucleus as i t  moves pas t  the  p r o j e c t i l e .  Our p r i n c i p a l  

conclus ion i s  t h a t  the  process i s  e s s e n t i a l l y  a low energy phenomenon. The 

energy o f  the  nucleon p a i r s  produced i s  p r e d i c t e d  t o  have the  observed o rder  

o f  magnitude. These nucleons wi 11 depos i t  energy w i t h i n  the  p r o j e c t i l e  

nucleus and by t h a t  means fragmenting it. The n e t  maximum momenfum which 

can be t r a n s f e r r e d  i s  c a l c u l a t e d  t o  be o f  the  experimental o rde r  o f  magnitude. 

A rough i s o t r o p y  i s  a l s o  predic ted.  Energy dependence i n  the  GeV/A range i s  

weak s ince  the  energy occurs o n l y  i n  the geometric c u t - o f f  g i ven  by Eq., (5.19). 

The c u t - o f f  energy i s  changed by o n l y  a few percent  when the  heavy i o n  energy 

1 . i s  changed from 2.1 GeV/A t o  1.05 GeV/A as observed, s ince  the dynamical 

cond i t i ons ,  Eq. (5.23) and the  l i m i t s  imposed by the  nucleon-nucleon p o t e n t i a l  

a re  energy independent i n  t h i s  range o f  energy. F i n a l l y  i t  should be observed 

t h a t  none o f  the  c u t - o f f  cond i t i ons  depend upon the t a r g e t  nucleus. This 

.. . 

*Actual c a l c u l a t i o n  shows i n  f a c t  t h a t  t h i s  esti'mate i s  over-generous and t h a t  

the  maximum value o f  e i s  considerably  sma l le r  than t h a t  g iven by Eq. (5.26). 

- 

does i n d i c a t e  t h a t  the widths o f  the momentum d i s t r i b u t i o n  o f  the  fragments 

i s  independent o f  the ta rge t .  I t  i s  obv ious ly  a necessary c o n d i t i o n  f o r  

showing t h a t  the branching r a t i o s  are t a r g e t  nucleus independent. However 

the q u a n t i t a t i v e  c a l c u l a t i o n  we s h a l l  r e p o r t  below shows t h a t  indeed the  

nucleon spectrum and t h e r e f o r e  the  p r o j e c t i l e  fragmentation i s  t a r g e t  inde- 

pendent. 

We turn' now t o  the fo rmu la t ion  o f  the  nuc lea r  WeiszBcker-Williams 

method. We s h a l l  .use the p r o j e c t i l e  frame o f  re ference so t h a t  the i n c i d e n t  

system i s  the  t a r g e t  nucleus. The d e r i v a t i o n  i s  s i m i l a r  t o  t h a t  used t o  

develop the  r e s u l t s  f o r  the  Coulomb case., As i n  that '  case, the  t a r g e t  

nucleus i s  assumed t o  cont inue t o  move a long a s t r a i g h t  l i n e  a long the  i n c i -  

dent  d i r e c t i o n .  Secondly, i t  i s  assumed t h a t  the  i n t e r a c t i o n  i s  weak so 

t h a t  f i r s t  o rde r  p e r t u r b a t i o n  theory can be used. I n  the present  case i t  i s  

the  l o n g  range p a r t  o f  the nuc lea r  i n t e r a c t i o n ,  t h e  " f r i n g i n g  f i e l d " ,  which 

i s  assumed t o  be weak. Under these circumstances i t  can be shown t h a t  the 

t o t a l  cross-sect ion analogous t o  Eq. (5.17) i s  g i ven  by [29] 

where . I.C) 51i, $ (-5 - U / Y ~  I?'= ( 1  

and 

I n  these formulas, if gives the  t ransverse momentum t r a n s f e r  and w/v the l o n g i -  

t u d i n a l  i n  u n i t s  o f  k; v i s  the  v e l o c i t y .  The energy t r a n s f e r  i s  wgil w i t h  

the p r o j e c t i l e  being e x c i t e d  t o  an energy Eg. The d e n s i t y  o f  these l e v e l s  

i s  g i ven  by pg. The t a r g e t  form fac to r .  FT, i nvo lves  the  F o u r i e r  t rans fo rm 

- .  



o f  the nucleon-nucleon p o t e n t i a l  v(;): 

. J - i .  : 

The f a c t o r  i s  r e l a t e d  t o  the transform o f  the pe r iphera l  t a r g e t  dens i t y  

co r rec ted  f o r  absorpt ion as discussed above. F i n a l l y ,  the form f a c t o r  Fp i s  

j u s t  the m a t r i x  element o f  the Four ie r  com?onent o f  the pe r tu rba t ion .  Only 

a rough eva lua t ion  o f  the  f a c t o r s  ;.and Fp have been made. A quasi-deuteron 

model was used t o  evaluate the l a t t e r .  This i nvo lves  the o ~ i l y  emp i r i ca l  

p a r a y t e r  which has been .used, namely the  c o r r e l a t i o n  leng th& The 
F' 

r e s u l t s  are shown i n  F ig.  (5.7). (5.8) and (5.9). I n  Fig. (5,7) the upper 

curve prov ides the l o n g i t u d i n a l  p a r t  o f  the fonn f a c t o r  IFTI2; the t ransverse 

p a r t  i s  g iven by Fig. (5.8). The lower curve i n  Fig. (5.7) conta ins the . 

a d d i t i o n a l  f a c t o r  coming from (FpI2. The . l a t t e r  i s  exact  i n  the l i m i t  o f  

a  l a r g e  p r o j e c t i l e  rad ius.  For. f i n i t e  r a d i i  i t  i s  i n  e r r o r  a t  the  smal l  

momentum end because o f  t h e . l a c k  of o r t h o g o n a l i t y  o f t h e  crude representa- 

t i o n  used f o r  $ and $i; A more p r e c i s e . c a l c u l a t i o n  i s  needed, b u t  the e r r o r  
8 

should be small  f o r  momentum above h/R where R i s  the p r o j e c t i l e  rad ius.  

F ig.  (5.9) g i ves  the . c ross -sec t ion  f o r  a.Ca t a r g e t  and an oxygen p r o j e c t i l e  

as a f u n c t i o n  o f  mc .  I t - i s  c l e a r  t h a t  a  reasonable va!ue o f  /L w i l l  y i e l d  

the c o r r e c t  o rde r  o f  magnitude f o r  the  cross-sect ion.  A more -severe t e s t  i s  

the c a l c u l a t i o n  o f  t h -  branching r a t i o .  Zabek [38] has obta ined the  r e s u l t s  
:: 

g i ven  i n  Table 5.2 where he 'has, i nc luded  the e f f e c t  o f  s i n g l e  nucleon t r a n s f e r  ' , 

as w e l l  'as the  process descr ibed above. The agreement i s  exce l len t .  

Other app l i ca t ions  o f  the nuc lea r  Weiszlcker-Wi 11 iams method are g iven 

l a b l e  5.2 . . 

Branching Rat ios:  .=ragmentation o f  2.1 GeV/nuclkon 160 

TARGET Cu Pb Theory ( r c  = 0.E fm) 

0.128 

i n  the  second o f  the  references i n  [28]. 



Figure Captions 

Figure 1.1. .(no capt ion)  

F igure 2.1. E1asti.c s c a t t e r i n g  o f  1.04 GeV protons by ''OePb. The theor?- 

t i c a l  p red ic t ions  f o r  pn = pp and pn # p  are compared (from' 
P  

Ref. [7]). 

F igure 2.2. Comparison o f  experiment w i t h  t h e o r e t i c a l  p red ic t ions  f o r  the 

e l a s t i c  and i n e l a s t i c ,  s c a t t e r i n g  o f  1.04 GeV protons by zoePb 

( f rom Ref. [7]). . 

F igure '2.3. The d i f fe rence  between the  neutron and proton r a d i i  f o r  the 
' 

Calcium isotopes as obtained from the e l a s t i c  s c a t t e r i n g  o f  

1  GeV protons and 'o ther  hadrons ( f rom Ref. [9]). 

F igure 3.1. (no capt ion)  

F igure 3.2. Decomposition o f  the imaginary p a r t  o f  the expectat ion value 

o f  thg isobar-hole Hamiltonian. r i s  the f r e e  space isobar  

w id th  ( f rom Ref. [ l o ] ) .  

F igure 3.3. The energy dependence o f  the spreading v i d t h  p o t e n t i a l  i n  the 

absence o f  a  s p i n - o r b i t  term ( f rom Ref. [ lo]).  

F igure 3.4. The ehergy dependence of the spreading w id fh  p o t e n t i a l  i nc lud ing  

the s p i n - o r b i t  p o t e n t i a l  (from Ref. [ I l l ) .  

F igure 3.5. The volume i n t e g r a l  o f  the. cen t ra l  p a r t  o f  s i n g l e  p a r t i c l e  

po ten t ia l s .  For a  d e f i n i t i o n  o f  U see t e x t  (from Ref. [ I l l ) .  

F igure 3.6. The surface i n t e g r a l  o f  the  L-S p o t e n t i a l  (from Ref. [ l l ] ) ;  

F igure 3.7. Absorption cross-section f o r  n - 1 2 C  as a . f u n c t i o n  o f  the  p ion  

k i n e t i c  energy (from Ref. [Ill). 

Figure 3.8. Angular d i s t r i b u t i o n  f o r  n - 12C e l a s t i c  s c a t t e r i n g  f o r  i n d i c a t e d  

p ion  energies ( f rom Ref. [ I l l ) .  

F igure 3.9. Angular d i s t r i b u t i o n  f o r  n - 1 2 C  e l a s t i c  sca t te r ing  f o r  ind ica ted  

p ion  energies (from Ref. 1111). 

F igure 3.10. ,Angular  d i s t r i b u t i o n  f o r  n - 12c e l a s t i c  s c a t t e r i n g  f o r  

ind ica ted  p ion energies (from Ref. [ I l l ) .  

F igure 3.11. n - '60 e l a s t i c  s c a t t e r i n g  a t  114 and 240 MeV. S o l i d  l i n e s :  

sp in o r b i t  term included. Dashed l i n e s :  w i thou t  sp in-orb i  t 

t e n  (from Ref. [ I l l ) .  

Figure 3.12. n - '+He e l a s t i c  s c a t t e r i n g  a t  220 and 260 MeV. For s ign i f i cance  

o f  s o l i d  and 'dashed l i nes ,  see capt ion f o r  Fig. 3.11 ( f rom Ref. 
. . 

L l l ] ) .  

F igure 3.13. n - l2C e l a s t i c  sca t te r ing  a t  180 and 200 MeV. For s ign i f i cance  

o f  s o l i d  and dashed l i n e s ,  see cap t ion  f0.r Fig. 3.11 (from Ref. 

[ill). 



. . . . 
F igure 4.1. The broken l i n e  g i v e s  the momentum o f  the A foimed i n  the 

. ' reaction Eq. ( 4 2 ) .  The s o l i d  l i n e  i s  the d i f fe ren tTa1  cross- 

sec t ion  f o r  the  forward product ion o f  a  p ion  i n  t h i s  reac t ion  
. . , . 

( from Ref. [16]). 

F igure 4.2. Production o f  A hypernuclear s ta tes  ('from Ref. [21]). 
. . 

F igure 4.3. Production o f  E hypernucle, (presented.at  the Jablona. 'poland 

Conference. 1979). 

F igure 4.4. . Energy l e v e l s  b i  '12c ( f r o m ' ~ e f 1  [26]). 
: . 

Figure 4.5. Angular d i s t r i b u t i o n  o f  p icns i n  p r o d ~ i c t i o n  o f  i n d i c a t e d  hyper- 

nuc lear  s ta tes  i n  12C ( f r o f i  Ref. [27]. Experimental data from 

Chrien, e t  a l . ,  Phys. L e t t .  898, 30 (1979)). 

F igure 4.6. Angular d i s t r i b i t i o n  o f  pions i n  product ion o f  i n d i c a t e d  hyper- 

' nuc lear  s ta tes  i n  12C (from Ref. [27]. ~xper imLnta1 data fpom 

Chrien, e t  al;. Phys: L e t t .  898, 30 (1979);. 

F igure 5.1. Energy dependence o f  ranges o f  S c n u c l e i  produced when protbns ' 

. . 
o f  energy E are i n c i d e n t  on a 238U ( f rom Re?. [3G]). 

P 

. , 

F igure 5.2. Ra t io  o f  forward (F)  t o  backward (0 )  product ion a; a  f u n c t i o n  
. . 

o f  the i n c i d e n t  energy E The t a r g e t  i s  238U ( f i om Ref. 
, . P ' 

. . 

C301). 

F igure 5.4. Angular dependence .of  the  r a t i o  o f  the  m u l t i p l i c i t y  f o r  the 

i n d i c a t e d  t a r g e t  n k c l e i  w i t h  t h e ' m u l ' t i p l i c i i y  f o r  a  hydrogen 

. t a r g e t  ( f rom Ref. L.321). 

t; 

Figure 5.5.. The l o n g i t u d i n a l  . . manentum d i s t r i b u t i o n  i n  . t i e  p r o j e c t i l e  f raae  

o f  re fere l ice o f  .the lOBe fragments producedl by the  f ragmentat ion 

o f  a  12C p r o j e c t i l e  . . w i t h  an energy o f  2.1 kV /nuc leon  ( f rom Ref. 

F igure 5.6. Target  averaged values o f  the d i spers ion  a 2 f  the  l o n g i t u d i n a l  

momentum d i s t r i b u t i o n  i n  the  p r o j e c t i l e  frame. The p l o t t e d  

numeral g ives the charge o f  the  fragment. The p r o j e c t i l e  i s  

'60 w i t h  en energy of 2.1 GeV/nucleon. The s o l i d  l i n e  i s  a  

bes t  f it using Eq. (5.4) ( f rom Ref. [34]). 

F igure 5.7. Long i tud ina l  frequency spectrum. The lower  curve g ives the 

combined e f f e c t  o f  the l o n g i t u d i n a l  frequency spectrum and the  

two nucleon absorpxion p r o b a b i l i t y  ( f rom Ref. [29]). 

F igure 5.8. Transverse momentum spectrum f o r  a  40Ca t a q e t  i n  a r b i t r a r y .  

u n i t s  ( f rom Ref. [:9]). . 

. . . . 
Figure 5.9. The cross-sect ion SCa when the p r o j e c t i l e  m e r g y  i s  Z.l,GeV/n: 

as a f u n c f i o n  o f  the c o r r e l a t i o n  l e n g t h  2. ,. 

F igure 5.3. Angular d i s t r i b u t i o n  o f  ~ l c . t i r i n e  f r a G e n t s  produced by 28 GeV . 
' 

protons i n c i d e n t  on Uranium ( f rom Ref. [31]). 
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