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Abstract OSTI

We describe a theoretical model to study the transmission of relativis-
tic H™ jons through thin carbon foils. Our approach is based on a Monte
Carlo solution of the Langevin equation describing electronic excitations of
the atoms during the transport through the foil. Calculations for the subshell
populations of outgoing hydrogen atoms are found to be in good agreement
with recent experimental data on an absolute scale and show that there exists
a propensity for populating extreme Stark states.
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I. INTRODUCTION

The reference design of next-generation spallation neutron sources (SNSs) features an H-
- beam in the form of macropulses accelerated to ~ 1 GeV in a linear accelerator (LINAC),
which is stripped to bare protons by transmission ‘through a thin foil and injected into and
stored in an accumulator ring [1,2]. Filling the ring leads to compression of the pulse which
after a few hundred revolutions is dumped into the spallation target. The effective conversion
of H™ to H* and the underlying beam-foil interaction at the point of injection is a crucial
element for the design of high-intensity SNSs. Since the thickness of the foil should be as
small as possible to avoid excessive degradation of the beam by angular straggling, stripping
to H* is incomplete and results in a fraction of outgoing H° atoms. Neutral hydrogen exits
‘the foil in excited states which then get stripped by the strong magnetic field in the first
bending magnet. The resulting protons collide with walls and magnets leading to high levels
of radioactivity along the beam line. For envisioned high intensity SNSs in the IMW range,
suppression of this activation is essential and any strategy to control it requires a detailed
study of the excited-state distribution of the neutral fraction.

We have recently started a research effort directed towards developing realistic classical
and quantum mechanical transport simulations for the conditions that are encountered in
current designs of SNSs [3,4]. A complementary experimental effort has been pursued at
the Los Alamos meson factory (LAMPF) [5-7]. These include investigating effects on the
stripping process due to relativistic excitations and magnetic fields as well as the relative
subshell populations of excited states of hydrogen upon foil exit. In this work we briefly

describe our approach and we present some recent results. Atomic units are used throughout.

II. THEORY

The theoretical method used in the present paper has been extensively described else-

where [8,3,4]. We therefore restrict ourselves to a brief summary. Qur transport theory




reduces the complex problem of H™(1s,1s’)-solid interaction to two major steps. First, the
weakly bound ”outer” 1s’ electron is collisionally detached. Secondly, the resulting H atom
propagates through the solid experienci.ng multiple collisions.

The probability for destruction of H™ as a function of the foil thickness z is given by
Py-(z) = e~*/*p, where the inverse mean free path (IMFP) for collisional single-electron
detachment of H™, AZ', is approximately given by the total IMFP of free electrons [3).
The sudden collisional removal of the outermost electron leads to a redistribution (shake-
up) of the inner electron of H~ among hydrogenic states. Using the generalized shake-up
approximation and the 20-parameter H™ wavefunction of Hart and Herzberg [9], it is found
that predominantly H(1s) and H(2s) become populated [3] (about 90% in the 1s state).
The probability for destruction of H™ and the probabilities for shake-up into individual
hydrogenic states provide the source strength per unit path length for populating a given
H(ns) state entering the transport simulation. |

Having generated an initial H(ns) state after collisional detachment and shake-up, the
evolution of the hydrogenic electron in the rest frame of the proton is governed by a non-

relativistic Hamiltonian

NS,

— 7 E(2), (2.1)
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where 7 and ' are the position and momentum vectors of the electron and H,; is the atomic
Hamiltonian. The energy and angular straggling of the proton are very small and have a
negligible effect on the dynamics of the electron. Thus, the proton is assumed to Imove on a
straight line at constant relativistic velocity, v, (we use primes to denote laboratory frame
variables).

The Newton eqﬁation associated with the Hamiltonian in Eq. 2.1 has the form of a
stochastic Langevin equation. The stochastic force f’c(t) represents the interaction of the

electron with the solid and is given by a sequence of impulsive momentum transfers (”kicks”)

F(t) =Y 30 Aprot— 1) (2.2)




where o denotes the different types of elastic and inelastic collisions suffered by the electron.
Elastic collisions represent elastic scattering of the electron at the screened heavy nuclei in
‘the solid. Inelastic collisions consist of single-particle-single-hole and collective excitations
of electrons in the foil. Both the destruction of H~ and the excitation and ionization of
H in subsequent elastic and inelastic collisions are evaluated in linear response theory, or
equivalently, in the Born approximation for a quasi-free electron propagating at relativistic
velocities through the solid. However, all collisions take place in the Coulomb field of the
projectile and, therefore, we treat the time evolution non-perturbatively.

The probability distributions of impulsive momentum transfers and flight times,
(B7, Atg) , between "kicks” are determined from the relativistic differential inverse mean free
paths (DIMFPs) for free electrons [3]. Elastic momentum transfers are calculated from the
differential elastic cross section for the scattering of electrons at the target cores. Inelastic
momentum transfers are obtained from a realistic dielectric function of the foil as a function
of the frequency and wavevector [10]. We consider both longitudinal (non-relativistic) and
transverse (relativistic) excitations [11,12]. Figure 1 shows the mean free paths associated
with the different collisional processes.. While stopping powers increase with energy in the
relativistic regime, the mean free paths saturate at large energies. This is due to the fact
IMFPs are the zeroth moment < E® > of the energy transfer whereas the stopping power is
the first moment < E' >, which places a larger weight on large energy transfers. Since pop-
ulation fractions are more directly related to the IMFPs rather than to the average energy
transfers, the saturation of the MFPs implies a similar result for the population fractions
of the transmitted beam. The main relativistic effect in our calculations is associated with
transverse electromagnetic excitations. The mean free path for these excitations decreases
for increasing velocity and this process becomes increasingly important. For carbon foils,
however, Fig.1 indicates that collisional processes are dominated by longitudinal excitations
and elastic scattering. Inelastic longitudinal collisions have the shortest mean free path while

elastic collisions have the largest momentum transfers among the scattering processes.




III. CLASSICAL TRANSPORT

The time evolution of the électronic state of the hydrogen atom can be studied using
a classical trajectory approach. Within this approximation, the quantum wavefunction is
replaced by a classical probability density in phase space, f(7,7,t) which initially mimics
the quantum state after shakeup. Formally, the time evolution of this density is governed
by the classical Liouville equation for the Hamiltonian H(¢) in Eq. 2.1. Since classical phase
space points evolve in time independently according to Hamilton’s equations, the Liouville
equation can be easily solved using a Monte Carlo technique. The resulting method is
usually referred to as the classical trajectory Monte Carlo (CTMC) approach [13].

The fraction of hydrogen atoms exiting the foil is directly given by the fraction of electron
trajectories for which the electron has a negative binding energy with respect to the proton.
The final substate distribution of outgoing atoms are obtained from the final distribution
of classical actions which are directly related to the quantum numbers. For example, the
parabolic quantum numbers n, k, m (principal, Stark, and magnetic) are associated with the
actions ne = 1/v/=2Haz, k. = nc* A,, and m. = L, (see e.g. [14]), where L = 7 x 7 is
the angular momentum and A = Fx L — 7is the Runge-Lenz vector. The continuous
distribution of final actions after exiting the foil can be mapped onto quantum states by
binning these classical actions around their corresponding quantum numbers (see e.g. [15]).

Figure 2 illustrates the behavior of calculated charge state and population fractions of
n-shells of hydrogen as a function of the foil thickness. For a beam energy of 800 MeV the
calculations are in good agreement with experimeﬁtal data of Gulley et al [6] on an absolute
scale. The figure shows that the foil thickness at which the populations of H(n = 1,2)
maximize is very different from the ones for H(n > 3), indicating the existence of different
production mechanisms. While shake-up plays a very important role in the population of
the.n = 1,2 shells, n > 3 shells are predominantly populated through multiple collisions.
An average of eight collisions are involved for the largest foil thickness in the figure. The

present calculations are slightly different from previous ones [3] which were fortuitously



in better agreement with experiment. The reason for this discrepancy is that our previous
random momentum transfer sampler was overestimating the fraction of large energy transfers
delivered to the electron.

The time-dependent subshell populations of excited hydrogenic states generated during
propagation of the hydrogen atom through the foil probe the relative contributions of elastic
and inelastic momentum transfer as well as their absolute values and direction and allow
to the identification of propensity rules favoring certain values of the quantum numbers.
Recently, Keating et al. [7] have experimentally determined the subshell distributions of
hydrogen atoms resulting from the transmission of 800 MeV H~ ions through foils of various
thicknesses. The subshell distributions were determined using an additional downstream
transverse magnetic field B’. The direction of the corresponding motional electric field
E = % (v-;/c) X Bliay (where Y = 1/4/1— (v, /c)?) is perpendicular to the beam axis and
defines the quantization axis used in the following to classify the states.

Fig. 3(a) displays a comparison between our calculations and the measurements of
Keating et al [7] for the outgoing m-distributions (summed over k) in the n = 4 shell. The
agreement between theory and experinhlent is very good and both reveal that the m = 0 pop-
ulation is drastically enhanced compared to a statistical distribution (the statistical weight
ofm=0,1,2,3is 0.25, 0.375, 0.25, and 0.125, respectively). For small foil thicknesses, the
propensity for populating m = 0 states is primarily driven by the shake-up process following
the single-electron detachment of H-. Remarkably, the propensity for populating m = 0
states extends to all foil thicknesses and, additionally, the population fractions are nearly
independent of the foil thickness. This propensity is a consequence of the direction of the
typical momentum transfers involved in the transport process: for high-velocity collisions,
both elastic and inelastic momentum transfers are nearly perpendicular to the beam axis.

The propensity for populating m = 0 states is related to the fact that the direction of the
momentum transfers gi&es rise to a propensity to create Stark states whose spatial probability
densities have the largest polarization perpendicular to the beam axis. Within each Stark

n-manifold, the most oriented states correspond the extreme m = 0 Stark states. The
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population fractions of the various |nkm) Stark states within a given n-manifold obtained
theoretically and experimentally [7] are in agreement with this pi(.:ture. As an example, Fig.
3(b) shows the relative probability within the n = 4 m = 0 subshell for populating Stark
states with electric quantum number k = —3,—2,2,3. Both experiment [7] and theory
reveal population propensity of the extreme Stark states (large-k-states) |4 —30) and |430)
by about 50 % compared to the |4-20) and |420) states, in accordance with the dominance of
transverse momentum transfers. As no external magnetic field is present d:iring transport,
the population of states with the same absolute electric quantum number -hould be equal.
Small deviations from this rule are a measure of the statistical error of .thu calculations or

the experimental uncertainties.

IV. QUANTUM TRANSPORT

Despite its apparent simplicity, a quantum calculation for the evoluticn of an electron
described by the Hamiltonian in Eq. 2.1 is a formidable task in view of th= large number of
bound and continuum states that become populated for the momenta typically transferred
to the electron. Thus far, the evolution of the electron in realistic ion-sclid collisions has
only been evaluated within the framework of classical dynamics. However, a fraction of the
collisions suffered by the electron involve small momentum transfers fo:* which excitation
and ionization become classically suppressed [16]. We have recently und . taken the task of
the developing a quantum transport scheme to address this problem [17,.8].

Formally, if U(t,,t,) denotes the evolution operator that evolves the st ate of the electron
|¥(t)) from an instant of time ¢, just before the n‘h kick to an instant of *ime tn just before

the n*h kick (i. e. |¥(tw)) = U(tw,tn)|¥(t,)), then

n-1
U(tn,to) = H U(ti, te) (4.1)
k=0
Ultign, te) = ¢~ Mot Chra=te) o705 (4.2)

Thus, the calculation of the evolution of the electron is reduced to the evaluation of the
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free evolution, exp[—iHa; (bry1 — tr)], and boost, exp(i - Ap), operators. An explicit
matrix representation of Eq. 4.2 can be found by expanding the wavefunction in a complete

orthonorrral basis set composed of states |n),

[W(ter)) = 3 In) (nlem s Con=li) (ilei ™57 (0 80)) (4.3)

nSZYJ

In practice, only a finite basis set can be used. Since the evolution operator in Eq.
4.2 couples states of the complete Hilbert space, a finite dimensional representation of this
operator is. in general, not unitary. In other words, if a finite basis set {In)} is used, the norm
of the wavefunction is not preserved. The amount of probability lost in this non-unitary
calculation gives the probability flux to states outside the basis set. Matrix elements of the
boost operator can be easily evaluated since they correspond to standard collisional form
factors. In turn, an accurate non-unitary representation of the free evolution requires a more
elaborate trcatment such as the the complex dilatation method [19]. Because this approach
neglects "back coupling” from states outside the basis into the finite basis set, the basis set
must be large enough such that it becomes negligible (typically, convergence can be found
using of the order of a thousand Sturmian pseudostates).

We have performed various tests in which the momenta transferred to the electron are
kept constant but the time between kicks is randomly distributed. We have found that
the amount of classically suppressed processes is reduced compared to the case of a single
collision. This is due to the fact that some of these processes become classically allowed
by the accumulation of energy and momentum transfers in multiple collisions. Work is
underway to compare classical and quantum transport calculations for the full stripping

process.
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Figure captions

e Fig. 1: Total mean free path and mean free paths for elastic, inelastic longitudinal,

and inelastic transverse collision as a function of beam energy in GeV.

e Fig. 2: Fraction of H™, and H(n = 1,2,3,4) as a function of foil thickness for a beam

energy of 0.8 GeV. The symbols correspond to the experimental data of Gulley et al
[6].

e Fig. 3: Substate distributions in the n = 4-shell as a function of the foil thickness
for a beam energy of 0.8GeV: (a) present calculations (lines) and experimental data
of Keating et al. [7] (symbols) for the relative m-distribution. (b) present calculations
(small symbols connected with lines) and experimental data of Keating et al. [7] (large
for the population of the m = 0 Stark-states with electric quantum number k =

-3,-1,1,3.
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