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INTRODUCTION

Monte Carlo radiation transport codes use a sequence of pseudorandom num-
bers to sample from probability distributions. A common practice is to start
cach source particle a predetermined number of random numbers up the
pseudorandomn number sequence. This number of random numbers skipped
between cach source particle is the random number stride, S. Consequently,
the jth source particle always starts with the j-Sth random number providing
“correlated sampling™ between similar calculations.

A new machine-portable random number generator has heen written for
the Monte Carlo radiation transport code MCNP! providing user’s control of
the random number stride. First the new MNP random number generator

algorithn will be deseribed and then the effeets of varving the stride will he

presented,



The New Random Number Generator Algorithm

MCNP has always used the congruential scheme of Lehmer?. A pseudo-

random sequence of integers, I,, is generated by

l.+1 = mod(MI,,248) |
where M is the random number multiplier, and here 43-bit integers and 18-bit
floating point mantissas are assumed. The new MCNP algorithm provides
user control of M with a default value of

M =519 = 19073186328125.
The random number is

R, =271, .
The starting random integer of each history is

Liss = mod(M51,,248) |
where § is the stride. Because each random number is the least-significant
(lower) 48-bits of M times the previous random number, the lower 48 bits of
4y is the same as the lower 18 bits of M71,,.

To achieve 96-bit accuracy in a machine-portable way for the above in-
teger products, M, and ML, the MOD function is used to split 4%-bit
quantities into 24-bit halves, and then multiplications are done on these
halves. The products of the 24-bit quantities will never exceed 48-bits. T'he
A8-bit products can then be further manipulated to reconstruet the reguired
48-bit mantissa. To achieve aceeptable computational speed, the faster INT

funetion replaces the NOD inetion:



mod(X.2¥) = X - 2kint(2-*X) .
Historically, MCNDP has used a random number stride of § = {297 that
is too small for many modern problems. Therefore a better default stride of
S = 152917y = 1525254 = 100101010101010101,

has been implemented.

The Effects of Various Random Number Strides

A random number stride less than the number of random numbers re-
quired for any history causes a correlation of results because the same random
number sequence is reused in adjacent histories. Fortunately, the correlation
is small because the random numbers are used for different sampling purposes
in most realistic problems,

Mente Carlo results are less sensitive to the choice of random number
stride than might be expected. A series of twenty-six radiation transport
problems were run using random number strides of 4297 and 152917, These
problems included a wide variety of applications including oil well logging,
criticality safety, radiation shielding, deep penetration, and electron detector
modeling. No discernible effect was observed, even though in most problems
some histories required more than 4297 random numbers, and sometimes
more than 100000 random numbers. The oil well logging caleulation was run
with strides of 1,2, 10, 100, 1000, 1217, 152917, and 5000000; and no effect

was apparent,



The worst possible case occurs when the problem is so simple that the
random numbers are used for only a few basic functions, and the stride
is so short that the same random numbers are used for these functions in
different histories. To examine this situation, a simple test problem was
devised consisting of a monoenergetic, isotropic source in a 10% absorbing,
15-mean frce path sphere. Random number strides of 1, 2, 3, 4, 3, 6, T,
8, 9, 10, 100, 1000, 4217, 10000, 100000, 152917 and 1000000 were tested.
Fluxes were tallied at fourteen concentric surfaces, one mean free path apart,
throughout the sphere. Figure 1 shows the calculated fluxes divided by the
converged solution plotted against the fourteen tally surfaces for four cases:
S = 152917 and the three worst cases of S = 1,2, and 9. The fluxes converged
to within one standard deviation of the mean two-thirds of the time for a
stride of 152917 as expected. In the worst case where § = 2, the variances
were underestimated. Strides of 3, 4, 5, 6, 7, and 8 were all better than

strides of 1207 and 152017 whereas strides of 1,2 and 9 were worse.

CONCLUSION

A new MONP random number generator has heen written providing
a larger default stride and user control of both stride and multiplier in a
machine-portable way. The effects of different vaiues of the stride have heen
exianined, In simplistic problems a small stride can canse an underestima
tion of the variance, But for realistie problems, Monte Carlo convergenee

s surprisingly insensitive to the stride, even when extreme values suel as



S =1 are used, because the random numbers are used to sample different

Processes.
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