
y
:v.U,—3479

Supersyvmnetric Yang-Mills Fields pP(< 013 v
as an Integrable System and Connections 1 ->-> -

with other Non-linear Systems*

Ling-Lie Chau
Physics Department

Brookhaven National Laboratory, Upton, NY 11973

ABSTRACT

Integrable properties, i.e., existence of linear systems, infinite number

of conservation laws, Reimann-Hilbert transforms, affine Lie algebra of

Kac-Moody, and Bianchi-B'dcklund transformation, are discussed for the constraint

equations of the supersymmetric Yang-Mills fields. For N >_ 3 these constraint

equations give equations of motion of the fields. These equations of motion

reduce to the ordinary Yang-Mills equations as the spinor and scalar fields are

eliminated. These understandings provide, a possible method to solve the full

Yang-Mills equations. Connections with other non-linear systems are also

discussed.
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INTRODUCTION

Beginaing with Maxwell's equations and quantum electrodynamics, and the

recent spectacular success of the electroweak theory ot quantum flavor dynamics

[1,2] gauge theories have become an essential part of physics. It has become

increasingly clear that, besides its mathematical beauty, the Yang-Mills theory

[1,3-5] may provide the key to our understanding of strong interactions. With

the recent experimental observation of gluou jets [6], the ideas of Yang-Mills

gauge theory for strong interactions is brought one step further to reality.

Despite many interesting theoretical and phenomenological observations, like

confinement [7], asymptotic freedom and QCD perturbative studies [8], the

Yang-Mills equations are far from being solved.

In the past fifteen years or so, powerful mathematical tools have been

developed in completely solving many two-dimensional nonlinear differential

equations [9-11]. The characteristics of these incegrable systems are:

existence of linear systems, Bianchi-BMcklund transformations (BT), infinite

number of conversation laws, soliton solutions, and even the construction of

S—matrix [12], It is ,r intention to see whether these powerful techniques can

be applied to solve the Yang-Mills equations.

For the past few years, we have found that amazingly the self-dual

Yang-Mills (SDYM) fields, in the J-formulation, possess many characteristics of

those integrable systems [13-22]. Recently the affine algebra of Kac-Moody has

been found in the SDYM systems [23-25]. It thus provides a beautiful

mathematical system in four dimensions [26-28].

Due to the extreme similarity in appearance between the SDYM equations and

the two dimensional chiral equations [28-35], and the Ernst equations [36], i.e.

the stationary axially symmetric equations of Einstein equations, many fruitful
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results have come about by Investigating both systems hand in hand. Actually

some systematic understandings have be.vsn made.

In Fig. 1 we give a flow chart of some logic links between various

structures of these systems. At the center are the corresponding linear systems

for the original non-linear equations. Their existence implies that the

original non-linear equations are results of the integrability of the set of

linear s>ysterns, or the original non-linear equations are equivalent to some

generalized curvatureleas conditions. Once thi linear systems are obtained,

many developments indicated in Fig. 1 can be made. The developments indicated

by solid lines have been made both for the SDYM equations in four dimensions, as

well as for the two dimensional chiral equations and the Ernst equations. The

dashed lines indicate developments made only for the latter two dimensional

equations. The linear systems are immediately related to the existence of an

infinite number of conservation laws. Also from these linear systems,

parametric Bianchi-Backlund transformations (BT) can be obtained, which are good

for generating new solutions (global properties have to be imposed in

addition). These BT were originally obtained purely based upon guess work. Now

we can show that they are generated by the so called Darboux transformations,

which is a special form of the Riemann-Hilbert transforms. From the parameters

in the BT, infinite number of local conservation laws can be obtained [30,31].

For the chiral model in two dimensions, we can further show that the linear

systems can be derived from the BT via the Riccati equations, [28]. This

indicates that the parametric BT given in [30] for the chiral field is probably

the most general one, and it is as fundamental as the linear systems, and thus

as the original non-linear systems. So far, such development has not been done

for the BT [16] of the four dimensional Yang-Mills equations.
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To generate new solutions from the linear systems, for the original

non-linear systems, is first to generate new solutions to the linear systems,

and then via the inverse scattering method to obtain the corresponding new

solutions to the original non-linear system. The matrix Reimann-Hilbert (R-H)

transforms [37] provide such a method. It is also a way in which the original

problem of solving differential equations in the coordinate space being

transformed into solving integral equations in the spectrum space. Such methods

have been very useful in obtaining many new solutions to the static, axially

symmetric Einstein equations, i.e., the Ernst equations [36]. Actually it was

shown that all solutions with proper boundary conditions cam be obtained via the

R-H transform, which was called the Gerosch conjecture [38]. From the finite

R-H transforms, the infinitesimal R-H transforms can be derived. We then can

show that the algebra structure satisfied by these infinitesimal R-H transforms

are of the K.ac-Moody type, [23-25,27,28], This has been the main topic of this

workshop. Very interestingly, Dr. Friedan at this workshop has pointed out the

link between the values of the central extensions to various two dimensional

models in statistical mechanics. However, so far there is no central extensions

of the Kac-Moody algebra have been found in .many of the non-linear systems,

e.g., Sine-Gordon, chiral, and self-dual Yaiig-Mills. The physical implications

of the Kac-Moody algebra for these systems are yet to be understood.

Now we shall motivate how to solve differential equations on curvatures via

solviug algebraic equations on curvatures. For example, the self-dual, and

anti-self-dual Yang-Mills equations are a set of algebraic constraint relations

on the curavatures FyV, i.e.,

F = ± \ e . F = ± *F . (1)
yv 2 yvy5 yv K '

Under these constraints, Lhe Bianchi identities

® y *Fuv = 0 , (2)
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become Che equation of motion

2>u P = 0 . (3)
uv

Therefore, solving tha self-dual and anti-self-dual equations, Eq. (1), can be

viewed as a way of finding some special solutions of the Yang-Hills equations,

Eq. (3). It was suggested by Witten [39], and by Isenberg, Yasskin, and Green

[40] that such concept and procedure can be generalized to more general

solutions (even hopefully to all solutions) of the full Yang-Mills equations.

It was demonstrated that, formulated in complex d =• 8 dimensions, or real d =• 4

plus N 2. 3 super dimensions, certain algebraic constraint equations do lead to

Yang-Mills equations via the Bianchi identities. Recently, it has been shown

that these constraints equation process many of the integrable properties. Here

we shall concentrate on the discussions of supersymmetric Yang-Hills equations..

The super symmetric Yang-Mills fields [42] formulated in the coordinate

x = (x , 8°, 0 ) where a, S = 1,2; s,t • 1.2, •••!!, have in general six types

of curvatures F ^ , F"J, F-^-,., F^", F ^ , F ^ . To eliminate the extra

curvatures due to the introduction of super coordinates, constraints [39,42-44]

were introduced onto those curvatures involving only the super coordinates,

s t s
i.e., F g, F» v , F t . Interestingly for H >_ 3 supersymmetric Yang-Mills

fields, these constraints can put the theory on shell [39,44] i.e., these

constraints via the Bi.inchi identities lead to equations of motion. Recently it

has been showr by Volovich [45] that to these constraint equations linear

systems can be introduced. And it has been demonstrated by Devchand [46] that

many of the formulations [27,28] developed for the self dual Yang-Mills system

as an integrable system can also be made for these systems, e.g., infinite

number of conservation laws, the existence of affine Lie algebra of Kac-Moody.
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With Ge and Popowicz [47], we developed further the integrability

properties of supersymmetric Yang-Mills equations. We have constructed the

Riemann-Hilbert transforms, the infinitesimal forms of which precisely give the

affine Lie Algebra of Kac-Moody. From the linear systems, a two-parameter

Bianchi-BScklund (BT) transformation can also be constructed. In the special

(anti) self-dual cases, the BT transfomations involving only the ordinary

coordinate become those obtained in Ref. 16.

These new developments give the hope that the full Tang-Mills equations

can be solved via the supersymetric way .

I. Formulation of Supersymmetric Yang-Mills Fields and the Constraint

Equations

• a m

The superspace coordinates are given by x = (x , 9 , 9 ) = ( x , 6 , 9 ) ,
s s

where x , u = 0,1,2,3, is the ordinary space coordinate which can also be

described as x = x <3 . The B , 9 are the super coordinates, with

s,t = 1,2,«»*N, characterizing the dimensions of supersymmetry. Corresponding

to these coordinates there are three types of derivatives:

with their algebraic rules

The covariant derivatives are

V H 3 + A , or V • = 3 • + A •: 7s = DS + AS: V* = 5 • + A*
U y V a3 aB a0' 3 a o' fit Bt Bt

The curvatures are
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f7 7 1 =» F • fvS 7̂ 1 = FSt« (v» 7« \ =» F« • •

fv 7s! = T 3. fv 7. 1 = p , . fvS !• I = FS • - 2iSS7 •• (1 1)1 V V ua' V BtJ w.Bt* t f v g t f a,0t * t a8' V iy

note Chat FS ̂  * D^Ai_ + 5» A^ + (A^,AV } + 2i6^A s. Usually to get rid of

the super compcaeats of the curvature, constraints are put on the three types of

curvatures that involves only the super components:

FS» + F»C = 0; F» s + F* S =" 0: Fs « =• 0. (1.2)

It was noted by Volovich [45] and Devchand [46] that very similar to the

self-dual Yang-Mills (SDYM) case, some of these curvatureless equations,

F « 0 = FS • •?• • = 0 = F» • • F S • =• 0 = FS • (1 3")
fll C *22' ^ls.lt *2s,2f rl,lt U ^2,2tJ Vi*J''

can be integrated by the following form of the potentials

Aj = g^Djg; Ajt = g ' ^ g ; A^ = h^D^h; A»t = h ' ^ h . (1.4)

Similarly, by defining a J matrix,

J s hg"1 , (1.5)

in terms of which the curvatures become:

F12 " B'MDjO^D^Jg. (1.6a)

Fl,2t

Then the unintegrated constraints on curvatures,

FS12 + F S = °; Fis,2t + Fit,2s = ° ' F1,2C
 = ° = F 2 , i f
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give equations on J

D ^ j ' ^ J ) + D J U ^ D J J ) = 0, (1.8a)

° i s ( J ' 1 °2 t J ) + °'lt (J~1°2sJ) = ° ' (1.8b)

D l ( J " 1 °2t J ) + 6 t2 i s V12S"1 = ° ' (1>8C)

l g 2 1 g ~ 1 = ° ' ( 1 # 8 d )

In thesa equations J appears on the left of DJ. We call them the left-

formulation.

Another formulation i s :

F12 =
 ^ { ^ ( J D J J " 1 ) } * , (1.9a)

FISl2t " b " 1 t 5 5 " 1 }

Fl,2t = ^ ^ 2

The unintegrated constraints, Eq. (1.7), on these curvatures, give the

right-equation on J:

D^JDjj"1) + D^JD^j"1) = 0, (1.10a)

D-s(JD-tJ~
1) + ̂ (JDj^jf1) « 0, (1.10b)

1 h~1 = 0, (1.10c)

j ^ ^ 2 j h " 1 = 0. (1.10c)

This is what we call the right-formulation.
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II. Linear System to the Constraint Equations •«-»• Infinite Number of
Conservation Equations

To these equations on J, Eqs. (1.3), a set of linear systems can be

constructed [45,46]

L3(X)?(X) = (D* + XD3 + Xj^DjJ) ?(X) = 0, (2.1a)

Mt(X)?(X) = (5jt + J^D^J + *~25jt) 7(X) = 0, (2.1b)

N(X)7(X) = {(3 • + gV jg"1) + X(3 • + J-13,5J)

— 1 -2 iz ) + X ̂ 3,fl ?(X) = 0.

The integrability conditions of thesa linear equations give equations on J,

Eqs. (1.8): {L8,!^} - 0, implies Eq. (1.8a); (Mg,Mc} • 0 gives Eq.

(1.8b); and {Ls,Mt} = - 2i5 N gives the last two equations, Eqs. (1.8 c,d)

according to two different powers of X.

The L'ip.ht-formulation for the linear equation can be obtained in the

following way: multiplying Eqs. (2.1) with J on the l<=ft hand side and replacing

f by J~*J¥, after simple manipulations we obtain

3» + * D° + X JDSJ ) ¥(X ) = 0, (2.2a)

X D* + D« + ji>itJ~ ) ?(X~ ) = 0, (2.2b)

12 + ^ l i ^ + X 2 322 + X" 1 ( 3li + ^ l i * 7 " ^

+ 3 • + h7o«h" } ?(X ) = 0. (2.2c)
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One can show that the equations (1.10) are in tegrab i l i ty consequence of

Eqs. (2 .2 ) , i . e . , {L^L 1 1 } = 0, {M ,M } = 0, and {LS ,M } = - 2i6^N,

We now construct in f in i t e numbers of conservation laws. Note that Eqs.

(1.8 a sb) can be solved in terms of two functions x ' D , x'^) t defir.^3 by

T~*T»ST = nsy (1 3A}

j * ^ . J = 5* X ~ . (2.3b)

Then an infinite number of X's can be generated iteratively in the following

way: define X^n' by

D*X(n) = [D* + J^D^J] X(n-1}, (2.4a)

5. X ( n ) = [Ds *J~% J] X(n"2). (2.4b)
Is 2s 2s

Note that we define X = 1 . It is easy to show that such defined D^X ,

D» X " satisfy the continuity-like equation, Eqs. (1.8 a,b).

Following the procedure given in Ref. [18], i.e., multiplying Eq. (2.4 a,b)

by Xn, X being an arbitrary complex number, summing n = 0 to °°, and defining

T = I XnX(n), (2.5)

we obtain the linear equations (2.1 a,b). Furthermore, one can show that the

relation Eqs. (2.3 a,b) solve all Eqs. (1.8 a-d) if ¥ satisfies Eq. (2.1c).
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Similarly for the right-formulation we have

JI^J = D2X , (2.6a)

JD^J"1 = D . t X
( 2 ) , (2.6b)

and

Dfx = (Dj + JD Ĵ ) X , (2.7a)

multiplying Eqs. (2.7) by Xn and summing, and defining

\ (2.8)

we obtain the linear systems of Eqs. (2.2 a,b), and Eqs. (1.10 a-d) are solved

by (2.6 a,b) if ¥ satisfies Eq. (2.2c).

Note that these linear equations are given by Devrhand [46], which are

related to those first obtained by Volovich [45] by rewriting the linear

equation for a gauge transformed wave function TJ» = gf. This situation is very

similar to that in the self-dual Yang-Mills field [21,22].

III. Finite Reimann-Hilbert Transforms

Now we construct the Riemann—Hilbert transform (R-H) for these linear

equations, which can all be abstractly written in the following form

0 , (3.1)

s s —2— —where 2) denotes the differenciations in Eqs. (2.1): D. + XD , X D* + Dj ,

- 2 "1
or
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J5B can denote rejpectively their corresponding potential terms in Eqs. (2.1),

A-T^J, J~1D«cJ, or gV^g~ + Xj'^^-J + X~ gV2?g~ . First note that if a new

solution ¥' can be constructed from a given solution 4f by a Darboux-type

transformation [48]

a new potential is generated through

ml = R55R-1 - (SIR) R-1. (2.3)

Now consider a contour C in the complex X-plane dividing the plane into two

regions C+ and C_. Let R+ be analytic in the CUC+ regions respectively.

Then Eq. (3.3) becomes 3B'± = R± 3B R+"1 - (SR+) R+"1. Requiring

SB'+ = BB%— on C, we can show, aftir some calculation,using the linear

equations,

2> (1P"lR+~1R_1?) = 0, which implies (3.4)

1T1R+-
1RL¥ = U(X,.»«), (3.5)

where U is a group element of the theory and independent of the three

differentiations. In general U is still a function of linear combinations of

x o g , e ° , e 5 t i . e . ,

X(fll - i9. x1§) - (62 - 9. x2g); X"2(92t - i a ^ 2 ) - (9Ifc - ifA);
s ps s ps ct a

12 . - 1 22 . 2 11 . 2 1 12 , - 1 2 2 . 2 11 . 2 1 .
x - A x + A x - X x ; x + X x - X x - X x ; a n d

12 . - 1 22 . 2 l l . 2 1 . . , .

x - X x - X x + X x . n . 6 )

From Eq. (3.5) we obtain R_ = R+TOT*1 or alternative R+ £_ = R+Vd - U;Y~L,

from which a dispersion relation can be written.
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R(X) - 1 - ~ / x > < y . x) K(VmV) [U(X') - I] f-^X'), (3.7a)

where we assume the boundary condition R(0) ~ 1, and that one subtraction is

seeded in the dispersion integral. Using Eq. (3.2), we obtain from Eq. (3.7a)

the integral equation for ?',

^ { ' \') [uu1) - i] r-kx^jYU). (3.7b)

These are the R-H transforms. It is well known that R-H transforms have been

very useful in generating new solutions in many non-linear systems[36-38]. This

is a very fascinating prospect for the supersymmetric Yang-Mills fields.

Following the same procedure as for the left-formulation linear equations,

we can formulate R-H transform for the right-formulation linear equations,

RU"1) - i - J L U " 1 ) / .d(X' .} r-R(X'~l)»(Xl"1)tB(X1"1) - llf'^X'"1),
2111

 c,(X'"
1)(x-"1 - x"1)

and

JL (x) { / — _
(xl"1)(x1'1 - x"1)

} r ) I (3.8b)

the boundary conditions here is R(0) •» 1, ¥*(0) » ?(0) at X •»•<».

Comparing the left-formulation and the right formulation linear equations,
A

Eqs. [2.1,2.2], we find the ¥ and Y are related by the following relation [49]

Y U " 1 ) = J7(X) p(X,.-.), (3.9)

where p is an arbitrary function and "•••" denotes those variables of Eq. (3.6),

which are independent of the differentiations in Eqs. (2.2).
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IV. Infinitesimal Reiraann-Hilbert Transform and the Affine Algebra of Kac-Moody

Now lets discuss the infinitesimal R-H transform, i.e., U(X',»»«) - 1 =

v(X',»«») with v(X',*««) belonging to the algebra. Keeping only the first order

in variation, Eq. (3.7b) becomes

Uv?(X)]?~
1(X) = - 2ii J X'(X^'~ x) T(X')v(W«.) ^ ( X

1 ) , (4.1a)

Similarly for Eq. (3.8b),

[S*Y(X X)J f X(X X) = - -A- / -5±_- -• *(x« x) V(X' S — ) f X(X« X) ,

v
 n.̂ ' (V

1 - x x)

Take different form of v, v we can obtain different transforms. Using the

appropriate v5 v we can obtaiu the affine Lie algebra of Kac-Moody [23-28],

choosing

VU\...) = V™(X') = n(X)mt , (4.2)
a a.

where [t ,c ]"= CC t , and n(X) = n(X - X. )/(X - X?)5

i

one obtains

AX') Sa(X')} T(X) . (4.3)

where Sa(X') = ¥(X") ta¥"
1(Xl). To obtain the algebraic structure of such

variation, we can make another infinitesimal transformation to obtain 6?6m'F(X)

b a

After lengthy calculations and manipulations involving contour deformations,

[50,51], we obtain
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X
2iri

-), sb(x')]

c 5
ab c

i.e., it is an affine lie algebra of Kac and Moody.

The implications of such infinite dimensional algebra on the physical

systems are yet to be understood.

V. ?arametric Bianchi-B3cklund Transformations

How we derive a two-parameter Bianchi-B£ckiund transformation (BT). From

the Darboux-type transformation Eq. (3.2), and specifying ft in the following

form [48]

R - 61. +- f(X)J-1J, (5.1)

where 5 is a constant parameter and f(X) is an arbitrary function of X.

Substituting Eq. (5.1) into Eq. (3.3) we obtain the following BT

transformations

f(\)Dj(J'"1J) = X6(j"1Djj - J ' ^ D J J ' ) , (5.2)

X"2f(X)5jt(J'"
1J) - ^ ( J ' ^ J - J'^D^J1) , (5.-3)

f(X)[31-(J
f"1J).+ X^aj-Cj'"1!) + X"132'(J'"

1J)

- ^{(gv^g"1 - g'v-.g'"1) + ^ - ^

+ X"1(gV2jg"
1 •- g'V^-g'"1)}

- (g-'V'jg'"1 + X"1g'V2.g'"
1)(J1"1J)] . (5.4)
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We next restrict oursleves to the self-dual case, i.e., under the additional

imposed constraints [45,46] S ^ S " 1 = °» AiJ = 8~l3i2g> A21 = h ~ l 3
2 i

h - B?

reauiring the constraints Eq. (1.2, 1.10) to be held in the primed quantities,

Eq. (5.4) can be reduced to

(5.5)

Now specifying f(X) = X and comparing the same powers in X, we obtain from

Eqs(5.2, 5.3)

j p j ) , (5.6a)

Dlt ( j T J ) " l n ( J D2t 5 1" J' D 2 t ^ ' (5-6b)

and Eq. (5.5) yields

( " l ^ ^ J " J'^a^J 1), (5.6c)

ji 2£J- J'"
132-J

1) (5.6d)

where n = E,X , another free-parameter. Similarly if we choose gV "g"1 = 0,

A.* = h~ 3 «h and A • = g~ S^rg and same for the primed qualitites we find that

necessarily f(X) = X , and correspondingly Eqs. (5.6) become

1 ) , (5.7a)

- J'^D^J'), (5.7b)

" J'"l322*Jl)> ( 5' 7 c )

~ J1"^!^") (5.7d)
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where CH = 5".

Note that thesa BT transformations given by Eqs. (5.7) coincide precisely

with those given in Ref. 16 for the ordinary SDYM fields.

VI. Discussions on the Constraint Equations and Equati>ns of Motion

The main pu-pose of the constraints Eqs. (1.2) are to eliminate fields that

are unphysical, or to make sure that fields in the super dimensions are to be

determined in terms of fields in the ordin£.<_7 space. WitCen [39] gave a

geometric description of how these COLJtraint equations come about: let's

consider light like lines in the ordinary space

• • •
x = C + t X X , (6.1)

where X with a • 1, 2 is an arbitrary pair of complex numbers, c and Xa*s are

given but 1 arbitrary. Translation in the light-like direction X X are

generated by

D - i xax° a/ax0". (6.2)

la super space, translations in light-like directions are square roots of D. In

fact

T S C1//2) (xV - Xa5.a) (6.3)

gives

T 2 - D. - (6.4)

So we can view

as the accompanying light lines in the super space.
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Integrability on a line means that the translation operators along that

line satisfy a commutation relation unmodified in the presence of gauge fields.

Integrability along a line in the ordinary space is trivial. But integrability

along a light-like line including the super directions puts restrictions on the

curvature. Integrability along the generalized light-like line means [39],

{T8,^} = G = {Ts,Tc}, {T8,^} = 26jD, (6.6)

which is true for arbitrary X , X , thus

{DJ.DJ} + {Dj; + D*} = 0, (6.7a)

I 5 5 ^ 5 J = °' aod C6-7b)

to»Stl l - (6-7c)

In the presence of gauge fields, the unalteration of these algebras precisely

gives the constraint equations Eqs. (1.2).

We can see that as the super dimension N increases, the numoer of

constraints increases. It was pointed out by Sohnius [44] and Witten [39] that

at N = 3, these constraints on curvatures via Bianchi identities actually give

equations of motion [52]. This feature was considered not so desirable due to

the lack of Lagrangian formulation.

However, from our point of view, for the N = 3,4 super-symmetric Yang-Mills

theories, solving these constraint equations might lead to the solutions of the

full supersymmetric N = 3,4 Yang-Mills theories.
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. Outlook

Equations of motion for li = 3,4 supersymmetric Yang-Mills fields are

results of integr&ble conditions in the generalized light-like directions in

super coordinates. This gives the hope that the theory can be solved using the

integration technique for non-linear systems. Tne important directions to

pursue are: firstly, to see what kind of classical solutions the finite R-H

transforms, and the BT can provide; secondly, to study the quantum inverse

scattering for these systems, [53].
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Figure 1. Some Generic FLructures of integrable non-linear systems
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Figure Caption: The solid lines indicate developments made for the four
dimensional self-dual Yang-Mills Fields, and for the two dimensional
chiral fields, and the static axially symmetric Einstein equations (i.e.
the Ernst equations). The dashed lines indicate developments oade only
for the latter two dimensional systems.
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