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Soft x-ray holography has long been considered as a technique for x-ray microscopy [1].
[t has been only recently, however, that sub-micron resolution has been obtained in x-ray
holography [2-4]. This paper will concentrate on recent progress we have made in obtaining
reconstructed images of improved quality.

The recording of our holograms has been described elsewhere {2.3]. Briefly. the holo-
grams were recorded in November 1986 and February 1987 using A; = 25 A radiation from
a N=10 period soft x-ray undulator and a temporary beamline at the National Synchrotron
Light Source 2.5 GeV storage ring [5]. (This system has since been considerably upgraded.
and is now returning to normal operation with a brighter undulator and a permanent soft
x-ray microscopy beamlinz [6]). We were able to obtain a coherent soft x-ray flux of about
108 photons per second through the use of a grating monochromator for temporal coherence
and a spatial filtering pinhole for spatial coherence. Dry specimens supported on Formvar-
film-coated electron microscope grids were illuminated by plane-wave soft x-rays, and were
followed at multiples of 400 gm by PMMA and/or MMA-MAA photoresists used as holo-
graphic recording media in the Gabor geometry. The photoresists were then “developed”
in the solvent MIBK to convert the incident x-ray irradiance distribution to a surface relief
pattern; the contrast of the reliel was enhanced by vacuum evaporation of Pd:Au at 7° graz-
ing incidence. A transmission electron microscope was then used to enlarge the holograms
~ 2000x and read out the information encoded in sub-micron fringes.

In principle, one could reduce the electron micrographs to a net hologram magnification
m =z 250 and then obtain reconstructions at visible wavelengths, where the wavelength ratio
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would match m. If the distances between the illumination source and the hologram were
similarly scaled between the recording and reconstruction steps, such a reconstruction would
give a magnified image with no aberrations, in what was described by Gabor as “lensless
microscopy™ [7]. However, our holograms contain a highly non-linear mapping of the incident
x-ray intensity. which would lead to a poor signal-to-noise ratio in the reconsiructed image
if no corrections were made. For that reason, we have chosen to adopt a numerical approach
to hologram reconstruction. By digitizing the electron micrographs with a scanning micro-
densitometer, we are able to obtain a numerical map of electron film density. Through the
use of a simple model for the photoresist exposure, development, and readout process. an ap-
proximate mapping of filmn density back to incident x-ray irradiance can be made, at least for
low spatial fregencies [8]. The linearized hologram is a diffracting structure which will focus
an incident plane wave down to an image of the specimen (plus the “twin image” present in
Gabor holography. and weak intermodulation terms). In fact, the optical reconstruction pro-
cess with the original reference beam can be mimicked by computing the magnitude squared
of the Fresnel transform of the hologram transmittance [9.10]. Ultimately, the power of the
numerical approach lies in the fact that it allows n. 1-linear processing algorithms such as
that of Liu and Scott [11] to be used to supress the unwanted signals.

The holograms are of rat zymogen granules, which hold precursors of digestive enzymes
in the pancreas. Following isolation by the standard technique {12], the granules were fixed
in 1.5% glutaraldehyde in 150 mM sucrose, but were not stained with heavy metals in
the manner which would be followed for transmission electron microscopy. The granule
suspension was subsequently diluted further in sucrose, after which a micropipette was used
to place a drop of the suspension on a standard 300 mesh TEM locator grid coated with
~ 100 A of carbon-reinforced Formvar. The excess liquid was wicked away, and the grid was
then air-dried. leaving occasional isolated granules and. more commonly. granule clumps on
the grid.

These objects have been examined by using various conventional microscopic techniques
and by x-ray holography. Figure | demonstrates that these unsectioned preparations are
sufficiently thick to appear as opaque objects when viewed in a 100 Ke\’ transmission electron
microscope.  Furthermore, their small size means that, once again, only the outlines of
granules in a clump can be resolved with an optical microscope, as can he seen in Figure 2.
The scanning electron micrograph of Figure 3 shows that the granule membrane remaius in
a spherical shape even when air-dried. Figures 1. 2, and 3 are all of different areas of the
same specimen grid.

Figure 4 shows a section of a hologram and reconstructed image of the same granule
clump as is shown in Figure 2. The holographic image is clearly consistent with the optical
micrograph of Figure 2, except that much higher resolution information is contained in the
holographic image. Fringes which would correspond to a resnlution of about 500 A are
visible by inspection of the electron-microscope-enlarged hologram. and power spectra of
hologram linescans suggest that information is recorded at or helow the 200 A level [3].
The reconstructed image in Figure 4 is the result of a 5122 pixel sampling of the hologram.
while Figure 5A shows a reconstructed image made from a 10242 pixel sampling of the same
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hologram in which the diffraction-limited resolution would be 470 A. (Because of sampling
considerations, the images of Figure 5 are displayed with pixel sizes of 290 A). Figures 5B.
5C. and 5D show the results of highpass filtering the reconstructed image to block out ail
information at spatial frequencies below (2 x 3760)-1, (2 x 2090)-!, and (2 x 990)-! A-1
respectively. Such a filtering process means that only information at a size scale smaller
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is preserved, so that Figure 5B shows only sub-3760 A detail, Figure 5C shows sub-2090 A
detail. and Figure 5D shows only sub-990 A detail. The Figures demonstrate that the recon-
structed image contains almost exclusively sub-optical resolution information. Furthermore,
granule edges clearly stand out in Figure 5D, indicating that the signal-to-noise ratio is still
significant for strong sub-1000 A detail.

Interpretation of the high-resolution information in the granule micrograph is a topic of
ongoing study. As can be seen in Figure 6, a focal series of the granule shows a few “fca-
tures” changing as the assumed specimen to hologram separation distance f is varied in 2
pm increments (the diffraction-limited logitudinal resolution would be 3.4 pm for this recon-
struction). The changing “features™ are presumably the result of focussing error aberrations.
which produce contrast reversals as a coherent imaging system is brought into and then out
of focus 113}, However. most high-spatial-frequency information remains unchanged in the
{ocal series: further study will be required in order to determine whether these features are
actual structures within the granules, artifacts resulting from the coherent imaging of gran-
ules stacked on top of each other. or an artifact of air-drying. Finally, it should be noted that
the thickness of the granule clump is almost certainly less than the longitudinal resolution
length. so that our current reconstructed images only contain two-dimensional information.

The attractions of holography as a soft x-ray imaging technique have been discussed else-
where [14.15). They include the ability to make use of single-shot x-ray sources if they become
available at the required brightness, the fact that the focussing of the image is accomplished
in the reconstruction stage { withou! additional exposure to x-rays). the natural way in which
phase contrast can he utilized in holographic imaging, and the possibility of extension to
diffraction tomography for achieving high-resolution. three-dimensional images. Obtaining
mages which <show detail not visible in optical or electron microscopes gives us confidence
that «<oft x-ray holographic microscopy is a technique with considerable potential for high
resolution imaging.
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Figure 2. Optical micrograph of a different area of the same specimen grid as is shown in
al aperture of 0.95; the diffraction-

Figures 1 and 3. A H0lix objective was used with a numeric
nited resolution of the micrograph is therefore about 0.1 pm. Therefore. only the general
ontline of the ~ 0.6 gmesized individual granules is visible, Because of waviness in the
~ipporting Formvar fili. the two smaller granule clumps at the bottom of the micrograph
atein foons, while the larger clump at top is not. One granule clump i~ indicated for

comparison with Figiures 3050 and 6.
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Figure 3. Scanning clectron micrograph of a different gramile elump from the same specimen
vl as s shown in Figures | and 2. The fixed, air-dried, bt unstained grannles (with about
SN of Prosputtered onto their surface) appear as perfectly smooth spheres for the first few
~cconds of SENDexamination: the slight “rippling™ that can be seen on the granule surfaces in
he Fraare s the result of radiation damage from the scanned electron heam  The radiation
dose regrived to form the SEN image is three to four orders of magnitide lngher than tha

I"'{'lll"'i Ty 1('lull| t]u- X-ray llulngr.‘qn]_ ,\li("'(;grhpll ('Ulll'[l'h_\' Uf l) l)ill‘lllu' ;1l:l| J “.1.\(;“'1\'_\‘.
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Figure 4. Portion of an x-ray hologram (left) and its reconstructed image (right) of the
same granule climp as is indicated in Figure 2. Individual granules are clearly resolved in
the reconstructed image, which emerges rather dramatically from the hologram



Coulomb and surface energies. As shown in Fig. 4, an oscillation about this mode
involving an amount of energy on the order of the temperature T, corresponds to a
variation in the monopole - monopole term of the Coulomb energy

2
cT
8B = X[ 5 =2/pT (9)

where the coefficients ¢ and k are defined by the quadratic expansion of the total
potential energy associated with the deformation mode z:

V(z) = B, + kz? (10)
and by the linearization of the Coulomb energy along the same mode:

Ecou = E%ou - C2Z. (11)
The quantities By, E%qy. €, k and p are defined at the minimum of the total potential
energy with respect to the deformation mode, and are, as; a consequence,
saddle-point quantities. Because of its role, illustrated in Fig. ‘4, p is called the
"amplification parameter”. An input thermal noise of the order of the temperature T
is magnified in accordance to Eg. 9 and Fig. 4 giving an output xinetic energy
fluctuation much greater than the temperature. This effect is probably responsible
also for the great widths of the kinetic energy distributions in ordinary fission.

We are now going to consider three specific cases. The first and simplest
deals in detail with only one decay mode and one amplifying mode. The decay
width becomes:

Mez)dedz < e " kT dedz . (12)
Remembering that the final kinetic energy can be written as:

E=El, —cz+¢ (13)
we can rewrite the decay width as follows:

£+ (x -e)zlp] (14)

I'(e,z) = exp [
T

0
wherex= E-E', .

The final kinetic energy distribution is obtained by integrating over &:
)2
P(E) « fexp [Ei(zﬂp—l de (15)
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Figure 6. A focal series of the granule clump shown in Figures 2 1. The munbers to the
right of cach sub-image indicate the assumed specimen-to-hologran separation distance f
in gm. The focus chosen for Figures 4 and 5 was with f =406 pm. As can be seeu. some
“features” in the image change as f is varied. presumably because they are in fact phase
contrast fringes produced when an coherent imaging system is improperly focussed. Note
that the diffraction-limited logitudinal resolution would be 3.0 g for this reconstruction.



