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I. Introduction

It is, of course, not possible in four lectures to present a complete
survey of the many aspects of the interaction of energetic hadrons with nuclei.
I have therefore selected a number of topics which suffice to illustrate the
wide range of phenomena of interest, that at the same time involve issues of
central importance that can be addressed using broadly applicable theoretical
methods. The first lecture will consider the elastic and inelastic scattering
of intermediate energy (¥ 1 GeV) protons by nuclei. The discussion will focus
on the determination of the proton-nucleus optical potential in terms of the
elementary nucleon-nucleon scattering amplitudes and the properties of the
target and residual nucleus. The result will be a series of terms for the
optical potential of which we will evaluate the first two illustrated in Fig. .
(1.1) for the case of elastic scattering. In Fig. (1.1a) the nucleon-nucleon i
interaction, indicated by a broken line, acts once, the target nucleus remaining
in its ground state. In Fig. (1.1b) the target nucleus is excited by the
first interaction returning to its ground state as a result of the second inter-
action. If inelastic scattering to a particular final state is under consider-

ation, diagrams in which the target nucleus can also return to that state in
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the final step of Fig. (1.la) and Fig. (1.1b) should be included. Hence in
inelastic scattering there are four diagrams according to whether the target
returns to the ground or excited state. The optical potential these represent
are suitably iterated by the Schroedinger eguation to produce the elastic and
inelastic amplitudes.

The approximation used to evaluate the potential corresponding to Fig.
(1.1b) is referred to as the closure approximation. It assumes first that the
intermediate excited target states which contribute substantially have enzrgies
which are small compared to the incident energy, and second that among these
there are no specially important states which would need correspondingly
special consideration. Our application of this formalism, referred to as the
multiple scattering approximation, will be made to proton-nuclear scattering
for protons whose energies are of the order of 1 GeV, However, the same
procedure should be equally valid for sufficiently energetic hadrons generally.

The second topic to be considered in these lectures is the interaction
of pions with nuclei for energies in the neighborhood of the A-resonance. In
this energy domain an incident pion will with high probability be absorbed by
a nucleon, producing the A-resonance and forming thereby a a-particle hole
state in the nucleus. In this case, the closure approximation of multiple
scattering theory is not valid for, as we shall see, the aA-particle hole state
can act as a doorway state having a particularly large overlap with the inci-
dent channel. This mechanism proposed by Kisslinger and Wang and developed
by Lenz and Moniz and their collaborators is known as the "Isobar Doorway"
model. From the consequent analysis we have an insight into the impact of the
nuclear environment on the properties of the A inside nuclei and how it depends
upon the nature of that environment. It is clear that this analysis can be
used to discuss the behavior of other baryonic resonances such as the }* inside

nuclei and their use as probes of nuclear properties.

The stable baryons can be used as probes. The A hypernuclei (consisting
of a core nucleus and a A) and the recently observed I hypernuclei provide us
with situations in which the core nucleus can be probed by a baryon of roughly
the same mass as a nucleon, with similar albeit not identical interactions
with nucleons. But, and this is an important point, the A (or ) does not
need to satisfy the Pauli exclusion principle with respect to the nucleons
and therefore can be in orbits forbidden to it if it were a nucleon. This
subject of hypernuclei will be the third topic taken up in these lectures.

As the energy of the projectile increases, it becomes correspondingly
more important to take relativistic effects into account. The importance of
these effects is strikingly revealed by experiments involving the collision

of ultra-relativistic hadrons, protons, pions, kaons (up to Fermilab energies)

: f%qith nuclei. This phenomenon will form part of the fourth topic which will

4L;>fne1ude as well the collision of relativistic heavy ion projectiles with

% nuclei. A nuclear Weiszdcker-Williams method developed for dealing with

peripheral collisions will be described.

I1. Proton-Nuclear Scattering in the Multiple Scattering Approximation [1,2]

Formally the theory of multiple scattering attempts to solve the following
problem. Let the potential acting between the incident projectile and the
nucleus be given by a sum of two-body potentials:

lva (2.1)

where Vs is the potential acting between the incident particle and the i'th
nucleon of the target nucleus. CZ is the anti-symmetrization projection oper-
ator limiting the action of the interaction to the Hilbert space formed by
anti-symmetric wave functions describing various states of the target nucleus.

The interaction given by Eq. (2.1) is non-relativistic. The only relativistic
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effects which a%e explicitly included in the thecry to be described below are
primarily kinematic in nature, taking into account the variation of mass with
energy.* Since the potential description is used, effects of the virtual
boson fields, nucleon isobars, etc. are not completely included. However,
the formalism can be extended to take these additional degyrees of: freedom
into accouﬁt.

- Two methods have been used to solve the scattering generated by the inter-
action given by Eq. (2.1). We shall limit the discussion here to that developed
by Watson [3] and by Kerman, McManus and Thaler [1]. The other associated with
Glauber [4] is described in many téxts [5]. '

The Lippman-Schwinger equation for the transition matrix J -is given by
.5 Fao 2.7
_‘7’ ,ZV“a et (2.2)
where : o = £ k. Hy
Hy = target Hamiltonian
K = the kinetic energy operation for the incident
projectile relative to the center of mass of the
target nucleus
N = number of nucleons in the target nucleus.
Our goal is to relate J and the two body scattering transition amplitude
describing the scattering of the incident projectile by.a free nucleon. The
Lippman-Schwinger equation for that transition matrix describing the scatfering

from the i'th nucleon is
/

. st ‘U'-———“—_f" A .
T " ECLK, ' (2.4)

.

where Ky is the kinetic energy operator for the incident prpjétti]écge]ative'

e

* A Klein-Gordon equation is used with the optical potential being treated as

the fourth component of a four vector.’
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to the i'th nucleon,

As an intermediate'steb, KMT introduce the many-body cperator © defined
by: '

r=;‘,’—2‘<&-d"+ rvL s ' : (2.5)

|~

Very roughly, t is given by ti averaged over the ‘scatterers. A precise rele-
tion between t and ti will be given later. Eq. (2.5) can be used to eliminate

Vi in the equation for :] . Writing
. ) a

and noting that

substitution in Eq. (2.2) yields

T (V-TvZ)t + (A/—zwg)ff J

‘or

Je veewrti-td(ZgaeZwaz])

Using Eq. (2.2) again, one obtains ~7 in terms of t:

J=NT +w)T. 5] o (2.8)
tet -~ , .

J = /\% J o . - (2.7)
Then

J's (W) T 4 w-yT & ]f (2.8)
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This is just a Lippman-Schwinger equation where the interaction is an effective
one being giQen not by a sum of two body operators & but by the many-body
operator . The principal advantage of this transformation is that t is more
clearly related to ti than vy In the following we shall obtain a Schroedinger
equation whose transition amplitude is J'. To obtain that result will
need to be muitiplied by N/N-1. )

Oné can rewrite Eq. (2.8) as a Schroedinger equaticn for the wave

function of the system v¥:

(€ -k=Hi-n-07) F=0 (2.9)

- We now proceed to derive the optical model potential. Two possible forms
will be obtained. One in which we are concerned with only a single channel,
the elastic. A second form pertains.to a two channel situation, an elastic
channel and say one inelastic channel. In this case the optical potential
becomes a two by two matrix, the non-diagonal components coupling the elastic
and inelastic chaﬁnels. It is easy to generalize the results to include several
inelastic channels. Let P be a projection operator which projects ¥ onto these

reaction channels, the elastic and the inelastic one of interest. Explicitly

(2.10i

PP = Ie5CIT + 11| P
where |0> and |1> are the state vectors for the ground and excited state
respectively. Let the compleméntary projection opekator be Q so that
Q=1-P , PQ=0 , P2=p , Q2=20 {2.11)

Introducing the notation
Tpp = PTP, Tpg= 7R

one can rewrite Eq. (2.9) as follows:

<
v“'
-7-
[6-k - HNop = (v-1) TG J(PP) = (v-0)T,,(QF) (2.12a)
(E-K= (Molga = (WD Taa1(QF) = (w-nTup(PE) (2.12b)
Solving the second equation for Qv and substituting in Eq. (2.12a) yields
[E-K - (Hdge - T, - (N0 Tog ! Tas PP o (2.13)

E7 R = (Hudgg = ™) Taq
The effective optical potential is given by the terms in r in.this equation.
So far no approximations have been made. We shall however eventually neglect
the effect of the Pauli exclusion principle when the incident projectile
contains nucleons. In that case the error for forward scattering amplitude is
small. (See Watson and Takeda [6] for discussion.) A second approximation
to be employed below and to which we re%erred in the introduction as the
closure approximation involves replacing (N-I)rQQ by an average potential 1
and (HN)QQ by an average energy €. Under these circumstances, the propagator
in the last term in the square bracket in Eq. (2.13) is diagonal in the coordi-
nates of the target nucleus. In this approximation, the "closure approximation,"
any explicit reference to the states in Phe.Hilbert space projected by Q
disappears.
To obtain an optical potential in terms of ti it is necessary to re]ate'
t and ti' Toward this end define the operators IE
=A% =Lt7T

f

T (2.18)

Comparing with Eq. (2.5) we have
T = 1fa +’V:'—a"z'
¢ o

4

(2.15)

Rather than dealing immediately with ti we define ti' to which ti will reduce

in the limit of high energies.
+ ’

.

/
R el

. o <

T, (2.16)
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We may eliminate v; between these last two equations using a method identical

to that which led from Eq. (2.2) to Eq. (2.6). The result is

_ ! 7 /a-l.
sy lta +L 78 (2.17)

In order to insert this result into the opticéi potential it is most

‘coﬁvenient to replace (1/a) by (1/a). where

Xz EY_K-Hy - (wnT

Comparing {1/a) and (1/a) one obtains

L . L= - AT L
X K 4 x

But -then the rather remarkable result follows:

a-—y; . &L
o X

Hence in Eq. (2.17) one can replace a by a. To the

since (- 1)Q =

second order of approx1mat1on (in t') Eq. (2.17) becomes

Zf’d"lzl‘/a/f (2.18)

It is important to realize that the second term has as one of its functions
guaranteeing that the final result takes proper account of the Pauli principle
for the target nucleons.

It is inconvenient'to continue to carfy the operator 62 . Since
(I/N)zt ' js a symmetric operator, the (1 in the f1rst term is superfluous.

Hence the operator (N-1)t is approx1mate1y g1ven by

Ay ’
W-yz = ("’”’{”..2-““ 2 Z“‘ZZL'Z‘; AT

-

Returning to £q. (2.13), replacing t by expression Eq. (2.19), replacing
(N-])rQQ by v and (HN)QQ by € as described above, and keeping only terms which

-9-

are bilinear in t.' yie]ds after some calculation

~ N f —————{— o (went ‘Pord” (2.20)
\/opf Zé Z e g‘{tg :91'-7

At this point we sha]] rep1ace tf' by t;. Comparison of Eq..(2.16)<with (2.4)
permits. the calculation of é'correctipn for this approximation.

We now consider two situations. The first is e]ast{c séattering.

(a) Elastic Scattering

For this case P projects only on the elastic channel. Consider the

first term in Eq. (2.20) in the momeﬁtum representation:

i, - 7 _ Mt M . re
VO F) = 2k 24 ok ) (2.21)

whare the state vector deséribing the target nucleus in the ground state and
the projectile state one of momentum K'is IOE'>. Because of the second term

in Eq. (2.4), t, is generally a non-local operator:

't =4 (%, -J; 4'-/2') y(—fl,in)'/ (,0 *Jz'))

where ji and Jﬁ’ are the coordinates of the projecti]e,'if and 5’” ‘the

_coordinates of the target nucleon with which it interacts. Vé;% can then be

written
Vo . ""’Z/d /di’/;ﬁ:‘ f"’n‘;)e -k 2 - (2.22)
l“f;l:' .
X-{-(no/: /(‘,-'7)5'(1/&,44)-1/;’»*4.))
(1)

where p'

f(")(/z’_‘,f‘/) = /(/ (o B, 2 By, «é(n w R, ) (2.23

is the density matrix:

L
‘ ,’< Al AV, A, ..
We briefly summarize th2 steps taken to evaluate Eq. (2.22). It is convenient
to introduce the Fourier transform Of’o(]):

-

. '-’.l—i:—(' '-‘,‘ Ty 2, -
P, ) = (T/,J‘ J et s PEFHEAE (220




and the relative and center of mass variables p =/f0 - ;1. and R = %(Eo +/l’1.)

‘together with similar coordinates for the primed variables. The calculation

is straightforward 'Iead1ng to

v"’(ﬂ) w—o~)/4;/°‘7f(?7)f( 3")

(2.25)
| X 53 ‘t-/?”‘))
where -
- -(-ifn';'- f'_‘
t(%,%) = f/ € L (5, g dF (2.26)

The physical interpretation of Eq. (2.25) is straightforward. The projectile
provides a momentum k' the target a'. After the collision the projectile has

a momentum k and the target q. The delta function guarantees that the momentum

tra_nsferred to the ta'rget,'a --5',4 equa(ls".'the momentum lost by the projectile
. : e

To obtain the familiar Rayleigh-Lax expression, we assume that

CH(R,T) = £0T-T)

(2.27)
One then obtains the result .
V.o (R, l.)~'(~ PRt (%)=
(2.28)
where
o JRQ).R
(R-k) = [e (%) A7
5 . / F " (2.29)
and
) - re) : -
FEr= e ) (2.30)

In Eq. (2.28) we have made the energy dependence of tE('IE - F') explicit. This
amplitude is in fact the full off-energy shell t matrix. Thus more than ths

empirical values of the projectile-nucleon scattering which provides only the

on-shell amp]itudes; is required. In fact, the complete characterization of
the projectile-nucleon interaction is needed. In practice, one has proceeded
by fitting the nuc1eon;projecti1e transition amplitude 6n the energy shell,
generally using a function of kK-% empioying parameter"s which are a’Ilpwed
to vary with £E. This form is then used to calculate the off-energy shell

vaiues required by Eq'. (2.28). A typical form is
By (k-e)*
Ag) e F

We now turn to the next appro.ximation constructed  from the last two
terms on the right hand side of Eq. (2.20). In making this calculation we
shall immediately make approximations Eq. (2.26) and the equivalent of Eq.

(2.27):
pEE ;A R, E) = J08-Re) 88T P UELT, )

(2.31)
where
§ e LR B R R ) B T R B ) ol T, S,
and )
PUap o Eeelsa@n )sr,—. o> e
while ’
ERCAVE [Fucz =3 (F24 ”“’" 7 (2.33)

We give the final result for the second order terms:
V‘::’r = <OZ{ decovd endlan | o.l:'>
/__ ' /l' Zm ".
- (- [t [aR € (- DRl F e e ) ©(2.38)

X CO@E, -F)
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where C(z) the second order correlation> is defined by
w) -, ), - =, " g
C /‘},7«) = f* (%,7,)—f’(2")f(‘}) , (2.35)
The third order contribution has been calculated by Ullo. As one might
expect the third order correlation funciion occurs but in contrast with the
seéond order term given above there are additional terms which depend upon p

(2)

and p which are'of importance for light target nuclei.

(a') A Local Approximation

The potential vég% is non-local, mak{ng its use in the Schroedinger
equation comparatively difficult, albeit with modern comﬁuters possible. An
approximate method which replaces the Schroedinger equation with the non-local
potential by a pair of coupled Schroedinger equations involving only local
potentials has been developed [2]. We shall.only quote the results. The

equations have the form:

E-k-ver) = ALY _ |
(E-E-k-y V¥ AY . (2.36)

As one can see from this equation, w(?) h]ays the role of an effective inter-
mediate inelastic state. ‘The construction of the coupling potential involves
the following steps.

Let

X(3,3)=4@ CYG 14 G)
: ' (2.37)

*1f approximation Eq. (2.31) and Eq. (2.26) are not made C(Z) is rep]aced-by

PR T E) - fe ()T 1)

-

" while the t's are replaced by the more accurate t(K,K'';E) and t{K''' ,K';E)

Fespective]y.
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and its_Fourier transform:

X (%, %) f‘(z—’ﬁ)f_/c(;/d;/x@ §) egp-i(§R4T7)

(2.38)
Taking the z direction to be tha% of the vector K+ X', and denoting the
perpendicular direction by #, let ‘
: 14 ~ - N
(49 = [de [d2’ X (4 2; £,27)
! RS- (2.39)
[ 4 P d - : o
=4 ’ e
@t ) ’/Q-X(q)
where . o
] - —,
& =‘£ [7 + 5,)
and . , - ’ '_ .
- . b4
- ——— 'X [+ 35 ,0
X(Q)" (m),;/da (?‘I-I 7—'. )
where , - -,
8- 9 -%
With these definitions the coupling potential is given by
- Tarteat)cla -
A(&)=_EZ/’(0#&) » . . (2.40)

One advantage of this procedure is that it avoids the common practice of

_neglecting the longitudinal momentum transfer which would limit applicability

to small angle scattering.

(a'') Spin Effgcts 4

The above discussion for 1(2) is valid on]& when t is spin independent.
This is of course not the case when the incident projectile is arnuclqpé. The
necessary generalizations have deen carried out by Lambert [2] and recently

by Parmentola. We shall net describe their results hera, Instead, a simpler
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analysis appropriate when the nucleus can be described by LS coupling will
be presented.

The nucleon-nucleon t matrix has the following form

23 C(RF)R +DC.R-Q+ETETT
’fi = A+ 8.9 *C("Z“’I)"”‘ Y% e’ A t (2.41)
where 30 and gi are the Pauli spin-operators for the projectile and target

- .
nucleus nucleon respectively. The vectors R, Q and § are

FLW @=i ®eED, R e(kxk)

In evaluating the first term in Eq. (2.30), the Rayleigh-Lax term, one takes
the expectation value with respect to the target nucleus. If that nucleus

has zero spin the result as far as the spin operators are concerned is
o
A+CT,

A11 other expectation values vanish. This result translates into a central

plus ‘a spin-orbit optical pqtentia], a result which can be anticipated from

" invariance principles. The physical reason for the absence of any contribution

from the other terms can be readily formulated. Roughly speaking, a term 11ke

830-3 results in a spin flip of the target nucleus nucleon, chang1ng the

* state of the target nucleus. In order to restore the spin orientation a second

scattering is necessary. Thus the B, D and E terms in Eq. (2.41) will contri-

bute to V(z) and not to V,,. Since the relatively small energy change involved
. OoPT RL

in the spin flip -can be neglected, it is clear that V(z) will be bilinear in
the density in addition to its expected depéndence on the second order corre-
lation. It is usefu1 to combine these density dependent terms with the first -
order term, Eq. (2.30), so that the remainder will depend only upon the corre-
lation. As we shall see this can be done relatively easily. o

Only a simple example will be discussed. Suppose ti has the form:

(2.42)

<
_15-
te) d - a)
d;= 7 +0,.0 ¢ (2.43)
Then
Lok | Ve loRD = (w-ut"p O (2.49)
The calculation of V(Z) will involve the evaluation of the quantity:
OPT
-, «, /o) o0 (A) -
MF,3)E L F Collt ¥ e 7 eIt Tq0+ T 8 ¢ ga][
N( 'W-1) ‘," ) (2.45)

-» =, / .
-~ PRI PGIE 12 €7 ()
Doing the spin algebra one obtains:

MG, 3= ¢ /‘) ¢“5%) g3

r (AJ_, 1/ ZJ?
+ gt /2)”,” (Z<0/5"5’ £ Ho>

Assuming that the target nucleus has zero spin, and can be described by LS
coupling, one can evaluate the sum
P ),y LV
MGy ¢7g)¢ ’/,')C 7 ;)-_3. f"’r;)é ) 3,2

or using .
P, 9« FRIPED) +CYGR P
M becomes
Mg, g - _3_ t,.G) ¢t (3)p(3)p3) |
o), » o)., a) (e),
*CM@ })[é') ) k)~ 2 G ¢ (7] (2.46)
We can now reorder the terms in VOPT SO thaf V(z) involves only correlations,
that is the second term in Eq. (2.46). Thus in Eq. (2.34) the terms -
L@LE @A) are reptaced by [t @O @) - (-1t @ @)
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while Eq. (2.28) becomes:
V;)Pr = -0t pg) +3(~~)/dh /dZ"f"’"ff‘” ) PEPIED
- 2.
X<E | F IR (2.47)

Because the factor multiplying ¢ K'f|%1 A ) factorizes into a function of
3 and of ', the Schroedinger equation with this potential can be exactly

written as a pair of coupled equations as given in E£q. (2.36) with
r_" " () ;o 5T .
As one can see from Eq (2.47) this spin correction is important when
[‘f /O)J (o) g3
) gy
éro)/o) - E
where kF is the Fermi momentum in units of A, The expression on the left is

a conservative estimate of the ratio of the second to the first term in Eq.

(2.47).
(b) Inelastic Scattering

In this case, the projection operaéor, P, projects on to the space
consisting of the target nucleus in the ground state and in an excited state.
The Schroedinger equation now becomes a pzir of coupled equations involving
these two chénne1s, the elastic and the inelastic. The diagonal components

. of the coupled channel are identical with Vé;% + Vég% of Eq. (2.?0). Approx-
imationsléq. (2.28) and Eq. (2.34) apply o the diagonal elastic channel ’
potential. For the inelastic channel potentiaT one need ohfy replace p by '
the p for the excited state. The coupling potential be_tweén the two channels
can be similarly evaluated. Let the excited stqte be designated by u,. the

ground state as Before by 0, then the coupling potential (VOPT)po is given by

-17-
¢ 2,
(Vorr),, = Voﬁr) (‘4;:)1“ S (2.49)
where
(s) . . g g
(%".)yo = (W0 £ (g (2.50)
with

-

fao @)= 5 L ule Ty

(2.51)

The second order term is given by

Vs, ), = O [dRe [dB" 4 G R)<E"] = [Ery e (R-17)

- . L(2.52)
“RIf (k). L. a “4)p &

4

X [E9(cety, @-2)-p (&

The bracket replaces the -second order correlation function of the diagonal

potential. "The quantity ﬁ(g) is

‘f;‘:’ (u?".r:) (B ""))
L T <l ey [(@ LR)A, + (E-E) K ][

= Niw-) ey

These equations have been used by Ullo [2] to discuss ine]astic sca{taring.
It is, for example, possible to extend the factorization procedure of

section (a') to the coupled equations.
(c) Applications

Tﬁe Rayleigh-Lax potential, Eq. (2.28), has been used to analyze the
scattering of high energy (1 GeV) protons by nuclei. Other examples were to
be provided by another lecturer. The first two of these is taken from Boridy
£7]. . Fig. (2.1) compares the elastic scattering calculated using VRL_fpr two -
differing neutron density distributions, Y One in which Py does not equal’

Pg» the charge distribution obtained from a Hartree-Fock ca!cu1atioﬁ using a

7]
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_density dependent Hamiltonian [8]. In the other °n is placed equal to Py

J

We see substantial differences at the larger angles of scattering. In Fig. [-»-;

(2.2) one can compare the theory using the VRL for elastic §cattering and the
Tassie model for the inelastic coupling potential rather than the less model
dependent result of Eq. (2.50). As one can see, the agre=ment is excellent
indicating that one can in fact detgrmine the neutron density. This is more
cogently and clearly seen in Fig. (2.3) in which the difference between the
neutron and proton radius #s given for the even stable isotopes of Ca f8].
The first three points are obtained from 1 GeV elastic proton scattering.

We see that this difference is determined to about +0.03 fm.

The effects of short range correlation do not make their appearance until
one gets to larger scattering angles measured experimentally. However, in
order to extract C(z) it wili be necessary to carefully estimate the errors
in the calculation. We note that the smaller angle diffraction pattern is
in excellent agreement with the predictions using the densities of the Pb,

Ca and Ni nuclei obtained with the density dependent Hartree-Fock method.

I1I. Pion-Nucleus Scattering [10,11]

In the preceding discussion of high energy hadron-nucleus scatterin,
none of the intermediate states were presumed to have a particulér importance. .
The validity of the closure approximation rests upon this hypothesis. We
turn now to a case in which a particular intermediate state or better in
which a few such states are all ‘important. In the presert situation, pion
scattering by nuclei, fhis occurs because these intermediate states are collec-
tive and are readily excited by the incident projectile. In other words,
these collective states form doorway states for the reaction.

Iso]afed doorway states such as the giant multiple resonances, the isobar

analog resonances, nuclear molecular resonances, Gamow-Teller resonances, shape
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isomer resonances and $o on are fami]iér. The collective state résponsible

for the doorway state resonance is roughly described as a proton particle-

proton hole state and a proton partib]e-neutron hole state in the electric

dipole and isobar analog resonance Fesbective]y; The relatively long lifetime i
of these states can follow from an approximate symmetry as in the case of the

isébar analog resonance or from dynamical considerations as in the case of

the shape isomers (the large potential barrier which inhibits shape changeé).

0f course, one should remember that the doorway states are not exact eigen-

functions of the nuclear Hamiltonian. Under examination with sufficiently

good resolution they fragment into a fine structure. This has been observed

in each of the examples cited above.

In the =xample to be discussed in these lectures, the collective state
of the nuclear system is a A particle-nucleon hole state. This collective
state is formed when a pion strikes a nucleon in the nucleus, the pion being
absorbed by it to form a & (an excifed state of the nucleon with J = 3/2 and
T=3/2, Ep = 1232 MeV, T = 115 MeV) leaving a "hole". As we shall see, a
constructively coherent a-hole state is formed when the incident pion energy
is in the a resonance region. Although there is a striking similarity ;d the
partic]e;hole states mentioned in the preceding paragraph, there is also a
most significant difference. In the'presenticase, the particle, the a, is
upstable. Thhs, in this process, it becomes possible for the first time to
directly cqnsider the impact of a strongly interacting nuclear environment on
a partié]e resonance, The methods, which are developed for the A case, can
generally be employed in considering. the behavior of other particle resonanees
such as the Y* inside nuclei.

For the most part many of the'theoretica] approaches to pion-nus}eus
scattering have not examined and exploited the poésibi]ity of the»formafion
of collective states by the incident pion but have proceeded using some variant
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of the multiple scattering theoryAdescribed in Section II. It was first
pointed:out by Kisslinger and Wang [12] that the iscbar-hole stafe is a door-
way state and could be especially important for elastic and inelastic pion
scattering and more generally in reactions in which a formatibn has an impor-
tant role. The fact thaé'the states formed are collective is the discovery
of Hirata, Koch, Lenz and Moniz [10]. It is their work, as well as the resﬁ]ts
of Lenz, Horikawa and Thies [11] upon which I shall report in this ;ection.

As a first step we shall develop an expression for the rzsonant pion-
nucleon scattering, a representation which will be ‘useful for the later
discussion of the pion-nucleus scattering. The projection operator method

will be used [13,14]. The equation we wish to solve is the Schroedinger

‘equation

HL =& ~
(3.1)
Let the operator P be a projection operator which selects at least the incident
channel as well as other states of the system excluding that ‘one which will
give rise to the resonance as we shall see. Let the projection operator

wh%ch selects at least that state be Q so that

’Pf Qal p":P) Qz:Q ’ ?Q =D . (3.2)

Eq. (3.1) then becomes a pair of coupled equations for Py and Qv

(E-Hpp)(PE) = Hoo @ &) (3.33)

(€-Hag)(@E )= Hap @‘9 (3.3b)

where
”PP T‘-PHVI vaQE PHR <tc. -

From Eq. (3.3a) it follows that the ;7 matrix is

bt A

_7'—‘ -.7,?’)* <¢¢(-)’ H’Q - . /
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T = I B g @ B

(3.4)

(-)

where ¢f' satisfies the homogeneous ‘equation

)
(E"IJPP)éf 2o (3.5)

with the indicated boundary condition. :7 g?) is the scattering lor reaction)

amplitude generated by HPP' The prompt non-resonant processes witl be contained

in this term. The wave function v$+) is the solution of Eq. (3.1) with the
appropriate incident wave indicated by the subscript and outgoihg wa?e
bbundary condition indicated by the superscript.
To determine Qw$+) we return to Eq; (3.3) "solving" Eq. (3;3a) as follows:
' = dn ! Heg(Q & 4
PE =30+ G HelRL)

—Hpp

(+)
h
(3.3b) yields

_(E_Z_H?Qv.— Hap E“I‘” He, up“)(‘*ﬁ'):#;,,_,_gf-{ .'

where ¢ is also a solution of Eq. (3.5). Inserting this result into Eq.

Inverting, making use of tha fact that Q contains no open chénne]s, and

inserting the result into E3. (3.4) yields:

f _

g - Hep —o— Heg N.Q?q?(“> (3.6)
. P ESHypp C
.This expression is completely general. Let us now specialize to '
pion-nucleon scattering. Then the incident system will be designated by the
subscript, wn . Tﬁe intéracti;n HPQ Qi]l connect the = + n system with the

A (and other resonances). In the notation of HKLM,
Hop, = 4, 1
0 = Joma , “or = Zma ‘ (3.7)

and

Hop —— H
E7- Hpp ,W (3.E)

~N
w
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The first tenm_] g?) just gives the non-resonant scatterin3g. Assuming that
only one resonant state, the a, is important and that its wave function-wA

is a solution of

(EA - ”ao'Z)‘e =0

Eq. (3.6) becomes
(+)

.]/ = J (P),'_ L‘é’:;u [ Gnne "DA><$A |-ﬁt~m ai,"m
T E-t, - <hlzhy

Note that the "self energy" operétor I is complex and therefore, in the deno-

(3.9)

minator of the second term, <¢A|£JwA> will shift the resonance energy and

will also add an imaginary term broportiona] to the width of the resonance.

However, note that since £ is energy dependent, this width will have an energy

dependence. This is of some importance because of the substantial width of’

the résonancg and results in some distortion from the Breit-Wigner form. Eq.

(3.9) needs to be revised because of the requirements of special relativity.

We shall return to this point in-the course of the development which follows. .-
He turn next to pion-ﬁuc]eus scattering in the isobar-hole doorway

approximation. We employ the methods of my paper with Kerman and.Lemmer t]d].

First we separate out the doorway state component by further partitioning Q

space: ‘ ) )
Q@ ??“%' ' (3.10)

where D is the projection operator for the doorway state space. Secondly, the
strong doorway state assumption is made; namely that

Hpé =0 = lJ%P

(3.11)

-

but HPD and HDq and their adjoints do not vanish. This assumption states that
the Hamiltonian connects the open channel subspace projected by P only with

-

o e ——— S vh e e -
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the doorway states as is illustrated by Fig. 3.1.
For pion-nucleus scattering, the.] matrix given by £q. (3.6) becomes ,

after inserting assumption Eq. _(3.11),
)

where

(?) ) U : i D H (IJ
z D — np T
Tow = Jpu * <J;'""’l 0 Ehaa ™ a2
where | +
L H. , — Hea = H Hep = W
= - P o 8 by
Waa™ 7RF E@- Hee PT g (3.13)
) e oL + .
We now must calculate D[}/KE HQQ)]D where HQQ HQQ + wQQ' To th1s g?d
let oo
) Gog = =
E- Haq (3.14)
or -
(Er - *ﬂQQ ) Ginc; =@
Multiplying from the right by D yiélds
(E" Z?QQ)GQD =2 3 ’ . (3.15)
'Multip]y%ng,from’the Teft by D yields the equation
(E'gbp)qpp = HD% G‘i) +P ' (3.16)
th]e multiplying Eq. (3.15) from the lTeft by q yields
~ _ ~
(E - H‘H.)_ 97,9 - H%o G”
InQérting this equation and substituting in Eq. (3.16) yields
D
Goo = E - Hpp —Wpp~ Wob. ~ (3.17)
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Wpt . TR __L_f'—H%p . (3.18)
3 E"— Haﬂ, .
Hence . :
9 () <4J(-) ‘H 4,(*)
J"N =7, + AN 14 - H Vi LmJ>3 19)

This is the fundamenta1 formufa with which we shall work. The imaginary
parts of quantities w and N D are proportional to the escape and spreading
widths respectively. N

It is now necessary to fill in this expression taking the Pauli-blocking
effect and introducing the necessary modifications required by relativity.

Let us start with HPD' In the isobar doorway model this is givén'by
g, the vertex function described above which converts a nuc]e01 in the target

nucleus by the absorption of a pion. This interaction is summed over all the

- target nucleons taking due account of isospin. The matrix elemept of g is

Ey(§)e <B(82 ) g& Urmady (3.20)

where e, is the ground state of the target and ¢ is the state produced by pion

absorption where 5 is the pion momentum._ In an independent particle madel

oy 2 [dR LF(R+F) T R) (R
FA.N (9,) = [(;';3 ¢4 ,7' } : ) (3.21)

where ¥ 1is the initial nucleon wave function with momentum X, I is the a
. —
wave function with momentum (K + §) in units of h. The momentum M is the
momentum of the pion relative to the center of mass of the nucleon plus pion
system: ]
-2 -
"o S (£+9)
. Myt W

(3.22)

where w_ is the pion energy/c2. The quantity g is

_f\‘ A(,(z);,g‘r - (3.23)
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where .{* is the coupling constant modified.by some kinematic faczors, h is

the vertex form factor parametrized as follows

11!NA 2 A
_ hix?) = ——— - - - . -1
- , IR wmth A=25.5 gnd a=1.8 fm

-> ’ .
S is a vector operator connecting the spin %-and spin % systems as follows:

(R | 3Ty < T <lompdmad 2oms) €

where

€, =3 (RecVi 6,23

where ;, ;, ; are unit vectors in the indicated directions.

A second problem is connected with the propagator'(E - HDD..'.)'I-in Eq.
(3.19) which needs to be given an appfopriate relativistic form. This could
have been accomplished at tae beginning of our analysis by replacing the
Schroedinger expression (E - H) by the quadratic Klein-Gordon operator and
subsequently employing the projection operatom analysis. The energy denomi-
nator in the transition amplitude for the pion-free nucleon resonance is then

not that given in Eq. (13.9) but is r@thér 0™} where
D=y + /4‘131;(‘3"‘(‘) j;é@i (3.2¢)
A '
where A4 is the square of the total energy and ( 4 - mg)'] is the "bare"
operator while the integral is the “self energy" correction, with the imaginary
part prdportiona] to the width. ‘ ‘
In the expression for pion nuclear scattering we replace (E - HDD) by

D(E - HA) where HA is the Hamiltonian for the A-nuclear system

-[/A =7;4VA 1“‘/&.‘

with TA the kinetic energy and VA the potential energy of the A inside the

o
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nucleus, while HA-] is the HamiTtonian for the rest of the nuclear system
consisting of A-1 nucleons. HKLM use a shell model potential for VA.
In application, D(E - HA) is linearized:

DE-Hy)=DlE)~ M3(6) Hy = N, ( E-6,+ 4 -7/5);-/4)

(3.25)

where :
: 90/95 = N, Y(g)

Next, consider NDB, Eq. (3.13). We again replace the propagator by its

Klein-Gordon form and therefore write )
’ (B) Fanlk 3
¢ iy [l -: dz i____________-——
<A / b ) IW ,A' "o @ﬂ')’ (f"— IklM )- (""Lt""'e ~ (3.26)
A Man

. where F is given by Eq. (3.21).

To evaluate thelspreading'width WDB’ we adopt the optical model strategy
of replacing it by an energy average and then usihg a phencmenological poten-
. tial. Upon the assumption that the major source of the spreading width is

the absorption reaction

A Fn —p» W .

HKLM parametrise: wDD by W =,Vop(n,)/p0 where p is the matter density and V0 is

a parameter. As we shall see Horikawa, Theis, énd Lenz found it important to

e d

include a spin-orbit-term. They use-
. - ) o) -
We w,ptn) +2 L,02, Vs prre”

ot
_{3.27)

where u and Vﬁg) are empirical parameters. For future convenience, we write

Eq. (3.27) as follows:

W=y,

-

420,27, U, )
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Finally, an ad hoc term is added to take the Pauli-blocking effeét into
account. Pauli-blocking refers to the forbidden decay of the isobar by pion
emission in which the nucleon ends up in an occupied single particle orbit.
The free width in D(E), Eq. (3.27), must be corrected for this effect. The

correction in the independent particle mode] is given by

Firns (R) o (R)
o) Sl o, wry = -4, Z /gir} [; - 2 ]‘-w,:m. (3.28)

where ¢ and € are the hole energies.

With the 1ntroduct1on of sw Eq. (3.19) becomes

(P) x "..ﬂ..,'.. . : ) C e
J J <’~" “ T 3A,ﬂfn f" 3‘29)

l 1""5 a D)~ Y(E)HA W°° %pr

where the matrix elements of all the operators'which occur havé been defined
above.
The doorway states are-introduced as the eigenstates of the denomina;of

of the propagator:

DUE)- 36 H 5= Wi = Wol -

wo,;[oi) - (F— £, +cTfa - Q”R>

(3.30)

'so that cor
J ](PI Z {4 ﬂ‘h.l g"MAI > 1’ l%d,n«l "A,w..)
™™ ~

E-c,.+ L -& : ' (3.31)

z

The calculation of J N thus requireé the determination of the sblutions of
Eq. (3.30) for the doorway states and then substitution in Eq. (3.31).
operatof in Eq. (3.30) contains VA which is taken to be ﬁroportiona1 to the
nucleon density by HKLM with a depth of 55 MeV. Tﬁe only parameter (complex!)
which remains, omitting the spih'orbit term in Eq. (3.27) is No.

The numerical results revealed a remarkable feature; for example, in the
calculation of the transition amplitude for the'scattering of 140 MeV pions by
160 for the 0 partial wave. Harmonic oscillator wave functions were used.
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The a-hole space was 17 dimensional. The contribution of each of the doorway
state solutions is presented-in Table 311‘ One immediately sees that one
state D] provides by far the largest contribﬁtion to the transition matrix,
Moreover, the\matrix elementl%f the interaction with the incident channel
defined by

| FEARICEL #W T +32)
il Ganm p WO e

turns out to be 0.9. D] is thus a collective state similar to those seen in

the giant multipole resonances.
The fact that the overlap as given by Eq. (3.32) is so large Suggests

that it would be more economical to use a complete set based upon
(+) .
Je = 3Allf~\ |L(1‘,'m\l> (3.33)

rather than upon harmonié oscillator wave functions. There is a standard
procedure developed by Lanczos (see Morse and Feshbach [15], p. 1155) for

developing such a complete seti
3
et H = V@) Hy + Way + Way +8Wy

Form the state.q] from d0 as follows:

e <J°|J4 !do> :
d < #d, - TR 4 (3.38)

Note the orthogonality:
<d ld) =0 (3.35)

State d2 is formed by operating on d] and orthogonalizing with respect to d]

and do: ~ ~
A, -, - SERlAD, - qaldlep 4 o
<, 1d,> ¢ \do) (3.36)
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More generally N .
J e M) L KdeHlded A, | H deeid
i - A N> T TR e

Not only is du explicitly orthegonal to da_] and-dd_z, but it is orthogonal to

A

37

(o

d Akfor m~ < a as well. The proof is left as an exercise. It also follows

a-
from Eq. (3.37) that the chaining condition is satisfied by the set du:

<J;a,74,'a>=° alene B2, o w2 (3.3€)

From Eq. (3.295 we se2 thet for elastic scattering for a given partial

wave one can write

J = <4lg |a°>/<4:fdo>

nea (3.3¢)
where )
LS
g D '744 (3.40)
and P = D(g

Our problem is thus reduced to ® calculation of G' » or more specifically to

_ expressing q in terms of the zet da. Define the matrjx element of G to be

’ C,;P -.-.. <Z,.,_ 1G {ao>

(3.47)
In terms of this definition Eq. (3.40) can be rewritten -
. ’Dﬁv"' _ PZ-GEJ#HIO %ﬁ‘y"“"
- Us’inglthe chaining condition, E3. (3.38), this equation becomes )
@ ’_ﬂ*)_%’o‘ = ‘;4«',«-4 i-,,o. + 7‘{«,,“, ng,a + o  (3.2)
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where

Aoy = <Al H1dp

Let a be the value of a for which (1 1.0 ° 0. Eventually we shall let
a + o, Then Eq. (3.42) becomes

(D- }4&& )C‘J.‘w = "j:f - qa’(-l.o

or

q.

-1, 0

/ #__
g&a - D’ﬂi! o, !

Substituting this result in the equation for qa-l 0 yields
»

(D- }4&-',&~' - }4&-',1 : #5',5?-/) q&-oo e K,z f’

D- Hza «<-t, 0
Therefore
/ A-
Gau - i o
o -1 - - ! - = ‘
? '“&-:,&-/ ﬂ&-;, = 5‘--7(—-_-—— "vx,d‘!
ol of

Repeating this process successively and thus reducing the index of ‘;’ by one
unit each step one eventually arrives-at the final expression in the form of

a continued fraction, for 400
7

qvo = D - g(”_ Hoy Hio .
D—ﬂn-_p—';;&'—'#u
hEad ¥ S 9_

.. (3.43) -

The zeros of the denominator in Eq. (3.43) will yield the eigenvalues €5 of
Eq. (3.30).

The efficacy of this procedure is illustrated by Table 3.2, in which the '":.~
results obtained with N iterations are compared with diagonzlization using the
harmonic oscillator space. The pion is positive with an energy of 16%_ MeV and
the target nucleus is 180. It is clear that the process is rapidly convergeat,

and that even the first term, N = 1, gives excellent agreement with the exact

o

W O N Y s W N -

e S ]
Ny v B W Ny — O

Table 3.1

-.124
.043
.034

025

-.005
.004
.001

-.001

-.004
,002
.002
.000
.001
.000

-.000

-.000
.000

+

+

+

+

.6751
.0661
L0274
L0164
.008i
.0074
.003i
.003i
.002i
.0014
L0014
L0014
.00%i
0011
.000i
.000i
.000i



1=

1
2
3
"EXACT"

Res

.155 + .490i
.189 + .372i
.154 + 3814
.154 + .381i

Table 3.2

é gMeV)‘
-53.1 - 154.5i
-68.7 - 138.5i1
-68.7 - 138.0i
-68.7 - 138.01

.060 + .2801
.062 + .2461
.059 + 2514
.059 + .250i

3 SMéV[
13.9 - 13.4i
-2.7 - 11.73
-3.4 - 22,7
-3.5 - 23.0
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result. These examples réfer to one of the eigenvalues and eigenstates Di‘
Thélnumber required to obtain.tﬁe t6t51 %or fhe ;7 matrixlfbr each partial
wave is Qeneral]y'very few in numbef. 'In this case two states were required
fcr én accurate'desc;iption of the 4  transition amp]gtude and only one'for
the 0" partial wave.

‘ The contribution of the-yarious terms {s shown in Fig. (3.2) in which
the imaginary part of fhe expectatioh vaiue of various té}ms are plotted as
a function of pion energy. We sée that the dominant term ofiginates in the

escape width. The Pauli term does reduce the free space width while the

spreading width is of the same order of magnitude as the free space width.

In HLKM, only the first ienm in the expréssiqn for the sprééding pbten-
tial W, Eq. (3.27) is used. Tthresulfing émﬁiricé] variétion for Vgp(0) = |
p(O)W(O) is quite severe as can be seen from Fig. (3.3). Horikawa, Theis and ‘
Lenz include the spin orbit term as well. The reﬁﬁ]ts are shown in Fig. (3.4).
As we ‘'see, the Re wo and the Im No are now roughly independent of pion energy,
a much more safisfactory result. Table 3.3 gives the strength Vég) and range

parameters u for the spin orbit term.

In Fig. (3.5) and Fig. (3.6) the volume integral of the central term in

and the surface integral are given for differing values of the mass number v

A and compared with'valﬁes obtained for the nucleon-nucleus interaction:

N = un fan) /ﬂ(nni(\/o"' v,) S’[‘(""'Lism)

The comparison of th2 results of this analysis as carr{ed out by HTL
with éiﬁerihent i; shown in.the fo]1owing;fi§ure§ (Fig. &3.7) - (3.13)).
Fig; (3.7) compéres the computad and éxperimenta] absorption cross-section. .
Fig; (3.5), (3.9) and (3.10)Lcomdare the calculated anjular distribution with

experiment for pion energies of 120, 148, 162, 226, and 250 MeV. The agreement




.the Y* which is produced when a K~ is absorbed by a nucleon. Moreover, it may

is good except for the back angles particularly for the 162 MeV case. Figures

(3.11), (3.12) and (3.13) compare the scattering from -60, “He, and !2C at

the indfcated energies. From these one can see the Very large improvement

which results because of the inclusion of a spin-orbit term in Eq. (3.27)

The solid line is the result of calculations with, the broken one without,

spin-orbit terms. We see the important effects at or near the minima in the

angular distributions, filling in or a deepening under different circumstances.
Some discrepancies therefore remain, and one would eventuai]y‘require

a microscopic calculation of the A-nucleus interaction as contained in A,

™ - “He
rather than the present semi-empirical treatment. WNevertheless it seems fair
to say that the elastic pion-nuclear amplitude is well understood, and that . . a - 12¢
one knows how to calculate the behavior of the A-resonance inside the nucleus.

- 160
Obviously the theoretical.treatment of various processes in which the pion is

ihvo]ved must take advantage of this increased understanding. The déorway
states need not decay only into the elastic channel. In other words, inelastic
scattering, pion production or absorption, photoprodyction and‘radiative
capture may pass through the doorway states revealed by the above discussion
of elastic scattering. i
Finally, returning to a theme discussed earlier, the same methods develcped

in this section should also prove useful for other baryon rasonances such as
also be a useful way in which to treat the familiar giant reéonances.

v. Hypernuclei [16].

We turn next to the case where the baryon probe is the reiatively stable
strange particle, the A, or possibly the £. This is to be contrasted with
the situation discussed in Sec. III, in which the baryon is the much less

stable a.

Table 3.3
-2
w(fn?) v{Q (vev)
0.25 -4.6 - 1.8i
0.35 -10 - 4i
0.3 -10 - 4i
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Although A hypernuclei were known from experiments involving emulsions
for some time, it was not unii] the use of a nearly recoiless method of pro-
duction in the pioneering experiments of Bressani et al. [17] and Povh et al.
[18] that hypernucleus physics attracted the attention of the nuclear ph}sics
community. "The recoiless method [19] is based on the observatien that ir the

elementary process

K +m ——*Af+ﬂ° (a.1)
when the pion is observed in the forward direction a kaon moﬁentum exists for 0 0 200
which the A% produced is at rest. This result is illustrated in Table 4.1
and Fig. (4.1).' Fig. (4.1) also contains a plot of the cross-saction for 250 20
forward production -of pions according -to process Eq. (4.1) indicating some ’
advantage in using kaon beams whose momentum is not exactly at the critical
540 MeV/c. '

It would be expected that the production of A hypernuclei will be

enhanced when the kaon momentum is near 540 MeV/c and the pions are observed
in the forward direction. The reaction is
- 2 z . .

K4 “A -+ (A +T (a.2)
Because of the small momentum transfer a neutron in the target nucleus is.
simply replaced by a lambda. By observing the spectrum of the pions one will
be able to determine the spectrum of the hypernucleus formed, subject of course
to whatever selection rules apply at 0°.

Similarly £ hypernucliei can be formed. The elementary interactions are

K".}m — Z° +TL' (a)
Kep —» T° on” (b) T (a3
kep — L AT (c)

Table 4.1

540 700

1600 -

7%

2000

130

'MeV/c‘

- MeV/¢




Note the possible formation of a =" which has an enhanced detection. The
incident kaon beam generally contains many negétive pions and negative pions
are produced by the decay of the K™ in flight.

Examples of the formation of A hypernuc]ei [21] are shown in Fig. (&.2).
Relatively sharp states have been observed. The formation of & hypernuc]éi
is indicated in Fig. (4.3) [22]; The peak cdrresbonding to the r hypernucleus
should occur at the same excitation energy whether the process involves the
production of a T ora n+. This is certainly the case for at least one of
the structures involved. In these experiments Py = 720 MeV/c while the momen-

tum transfer is 130 MeV/c. ¢ states were seen in 2Be and 7Li as well,

nucleus
I shall not attempt to summarize all the experimentzl and theoretical .
issues of interest. Two particular points seem to me to te especially interesting. : £
. p

(a) The first refers to the question: Why are there £ hypernuclear
‘states in gBe, ;Li, and lgc which are re1atiye1y rarrow? The existence of
these states is a surprise Secause of the expected rapid conversion to a A
hypernucleus via the strong interaction process £ + n = A + n. An estimate
obtained by Batty is cqnfirméd by Gal and Dover [23] for the case of nuclear -

matter. In that case the width is given by ‘
[~ GO LPIT SIRy-TNEY (4.4)

where 47 is the velucity of the £ - p pair c@nverting with total cross-

section, O+ The bar represénts the average over the Fermi gas used to

describé the A hypernuc]eus? The wave function ¢ is that of the I hyper-

nucleus. The results are given in Table 4.2. £ L
According to Gal and Dover, the réduction in the conversion rate from

that calculated using Eq. (4.4) %s a consequence of the fact that the-e1emen-

tary process, £ + n > A+ n,‘is ‘dominated by the T = %, S = 1 channel

(Engelmann [24]). One should therefore replace (w|x§(ﬁi - K()|w> by
t

o

Li

6.8

r

Table 4.2

T =22 Mev
%Be
8.8

12¢

15.0

160

14.7

MeV




where the spin and isospin factors project upon the triplet spin and T =

[N

isospin for the (f,n) pair. Note that fz is chosen so that tg = 2.

Under the experimental conditions the states most likely to be excited
at .0° for the 12C target are given in Table 4.3. In this table, the nucleon,
£ configuration is given together with-the possible isospins of the final ¢
hypernucleus. The quenching factor, Q, that is the factor multiplying the

values obtained using Eq. (4.4) given in Table 4.2 which is generated if that

expression is replaced by Eq. (4.5) is given in Table 4.4. From this analysis

" one would expect that only the T = 3/2 0% state should be visible with a
width given by 0.4 x 14.7 ~ 6 MeV. Presumably this is the state seen in Fig.
(4.3). ' ‘

Dover and Gal have carried out similar calculations for 7Li and °Be.
These are summarized in Table 4.5, where TN‘refersAto the isospin of th2 core
nucleus to which the £ is bound. The two lines in the %Be case correspond to

the assumption that the spin of the core nucleus is zero for the upper line

and one for the lower line. In 7Li one would expect the T = 2 state to be
observable while for 2Be, the levels seem to be SN =1, TN =1land T = 2 for
the upper peak and Sy=0, Ty=0, and T = 1 for the lower peak.

Predictions for an 160 target are given in Table 4.6. At least one
‘state should be observable. If the .t spin orbit force is weak, two would be
expected, Clearly it is of great interest to understand the mechanism
' responsible for the narrow & hypernuclear states and in particular to sze if
the correct one is that suggested by Dover and Gal. That uﬁderstanding will
reflect itself in a greater insight into the nature of the transition

T4ns A+, -

(4.5)

Table 4.3

n +, -1 )

120(c ") T=1/2, 3/2

C o) T=3/2

- - :
VArgpe 1/2)

172, 3/2

3/2



Table 4.4

T=1/2
1.42

3/2
0.41

T=1/2 3/2
1.17 0.86

(TysT)

(0,7)

0.92

L3

(1,0)

2.65

(.

2.00

Table 4.5

lower
peak

.2y (o0,1)

0.7 0.78 .

9Be

upper peak
(0,1) (1,0) (1,1)

1.22 1.93 1.64

2.00  1.29

N
f N

(1,2)

1.02 -
.70



+, -1
0 (p3/2,p3/2)

Q 1.32

PR,

Table 4.6
with strong £ spin orbit
coupling
-1 \ 1 3
/2 372 V2 3/2

1.19 0.8t 1.44 0.30 1.06 1.06
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{b) 1In this second section on hypernuclear physics, I wish to pay
especial attention to the role of the A in the hypernué]eus as a probe of
nuclear structure [25]. The conditions under which the A does act as a probe
can be formulated as follows. A 0'th order approxihation for the hypernuclear
wave function is ' |

(E(e) _ ,X(A) Lp(-ﬁ’")
ok

«a o« (4.6)

where x(A) is the single particle state of the A, ¥, is the wavé function for

a -
the nuclear core in the state a. Consider the first order correction to this
zeroth order wave function as given By first order perturbation theory. This

correction will involve excitations of the state of the A and that of the core.

‘Since the .single particle levels are separated by much greater values of the

energy than the core excitations, the latter will dominate unless of course
some specfa] conditions reduce the value of the excitation matrix element.
Assuming this does not occur the expression for Yoa good to the first order

has the form: - . teave Ceove :
(A (eore) <‘E& ,\\L “-“4, > d (cove)
g, - XL 7 S R
aa . ’ ast Eo. - Eb-' (4.7)

where

(4.8)

Vs <y As

The probing potential acting on the nuclear core is, in this approximation,

given by the residual A-nucleon potential average over the A density. As a’

consequence the energy levels and the electromagnetic transition probabilities

will be a]tered. It is clear that this effect will be most dramatic when
wécore) are low lying collective states. That this description is qualita-
tively correct is demonstrated by Gal and Dalitz [26] more careful calculation

of the levels of t:c as seen in Fig. (4.4). Moreover, the DWIA calculations

o




of Dover et al. [27] shown jp Fig. (4.5) and Fig. (4.6) give excellent fits
to the angular distribution of the reactions !2C(x ,n )!2C*, Their magnitudes
must however be .reduced by the indicated factors. The 17 state is clearly
resolved. In Fig. (4.6) one assumes that the measured excitation is a sum of
the excitation of the 0¥ and the two 2% states. Note that the contribution
of the iP3/2 and AP1/2 orbitals ere included. The levels associated with the
latter are shown in Fig. (4.4). At small angles the angular distribution is
dominated by the 0" state. The presence of the 2t contribution is indicated
by the shoulder in the experimental angular distribution. The need for sub-
stantial corrections to the magnitude is not surprising in view of the rough
character of these calculations.

For heavier nuclei one can expect the A to modify the collective para-
mefers such as the radius or the moment of inertia. The modification of the
radius is similar to the isotope shift in atoms. The change in the parameter

N in the formula R =n A]/3 from its A free value 2, 1is given by

B_ 41 B (A
] (4.9)

IZ=A°[I- ka

where A is the mass number of the core, k is the nuclear compressibility,

B, and BA(A) are the binding energies for the A for A infinite and for A -

finite. Taking K = 150 MeV, (M - n,)/a, for 15N = [026. It is anticipated
that this effect would be visible in the Coulomb energies of hypernuclei once
the nuclei are sufficiently large so that the charge symmetry breaking force

becomes unimportant. The influence of three-body forces has also been

neglected in deriving Eq. (4.9).

As a second example of the effect of the A I shall discuss the moment
of inertia of a hypernucleus using the deformed harmonic oscillator model.

The change in the moment of inertia due to the A is given by

A = M RS [('i%rﬁ’l-- )(ngsny o) oS (B3 ¢ )(me-g)]

(4.10)
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where as usual R0 and 8 are defined by the equations

<?1.>": 720(/47[7'?‘:;‘8) <x‘->£=k‘; (I‘é,‘r-‘?;r)

so that g measures the deformation. The values of ny.and n, give the quantum
numbers of the A orbital. The first term in £q. (4.10) is the so called

irrotational flow term so that there is an opportunity to observe this term

.directly. One should note that Eq. (4.10) does not give the total change in

the moment of inertia since the deformation 8 will change because of the
presence of the A.

It should be quite clear from these examples that the A will change
the properties of the core nucleus. It is not so clear that it will be exper-
imentally possible to observe the spectra of the appropriate hypernuclei.

Looking for the y-decays seems to be the most attractive possibi]ity..

V. The Collision of Ultra-Relativistic Hadron Projectiles With Nuclei [28,29]

Tﬁe collision of ultra-relativistic hadron projectiles with nuclei
appears to involve reaction mechénismé which differ qualitatively from those
which govern the three types of reactions we have>discussed in Sections II, III
and IV. We will be dealing with projectiTes whose energies are at least
several times the rest energy of the project%le. Not unexpectedly, special
relativity plays an important role. But in addition the interaction between
the incident hadron and the nucleon in the target nucleus is qualitatively
different in nature from the interaction which prevails at a lower energy.

The evidence for these remarks is presented in (a).

(a) We present first the rather startling results cbtained by studying
the collision of high energy protons with nuclei. Generally, the target nuclei

are heavy, e.g. U or Au, the particles detected are fragments of the target,
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and the means of detection are radiochemical although one of thé experiments

to be “reported employs counter detectors. ) - Table 5.1

The phenomena of interest are illustrated in Figs. (5.1), (5.2) and (5.3) . .
. The average multiplicities of relativistic charged particlas
[30,31]. In the first of these the average energy of a recoiling fragment

produced in 100 - GeV/c kadron-nucleon collisions. From Ref. [32].
in the laboratory frame of reference formed in the reaction p + U is plotted. : :

We see that beginning at a few GeV as the proton energy increases the average ) ' Target g Projectile ' . Average Multiplicity
fragment energy decreases. This is the opposite of what happens at lowsr + -
. . C ) n 7.86 + 0.15
proton energies where an increase in proton energy is reflected by an increase : + .
. : : . . K 6.92 +0.33
in fragment energy. The fragment angular distribution as- indicated by the . P
) ) ) . p 7.72 £ 0.16
forward to backward ratio, F/B, of Fig. (5.2) becomes more peaked in the forward
dirgction as the proton energy increases from 1 GeV till about 5 GeV. For ':> Cu v . i n+ ’ ' 10.29 + 0.26.
greater proton energies the angular distribution has been obtained at 28 GeV. . K R 8.89 # 1.10.
In Fig. (5.3) we see that the angular distribution of the Fourine fragment is . p 11.00 + 0.32
rather flat with a peak at 70° in the laboratory frame. These results imply + .
: Pb - w . 13.21 = 0.30
that collisions of the proton with the nucleons inside the nucleus do not : + S : ’ :
. - K 12.92 '+ 0.79
result in energy being transferred to nuclear degrees of freedom. The first ’ : .
. . P 14,75 ¢+ 0.38
surmise is- that in fact the internal degrees of freedom being excited are’ ’ o
those of the nucleon and that the’ excited nucleon does not in fact transfer ] . . ' ) 14.57 + 0.39
its excitation to other nucleons in the form of kinetic energy. o . i ' . Kt e 12.93 £ 1.33
"It is in fact well known that, at least at high energies (>60 GeV}, : : p- 15.94 + 0.50
this process of nucleon or more generally hadron excitation is dominant in ’ +
. i . : . . Hydrogen LA . 6.62 £ 0.07
the kinematic region corresponding to non-peripheral reactions. The evidence s -
o . : . : (bubble chamber) K : ) 6.65 + 0.31
is provided by measurement of the multiplicity of high energy (8 > 0.7)"
p 6.37 + 0.06

charged particle production. These measurements show that the number of such
particles rises very slowly with increasing mass number as shown by Fig. (5.4) : 20
and Table 5.1 32]. No cas‘caduing is indicated as cascading would result in .

a much more rapid rise in the mu]tip]icify w'ith‘in‘creasing:n‘)ass number., The

explanation is again that very little energy is deposited in the nucleus.

- . -
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Empirically the multiplicity ratio, R, the ratio of the multiplicity. in

nuclei to that in hydrogen is given by

Ro=1+40Y-0 (5.1)

where v is the meén number of collisions.
The explanatioq is quite interesting. Upon the collision of the incident

hadron with a target nucleon, the hadron and the target nucleon are excited.

As a consequencé the wave function for the excited hadron can be decomposed

into a 1iﬁear combination of states each with its own charaqteristic lifetime

10 for decay into incident hadron plus a number of pions. This lifetime is

of course given in the rest frame. In the laboratory frame the lifetime is

Ts= fE 7

wﬁere E is\the total kinetic energy of fhe state with lifetime L There can
very well be several ro's corresponding to the many excitation pos;ibilitiesL
However a roughAaverage energy E can be obtained by assuming that this new
enfity, the excited hadron, is at rest in the center of mass system of the

Under thesé circumstances

E-—/‘Wl = '([Lab /ZMC’){

hadron plus nuclear nucleon.
(5.3)

The corresponding value of T, T, is

T2 (G [1me)" % - ' (5.4)

The critical value of T is given by ¢T = 2 ~ A where A is the mean free
path of a hadron inside a nucleus. .If 2 is larger than A, the excited hadron
will not have decayed appreciably before it has its second collision. The
second collision reconstitutes the excitation in the hadron and the décay is
halted. Under these circumstances, & > A, the hadron will pass through the

{5.2)

nucleus withcut decaying, decaying by emission of a number of pions only

after it has left the nucleus. The result for R is obtained if one assumes

. that there is a component generated at each collision, which decays after

leaving the nucleus, with an average energy.given by E® and the multiplicity
by log E7 where o = 1/2. '

‘ The critical energy at which nucleon excitation should dominate in the
production of fast secondaries.can be obtained from 2 ~ A. Placing 2 ~ 2 fm
and £ ~ 1 fm, one obtains Elab ~ 8 GeV., This is in rough accord with experi-

ment, but of course a more quantitative development of these ideas is required

' before‘a critical evaluation is possible and before one can say that the

underlying causes of the phenomena noted in Figs. (5.1)-(5.3) and Fig. (5.4)
identical. '

The momentum transfer to the nucleus by the incident hadron is thought
to be relatively small. The transferred transverse momentum,'on the basis
of experimental data presently available, is relatively independent of the
projectile energy. It is thought to be-of the order of about 400 MeV/c
leading to an energy of 80 MeV per nucleon. The value of the longitudinal
momentum transfer is not clear. - If it is substantial, the incident hadron
would drill a hole through the nucleus. If it is relatively small the nucleons
in the nucleus would instead be pushed aside. The model described above,
which is based upon Gottfried's analysis, presumes a relatively small longitu-
dinal momentum transfer, the generation of the observed relativistic muiti-
particle states being associated with the leading incident particle. However
other models which have been used would predict the formation of a hole in
the target nucleus. The question of the magnitude of the transfer of longi-
tudinal momentum needs experimental investigation. Its value is intimately

related with the magnitude of the average excitation of the nucleon.
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(b) The collision of a relativistic heavy ion with a nucleus may
involve a "centrail" éo]lision characterized by the production of a large
number of particles with substantial values bf the transverse momentum [27,3é].
It may involve a "peripheral” reaction which leads to a fragmentation of the
incident projéctile. The fragments, in this case, move with the velccity of
thé incident projectile and in the forward direction in the laboratory refer-
ence frame. As a consequence this component of the reaction can be readily
selected experimentally. At the present time the fragmentation process is
uﬁderstood at the level of the prevailing experimental uncertainties. There
is no corresponding level of understanding of the central co]]isi&n. The
"fire ball" hypothesis first invoked has proven inadequate, being unabie to
provide an explanation of thé experiﬁenta] data. A substantial imprerment
has been made by adding an initiai blast wave [33], but the theory still
involves the unwarranted assumption of ‘thermal equilibrium.

This lecture will restrict itself to the peripheral reactions. Not

enough time is available for an adequaté description of the central collisions,’

_the fireball and its modifications as well as of the other models which are

being developed.

The method to be described below [28,29] is referred to as the “"nuclear
Weiszdcker-Williams method". First let us summarize the experimental facts
obtained by experiments performed at the Bevalac facility [34]. Experiments
were performed with a beam of energetic projeétiles (e.g. 130) at»enefgies
of 1.05‘GeV/A and 2.1 GeV/A. Projectile fragmentation was detected dy observing

reaction products in the forward direction. Inclusive cross-sections, that is

.cross-sections for the production of a particular nuclear fragment without a

.determination of the correlated production of other fragments were measured.

The results obtained are most simply expressed witH respect to the projectile
frame of reference defined as that frame in which the incident projectile is
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at rest and the target nuclei effectively form the incident beam.

a. In the projectile frame, the momentum of a fragment is relatively
small. For example, if the target nucleus is Pb, its momentum in the projec-
tile frame is (208) x {2.1) ~ 437 GeV/c when the projectile has an energy of

2.1 GeV/A.  The longitudinal momentum, P distribution of 198e fragments

" produced by fragmentation of the projectile, !2C, in the projectile frame is

shown in Fig. (5.5). We see that the 19Be average longitudina} momentum is
only about 50 MeV/c, while the dispersion of the P distribution is about
100 MeV/c, which should be compared with the 437,000 MeV/c carried by the Pb
nucleus. Thus a very small fraction (10'4) of the momentum of the lead
nucleus is transferred to the projectile. -

b. The distribution, w(pL,Bf), in the longitudinal, L and transverse

components, ET’ of the momentum is Gaussian in each. Empiricalily one finds

that . o .
—/_ _" kS s * }
(5.5)
where EL as mentioned above is generally several tens of MeV/c.
c. The angular distribution is apbroximate1y isotropic, that is
o ~0

. r ’ (5.6)

However because of the much greater experimental difficulty in the determinz-
tion of the transverse momenta, Eq. (5.6) must be considered as approximate.
d. The dispersion, 9 is empirically independent of AT,(the.target

mass number) depending only on AF (the fragment mass number) and AP (the

‘projectile mass number). This is a first example of independence of the pro-

jectile fragmentation of AT'

e. A second is given by the fact that the branching ratio for the rela-

tive probability for the production of a fragment type is independent of the
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target nucleus. The cross-§ection for the production of a fragment F, upon

the collision of a target T with a projectile P is “ound o0 be

3] (=) )
G-P'r = O E_P_ where Z % =12, (5.7)
LR . :

The ratio, multiplying 9T is the branching ratio for the production of
fragment F.
f. The inclusive cross-section Yincl is proportional to the radius of

the interaction. Empirically
3
o ~AP‘A§

inel

-0.%
(5.8)
g. Cross-sections and a at 1.05 GeV/A and 2.1 GeV/A are approximately
the same indicating within this energy range independence with respect to
the energy.
h. The momentum distribution of the emergent protons is not Gaussian.
It is better described by an eXponeniiaI, e'p/p°, where pg ~ 65 MeV/c.

We shall now discuss the momentum distribution of the fragments.
(a) Momentum Distribution of Projectile Fragments

The model we shall use was first suggested in Ref. [35]. The deriva-
tion employed below follows -essentially that of A. Goldhaber [36]. The model
assﬁmes that the fragﬁent of.mass number, AF’ is formed from the prdjectile
of mass AP by removing the binding of a group of AF nucleons, The net momen-
tum FF of tﬁe fragment is then optained by adding up the momentum of each of
these nucleons. The value of FF will vary according to which group of AF
nucleons is selected from the projectile giving rise to a distribution in ;F'
If the mean square momentum of a nucleon in the projectile is ( pz) , the

>
mean square value of PF is, according to a simple statistical considera-
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tion,* given by AF( p2) . The distribution in ;F’ following again from
statistical considérations [35), is Gaussian** at least in ;he neighborhood of
the maximum of the distribution. This occurs near PF = 0 since the avgragé
momentum of the fragments is so close to zero. Note that this méde] auto-
matically assumes that the projectile fragment distribution does not depend
upén the nature of the target.

Suppose then that the projectile breaks up into fragments of mass

number Ai so that
ZA =A
T T (5.9)
. . . .
Let the momentum of each fragment be Pi' Assume that the distribution of
. ->
momenta for the i'th fragment depends only upon Pi and is Gaussian. .Then the

momentum distribution, wr, for a given set of Ai is:
- k)
w(@ 8.0 ~ Law[-38'/ar] (5.10)

To'obtajn the observed inclusive momentum distribution we must integrate over
all momenta except that of the observed fragment, say Ai' subject to the
condition

Z?:o (5.11)

v [
[

"
*Assume that P = zau where Bu are the momenta of the nucleons making up the

fragment. Then P: = zpﬁ +ﬁ§v3u'3;' Averaging over the momentum distribution

. . . £->.-> -
of the projectile nucleons, we find <u¢vpu pv> 0. Hence

2
<Y = CZREy = A <D
**This result follows simply from the assumption that the momentum distribu-

tion is symmetric about the maximum.
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As shown by experiment the average momentum of .a projectile fragment in the
projectile frame of reference is very small justifying to some extent Eq.

(5.11). Hence the single fragment distribution, w(F]), is given by

W (P)= /w(if)J(Z;)df : (5.12)
This integral may be easily perfonned.FO yield ,
W (B)~ oy (— Rf20) S (5.13)‘
where
o2 3 P> (Ap-Ag)Ae /AP (5.14)
If we adopt the Fermi-Gas model as a description of the brojgcti]e nucleus
B Ria b (5.15).

where PE is the Fermi momentum.

The experimental results are shown in Fig. (5.6). As can be seen from
Fig. (5.6), the dependence of o2 on AP and_A%, given by Eq. (5.14), is verified
by experimental data. However that'data‘yie1ds a value for_pF (accprding to
Eq. (5.14)) equal to 190 MeV/c whereas the value of Vg determined from quasi-
elastic e]ectron scattering is, for 150, given by 225 MeV/c. As suggested by
HUfner this discrepancy may occur because fragmentation'occurs only éfter the
emission of a number of nucleons. The fragmenting nucleus is not 160 Sut.a
lighter nucleus with a correspondingly lower value of Pg- .

The distribution given by Eq. (5.10) can also be used to calculate the
,angdlar corre]ation.betwgen two fragments{ A] and Aé, which exis;s in virtue

of Eq.. (5.11). One obtains

r-irs ) 2 ! 2 Ap-As [ p? Ap-A. :f’.;\}
~ -— ﬁ _p-as ﬂ_ _"—-— LA "
w(ﬁla) M{ 3<r’> Ap—AI;A\ [ Ay ' A",v '

T
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This implies a greater probability for the two fragments to go off in opposite
directions. Determination of this angular correlation wculd provide a test
of .the independence hypothesis as formalized by £q. (5.10). It appears =~

however to be very difficult to carry out this experiment.

(b) The Nuclear Weiszdcker-Williams Method [29]

The Weiszlicker-Williams method relates the reaction Cross-section
induced by a charged particle to that induced by a distribution of photons.
The electromagnetic field of a rébid]y moving charge& particle can be shown
to be approximately equivalent to a beam of photons with the frequency
distribution -

mia)de = 2 (7o) 4w :

= (3= 5 (5.16)
where Z is the charge of the particle and a is the fine structure constant.
The cross-section for a reaction induced by a charged bértic]é is .given then

in terms of the cross-section uy(m) for the photon  induced reaction by
- [wu)a;m;.lw - 'i(Zu)‘[’a?("’"Jo ' (5.17)
T - r

In this section a theory.of the fragmentation 6f a relativistic heavy
ion projectile will be developed. The expression for the cross-section, which
will be obtained, will have a structure similar to that of Eq. (5.17) so that
the theory will be referred to as the "Nuclear Weiszlicker-Williams" method.

-The projectile reference frame will be uséd. In that frame it will be

‘“assumed that the target nucleus travels without deviation and without internal

excitation in a straight line. This assumption is.fndicated:by experimental
result (a) which demonstrates that the momentum transferred to the prcjectile
nucleus by the target nucleus is small. It is {dentiqa1 with the assumpéions
made in developing the electromagnetic Weiszdcker-Williams result. However,

o
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after the target nuclei has penetrated into the projectile a distance, A,
A approximately equal to a nucleon méan free path, a strohg collision with

large momentum transfer will occur. This collision will not contribute to
the process being considered since the reaction products will fell outside
of the small forward cone where the fragments are detectec., This competitive
process is taken into account by assuming that the probability of finding
the target nucleus intact attenuates during the collision with a scale
measured by the mean free path, A.

It is assumed that the collision is peripheral. This resclt is implied

very directly by experimental result (f) as given in Eq. (5.8). The mean
free path, X, used is the value valid on the surface region of the interacting
nuclei.

‘A quaTitative descripfibn of the consequences of thzse assumptions can
be given. The projectile nucleons feel a pulse of force as the:target nucleus
passes by. :The duration of the pulse, T, is given by the scale, 2, Lofentz
contracted to A/y, divided By the velocity of the projectile, v, which is

very close to c, the velocity of iight. Thus

T~ A/?’U’
: (5.18)

where

7= (-ver) M e £ /A

where v is the velocity of the target and E is its energy. From the duration

of the pulse one can calculate the maximum* energy transfer Hmc which can occur:

w ~ t)T =
hee [T = 7has (5.19)

*By "maximum" we shall mean the value of fw at which the cross-saction is 1/e

of its value for very small values of nm;
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For a target energy of 2.1 GeV/A and A = 1.75 fm the maximum energy transfer
is found from this equation fo be 365 MeV. "We see 1mmediaté1y that we are
in fact dealing with a comparatively low energy phenomenon. There will be’
other effects to be discussed below which will reduce the maximﬁm energy
transfer to even considerably lower values. ~.

Following an argument of Brown and Deutchmann one can estimate
the corresponding momentum transfer ”qL,c' That momentum transfer is given
roughly by

*?L,e.“’ Z;‘ = K fv (5.20)

This is thus a relatively small momentum. For the case discussed above, the

maxifmum momentum transfer is thus 365 MeV/c. Recall that the Fermi momentum
for a heavy nucleus is about 260 MeV/c while for the 160 nucleus it is

225 MeV/c as mentioned above. Relationship (5.20) is valid more generé]ly
as we shall show below; that is the longitudinal moment transfer, MqL, is

related to the energy transfer as follows

£ = helv (5.21)

The maximum value of transverse momentum transfer, MqT, is determined
by the transverse scale of the target density, namely a, the parameter measuring
the thickness of the nuclear surface. The maximum transverse momentum transfer

‘is thus

For a ~0.6 fm, Hiar . is about 333 Mev/c.

In addition to these cut-offs in 9 and a which come from the shape of

_ the interacting nuclei, additional cut-offs which have a dynamic origin must

be taken into account. The most obvious of these is the momentum transfer

o
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which the nucleon-nucleon potential will allow before a substantial reduction
in the amplitude will bccur. From the empirical expression for the nucleon-
nucleon amplitude [37], we find that the nucleon-nucleon potential produces

a momentum cut-off, for both the transverse and longitudinal components, of
370 MeV/c.

A The two factors so far described, the geometric factor and the potential
factor when combined yield a momentum cut-off for both cdmponents of about
260 MeV/c.

Finally if is necessary to consider the ability of the projectile
nucleus to‘absorb the energy fw and the momentum Kq. If the energ} is ’
absorbea by ahsingle nucleen it will be very far off the energy shell., If
it abserbs the.fh11 energy fw it will have a momentum /Zmfw. This however
is very much larger than the momentum transferred which as we have seen is

of the ‘order of hw/c, that is

\f;:::;:; > tw/e

or

m"<|1 ‘
Ikuﬁ ¢ < | (5.22)

This inequality is satisfied by the Hw of interest; thaf fiw < 260 MeV, The
absorbing nucleon must therefore interact with a second nucleon in the projec-
tile. This absorption by two nucleons can proceed because it is then possib]e
to conserve both momentum and energy. The momentabof the two nucleons will
be opposite and nearly equal so that the total momentum is small but the
total energy will be a sum of the energies of each nucleon.

The probabi]ity:for two nucleon abeorption will there‘ore depend
cr1t1ca11y upon the correlatlon length, e the mean d1stance between the

first nuc]eon and the second. From the uncerta1nty principle, the 11fet1me

-

-5]-

of the nucleon absorbing the momentuh and energy is of the the order of (1/u).
This nucleon moves with a velécity'equa] to / %ﬁw and thus covers in the time
(1/w) the distance v %% . This distance must be of the order of or greater

than r_:
c

(2'* /""' "‘))f P .ﬂc

or

fwe Z'ﬁ"/aé e
(5.22)

If we také r. as 1/2 E!E » one half of the pion Compton wavelengfh; this
L . : “

“inequality becomes

Kw < 165 MV’ : '
- (5.24)

Combining this result with the geomeerix and interaction potehtia] gives a

longitudina] momentum cut-off of 120 MeV/c, of the same order as the experi-

mental value. It also implies a maximum value for the enehgy which can be

transferred to the prOJect11e equa] to 120 MeV. This energy is split between

the two absorb1ng nucleons so that the cut-off energy For one of these

nucleons is apbroximate]y 60 MeV and the cut-off momentum of the order of

60 MeV/c.* '

The low value of the momentum transferred (vhw/c) indicates fhat the

*It has been suggested by A. Goldhaber that in addition to the two nucleoh

mechanism, there is the possibility of nucleon excitation to form a A.
However the momentum change would then be of the order of 300 MeV/c. This
combined with the other factors would yield a cut-off of 190 MeV/c which
would be too large to e;plaih.the fragmentatibn data. However as Deutchmann

and Brown pointed out, it could be an important mechanism for pioh production.




-52-

angular distribution of the nucleons will be roughly isotropic. In the
collision of the two nucleons as discussed above, their final linear momentum

is. fw/c.so that their angular momentum /i is of the order of (Hm/c)rc so that

n,
Z < %—‘ (5.25)
Inserting a maximum value for Aw of 120 MeV and o= 0.7 fm yields

L oy : (5.26)

demonstrating that for nearly all values of fw the angular distribution of
the nucleon pair will be isotropic.*

These qualitative considerations provide a simple explanation of the '
’ projecti]é frajmentation as a consequence of the éction 6f the "fringing
field" of the target nucleus as it moves past the projectile. Our principal
conclusion. is that the process is essentially a Tow energy phenomenon. The
energy of the nucleon pairs produced is predicted to have the observed order
of maQnitude. These nucleons will deposit energy within the projectile
nucleus and by that means fragmenting it. The net maximum momenum which
cén be tranSferred is calculated to be o% the experimental order of magnjtude.
A rough isotropy is also predicted. Energy dependence in the GeY/A range is
weak since the energy occurs only in the Qeometric cutfoff inen by Eq. (5.19).
The cut-off energy is changed by only a few percent when the heavy ion energy
. is changed from 2.1 GeV/A to 1.05 GeV/A aé observed, since the dynamical
conditi&ns, Eq. (5.23) and the limits imposed by the nucleon-nucleon potential
are energy independent in this range of energy. Finally it should be observed

that none of the cut-off conditions depend upon the target nucleus. This

*Actual calculation shows in fact that this estimate is over-generous and that

the maximum value of & is considerably smaller than that given by Eq. (5.26).
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_does indicate that the widths of the momentum distribution of the fragments

is independent of the takgéf. It is obviously a necessary condition for
showing that the branching ratios are target nu;]eus independent. However
the quantitative calculation we shall }eport below shows that indeed the
nucleon spectrum and therefore the projectile fragmentation is target inde-
pendent,

We turn now to the formulation of the nuclear Weiszdcker-Williams
method. We shall-use the projectile frame of reference so that the incident
system is the target nucleus. The derivation is similar to that used to
develop the results for the Coulomb case. As in that case, phe target
nucleus is as;umed to continue to move along a straight line along thé inci-
dent direction. Secbnd]y, it is assumed that the interaction'is weak so
that first order perturbation theory can be used. In the present case it is
the long range part of the nuclear interaction, the "fé%nging field", which
is assumed to be weak. Under these circumstances it can be shown that the

total cross-section analogous to Eq. (5.17) is given by [29]

a = (amfx)? I/} ae, dE de | F;t';"Q/UDI‘Iﬁ- (&, «t)]* §lw-ay,)

(5.27)
where : .
£ < o) V(K 40) § G- of7) (5.28)
and '
f- Z<hleaef Bl Fa(T o)

(5.29)

In these formulas, K gives the transverse momentum transfer and w/v the longi-

tudinal in units of h; v is the velocity. The energy transfer is wgi with

the projectile being excited to an energy EB’ The density of these levels

is given by Pg* The target form factor, FT’ involves the Fourier transform




of the nucleon-nucleon potential V(E'k

V(w) [ ent-RRvE)

The factor p is related to the transform of the peripheral target density
corrected for absorption as discussed above. Finally, the form factor FP is
Just the matrix element of the Fourier component of the perturbation. Only
a rough eva]uétion of the factors p-and FP have been made. A quasi-deuteron
model.was used to evaluate the latter. This involves the only empirical
parameter which has been -used, namely the correlation Tengthrpc. The
results are shown in Fig. (5.7), (5.8) and (5.9). In Fig. (517) the upper
curve provides the longitudinal part of the form factor ]Fle; the transvérse
part is giveﬁ by Fig, (5.8). The Tlower curve in Fig. (5.7) contains the
additional factor coming from |F,|2. The latter is exact in the Timit of
a large projectile radius. For finite radii it is in error at the small
momentum end because of the lack of orthogonality of the crude representa-
tion used for wB and 12X A more precise .calculation is needed, but the error
should be small for momentum above h/R where R is the projectile radius.
Fig. (5.9) gives the.cross-section for a Ca farget and an oxygen projectile
as a function of ’Lc' It.is clear that a reasonable value of ~ ¢ will yield
the correct ordef of magnitude for the cross-section. A more severe test is
the calculation of tha2 branching ratio. Zabek [38] has obtained the results
given in Table 5.2 where he‘has‘included the effect of single nucleon transfer
as well as the process described above. The agreement is excellent.

Other applications of the nuclear Weisz8cker-Williams method are given

in the second of the references in [28].

Branching Ratics:

TARéET

o(12C)/org;
0(11C)/0T§T
a(118)/orgr

o(198)/oqqr

lable 5.2

Cu

0.165 + D.01&

0.031 + 0.003

0.041 £ 0.003

0.040 + 0.005

0.123
0.036
0.051

0.034

Fragmentation of 2.1 GeV/nucleon 160

Pb Theory (r_ = 0.& fm)
+-0.024 0.128
* 07009'-, ‘n : 0.029
+ 0.006 o 0.040
£ 0.01 " ’ 0.043



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure
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2.1.

2.2,

2.3.

3.1.

3.2,

3.3.

3.4.

Figure Captions

(no caption)

Elastic scattering of 1.04 GeV protons by 298pb. The theorz-
tical predictions for pp=o

Ref. [7]).

p and L # °p are compared (from

Comparison of experiment with theoretical predictions for the’
elastic and ine]astic,scattering of 1.04 GeV protons by 208ppb

(from Ref. [7])-

The difference between the neutron and proton radii for the
Calcium isotopes as obtained from the elastic scattering of

1 GeV protons and other hadrons (from Ref. [9]).

{no caption)

Decomposition of the imaginary part of the expectation value
of the isobar-hole Hamiltonian. T 1is the free space isobar

width (from Ref. [10]).

The energy dependenie of the spreading width potential in the

absence of a spin-orbit term (from Ref. [10]).

The energy dependence of the spreading width potential including

the spin-orbit potential (from Ref. [11]).

Figure

Figure

Figure

Figure

Figure

Figure

Figu§e

Figure

Figure

3.5,

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.72.

3.13.

The volume integral of the central part of single particle

potentials. For a definition of U see text (from Ref. [11]).
The surface integral of the L-S potential (from Ref. [(n1y.

Absorption cross-section for = - 12C as a-function of the pion

kinetic energy (from Ref. [11]).

Angular distribution for » - 12C elastic scattering for indicated

pion energies (from Ref. [11]).

Angular distribution for = - 12C elastic scattering for indicated

pion energies (from Ref. [11]).

_Angular distribution for m - 12C elastic scattering for

indicated pion energies (from Ref. [11]).

7 - 160 elastic scattering at 114 and 240 MeV. Solid lines:
spin orbit term included. Dashed lines: without spin-orbit

term (from Ref. [11]).

m - “He elastic scattering at 220 and 260 MeV. For significance
of solid and ‘dashed lines, see caption for Fig. 3.11 (from Ref.

.

n - 12(C elastic scattering at 180 and 200 MeV. For significance

of solid and dashed lines, see caption for Fig. 3.11 (from Ref.

mn.



Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4

Figure 4.5.

Figure 4.6.

Figure 5.1,

Figure 5.2.

Figure 5.3.

The broken Tine gives the momentum of the A formed in the

“reaction Eq. (4.1). The solid line is the differential crcss-

section for the forward production of a pion in this reaction -

(from Ref. [16]).
Production of A hypernuclear states (from Ref. [21]).

Production of & hypernuc]éﬁ (presented-at the Jab]ona,'Poland

Conference, 1979).

Energy levels of 12C (from Ref. [26]).

Angular distribution of picns in production of indicated hyper-
nuclear states in 12¢ (from Ref. [27]. Experimental data from

Chrien, et al., Phys. Lett. 89B, 30 (1979)).

Angular distribution of pions in broduction of indicated hyper-

" nuclear states in 12C (from Ref. [27]. Experiménfa] data from

Chrien, et al:, Phys. Lett. 89B, 30 (1979);.

Energy dependence of ranges of Sc nuclei produced when protons '

of energy Ep are incident on a 238y (from Ref. [3G]).

Ratio of forward (F) to backward (B) production as a function
of the incident protdn energy Ep.

{30]).

The fargét is 238y (from Ref.

Angular distribution of Flourine fragments produced by 28 GeV

protons incident on Uranium (from Ref. [31]).

Figure 5.4.

Angular dependence of the ratio of the multiplicity for the

indicated target nuclei with thé'muTtiplicizy for a hydrogen

- target (from Ref. [32]).

g

3

Figure 5.5.

Figure 5.6.

The longitudinal mamentum distribution in .tie drojectile frame
of reference of the 108e fragments produced by the fragmentation

of a !2C projectile with an energy of 2.1 G2V/nucleon (from Ref.

[34]).

_Target averaged.values of the dispersion ¢ >f the longitudinal

momentum distribution in the projectile frame. The plotted

. numeral gives the charge of the fragment.  The projectile is.

Figure 5.7.

160 with zn energy of 2.1 GeV/nucleon. The solid line is a

best fit using Eq. (5.4)'(from Ref. [34]).

Longitudinal frequency spectrum. The lower curve gives the

combined effect of the longitudinal frequency spectrum and the

Awo nucleon absorpiion probability (from Ref. [29]).

Figure 5.8.

Figure 5.9.

Transverse momentum spectrum for a “0Ca target in arbitrary.

units (from Ref. [=9]). -

The cross-section Sca when the projectile energy is 2.1 GeV/n.

as a function of the correlation length 4.
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