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STATISTICAL AND OPTIMIZATION METHODS TO EXPEDITE
NEURAL NETWORK TRAINING FOR TRANSIENT IDENTIFICATION

Jaques Reifman
Argonne National Laboratory
Reactor Analysis Division
Argonne, Illinois 60439
jreifman@anl.gov

ABSTRACT

Two complementary methods, statistical feature
selection and nonlinear optimization through conjugate
gradients, are used to expedite feedforward neural
network training. Statistical feature selection
techniques in the form of linear correlation coefficients
and information-theoretic entropy are used to eliminate
redundant and non-informative plant parameters to
reduce the size of the network. The method of
conjugate gradients is used to accelerate the network
training convergence and to systematically calculate
the learning and momentum constants at each iteration.
The proposed techniques are compared with the
backpropagation algorithm using the entire set of plant
parameters in the training of neural networks to
identify transients simulated with the Midland Nuclear
Power Plant Unit 2 simulator. By using 25% of the
plant parameters and the conjugate gradients, a 30-fold
reduction in CPU time was obtained without
degrading the diagnostic ability of the network.

I. INTRODUCTION

Training a feedforward artificial neural network
(ANN) to model the relationships between input-
output patterns is a time-consuming process. Since
most training algorithms can at best guarantee
convergence to one of the various local minima, a
number of training runs with different sets of initial
weights are generally required. Also, some training
algorithms require the pre-specification of input
constants. These constants usually need to be fine
tuned, through trial-and-error training runs, in order to
assure that convergence will be achieved and to
expedite training. Furthermore, the lack of a general
prescription for determining the architecture of an
ANN usually requires repetitive training with different
network architecture or varying numbers of hidden
layers and nodes in the hidden layers.
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In this paper we describe two complementary
methods, statistical feature selection and nonlinear
optimization techniques, for expediting the training
process of multilayer feedforward ANNs for nuclear
power plant transient identification. The process of
feature selection is applied to eliminate non-
informative and redundant features or plant parameters
such that the number of nodes in the input and hidden
layers of an ANN can be vastly reduced. For
eliminating features that are redundant or interrelated
and hence do not contribute additional information in
the characterization of the transients, we use the linear
correlation coefficient.! For selecting the most
informative features that clearly discriminate each
transient from the remaining transwnt types, we use
the information-theoretic entropy.23 By eliminating
non-informative and redundant plant parameters we
can reduce the dimensionality of the network input
patterns, and hence the number of nodes in the
network which expedites the training process.

Nonlinear optimization techniques which offer
better convergence properties than thc commonly used
backpropagation (BP) algorithm® and which do not
require the pre-specification of input constants are also
used to expedite ANN learning. Here we apply the
more powerful unconstralncd optimization method of
conjugate gradlcnts 6.7 (CGs) to accelerate ANN
learning. The method of CGs provides a systematic
way to determine both the learning and momentum
constants, which are dynamically updated at each
iteration, eliminating the need for trial-and-error
training runs required to fine tune these constants.
For verifying the advantages of these two
complementary methods in expediting neural network
training, we use a data base of transients simulated
with the Midland Nuclear Power Plant Unit 2 (MNP-
2) simulator.8
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II. STATISTICAL FEATURE SELECTION

When neural networks are used to model the
relationships between N' measured plant parameters
Fp and K transient event types Tx of nuclear plants, in
general, the N' parameters correspond to the N'
elements of the network input patterns and the K
transient types correspond to the K elements of the
network output patterns. The process of training a
neural network to identify transient events consists of
determining the decision boundaries that partition the
N'-dimensional feature space spanned by the N' input
plant parameters Fp, such that each one of the K
transient types Ty is discriminated from the other
transient event types. The determination of the
decision boundaries that provide the best partition of
the feature space, i.e., the training process, is time-
consuming and increases with the dimensionality of
the feature space. Hence, by retaining only a subset
of N salient plant parameters or features Fy,F,,....Fy
from a set of N' features (N<<N'), such that the
determination of the decision boundaries is
implemented in a vastly reduced feature space we may
expedite neural network training without degrading its
performance.

In this work, the objective of statistical feature
selection is to select N key plant parameters or features
Fp, from the N' monitored parameters, to be used as
the N elements of the ANN input patterns. This
process of feature selection stems from the actual
operation of nuclear power plants where during
normal operation, hundreds of signals are monitored
to determine the status of various systems and
components of the plant. However, when the plant
goes into an upset condition, only a few of these
signals or features are important in the characterization
of the transient. Here, we discuss the use of two
statistical techniques, linear correlation coefficients
and information-theoretic entropy, for selecting non-
redundant and informative features as the elements of
the ANN input patterns.

A. Linear Correlation Coefficients

Features that share common information with
other features are redundant, i.e., they do not
contribute additional information about their common
events, and should not be selected. Including
redundant features would only increase the
dimensionality of the feature space, where the decision
boundaries are found, with no extra information.
Therefore, it is necessary to check each pair of
features and delete those features that are redundant.

Feature selection on the basis of redundancy
among features is attamed by calculating the linear
correlation coefficient! between each pair of features
and keeping only one of two or more features when
their linear correlation coefficient is beyond a specified
threshold. The linear correlation coefficient r;,
between the i-th and the j-th features is defined as the
ratio of the covariance Cov(i,]) to the product of the
standard deviations oj Oj for the two features

Cov(i, )

Gj=——— - (1)
Gi 0j

Two features are perfectly correlated if r;; = 1.0
and perfectly anti-correlated if r;; = -1.0. They are
uncorrelated if r;; = 0.0. Threshold values on the
linear correlation coefficient between two features is
used to characterize correlated features. Here, two
features with absolute values of their correlation
coefficient greater than 0.90 are considered to be
correlated and only one is retained.

B. Information-Theoretic Entropy

After the redundant features have been removed
from the initial list of monitored plant parameters, the
remaining features can be ranked based on their
information content. The information content of a
feature is characterized by its capacity to discriminate
among the various transient types Tx. For instance, if
we are interested in discovering patterns associated
with two transients, T,=feedwater pump trip and
T,=feed flow transmitter fails high, the pressure
difference across the feedwater control valves should
be used as one of the features. Since the pressure
difference across the control valves decreases when
the pump trips and increases when the transmitter fails
high, this feature can be used to discriminate the two

* transient event types and should be selected. On the

other hand, the pressurizer pressure would initially
increase for both transients, and hence would not yield
discriminating information and should not ke selected.

To systematically determine and rank feature
variables based on their information coment we use
measures defined by information entropy. 2.3 The
information content of each feature or plant parameter
Fp, n=1,2,..,N', is obtained by projecting the D data
points of a transient data base onto each feature Fp and
partitioning Fp, into a maximum of I feature intervals
F,, (=1,..1<4) that maximize the mutual
information exchange AS(TIF,) between the transient
events T} (k=1,2,...,K) and the feature intervals F;



AS(TIE,) = S(T) - S(TIFy)

! LS P(Ty!F n)
=> P(Fq) Y P(TlFp) In———,
i=1 k=1 P(Ty)
)
where
S(T) = total entropy over the D transient
events,
K
=— Y P(Ty) In P(Ty) ,
k=1
S(TIF,) = conditional entropy,
1 K
= -3 P(F ) Y, P(T!F; n) In P(TilFyp),
i=1 k=1
P(T,) = marginal probability of occurrence of
event Tk,
P(F, ) = marginal probability of events of any
’ type to occur in F; ;, and
P(TylF; ) = conditional probability of transient

event Ty given that the event occurs in
feature interval F, ..

The mutual information exchange AS(TIFp) can be
interpreted as a measure of interdependence between
the event's feature value or location in the feature
intervals and the transient event types. This can be
understood if we recognize that AS(T!Fp) attains its
minimum AS(TIFp) = 0 for P(TkIF; ) = P(Ty), ie.,
the knowledge of the location of the events in the
feature F, gives no information about their type, and
that AS(TIF,) attains its maximum AS(TIFp) = S(T) if
S(TIF,) = 0, i.e, no information will be gained by
observing the event type once we have already learned
its location in the feature intervals. In essence, a
feature F, is considered informative, i.e., it has large
values of AS(T!Fp), if after projecting the D data
points onto F, feature intervals F; , are obtained that
clearly discriminate events of different types, ie.,
events of the same type tend to be located in the same
feature interval.

III. NON-LINEAR OPTIMIZATION
TECHNIQUES

The process of training a multilayer feedforward
ANN with differentiable mapping functions can be
cast as an unconstrained nonlinear optimization
problem. A set of weights w that represent links
between the network nodes and thresholds of the
nodes is sought such that the prediction error E of
mapping P input-output patterns is minimized,

P P .
1 L
B(w)= Y, Ep=2, 72, (pj~ xUh?. 3)
p=1 p=1 ~ j=1

Here t_. and x{L) denote the j-th target and network
output, respectively, for the p-th training pattern and
J; is the number of nodes in the L-th or output layer
of the network.

A. The Backpropagation Algorithm

The most widely used method for training
multilayer feedforward ANNs is the backpropagation
algorithm which was popularized by Rumelhart, et
al.4 The BP algorithm is basically a gradient descent
algorithm which minimizes the prediction error E of
Eq. (3) in an iterative fashion. Starting from a
randomly selected initial position wy, the gradient
descent algorithm arrives at the next position Wy = Wy
- g, by moving along the negative gradient direction
-g; an amount 7, where T is a positive constant
termed the learning constant. At the following
iteration, the algorithm arrives at the next position w3
=W, - 1| g, by moving along -g, an amountT. This
sequence is repeated until the convergence criterion ltp;

L) X e ”

- Xp; | < ¢ is satisfied for p=1,2,....P and
j=1,£,...,JL. Since the best one can expect from any
gradient-based optimization method is that it will lead
as quickly as possible to the bottom of whatever valley
it starts in, it may be necessary to repeat the entire
process starting from different initial positions in
weight-space to avoid convergence to undesired local
minima.

In the standard BP algorithm, at each iteration the
weights w are adjusted slightly differently than in the
gradient descent algorithm. In addition to the gradient
term -1 g, the change in weights AW =Wo1-Wn
at iteration m has a momentum term & Aw, 4

AW =-MNgn+ 0 Awp g, ©)

where o is the momentum constant with arbitrarily
selected values between 0 and 1. The momentum term
o Aw,,_; is used to accelerate convergence in regions
of weight-space with relatively constant gradient and
oscillatory gradient directions by including the effect
of past wci%ht changes on the current direction of
movement. 9 In essence, the BP algorithm is an
effective method of calculating the gradient g

Because of the similarities of the BP algorithm
with the method of gradient descent, it is plagued with
the same convergence-related drawbacks. First, the
convergence is slow and becomes slower the closer
the algorithm gets to the optimum solution. This is

LT



caused by the fact that the rate of convergence of the
gradient descent method is proportional to the norm of
the gradient Igl which becomes increasingly small as
the minimum is approached.!0 Second, the algorithm
requires judicious selection of the learning constant M
and the momentum constant o to achieve reasonable
convergence and avoid oscillations about the optimum
solution. The "optimum" values for 1 and o that
balance the effects of the current and previous gradient
directions, respectively, depend on the problem being
solved and are generally obtained through trial-and-
error training runs. Finally, the rate of convergence of
the BP algorithm is very sensitive to the initial set of
weights. The BP algorithm is prone to the premature
"saturation" of the network nodes which may require a
large number of iterations to converge depending on
the initial }Zaosition of the weight w; in weight-
space:.“l'1 These drawbacks increase the number
of iterations and CPU time necessary for convergence
and require additional trial-and-error runs to detcrmine
reasonable values for m and o for the particular
problem at hand, thereby making ANN training with
the BP algorithm a painstaking and time-consuming
process.

B. The Method of Conjugate Gradients

The unconstrained nonlinear optimization
method of conjugate gradients,5 which has better
convergence properties than the method of gradient
descent, is applied here to expedite neural network
training. Like the BP algorithm, the method of CGs is
iterative, but for quadratic objective functions of v
variables it is guaranteed that the minimum will be
located exactly, apart from rounding errors, in a
maximum of v iterations. For functions that are not
quadratic, which is the case for the prediction error
E(w) in Eq. (3), the method is based on the current
local quadratic approximation to the function which
causes the search process to be iterative rather than a
v-step process, and a test of convergence is required.
As the function E(w) approaches the minimum, its
approximation of a quadratic function becomes more
realistic which may even cause the method to converge
faster. This is in contrast with the BP algorithm
whose rate of convergence decreases as the minimum
is approached.

The method of CGs starts the iterative process of
finding the minimum of E(w) by randomly selecting
an initial position wy and arriving at the next position
Wy =W+ Ky by moving along the conjugate
direction { an amount My, where 1, minimizes E(w,
+ 7 [y) with respect to 1. Like the BP algorithm,
this sequence is repeated until the convergence

criterion Itpj - xmul < ¢ is satisfied for p=1,2,...,P and

j=1,2,...,JL. However, unlike the BP algorithm, the
method of CGs provides a systematic procedure to
calculate the learning constant M, which is uPdated at
each iteration m. Here, the estimate of My which
minimizes E(w,+ M Kp,) with respect to M is obtained
through a one-dimensional search that combines the
golden section rule!3 with a cubic intt:rpolation.14 We
have found that this combination provides the
necessary balance between accuracy and
computational speed.” Also, the method of CGs
arrives at the next position in weight-space by moving
along conjugate directions Wiy rather than the negative
gradient direction -g,. In this work, we compute the
conjugate directions iy as defined by Fletcher and
Reeves®

T
—gm+ Tgm Em Hpo1 > form>1
Hm = €m-1" 8m-1
- 81 .+ form=1

where the gradients g, and g, _; for iterations m and
m-1, respectively, are calculated just like in the BP
algorithm.

. Sim.ilarly,‘ the change in weights Aw =w ,-Wy
at iteration m is given by

A\Vm = T]m um . (6)

By substituting km of Eq. (5), form > 1, into Eq. (6)
and using the fact that Pm-1 = AW, 1My We obtain

Nm  Em-&m
Nm-1 gg\-l - 8m-1

AW ==MNm 8m + AWy (1)

We may now compare Eq. (7) with Eq. (4) to identify
the learning constant 1 and the momentum constant &
of the BP algorithm as the following terms of the CG
algorithm

n="m,., and
(8)
Nm g% -Em

o= 0y = T
Mm-1 &m-1- Em-1

Hence, the two methods use the same expression 0
update the weights at each iteration. The difference is
that the method of CGs provides a systematic way 10
determine both the learning and momentum constants
which are dynamically updated at each iteration. This
systematic approach eliminates the need for trial-and-
error training runs frequently used in the BP algorithm
to obtain reasonable values of M and o such that the



algorithm has a reasonable rate of convergence and
avoids oscillations about the minimum.

IV. NETWORK TRAINING FOR
TRANSIENT IDENTIFICATION

With the statistical feature selection techniques
described in Sec. II and the nonlinear optimization
method of conjugate gradients discussed in Sec. I,
we have trained a feedforward neural network to
identify nuclear power plant transients. The network
has also been trained by using the entire set of
available plant parameter measurements, i.e., without
feature selection, with the BP as the training
algorithm. Comparison of these training sessions was
then performed regarding the number of iterations and
CPU time to converge as well as the prediction error
for transient events not used in treining.

A. Data Base of Transients

The MNP-2 full-scope operator training simulatord
representing all major systems of a two-loop
pressurized water reactor plant and control room
instrumentation was used to construct a realistic data
base of transients. Each one of the 3 transient event
types Tk (k=1,2,3) illustrated in Table I occurring
separately, i.e., single failures, was simulated on the
MNP-2 simulator a dozen times. For each one of the
12 simulations of an event, a different combination of
failure severity and initial conditions, €.g., different
initial power level and fuel burnup, was used. The
forty plant parameters, F 1,F2,...,F40, illustrated in
Table 11, which were arbitrarily selected from a set of
signals in eight systems throughout the plant that are
sent to the control console were used to characterize
the 3 transient event types.

Table 1. List of Transient Events.

T} = Feedwater pump trip
T = Feed flow transmitter fails high

Ts = Turbine control valve fails closed

The first 40 s after the start of the transients was
selected as the time range for diagnostics. To
represent the dynamic behavior of each of the 3
transient types over the 40-s time interval in the data
base of transients, we converted the 40 plant
parameters of Table II into the time rate of change
AF,/At at three arbitrarily selected discrete times, 10,
25, and 40 s. Thus, each simulation of a transient
contributed three data points to the data base, forming

Table 11. List of Plant Parameters.

1. Reactor Coolant System (RCS)

Fy = Quench tank pressure [MPa]
Fo = Quench tank water level [m]
F3 = RCS average temperature K]
F4 = RCS hotleg average temperature [K]
Fg = RCS cold leg average temperature [K]

Fg = RCS leg A temperature difference [K]
F7 = RCS leg B temperature difference [K]

Fg = Pressurizer total pressure [MPa]
Fg = Pressurizer water level [m]
Fi1o0 = Fg/Fg [MPa/m]

2. Nuclear Instrumentation (Ni) System
Fy1 = Reactor power [% full power]

3. Steam Generator (SG)

Fip = SG loop A downcomer temperature [K]

Fy3 = SG loop B downcomer temperature [K]
F14 = SG loop A water level [m]

F15 = SG loop B water level [m]

Fig = SG loop A exit pressure [MPa]

F17 = SG loop B exit pressure [MPa]

4. Main Steam (MS) Module
Fyg = MS loop A header pressure [MPa]

F1g = MS loop B header pressure [MPa]
Fog = Turbine throttle pressure [MPa]
Foq = Turbine exhaust pressure IMPa]
Fop = Turbine exhaust temperature [K]

5. Feedwater (FW) System
Fog = Deaerator A water level [m]

Fo4 = Deaerator B water level [m]

Fog = Deaerator A temperature [K]

Fog = Deaerator B temperature [K]

Fo7 = Condenser total pressure [MPa]

Fog = Condenser hot well water level [m]
Fog = DP across FW A control valves [MPa]
F3g = DP across FW B control valves [MPa]
F34 = FW loop A inlet header pressure [MPa]
Fao = FW loop B inlet header pressure [MPa]

6. Makeup (MU) System
Fg3 = MU tank water level [m]

Faq Letdown water flow [kg/s]
Fag = MU water flow [kg/s]

7. Reactor Building (RB) Spray System
Fsg = Borated water storage tank level [m]
Fg7 = Hydrazine tank level [m]

Fgg = RB sump level [m] \
8. Reactor Containment (CH) '
F3g = CH temperature K]

Fsg = CH pressure [MPa]




an entire transient data base of 108 data points, i.e.,
D=108, where each of the 3 transient events was
represented by 36 entries. Before the time rates of
change AFp/At were used as input to the neural
network they were normalized to a [0,1] range with
respect to the maximum time rate of change
(AFp/At)max of the corresponding variable.

B. Selection of Plant Parameters

Both statistical feature selection techniques,
linear correlation coefficients and information-theoretic
entropy, discussed in Sec. II were used to select the N
most meaningful features-from the initial set of N =
40 plant parameters illustrated in Table IL By
calculating the linear correlation coefficient rjj in Eq.
(1) for each pair of plant parameters and using a
threshold of Irj;l > 0.90 for consideriag two plant
parameters as correlated, we were able to eliminate
F,¢ = steam generator loop A exit pressure and Fpg =
pressure difference (DP) across feedwater loop A
control valves. Plant parameters F¢ and Fypg were
found to be correlated to F5 and Fs, respectively,
which are the equivalent plant parameter
measurements for loop B. By calculating the mutual
information exchange AS(TIFy) in Eq. (2) for the
remaining 38 plant parameters of Table II, we were
able to select the 10 most informative features, i.e.,
N=10. These 10 selected plant parameters which are
listed in Table III were then used as the 10 elements of
the network input patterns. '

Table III. List of Ten Selected Features.

Fi12 Fi3 Fi7 Fao Fo
Fpo Fp3 Fpq F3p  Fao

C. Neural Network Training

To determine the advantages of training a
network with a.reduced set of input variables and the
more powerful method of CGs, we performed four
sets of training runs. In each one of the four sets of
training runs the neural network was designed with
three layers, one input, one hidden, and one output
layer. For the first set of runs, the BP algorithm was
used to train an input-hidden-output network topology
of 40-40-3 nodes, respectively. The 40 nodes of the
input layer corresponded to the 40 plant parameters in
Table 1I and the 3 nodes of the output layer
corresponded to the 3 transient event types in Table I.
For the second set of runs, the method of CGs was
used to train the same 40-40-3 network topology. For
the third set of runs, the BP algorithm was used to
train an input-hidden-output network topology of 10-

10-3 nodes, respectively. The 10 nodes of the input
layer corresponded to the 10 most informative and
non-redundant plant parameters illustrated in Table L
For the fourth set of runs, the method of CGs was
used to train the same 10-10-3 network topology. In
each one of the four sets of training( runs the
convergence criterion e=0.01, i.e., ltpj - xp[f)l < 0.01
for all j=1.2,3 and p=1,2,...,108, was used and the
target values tpj (j=1,2,3) for pattern p representing
transient event T (k=1,2,3) was set to 0.9 if k=j or to
0.1 if k#j. In both BP and CG algorithms each
iteration consisted of the presentation of the 108 data
patterns after which the weights w were updated. In
the two sets of BP runs, the learning constant N and
the momentum constant o were set to 0.1 and 0.9,
respectively.

Each one of the four sets of training runs was
simulated ten times using a SPARC workstation 2,
where at each one of the 10 simulations a different
initial set of weights wi was used. Table IV shows
the average CPU time and number of iterations
obtained for each one of the four sets, BP (40-40-3),
CG (40-40-3), BP (10-10-3), and CG (10-10-3), of
training runs. The training of the 40-40-3 network
topology updated a total of 1,763 weights w (links
between the network nodes and thresholds for the
hidden and output layer nodes) at each iteration, where
the 10-10-3 topology updated a drastically reduced
network of 143 weights. For a given network
topology, the method of CGs outperformed the BP
algorithm both in CPU time and number of iterations.
For a given optimization method the 10-10-3 network
topology outperformed the 40-40-3 topology in CPU
time only, with a split in the number of iterations.
Because of the different number of weights updated at
each iteration, the CPU time is a more meaningful
metric than the number of iterations when comparing
networks of different topologies.

Table IV. Comparison of Four Training Runs.

CPU (s) Tterations
BP (40-40-3) 26,545 23,562
CG (40-40-3) 7,522 1,113
BP (10-10-3) 14,290 140,365
CG (10-10-3) 8§17 809

Each one of the two network topologies, 40-40-3
and 10-10-3, constitutes a different optimization
problem which, in general, have differently shaped
error-surfaces. This fact is evidenced by the large
number of iterations to converge for the BP (10-10-3)



training run as compared with the BP (40-40-3) case.
From our preliminary study, it appears that the error-
surface for the smaller network is not as smooth as the
error-surface for the large network, requiring a much
larger number of iterations to converge. This fact is
not as pronounced for the CG training runs due to the
systematic adjustment of the learning and momentum
constants at each iteration. It takes an average of 809
iterations to obtain the minimum for the 143 weights
in the 10-10-3 network topology as compared to an
average of 1,113 iterations for the 1,763 weights in
the 40-40-3 topology. Of the four sets of training
runs, the BP (40-40-3) was the worst performer while
the CG (10-10-3) was by far the best one. By
applying feature selection techniques and training the
network with CGs, instead of BP, we obtained a 30-
fold reduction in training time.

From Table IV we can also observe that the CPU
time per iteration for a given network topology is
larger for the CG training runs. This is due to the fact
that the method of CGs requires a one-dimensional
search at each iteration m to obtain M, which is a
time-consuming process. However, this larger CPU
time per iteration does not offset the advantages of the

method of CGs due to the much larger reduction in the.

number of iterations. The relative performance of the
method of CGs with respect to the BP algorithm
improves with tighter values of the convergence
criterion €.7 This is due to the fact that the rate of
convergence of the BP algorithm decreases as the
minimum is approached, while the rate of convergence
of the method of CGs may even increase due to a
better approximation of E(wp,) as a quadratic function
when m increases and the minimum is approached.

D. Neural Network Testing

To determine the diagnosis capability of the
four sets of training runs discussed in Sec. IV.C we
performed tests with two simulated transient events,
one representing transient T = feedwater pump trip
and the other representing transient To = feed flow
transmiitter fails high, which were not used in training
the four networks. At every second, for the first 40 s
of each one of the two simulated transients, the 40 or
10 plant parameters, depending on whether the
network had 40 or 10 input nodes, respectively, were
converted into their corresponding time rates of
change which were then normalized to define 40 input
patterns, i.e., P=40. The 40 input patterns, for each
one of the two transients, T; and Tp, were then
presented to the four networks, BP (40-40-3), CG
(40-40-3), BP (10-10-3), and CG (10-10-3), and the
average prediction error E(w) in Eq. (3) over the 40
patterns was calculated.

We obtained similar results for the four trained
networks, which indicate that neither the reduction in
the number of plant parameters presented to the
network, nor the method of CGs reduced the network
diagnostic capabilities. Each one of the four networks
correctly diagnosed transient T2 with an average error
per pattern presentation ranging from 10-6 to 10-3,
which was found to be independent of the initial set of
weights wy used to train the networks. However,
none of the four networks was able to correctly
diagnose transient T; for all 40 input patterns
representing the first 40 s of the transient. The
average error E(w) in Eq. (3) per pattern presentation
ranged from 0.3 to 0.7 depending on the initial set of
weights wy. The inability of the four networks to
correctly identify transient T was due to the fact that
the initial plant conditions and location of the
simulated transient T) were different enough from the
12 simulations of Tj; used to train the networks.
Transient T corresponded to a loop B feedwater
pump trip with the reactor operating at 99% of
nominal power, while the only two simulations of a
loop B pump trip, out of the 12 simulated transients,
were performed at 80% and 60%, respectively, of
nominal power. In any case, no significant
differences in diagnosing T} were observed by the
four trained networks.

V. SUMMARY AND CONCLUSIONS

By applying the two complementary methods,
statistical feature selection and nonlinear optimization
through conjugate gradients, we were able to expedite
neural network training for nuclear power plant
transient identification. Statistical feature selection
techniques in thie form of linear correlation coefficients
and information-theoretic entrony were used to
eliminate 75% of the initial set of measured plant
parameters which were found to be redundant or non-
informative. In addition to expediting neural network
training through the reduction of the size of the
network and hence the dimensionality of the
minimization problem, feature selection may also play
a role in avoiding "memorization" in ANNs.13 If the
network is too large such that the number of weights
is much larger than the number of input-output
patterns, the network may "memorize” the
relationships between specific input-output patterns
without generalizing between similar input-output
pairs.

The method of conjugate gradients which has
better convergence properties than the gradient
descent-based backpropagation algorithm was also
shown to accelerate ANN training by reducing both
the number of iterations and the CPU ume. In
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addition, the training of ANNs with the method of
CGs eliminates the need to select values for the
learning and momentum constants. The method of
CGs provides a systematic mechanism to determine
both constants which are updated at each iteration. A
30-fold reduction in CPU time, without any reduction
in the network diagnosis capability, was obtained by
training a smaller network with the method of
conjugate gradients, as compared to training a full-
blown network with the backpropagation algorithm.
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