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ABSTRACT

Integrable properties, i.e., existence of linear systems, infinite number
of conservation laws, Reimann-Hilbert transforms, affine Lie algebra of
Rac-Moody, and Bianchi-B#cklund transformation, are discussed for the comstraint
equations of the supersymmetric Yang-Mills fields. For N > 3 these constraint
equations give gquations of motion of the fields. These equations of motion
reduce to the ordinary Yang~-Mills equations as the spinor and scalar fields are
eliminated. These understandings provide a possible method to solve the full

Yang-Mills equations. Connections with other non-linear systems are also

discussed.

The submitted manuscript has been authored under Contract
No .DE-AC02-76CHO00016 with the U.S. Department of Energy. Accordingly, the U.S.
Government retains a nonexclusive, royalty-free license to publish or reproduce

the published form on this contribution, or allow others to do so, for U.S.
Goverament purposes.

* Invited talk, Workshop on Vertex Operators in Mathematics and Physics,
Berkeley, Nov. 10-17, 1983.

ppppp




CONTENTS

INTRODUCTION

I. Formulation of Supersymmetric Yang-Mills Fields and their Constraint
Equations.

1I. Linear Systems to the Constraint Equations +«+ Infinite Number of
Conservation Equations.

III. Finite Riemann-Hilbert Transforms.

1v. Infinitesimal Riewann-Hilbert Transforms and the Affine Algebra of
Kac—Moody.
v. Parametric Bianchi-Bidcklund Transformations.

Vi. Discussions on the Constraint Equations and Equations of Motion.

VII. OQutlook.



DISCLAIMER

This report was prepared as an account of work sponscred by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes anv warranty, express or implied, or
assumes any legal liability or ‘tesponsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Referenice herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and cpinions o uuthors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.



INTRODUCTION

Beginning with Maxwell's equations and quantum electrodynamics, and the
recent spectacular success of the electroweak theory ot quantum flavor dynamics
[1,2] gauge theories have become an essential part of physics. It has become
increasingly clear that, besides its mathematical beauty, the Yang-Mills theory
[1,3-5] may provide the key to our understanding of strong interactioms. With
the recent experimental ocbservation of gluou jets [6], the ideas of Yang-Mills
gauge theory for strong interactions is brought one step further to reality,
Despite many interesting theoretical and phenomenological observations, like
confinement [7], asymptotic freedom and QCD perturbative studies [8], the
Yang-Mills equations are far from being solved.

In the past fifteen years or so, powerful mathematical tools have been
developed in eompleCely solving many two-dimensional nonlinear differential
equations [9~-11]. The characteristics of theze integrable systems are:
existence of linear system;, Bianchi-BYdcklund transformations (BT), 7ufinite
number of conversation laws, soliton solutions, and even the construction cof
S—wmatrizx [12]. It is '.r intention to see whether these powerful techniques can
be applied to solve the Yang~Mills equations.

For the past few years, we have found that amazingl& the self-dual
Yang-Mills (SDYM) fields, in the J-formulation, possess many characieristics of
those integrable systems [13~22]. Recently the affine algebra of KaE-Moody has
been found in the SDYM systems [23-25]. It thus provides a beautiful
mathematical System in four dimensions [26-28].

Due to the extreme similarity in appearance tetween the SDYM equations aund
the two dimensional chiral equations [28-35], and the Ernst equations [361, i.=.

the stationarv axially symmetric equations of Einstein equations, many fruitful



results have come about by inwestigating both systems hand in hand. 4ctually
some systematic uuderstandfﬁgs'ﬁéve bezn made.

In Fig. 1 we give a'flow chart of some logic links between various
structures of tﬁese systems. At the center are the corresponding linear systems
for the original non-linear equations. Their existence implies that the
original non-linear equations are resulcé of the integrability of the set of

linear oystems, or the original mon-linear equations are equivalent to some

generalized curvatureless conditions. Once th2 linear systems are obtained,

many developments indicated in Fig. 1 can be made. The developments indicated
by solid lines have been made both for the SDYM equations in four dimensions, as
well as for the two dimensional chiral equations and the Ernst equations. The
dashed lines indicate developments made only for the latter two dimensional
equations. The linear asystems are immediately related to the existence of an

infinite number of conservation laws. Also from these linear systems,

parametric Bianchi-Bicklund transformations (BT) can be obtained, which are good

for generating new solutions (global properties have to be imposed in

addition). These BT were originally obtained purely based upon guess work. Now
we can show that they are generated by the so called Darboux transformatioms,
which is a special form of the Riemann-Hilbert transforms. From the parameters
'in the BT, infinite number of local conservation laws can be outained [30,31].
Por the chiral model in two dimensions, we can further show that the linear
systems can be derived from the BT via the Riecati equatiens, [28]. This
indicates that the parametric BT given in [30] for the chiral field is probably
the most general ome, and it is as fundamental as the linear systems, and thus
as the original non-linear systems. So far, such development has not been done

for the BT [16] of the four dimensional Yang-Mills aquatious.



To generate new solutions from the linear systéﬁs;dfor the original
non-linear systems, is first to generate new solutions to the linear systems,
and then via the inverse scattering method to obtain the corresponding new
sclutions to the original non-linear system. The matrix Reimann-Hilbert (R-H)
transforms [37] provide such a method. It is also a way in which fhe original
problem of solving differential equations in the coordinate space being
transformed into solving integral equations in the spectrum space. Such methods
have been very useful in obtaining many mew solutions to the static, axially
symmetric Einstein equations, i.e., the Ernst equations [38]. Actually it was
shown that all solutions with proper boundary conditions can be obtained via the
R-H transfcrm, which was called the Gerosch conjecture [38]. From the finite
R-H transforms, the infinitesimal R-H transforms can be derived. We then can
show that “he algebra structure satisfied by “hese infinitesimal R-H transforms
are of the Rac-Moody type, {23-25,27,28]. This has been the main topic of this
workshop.- Ve;y interestingly, Dr. Friedan at this workshop has pointed out the
link between the values of the central extensions to various two dimensional
models in statistical mechanics. However, sc far there is no central extensions
of the Kac~Moody algebra have been found in many of the non-linear systems,
e.g., Sine—Gordon, chiral, and self-dual Ygég-mills. The physical implications
of the Rac-Moody algebra for these systems are yet to be understood.

Now we shall motivate how to solve differential equations on curvatures via
solviig algebraic equations on curvatures. For example, the self-dual, and
anti-self-dual Yang-Mills equations are a set of algebraic constraint relations

on the curfvatures Fyv, i.e.,

Y§
avys FS *Fu“ . (1)

+

1
= 4+
Fuv t3 €

Under these constraints, ‘he Bianchi identities

?* *Fuv = 0
uv Y (2)



become the equation of motion

) ) ‘
(7] Fu“—O. (3)

Therefore, solving the self-dual and anti-~self-dual equations, Eq. (1), can be
vieved as a way of finding some apecial solutions of the Yang-Mills equations,
_Eq. (3). It was suggested by Witten [39], and by Isenberg, Yasskin, and Green
[40] that such concept and procedure can be gemeralized to more geraral
soluticns (even hopefully to all solutions) of the full Yang-Mills equations.
It was demonstrated that, formulated in complex d = 8 dimensions, or real 4 = 4
plus N > 3 super dimensions, certain algebraic constraint equaticms do lead to
Yang-Mills equations via the Bianchi identities, Recently, it has been shown
that these constraints equation process many of the integrzble properties. Here
we shall concentrate on the discussions of supersymmetric Yang—-Mills equationms.

The super symmetric Yang-Mills fields [42] formulated in the coordinate

= (xaB 8% B

x = » 8, Bst) where a, B = 1,Z; s,t = 1.2,¢+=N, have in general six types
st 8 3 .
of curvatures Fu“' FaB’ Fas,Bt’ Fu,a’ Fu,Bt’ Fa,Bt' To eliminate the extra

curvatures due to the introduction of super coordinates, constraints [39,42-44]
were introduced onto those curvatures involving only the super coordinates,

st 8 . . .
ag’ F&s,é:’ Fa,ﬁ:' Interestingly for N > 3 supersymmetric Yang-Mills

fields, these constraints can put the theory on shell {39,44] i.e., these

il.e., F

constrainis via the Bianchi identities lead to equétions of motion. Recently it
has been showr by Velovich [45] that to these constraint equations linear
systems can be introduced. And it has been demonstrated by Devchaund [46] that
many of the formulations [27,28] developed for the self dual Yang-Mills system
as an integrable system can also be made for these systems, e.g., infinite

number of conservation laws, the existence of affine Lie algebra of Rac-Moody.




With Ge and Popowicz [47], we developed further the integrability
properties of supersymmetric Yang-Mills equatioms. We have constructed the
Riemann-Hilbert transforms, the infinitesimal forms of which precisely give the
affine Lie Algebra of Kac-Moody. From the linear systems, a two-parameter
Bianchi-B#cklund (BT) transformatiom can also be constructed. In the special
(anti) self-dual cases, the BT transformations involviung only the crdinary
coordinate become those obtained in Ref. 16.

These new developments give the hope that the full Yang-Mills equations

can be solved via the supersymmetric way .

I. TFormulation of Supersymmetric Yang-Mills Fields and the Constraint

Equations

The superspace coordinates are given by x = (xu, 8

¢ B = (%, 6%,35),
S 8

b

where xu, uw=20,1,2,3, is the ordinary space coordinate which can also be

described as xa8 = quuB

a =BT . .
Gs, 96 are the super coordinates, with

s,t = 1,2,°*+*N, characterizing the dimensioas of supersymmetry. Corresponding

to these coordinates there are three types of derivatives:

= b . = Gé_ s _ a_“_.-és .=
Bu 3/ " or 3&3 3/9x D 3/395 + 19772 D

with their algebraic rules

-ét A ]
- 3/38" " - 16t aaB .

L] L3 = s t = = _. —.1 s-. =
[3,5.2,4] = 0, {DG,DB} 0 {DBS,Dat_,,{Da,DBt}

The covariant derivatives are

I
!
[
He
(=]
(o /-]
Q2
Q
.
.

— - S S
= + o I ° o = N
Vu 3u Au, or VGB BGB + AGB’ ?a D + Aa

The curvatures are



. s oty _ st T = Fa o °
¥ = Bl {Vu'va} = Fagi Vae Bc} as,Re’

5' -. = . . s -- = - r
7,950 = F05 19,950 =8, a5 (V005 =7 5 - 20875 (LD

gote that FS s = DYAs s

a, Bt Dhe t étAu + {A A- } + 2i6° A b’ Usually to get rid of

the super compcaents of the curvature, constraints are put on the three types of
curvatures that involves only the super components:

St St - L] - L ] L3 = . s o =
FuB * FBu 0; Fus,ﬁt * Fa:,Bs 03 Fu,Bt 0. (1.2)

It was noted by Volavich [45] and Devchand [46] that very similar to the
self-dual Yang-Mills (SDYM) case, some of these curvatureless equatious,

st - gSt 8

s
225 Fia,ie 70 % F3g 33 Fp 1 707 Fy 5. (1.3)

_can be integréted by the following form of the potentials

= -1 s . =-1= = ~1l s = -1"'.
1 g ‘Dig; Aj, =g Dj.; Az h "Doh; A5 =h DZth. (1.4)
Similarly, by defining a J matrix,
- -1
J = hg s (1.5)
in terms of which the curvatures become:
st - ~ly s, -i_t
Fl, "8 {Dl(J D,D}e, (1.6a)
-1
Fio 3 = 8 {D (J D J)}g, (1.6b)
s -1 ’
Fl 5 = 8 {D 3" D- )+ zlatvlz} (1.6¢)
FS s = g M {Ds (371pSn) + 218V, ¢)g (1.6d)
2,1t 1t 2 £t 211%° . e

Then the unintegrated constraints on curvatures,

st ts_. . » e ® = . 3.:1 =SO
Flz *F, = 0; F + F 0; F 3 0 FZ,lt’ (1.7)



give equations on J
5, -1t t, ~1_s _
Dl(J DZJ) + Dl(J DZJ)

ﬁis(J 1D° )+ D (J D J) =0,

s, =1= 8,. -1 _
Dl(J DitJ) + 6t21gV12g 0,
- =1t t,.. -

Dis(J DZJ) + GSZLgVZIg 0.

In thesz equations J-! appears on the left of DJ.

formulation.
Another formulation is:

st -1l¢_s t
Fi, = b {DZ(JDIJ

“Hn,

—3 _1 _I _. —l
Fs 2 =h {DZt(JDlsJ )}n,

-1
h {D; (I D J b+ 215tv12}

F

h l{D a D- I) + 2i8°V, s }n.

s L]
2,1t t'21

The unintegrated constraints, Eq. (1.7), on these curvatures, give the

right-equation on J:

s t -1 t s;-1y _
DZ(JDIJ ) + DZ(JDlJ ) =0,

- - -1 - s
DZS(JDltJ ) + Dit(JDiSJ ) =0,

. t -1
DZS(JDIJ ) + &° Zlhvlih =

|
(=}
-

1]
o

s, = -1 s,.. -1
DZ(JDltJ ) + 6t21hV2ih

This is what we call the right-formulation.

(1.8a)

(1.8b)

(1.8¢)

(1.84)

We call them the left-

(1.9a)

(1.9b)

(1.9¢)

(1.94)

(1.10a)

(1.10b)

(1.10¢)

(1.10¢)

'n .




I1. Linear System to the Constraint Equations +> Infinite Number of

Couservation Equations

To these equations on J, Eqs. (1.3), a set of linear systems can be

constructed [45,46]

L3 = (0 + A0} + AJ-ID;J) %) = 0, (2.1a)
= b - -1- o _2_ L] =
M (PO) = By, + 37Dy T + AD;) WA = 0, (2.1b)
- -1 -1
N(A)F(A) = {(ali + 87,58 ) + A3,5 + I 3,57)
a2 o ¢ g™ + 2723 0} T = 0 (2.1¢)
21 21 11 . .

The integrability conditioms of thesa linear equations give equatioms on J,
Eqs. (1.8): {18s,Lt} = 0, implies Eq. (1.8a); [Mg,M;} = 0 gives Eq.
{1.8b); and {Ls-Mt} = - ZiGiN gives the last two equatioms, Eqs. (1.8 c,d)

according to two different powers of A.

The right-formulation for the linear equation can be obtained in the

f~rllowing way: multiplying Eqs. (2.1) with J on the left hand side and replacing

" ¥ by J‘IJY, after simple maripulations we obtain

o heal = 03 + v7'od 4 x‘lJan'l) txh = o0, (2.2a)
A =l s =l .2 = S T N
1 (THe0™ = (xznzt + By, + By a7H 2Q7H = o, (2.2b)

o 14 —1 2 - -1 - L4 -1
{x(a12 + RV sh )+ XT3 4 A (3 + T3 T )

s Hrah

m

+

-1y 2.1
3,1 + hi,h T} ¥(A ) = 0. (2.2¢)
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One can show that the equations (1.10) are integrability consequence of

~ ~ -~ a a A~
S

Bqs. (2.2), i.e., {L°,L°} =0, {u M} =0, and {L°.M} = - 2i6]N.

We now construct infinite numbers of conservation laws. Note that Eqgs.

(1.8 a,b) can be solved in terms of two functions X(1), x(2) defiz:a ».
J“].DSJ = sz(l), (2.33)
2 1
ST £
J 'Dg I =Dp X" . (2.3b)

Then an infinite number of X's can be generated iteratively in the following

way: define x(n) by

s,(n) _ [ s -1l_s (n-1)
DX = [D2 +J D2J] X , (2.4a)
=, o(n) _ o -1z, (n-2)
Dlsx = [D23 + J Dsz] X . (2.4b)

Note that we define X(O) = 1. It is easy to show that such defined Dix(“)

TR satisfy the continuity-like equation, Eqs. (1.8 a,b).

Following the procedure given in Ref. [18], i.e., multiplvimg Eq. (2.4 a,b)

by AR, A being an arbitrary complex number, summing n = 0 to =, and defiring

¥ = 2 An (n) (2‘55

we obtain the linear equations (2.1 a,b). Furthermore, one can show that the

relation Eqs. (2.3 a,b) solve all Eqs. (1.8 a-d) if ¥ satisfies Eq. (2.lc).




=1 1-

Similarly for the right-formulation we have

t -1 t2(1)

= .6a)
g DX ", (2.6a)
- -1 _ ~(2)
JDltJ = D3, X7, (2.6b)
and
p’x® = @ + %Y x(“'l), (2.7a)
2 - 1 1
s 2 - [Ds + JDs 31} x(n=2) (2.7b)
2s 1s 1s ? :

multiplying Eqs. (2.7} by AR and summing, and defining
=

vz J angln) (2.8)

n=0
-we obtain the linear systems of Eqs. (2.2 a,b), and Eqs. (1.10 a-d) are solved
by (2.6 a,b) if ; satisfies Eq. (2.2¢).

Note that these linear equations are given by Davrhand [46], which are
related to those first obtained by Volovich [45] by rewriting the linear
equation for a gauge transformed wave function § = g¥. This situation is very
similar to that in the self-dual Yang-Mills field [21,22].

iII. Finite Reimann-Hilbert Transforms

Now we construct the Riemann-Hilbert transform (R-H) for these linear

equations, which can all be abstractly written in the following form

DY+ RBYP=0 , © (3.1)
where & denotes the differenciations in Eqs. (2.1): Di + AD;, A-zﬁit + Bit’
1

-2 -
or 315 + Aazi + A 311 + A aZi’




4 can denote re:pectively their corresponding potential terms in Eqs. (2.1),

-1_s 1

A DLI, I

-1 -1
+ AJ «J + A
N 3,2J

= -1 -1 . , .
D-tJ, or ngig 93 gV21g . First note that if a new

2
solution ¥' can be constructed from a given solution Y by a Darboux-type
transformation [48]

() = R(A)¥(N) , ‘ (3.2)
a new potential is generated through

&' = rRBr! - (2R) R°L. (2.3)
Now cansider a confbuf C in the complex A-plane dividing the plane into two
regions Cy and C.. Let R+ be analytic in the CUC: regions respectively.
Then Eq. (3.3) becomes B': = R+ BR+~! - (PR:) Re~}. Requiring
RB'y = B'- on C, we can show, after some calculation,using the linear
equations,

@ (v-IrR,"1R_¥) = 0, which implies (3.4)

IR, TIR Y = U(),ee0), (3.5)
where U is a group element of the theory and independent of the three

differentiations. 1In general U is still a function of linear combinations of

xaé’ Sz, Eét i:e.,
ae) - 18 x'P) - (e? - éésté); x2¢alt _ iS;xai) - @it ie;x“i);
LIS U 2 B 0 szi; SR LIS NP S szi; and
xli - A—1x2§ - szli + Ax2i. “1.8)

From Eq. (3.5) we obtain R_ = R+?UY‘1 or altermative R4 .= R ¥(1 - U)W‘l,

from which a dispersion relation cam be written.
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d\'

=_A tyw( ! 'y o 1oy
R(A) = 1 - 5= £ o=y RO YE(x') [U(ar) - 11 7H(A"), (3.7a)

where we assume the boundary conditien R(0O) = 1, and that one subtractiom is

needed in the dispersion integral. Using Eq. (3.2), we obtain from Eq. (3.7a)

the integral equation for ¥',

g A dx' Ve . : .
Y (A) = ) - 5= {é o= P TGN - 1] FRADPRO). (3.7b)

These are the R-H transforms. It is well known that R-H transforms have been

very useful in generating new sclutions in many non-linear systems[36-38]. This

is 2 very fascinating prospect for the supersymmetric Yang-Mills fields.

Following the same procedure as for the laft~formulation linear equations,

we cap formulate R-H transform for the right-formulation linear equatiomns,

-1
Sea—1 1 ~1 a(A' o)
271 C,(X'-l)(l'_l - 1.1)

RO hroo o - nytah,

aud

~ - - - - l-l - - -~ -
roh=wah Lo (22 2 varhoah -
cThartath

vl b, ‘ (3.8b)

the boundary conditions here is R(0) = 1,.Y'(0) = ¥(0) at X + =,
Comparing the left-formulation and the right formulatics linear equations,

Eqs. [2.1,2.2], we find the ¥ and ¥ are related by the following relation [49]

¥(A7h) = 3T p(h,ee0), (3.9
where p is an arbitrary function and "e++" denotes those variables of Eq. (3.6),

which are independent of the differentiations in Eqs. (2.2).
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IV. Infinitesimal Reimann-Hilbert Transform and the Affine Algebra of Rac-Moody
Now lets discuss the infinitesimal R-H transform, i.e., U(A',se¢s) -1 =
v(A',»ee) with v(A',*+*) belonging to the algebra. Keeping only the first order

in variation, Eq. (3.7b) becomes

-1 _ A dk' ) T e _1 ]
lsv?(k)]? (1) == 271 £ XI(AI - X) W(k )V(l > ) ¥ (1 ), (4.1&)
Similarly for Eq. (3.8b),‘
ader=lyg a-lo=1y _ A an~t PR T S A S|
[65¥(A D] ¥ (A7) = - 5 | N P Y(A'TT) w(A'Teee) ¥ (AT,
c' -

Take different form of v, v we can obtain different transforms. Using the

appropriate v, v we can obtain the affine Lie algebra of Rac-Moody [23-28],

choosing

v(kl’.oo) = vm(ll) = n(x)tfit . (4.2)
a a
-_c B *
where [ta,tb] = C_t., and n(i) = F(X - Ai)/(k - li),

b
i

une obtains

N A dA’ . ' -1
¥ = = o [ [ ey WD [E £ r 7] | o)

. _ A da' , '

=7 7 { I ) T (AY) Sa(k )} (A, (4.3)

where S;(A") = ¥(A") £ ¥"1(A'). To obtain the algebraic structure of such
variation, we can make another infinitesimal transformation to obtain 535:¥(k)._

After lengthy calculations and manipulations involving contour deformations,

[50,51], we obtain



=15~

n n.m
(d:s - 8383 T(A)

A dx’ mHa ' '
= -5 oo " Y [sa(x ), §,(AN]

A A’ .
-t oo LN oz, S (A1)]
= cib 5:*“ ") , (4.4)

i.e., it is an affine lie algebra of Kac and Moody.
The implications of such infinite dimensional algebra on the physical

systems are yet to be understood.

V. Parametric Bianchi-Biackiund Transformations
Now we derive a two-parameter Bianchi-BY¥ckiund transformatiom (BT). From

the Darboux—type transformation Eq. (3.2), and specifying R in the following

form [48]
R = EL + £(N)J3'"1g, (5.1)
where £ is a constant parameter and £(1) is an arbitrary function of A.

Substituting Eq. (5.1) into Eq. (3.3) we obtain the following BT

trans formations
s 1 -1._s e
f(l)D,(J J) = AEQ D,J - J" "D,J ), (5.2)
-2 -. '_1 = _1-' - ._1_‘ s
A E(X)Dlt(J J) EQ DZtJ J DZtJ ), (5.3)

-1 -2, -l -1, -1
f(x)[alz(J ).+ A all(J J) + A 321(J J)

IR Ut PR 11

- . -1 - o!'T'e =1 -1
E{(gvlzg gV zg ) + MJ 322 23

1
A g0 - g e’ T} EOLG T DT 58 ¢ A e, 5 Th

- (g’Viig‘-l + X-lg'Véig'—l)(J'-lJ)] . (5.4)
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We next restrict oursleves to the self-dual case, i.e., under the additionmal

imposed constraiats {45,46] gvlig‘l = 0, Ali = g—lalig, Azi = h‘lazih. By

reaquiring the constraints Eq. (1.2, 1.10) to be held in the primed quantities,

Eq. (5.4) can be reduced to
iyya upqi=l O TS |
f\k)alz(J J) + £QOX 73 »(d J)

1 1

= -1 T = T° e T! -1 -1 ,' - 1 o T! s
=XE(J 322J J BZZJ ) + X &8I 321J J 321J ) . (5.5)

Now specifying £(A) = A and comparing the same powers in A, we obtain from

Eqs(5.2, 5.3)

DT(J'-IJ) = E(J“ID;J - J'_ID;J'), (5.6a)
pe (37 1) Zlnez pe FT 3 pe T (5.60)
it “ 2t 2t ? -

and Eq. (5.5) yields

ali(J"¥J) = E(J"laziJ - J"lazia'), (5.6¢)
3.2t = ey - 37 0 (5.6d)
11 < 21 21 :

where n = EA}, another free-parameter. Similarly if we choose szig'l = 0,

'=-1- ¢=—1- 3 el .
A12 h Blzh and A21 g 321g and same for the primed qualitites we find that

ﬁecessarily £(A\) = A2, and correspondingly Eqs. (5.6) become

Di(J'—lJ) = ;(J_ID;J - J'—lD;J'), _ -+ (5.7a)
5. (1'7ly) = 215 =15, g | '

ic J) = £EQ DitJ - 3" Dy ), (5.7b)
3 -(J'_lJ) = (J_la s =Ly g

21 = £ 3,57 - 3,501, (5.7¢)
323ty = e ls s 1Tly g

1 =g 1393 alzJ ) (5.7d)
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where Zn = Eg.

Note that these BT transforwations givea by Eqs. (5.7) coincide precisely

with these given in Ref. 16 for the ordinary SDYM fields.

VI. Discussions on the Constraint Equations and Equatiins of Motiom

The main pu-pose of the constraints Eqs. (1.2) are to eliminate fields that
are unphysical, or to make sure that fields in the super dimensions are to be
determined in term§ of fields in the ordima.r space. Witten [39] gave a
geometric descripticn of how these constraint equations come about: let's

considar light like lines in the ordinary space

7%= c% s 2RO, (6.1)

where A% with a = 1, 2 is an arbitrary pair of complex aubers, ™ and 2%'s are

given bat = arbitrary. Translation in the light-like direction 2%%%re

generated by _

p=i A%% 3/ (6.2)

Ia super space, translatioms in light-like directiouns are square roots of D. 1In

fact
- ¢ a8 _ -'-.

T = (1//2) (3% ‘Q”as) (6.3)
gives

Tz = D_ - (6.4)
So we can view '

s s . = —a-

T° = x“na, T, =- x“oas, (6.5)

as the accompanying light lines in the super space.
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Integrability on a line means that the translation operators alang that
line satisfy a commutation relation unmodified in the presence of gauge fields.
Tntegrability along a line in the ordinary space is trivial. But integrabiiity
along a light-like line including the super directions puts restrictions on the

curvature. Integrability along the generalized light-like line means {39],

{r*,1°} = 6 = {5}, [1°.5,} = 280, (6.6)
which is true for arbitrary A%, i&, thus

{DZ,D;} + {Dz + DZ} =0, (6.7a)

{Bés’f’éc} + {Dy, + Dy} = ¢, and (6.7b)

{DZ,B-Bt} = - 25: a/ax“é. (6.7¢)

In the presence of gauge fields, the unalteration of these algebras precisely
gives the constraint equations Egqs. (1.2).

We can see that as the super dimension N increases, the numoer of
constraints increases. It was pointed out by Sohnius [44] and Witten {[39] that
at N = 3, these constraints on curvatures via Bianchi identities actually give
equations of motion [52}. This feature was considered not so desirable due to
the lack of Lagrangian formulatioenm.

However, from our point of view, for the N = 3,4 super-symmetric Yang-Mills
theories, solving these comstraint equatioms might lead to the solutions of the

full supersymmetric N = 3,4 Yang-Mills theories.



=-]19-

YII. OQutlook

Equations of moucion for 4N = 3,4 supersymmetrié Yang-Mills fields are
results of integrable conditions in the generalized light-like directions in
super coordinates. This gives the nope that the theory can be solved using the
integration technique for non-linear systems. %lne important directions to
pursue are: firstly, to see what kind of classical solutions the finite R-H

transforms, acd the BT can provide; secondly, tn study the quantum inverse

scattering for these sysiems, [53].



-20~-

Figure 1. Some Generic Strvuctures of integrable nom-linear systems

LINEAR SYSTEMS 3 » non-local
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’ conservation laws
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Figure Caption: The solid lines indicate developments made for the four
dimensional self-dual Yang-Mills Fields, and for the two dimensional
chiral fields, and the static axially symmetric Einstein equatioms (i.e.,

the Ernst equations). The dashed lines indicate developments wade only
for the latter two dimensional systems.
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