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ABSTRACT
In this paper we describe two complementary

Two complementary methods, statistical feature methods, statistical feature selection and nonlinear
selection and nonlinear optimization through conjugate optimization techniques, for expediting the training
gradients, are used to expedite feedforward neural process of multilayer feedforward ANNs for nuclear
network training. Statistical feature selection power plant transient identification. The process of
techniques intheformoflinearcorrelationcoefficients feature selection is applied to eliminate non-
and information-theoretic entropy are used to eliminate informative and redundant features or plant parameters
redundant and non-informative plant parameters to such that the number of nodes in the input and hidden
reduce the size of the network. The method of layers of an ANN can be vastly reduced. For
conjugate gradients is used to accelerate the network eliminating features that are redundant or interrelated
training convergence and to systematically calculate and hence do not contribute additional information in
the learning and momentum constants at each iteration, the characterization of the transients, we use the linear
The proposed techniques are compared with the correlation coe'fficient. 1 For selecting the most
backpropagation algorithm using the entire set of plant informative features that clearly discriminate each
parameters in the training of neural networks to transient from the remaining transient types, we use
identify transients simulated with the Midland Nuclear the information-theoretic entropy. 2,3 By eliminating
Power Plant Unit 2 simulator. By using 25% of the non-informative and redundant plant parameters we
plant parameters and the conjugate gradients, a 30-fold can reduce the dimensionality of the network input
reduction in CPU time was obtained without patterns, and hence the number of nodes in the
degrading the diagnostic ability of the network, network which expedites the training process.

I. INTRODUCTION Nonlinear optimization techniques which offer
better convergence properties than the commonly used

Training a feedforward artificial neural network backpropagation (BP) algorithm 4 and which do not
(ANN) to model the relationships between input- require the pre-specification of input constants are also
output patterns is a time-consuming process. Since used to expedite ANN learning. Here we apply the
most training algorithms can at best guarantee more powerful unconstrained optimization method of
convergence to one of the various local minima, a conjugate gradients 5,6,7 (CGs) to accelerate ANN
number of training runs with different sets of initial lem'ning. The method of CGs provides a systematic
weights are generally required. Also, some training way to determine both the learning and momentum
algorithms require the pre-specification of input constants, which are dynamically updated at each
constants. These constants usually need to be fine iteration, eliminating the need for trial-and-error
tuned, through trial-and-error training runs, in order to training runs required to fine tune these constants.
assure that convergence will be achieved and to For verifying the advantages of these two
expedite training. Furthermore, the lack of a general complementary methods in expediting neural network
prescription for determining the architecture of an training, we use a data base of tr_msients simulated
ANN usually requires repetitive training with different with the Midland Nuclear Power Plant Unit 2 (MNP-
network architecture of varying numbers of hidden 2) simul_tor. 8
layers and nodes in the hidden layers.
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II, ST,/xTISTICAL FEATURE SELECTION Feature selection on the basis of redundancy
among features is attained by calculating the linear

When neural networks are used to model the correlation coefficient 1 betweeo each pair of features
relationships between N' measured plant parameters and keeping only one of two or more features when
Fn and K transient event types Tk of nuclear plants, in their linear correlation coefficient is beyond a specified

general, the N' parameters correspond to the N' threshold. The linear correlation coefficient rij
elements of the network input patterns and the K between the i-th and thej-th features is defined as tile
transient types correspond to the K elements of the ratio of the covariance Cov(i,j) to the product of the
network output patterns. The process of training a standard deviations Oi Oj for the two features
neural network to identify transient events consists of
determining the decision boundaries that partition the Coy(i, j)
N'-dimensionaI feature space spanned by the N' input rij = (1)
plant parameters Fn, such that each one of the K O i Oj

transient types Tk is discriminated from the other
transient event types. The determination of the Two features are perfectly correlated if rij = 1.0

and perfectly anti-correlated if r.. = -1 0 Ttiey aredecision boundaries that provide the best partition of u " "
the feature space, i.e., the training process, is time- uncorrelated if rij = 0.0. ThreslSold values on the
consuming and increases with the dimensionality of linear correlation coefficient between two features is
the feature space. Hence, by retaining only a subset used to characterize correlated features. Here, twofeatures with absolute values of their correlation
of N salient plant parameters or features F1,F2,...,FN
from a set of N' features (N<<N'), such that the coefficient greater than 0.90 are considered to be
determination of the decision boundaries is correlated and only one is retained.

implemented in a vastly reduced feature space we may B. Information-Theoretic Entropy
expedite neural network training without degrading its
performance. After the redundant features have been removed

from the initial list of monitored plant parameters, the
In this work, the objective of statistical feature remaining features can be ranked based on their

selection is to select N key plant parameters or features information content. The information content of a
Fn, from the N' monitored parameters, to be used as feature is characterized by its capacity to discriminate
the N elements of the ANN input patterns. This
process of feature selection stems from the actual among the various transient types Tk. For instance, ifwe are interested in discovering patterns associated
operation of nuclear power plants where during with two transients, Tl=feedwater pump trip and
normal operation, hundreds of signals are monitored T2=feed flow transmitter fails high, the pressure
to determine the status of various systems and difference across the feedwater control valves should
components of the plant. However, when the plant be used as one of the features. Since the pressure
goes into an upset condition, only a few of these difference across the control valves decreases when
signals or featttres are important in the characterization the pump trips and increases when the transmitter fails
of the transient. Here, we discuss the use of two high, this feature can be used to discriminate the two
statistical techniques, linear correlation coefficier:tts transient event types and should be selected. On the
and information-theoretic entropy, for selecting non- other hand, the pressurizer pressure would initiallyredundant and informative features as the elements of

increase for both transients, and hence would not )field
the ANN input patterns, discriminating information and should not l:e selected.

A. Linear Correlation Coefficients To systematically determine and rank feature

Features that share common information with variables based on their information content we use
other features are redundant, i.e., they do not measures defined by information entropy. 2,3 The
contribute additional information about their common information content of each feature or plant parameter
events, and should not be selected. Including Fn, n=l,2 .....N', is obtained by projecting the D data
redundant features would only increase the points of a transient data base onto each feature Fn and
dimensionality of the feature space, where the decision partitioning Fn into a maxinaum of I feature inter'als
boundaries are found, with no extra information. Fi n (i=1,...,I<4) that maximize the mutual
Therefore, it is necessary to check each pair of inieormation exchange AS(TIFn)between the transient
features and delete those features that are redundant, events Tk (k= 1,2.... ,K) and the feature intervals Fi.n
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AS(TIFn)'= S(T)- S(TIFn) E(w) = Z Ep = Z _" Z (tpj- ^pj ) . (3)
I K P(TklFi,n) p=l p=l j=l

= _ P(Fi,n) Z P(TklFi,n)In P(Tk) ,
i=l k=l

(2) ttere tpj and X(p.7) denote the j-th target and network
output, respectively, for the p-th training pattern and
JL is the number of nodes in the L-th or output layer

where of the network.
S(T) = total entropy over the D transient

events, A. The Backpropagation Algorithm
K

=- _ P(Tk)In P(Tk), The most widely used method for training
k=l multilayer feedforward ANNs is the backpropagation

S(TIFn) - conditionalentropy, algorithm which was popularized by Rumelhart, et
I K al.4 The BP algorithm is basically a gradient descent

= __ P(Fi,n) _ P(TklFi,n) In P(TklFi,n), algorithm which minimizes the prediction error E of
i=l k=l Eq. (3) in an iterative fashion. Starting from a

P(Tk) = marginal probability of occurrence of randomly selected initial position w 1, the gradient
event Tk, descent algorithm arrives at the next position w2 = w1

P(Fi,n) = marginal probability of events of any - rl gl by moving along the negative gradient direction
type to occur in F i n, and -g 1 an amount 1"1,where TI is a positive constant

P(TklFi,n) = conditional probability of transient termed the learning constant. At the following
event Tk given that the event occurs in iteration, the algorithm arrives at the next position w3
feature interval Fi,n. = w 2 - T1g2 by moving along "g2 an amount 11. This

sequence is repeated until the convergence criterion Itpj
The mutual information exchange AS(TIFn) can be - x(L.)l < e is satisfied for p= 1,2, .... P and

interpreted as a measure of interdependence between j=I,_J,...,JL. Since the best one can expect from any
the event's feature value or location in the feature gradient-based optimization method is that it will lead
intervals and the transient event types. This can be as quickly as possible to the bottom of whatever valley
understood if we recognize that AS(TIFn) attains its it starts in, it may be necessary to repeat the entire
minimum AS(TIFn)= 0 for P(TklFi, n) = P(Tk), i.e., process starting from different initial positions in
the knowledge of the location of the events in the weight-space to avoid convergence to undesired local
feature F n gives no information about their type, and minima.
that AS(TIFn) attains its maximum AS(TIFn) = S(T) if
S(TIFn) = 0, i.e., no information will be gained by In the standard BP algorithm, at each iteration the
observing the event type once we have already learned weights w are adjusted slightly differently than in the
its location in the feature intervals. In essence, a gradient descent algorithm. In addition to the gradient
feature Fn is considered informative, i.e., it has large term -1"1gm the change in weights Awm = Wm+l-wm
values of AS(T',Fn), if after projecting the D data at iteration m has a momentum term ot AWrn.1
points onto Fn, feature intervals Fi,n are obtained that
clearly discriminate events of different types, i.e., Awm =-1"1 gm+ c_Awm. 1 , (4)
events of the same type tend to be located in the same
feature interval, where oc is the momentum constant with arbitrarily

selected values between 0 and 1. The momentum term

III. NON-LINEAR OPTIMIZATION ot Awm.1 is used to accelerate convergence in regionsof weight-space with relatively constant gradient and
TECHNIQUES oscillatory gradient directions by including the effect

The process of training a multilayer feedforward of past weight changes on the current direction ofmovement, a,9 In essence, the BP algorithm is ata
ANN with differentiable mapping functions can be
cast as an unconstrained nonlinear optimization effective method of calculating the gradient gm"

problem. A set of weights w that represent links Because of the similarities of the BP algorithm
between the network nodes and thresholds of the with the method of gradient descent, it is plagued with
nodes is sought such that the prediction error E of the same convergence-related drawbacks. First, the
mapping P input-output patterns is minimized, convergence is slow and becomes slower the closer

the algorithm gets to the optimum solution. This is
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caused by the fact that the rate of convergence of the j=l,2, .... JL. However, unlike the BP algorithm, the
gradient descent method is proportional to the norm of method of CGs provides a systematic procedure to
the gradient Igl which becomes increasingly small as calculate the learning constant rim which is updated at
the minimum is approached. 10 Second, the algorithm each iteration m. Here, the estimate of rim which
requires judicious selection of the learning constant 11 minimizes E(Wm+ rl l,tm)with respect to rl is obtained
and the momentum constant o_to achieve reasonable through a one-dimensional search that combines the
convergence and avoid oscillations about the optimum golden section rule 13with a cubic interpolation. 14 We
solution. The "optimum" values for 11 and oc that have found that this combination provides the
balance the effects of the current and previous gradient necessary balance between accuracy and
directions, respectively, depend on the problem being computational speed. 7 Also, the method of CGs
solved and are generally obtained through trial-and- arrives at the next position in weight-space by moving
error training runs. Finally, the rate of convergence of along conjugate directions btrnrather than the negative
the BP algorithm is very sensitive to the initial set of gradient direction -gin" In this work, we compute the
weights. The BP algorithm is prone to the premature conjugate directions gm as defined by Fletcher and
"saturation" of the network nodes which may require a Reeves 5
large number of iterations to converge depending on

the initial position of the weight W 1 in weight- { gW.g m .

space.7,11,12 These drawbacks increase the numb_sr -gin + gin-1 , for m > 1
of iterations and CPU time necessary for convergence lain = gT-l" gin-1 (5)
and require additional trial-and-error runs to determine - gl ; for m = 1
reasonable values for ri and 0_ for the particular
problem at hand, thereby making ANN training with
the BP algorithm a painstaking and time-consuming where the gradients gm and gin-1 for iterations na andm-l, respectively, are calculated just like in the BP
process, algorithm.

B. The Method of Conjugate Gradients
Similarly, the change in weights AWm=Wm+l-v,'m

The unconstrained nonlinear optimization at iteration m is given by
method of conjugate gradients, 5 which has better
convergence properties than the method of gradient AWm = rim I,tm • (6)
descent, is applied here to expedite neural network
training. Like the BP algorithm, the method of CGs is By substituting gm of Eq. (5), for m > 1, into Eq. (6)
iterative, but for quadratic objective functions of v and using the fact that I.tm-1= AWm.1/rlm-1we obtain
variables it is guaranteed that the minimum will be
located exactly, apart from rounding errors, in a
maximum of v iterations. For functions that are not Awm = - rim gm + rim gT gm Awm. 1 . (7)_m-1 gT-1. gm-1
quadratic, which is the case for the prediction error
E(w) in Eq. (3), the method is based on the current
local quadratic approximation to the function which We may now compare Eq. (7) with Eq. (4) to identify
causes the search process to be iterative rather than a the learning constant 1"1and the momentum constant o_
v-step process, and a test of convergence is required, of the BP algorithm as the following terms of the CG
As the function E(w) approaches the minimum, its "algorithm

approximation of a quadratic function becomes more 1"1= rim ' and
realistic which may even cause the method to converge (8)
faster. This is in contrast with the BP algorithm

rl_...__m_mgT. gm
whose rate of convergence decreases as the mininaum ¢z= 0¢m = Tlm-1 gT_l gin-1is approached.

The method of CGs starts the iterative process of Hence, the two methods use the same expression to
finding the minimum of E(w) by randomly selecting update the weights at each iteration. The difference is
an initial position w 1 and arriving at the next position that the method of CGs provides a systematic way to
W 2 = W 1 + 1"11 I"1"1 by moving along the conjugate determine both the learning and momentunl constants
direction gl an anaount 1"11,where 1"11minimizes E(w I which are dynamically updated at each iteration. This
+ 1"1g l) with respect to rl. Like the BP algorithm, systematic approach eliminates the need for trial-and-
this sequence.is, repeated until the convergence training frequently used in the BP aleorithmerror runs

criterion Itpj- x(pj)l < ¢ is satisfied for p=l,2,...,P and to obtain reasonable values of q and o. such that the



algorithm" has a reasonable rate of convergence and
avoids oscillations about the minimum. Table II. List of Plant Parameters.

IV. NETWORK TRAINING FOR 1. Reactor Coolant System (RCS)
TRANSIENT IDENTIFICATION F1 = Quench tank pressure [MPa]

With the statistical feature selection techniques F2 = Quench tank water level Ira]
described in Sec. II and the nonlinear optimization F3 = RCS average temperature [K]

method of conjugate gradients discussed in Sec. III, F 4 = RCS hot leg average temperature [K]
we have trained a feedforward neural network to F5 = RCS cold leg average temperature [K]
identify nuclear power plant transients. The network F6 = RCS leg A temperature difference [K]
has also been trained by using the entire set of F 7 = RCS leg B temperature difference [K]
available plant parameter measurements, i.e., without F8 = Pressurizer total pressure [MPa]
feature selection, with the BP as the training F9 = Pressurizer water level Ira]
algorithm. Comparison of these training sessions was F 10 = F 8/F 9 [MP a/m ]
then perfomaed regarding the number of iterations and 2 Nuclear Instrumentation (NI) System
CPU time to converge as well as the prediction error F1 1 = Reactor power [% full power]
for transient events not used in training. 3. Steam Generator (SG)

F1 2 = SG loop A downcomer temperature [K]
A. Data Base of Transients F13 = SG loop B downcomer temperature [K]

The MNP-2 full-scope operator training simulator 8 F1 4 = SG loop A water level [mi
representing al'l major systems of a two-loop F15 = SG loop B water level [mi
pressurized water reactor plant and control room F16 = SG loop A exit pressure [MPa]
instrumentation was used to construct a realistic data F17 = SG loop B exit pressure [MPa]
base of transients. Each one of the 3 transient event 4. Main Steam (MS) Module
types Tk (k=1,2,3) illustrated in Table I occurring F18 = MS loop A header pressure [MPa]
separately, i.e., single failures, was simulated on the F1 9 = MS loop B header pressure [MPa]
MNP-2 simulator a dozen times. For each one of the F20 = Turbine throttle pressure [MPa]
12 simulations of an event, a different combination of F21 = Turbine exhaust pressure [MPa]
failure severity and initial conditions, e.g., different F = Turbine exhaust temperature [K]

initial power level and fuel burnup, was used. The 5. Feedwater (FW) System
forty plant parameters, F1,F2,...,F40, illustrated in F23 = Deaerator A water level lm]
Table II, which were arbitrarily selected from a set of F24 = Deaerator B water level [m]
signals in eight systems throughout the plant that are F25 = Deaerator A temperature [K]

sent to the control console were used to characterize F26 = Deaerator B temperature [K]

the 3 transient event types. F27 = Condenser total pressure [MPa]

Table I. List of Transient Events. F28 = Condenser hot well water level [mi
F29 = DP across FW A control valves [MPa]

T1 = Feedwater pump trip F30 = DP across FW B control valves [MPa]F31 = FW loop A inlet header pressure [MPa]
T2 = Feed flow transmitter fails high F32 = FW loop B inlet header pressure [MPa]

T3 = Turbine control valve fails closed 6. Makeup (MU) System
F33 = MU tank water level Ira]
F34 = Letdown water flow [kg/s]

The first 40 s after the start of the transients was F35 = MU water flow [Rg/s]
selected as the time range for diagnostics. To 7. Reactor Building (RB)Spray System

represent the dynamic behavior of each of the 3 F36 = Borated water storage tank level [m]
transient types over the 40-s time interval in the data F37 = Hydrazine tank level [m]
base of transients, we converted the 40 plant F38 = RB sump level [ml ,
parameters of Table II into the time rate of change 8. Reactor Containment (CH)
AFn/At at three arbitrarily selected discrete times, 10, F39 = OH temperature IN]
25, and 40 s. Thus, each simulation of a transient = CH pressure [MPa]
contributed three data points to the data base, fornaing



an'entire"transient data base of 108 data points, i.e., 10-3 nodes, respectively. The 10 nodes of the input
D=108, where each of the 3 transient events was layer corresponded to the 10 most informative and
represented by 36 entries. Before the time rates of non-redundant plant parameters illustrated in Table III.
change AFn/At were used as input to the neural For the fourth set of runs, the method of CGs was
network they were normalized to a [0,1] range with used to train the same 10-10-3 network topology. In
respect to the maximum time rate of change each one of the four sets of trainin_ runs the
(AFn/At)max of the corresponding variable, convergence criterion _=0.01, i.e., Itpj- x"(pL)I < 0.01

for ali j=1.2,3 and p=1,2,...,108, was usetl and the
B. Selection of Plant Parameters target values tpj (j=1,2,3) for pattern p representing

Both statistical feature selection techniques, transient event Tk (k=1,2,3) was set to 0.9 if k=j or to
linear correlation coefficients and information-theoretic 0.1 if k,j. In both BP and CG algorithms eachiteration consisted of the presentation of the 108 data
entropy, discussed in Sec. II were used to select the, N
most meaningful features,from the initial set of N = patterns after which the weights w were updated. Inthe two sets of BP runs, the learning constant rl and
40 plant parameters illustrated in Table II. By the momentum constant o_ were set to 0.1 and 0.9,
calculating the linear correlation coefficient rij in Eq. respectively.
(1) for each pair oi' plant parameters and using a
threshold of Irijl > 0.90 for considering two plant Each one of the four sets of training runs was
parameters as correlated, we were able to eliminate simulated ten times using a SPARC workstation 2,
F16 = steam generator loop A exit pressure and F29 = where at each one of the 10 simulations a different
pressure difference (DP) across feedwater loop A initial set of weights Wl was used. Table IV shows
control valves. Plant parameters F16 and F29 were the average CPU time and number of iterations
found to be correlated to F17 and F30, respectively, obtained for each one of the four sets, BP (40-40-3),
which are the equivalent plant parameter CG (40-40-3), BP (10-10-3), and CG (10-10-3), of
measurements for loop B. By calculating the mutual training runs. The training of the 40-40-3 network
information exchange AS(TIFn) in Eq. (2) for the topology updated a total of 1,763 weights w (links
remaining 38 plant parameters of Table II, we were between the network nodes and thresholds for the
able to select the 10 most informative features, i.e., hidden and output layer nodes) at each iteration, where
N= 10. These 10 selected plant parameters which are the 10-10-3 topology updated a drastically reduced
listed in Table III were then used as the 10 elements of network of 143 weights. For a given network
the network input patterns. . topology, the method of CGs outperformed the BP

Table III. List of Ten Selected Features. algorithm both in CPU time and number of iterations.
For a given optimization method the 10-10-3 network
topology outperformed the 40-40-3 topology in CPU

F12 F13 F17 F20 F2! time only, with a split in the number of iterations.

F22 F23 F24 F30 F32 Because of the different number of weights updated at
each iteration, the CPU time is a more meaningful
metric than the number of iterations when comparing

C. Neural Network Training ' networks of different topologies.

To determine the advantages of training a Table IV. Comparison of Four Training Runs.
network with a.reduced set of input variables and the
more powerful'method of CGs, we performed four CPU (s) Iterations
sets of training runs. In each one of the four sets of BP (40-40-3) 26,545 23,562
training runs the neural network was designed with
three layers, one input, one hidden, and one output CG (40-40-3) 7,522 1,113
layer. For the first set of runs, the BP algorithm was BP (10-10-3) 14,290 140",365
used to train an input-hidden-output network topoiogy
of 40-40-3 nodes, respectively. The 40 nodes of the cG (10-10-3) 817 809
input layer corresponded to the 40 plant parameters in
Table II and the 3 nodes of the output layer

corresponded to the 3 n'ansient event types in Table I. Each one of the two network topologies, 40-40-3
For the second set of runs, the method of CGs was and 10-10-3, constitutes a different optimization
used to train the same 40-40-3 network topology. For problem which, in general, have differently shaped
the third set of runs, the BP algorithm was used to error-surfaces. This fact is evidenced by the large
train ata input-hidden-output network topology of 10- number of iteratioes to converge for tlm BP (10-10-3)



training run as compared with the BP (40-40-3) case. We obtained similar results for the four trained
From our preliminary study, it appears that the error- networks, which indicate that neither the reduction in
surface for the smaller network is not as smooth as the the number of plant parameters presented to the
error-surface for the large network, requiring a much network, nor the method of CGs reduced the network
larger number of iterations to converge. This fact is diagnostic capabilities. Each one of the four networks
not as pronounced for the CG training runs due to the correctly diagnosed transient T2 with an average error
systematic adjustment of the learning and monaentum per pattern presentation ranging frona 10-6 to 10-5,
constants at each iteration. It takes an average of 809 which was found to be independent of the initial set of
iterations to obtain the minimuna for the 143 weights weights Wl used to train the networks. However,
in the 10-10-3 network topology as compared to an none of the four networks was able to correctly
average of 1,113 iterations for the 1,763 weights in diagnose transient T1 for all 40 input patterns
the 40-40-3 topology. Of the four sets of training representing the first 40 s of the transient. The
runs, the BP (40-40-3) was the worst performer while average error E(w) in Eq. (3) per pattern presentation
the CG (10-10-3) was by far the best one. By ranged from 0.3 to0.7 depending on the initial set of
applying feature selection techniques and training the weights Wl. The inability of the four networks to
network with CGs, instead of BP, we obtained a 30- correctly identify transient T1 was due to the fact that
fold reductionin training time. the initial plant conditions and location of the

simulated transient T1 were different enough from the
From Table IV we can also observe that the CPU 12 simulations of T1 used to train the networks.

time per iteration for a given network topology is Transient T1 corresponded to a loop B feedwater
larger for the CG training mns. This is due to the fact pump trip with the reactor operating at 99% of
that the method of CGs requires a one-dimensional nominal power, while the only two simulations of a
search at each iteration m to obtain Tlm which is a loop B pump trip, out of the 12 simulated transients,
time-consuming process. However, this larger CPU were performed at 80% and 60%, respectively, of
time per iteration does not offset the advantages of the nominal power. In any case, no significant
method of CGs due to the much larger reduction in the differences in diagnosing T1 were observed by the
number of iterations. The relative performance of the four trained networks.
method of CGs with respect to the BP algorithm
improves with tighter values of the convergence V. SUMMARY AND CONCLUSIONS
criterion e. 7 This is due to the fact that the rate of

convergence of the BP algorithm decreases as the By applying the two complementary methods,
minimum is approached, while the rate of convergence statistical feature selection and nonlinear optimization
of the method of CGs may even increase due to a through conjugate _adients, we were able to expedite
better approximation of E(wm) as a quadratic function neural network training for nuclear power plant
when m increases and the minimum is approached, transient identification. Statistical feature selection

techniques in the fonn of linear correlation coefficients
D. Neural NetworkTesting and information-theoretic entrnoy were used to

eliminate 75% of the initial set of measured plant
To determine the diagnosis capability of the parameters which were found to be redundant or non.-

four sets of training runs discussed in Sec. IV.C we informative. In addition to expediting neural network
performed tests with two simulated transient events, training through the reduction of the size of the
one representing transient T1 = feedwater pump trip network and hence the dinaensionality of the
and the other representing transient T2 = feed flow minimization problem, feature selection may also play
transmitter fails high, which were not used in training a role in avoiding "memorization" in ANNs. 15 If the
the four networks. At every second, for the first 40 s network is too large such that the number of weightsof each one of the two simulated transients, the 40 or

is much larger than the number of inp_t-output
10 plant parameters, depending on whether the patterns, the network may "memorize" the
network had 40 or 10 input nodes, respectively, were relationships between specific input-outpt_t patterns
converted into their corresponding time rates of without generalizing between similar input-output
change which were then normalized to define 40 input pairs.
patterns, i.e., P=40. The 40 input patterns, for each

one of the two transients, T1 and T2, were then The method of conjugate _eradients which has
presented to the four networks, BP (40-40-3), CG better convergence properties than the g.radient
(40-40-3), BP (10-10-3), and CG (10-10-3), and the descent-based backpropagation algorithm was also
average prediction error E(w) in Eq. (3) over the 40 shown to accelerate ANN training by reducing both
patterns was calculated, the number of iterations and the CPU time. In



addition, the training .of ANNs with the method of 9. R.L. WATROUS, "Learning Algorithms for
CGs eliminates the need to select values for the Connectionist Networks: Applied Gradient Methods
learning and momentum constants. The method of of Non-linear Optimization," Proc. IJCNN First Int.
CGs provides a systematic mechanism to determine Conf. Neural Networks, San Diego, California, June
both constants which are updated at each iteration. A 21-24, 1987, Vol. II, p. 619, M. CAUDILL And C.
30-fold reduction in CPU time, without any reduction BUTLER, Eds., SOS Print, Piscataway, N.J. (1987).

in the network diagnosis capability, was obtained by 10. D. A. WlSMER and R. CHATTERGY,
training a smaller network with the method of Introduction to Nonlinear Optimization: A Problem
conjugate gradients, as compared to training a full- Solving Approach, Elsevier North-Holland (1978).
blown network with the backpropagation algorithm.

11. A. REZGUI and N. TEPEDELENLIOGLU,
"The Effect of the Slope of the Activation Function on
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