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ABSTRACT

Modern software development methods combined
with key generalizations of standard computational
algorithms enable the development of a new class of
electromagnetic modeling tools. This paper describes
current and anticipated capabilities of a frequency
domain modeling code, EIGER, which has an
extremely wide range of applicability. In addition,
software implementation methods and high
performance computing issues are discussed.

INTRODUCTION

Recent advances in software development methods
have given birth to a new era for generating scientific
analysis tools. The object oriented (O0) design
methods that have been widely used in other software
disciplines are the subject of extensive research by the
scientific community. This represents a fundamental
shift from the familiar procedural methods that previous
scientific codes employ. The crux issues for object
oriented development entail identifying and abstracting
commonality between apparently dissimilar algorithms
and methods. This commonality is collected into a class
of objects that share data attributes and methods. This is
in contrast to procedural methods where specialized
algorithms are implemented for each specific analysis
case. There are often fundamental trade-offs between
the generality and flexibility associated with the 00
methods and the efficiency associated with the standard
procedural methods. These trade-offs will continue to
be the subject of research by the community for years to
come.

In addition to the computer science aspects
associated with OO development, a number of
generalizations and unifications of concepts used in
standard computational algorithms have been
developed over the last few years. For example, unified
representations for higher order curvilinear elements of
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various shapes and dimensionality have appeared, as
well as similar forms for bases representing the vector
fields defined on these elements. These bases have
robust computational properties in both integral and
partial differential equation formulations. Unified
representations for mixed potential forms of Green's
functions also exist, as do standard methods for
handling their singular kernels. Combining these
compact representations with object oriented software
development methods means that it is now possible to
develop very flexible general-purpose software for
electromagnetic modeling. This paper describes one
such computational environment currently under
development. The code, EIGER (Electromagnetic
Interactions GEneRalized), will handle a variety of
elements---line segments, triangles, quadrilaterals,
tetrahedrals, prisms, and bricks---in both integral and
partial differential equation formulations. The
following sections describe different modeling features,
which have been or will be included.

GEOMETRY REPRESENTATION

The EIGER physics kernel assumes that a
geometrical description of a problem to be modeled is
created by appropriate CAD mesh-generating software.
The geometries from the mesh generator are combined
with simulation specific information to produce an
EIGER input file by a pre-processor that has data
structures that are parallel to the physics kernel. The
pre-pracessor can currently read a dozen different input
formats for computation. The code suite uses a common
representation for elements independent of
dimensionality (2D or 3D) and order (linear, quadratic,
etc.).

Convenient representations for the line segment,
triangle, quadrilateral, tetrahedral, prism, and brick
elements used in EIGER employ the Lagrange
interpolation scheme
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
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cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.
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where i = (i1,iy,...,i,) is a multi-index designating
both the order and locations of interpolation points on
curvilinear elements, and §=(&y, &,,..., &,) isa
multi-vector of normalized coordinates defined on an
element, one for each sub-boundary (endpoint, edge, or
face of a line segment, surface, or volume element,
respectively) comprising an element *, R, (p, &) is a
Lagrange interpolation polynomial of order p and has
the separable form

R;(P:f)"—'R.'z(Pvfz)"‘R.-,(P’;n) 2)

where R(p, &) is the Silvester-Lagrange interpolating
polynomial'?, All additional geometrical quantities
(e.g., element jacobian, edge vectors J;, and coordinate
gradient vectors V&) may be obtained from the so-
called unitary basis vectors I, = 8r/6¢; associated with
the independent coordinates &'. The detailed geometry
of a 3D-prism element, depicting these quantities, is
shown in Figure 1.

Careful examination of the prism element, along
with the other elements of interest, clearly identifies
information that all elements must have knowledge of.
In EIGER, this information is cast into an element class
(a fundamental class for geometry) which contains
some of the following:

An element type .

An element order

A set of physical points that define the element
The number of basis functions on the element
Pointers to specific basis sets

Additional attributes (possibly thickness or radius)

OPERATORS

The current development activity grew from
research in integral equation methods. For dynamic
problems, it is assumed that the unknowns associated
with any element may be either equivalent electric or
magnetic currents---or a combination of the two.
Similarly, boundary conditions may involve either the
electric field, the magnetic field, or both. Therefore
electric and magnetic field operators of the following
type are needed:

E(J.M)=-joA(J) -VO(J)

-%VxF(M) 3)

and

2

H(J,M)=- jo F(M)~-V¥(M)

+%V><A(J) 4)

These operators are expressed in terms of the
electric and magnetic scalar potentials @ and ¥ and the
magnetic and electric vector potentials A and F due to
equivalent sources J and M, respectively. The potential
formulation minimizes the order of singularities that
appear in the kernels of the associated integro-
differential operators. In order to completely determine
the potentials, appropriate Green's functions, as
discussed below, must also be specified.

In the current development both integral and partial
differential equation formulations as well as hybrid
formulations employing both types of operators are
under way. Finite element method s directly attempt to
solve partial differential equation formulations such as
the vector Helmholtz equations

Vx(u ' -VxE)-k)js, -E =

- jopJ -V x(u, " -M) Q)
or
Vx(e" -VxH)-kyp, -H =

~ jopM -~V x(&,- 1) ©

The forcing functions are the source currents J or M,
which may be actual or equivalent sources.
Alternatively, the excitation may be due to sources
outside a region's boundary. Both the differential and
integral equation operators are enforced in a weak sense
in order to minimize differentiability requirements on
basis and testing functions.

Initially, EIGER was focused on frequency domain
problems. However, the object-oriented structure of
EIGER has facilitated extensions of the code to employ
static operators. The unknown electric and magnetic
currents (J and M) from the dynamic case are replaced
by potentials and gradients of potentials respectively (®
and dd/on) otherwise the code structure remains
identical. The code presently has the capability of
modeling perfect electric conductors, perfect magnetic
conductors, and dielectric materials both in 2 and 3
dimensions for static operators. Also, a hybrid FEM
integral equation is available in 2d and 3d. The EIGER
pre-processor is being modified to output the
associations needed for static analysis so once a
structure is meshed it may be analyzed with either static
or dynamic excitations.
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BASES

To compute the numerical solution of a problem and
numerically enforce the chosen operator on the
geomelry, an appropriate set of expansion and testing
functions is needed. The numerical advantages of using
the Nedelec curl-conforming bases in the Helmholtz
operators and the divergence-conforming bases in the
integral operators are now well established 34, Nedelec
bases not only easily accommodate discontinuities in
material properties, but also eliminate spurious modes
using a minimum number of degrees of freedom per
element for a given order of accuracy. Recently, high
order interpolatory forms of the Nedelec bases have
been constructed which are convenient as ‘universal
bases.” The unnormalized form of the divergence-
conforming form of these bases of order p is

Aip(p’ §)=-§Ek,(p, f)Aﬂ(f) (7)
B

where Ag (€) is the usual (zeroth order) divergence-
conforming basis associated with sub-boundary f of an
element and R(p,&) is a modified Silvester-Lagrange
polynomial similar to equation 2 but involving
interpolation points shifted away from the element's
boundaries.

Unnormalized curl-conforming bases have the form

!2,-"(p,§)=§‘11§-<p,¢)ﬂ,,<§> (®)
(-]

for a set of bases associated with edge Sof a two-
dimensional element and

0H=L2R.00,8 )
7B

for a set associated with edges formed by the
intersections of faces yand P of a three-dimensional
element. £ and €2 are curl-conforming zeroth order
bases associated with the elements.

When singular quantities such as the fields or
currents near edges of conductors or dielectrics are
modeled, higher order bases do not provide the
expected increase in accuracy. To model such cases
accurately, singular higher order bases are needed®.
Such bases, as well as special basis functions for
modeling junctions between surfaces and wires, are
incorporated into EIGERS,

GREEN'S FUNCTIONS

For efficient integral equation solution capabilities,
a number of Green's function capabilities are desired.
Both two- and three-dimensional Green's functions and
their gradients are available in EIGER. A wide variety
of problem types may be handled if multi-layered
media Green's functions for both periodic and non-
periodic media are available. The mixed potential
integral equation (MPIE) formulation ? for such
problems is particularly convenient in practical
computations. A typical potential in (3), say the
magnetic vector potential, is expressed as an integral
over sources J on a domain D as

A= jDG‘(r,r')-J(r')dD (10)

The Green's potential dyad, G*, may in turn be written
as

G (r.r)=1Gy(r,r')+ Y I Gy(r.1)
+AG (r,r’) (11

where I is the identity dyad, G, is the background
homogeneous medium Green's function for non-
periodic media, 77 is a dyadic reflection coefficient
representing a quasi-static image located at r;’, and
AGMrr)isa relatively smooth integral contribution of
Sommerfeld type. The latter integral is efficiently
evaluated using a combination of complex path
deformation and the method of averages®. For periodic
media, G, is the homogeneous media periodic Green's
function, an infinite series that may be efficiently
evaluated using the Ewald method®. In this case AG” is
also a rapidly converging series. For complete
generality, it is possible to separately model the
environment on either side of a surface element using
any Green's function available to the code.

Other important Green's functions for applications
are those that may be constructed using reflection or
rotational symmetries. These symmetry operators may
be constructed by appropriately reflecting or rotating
source elements and endowing them with appropriate
signs or phase factors.

ELEMENT MATRIX CONSTRUCTION

The first step in obtaining a matrix approximation to
an operator equation is to form the element matrix. This
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involves all interactions between basis functions
defined on each pair of elements in the integral
equation case, or within each individual element in the
differential equation case. This difference between the
two cases accounting for the sparcity of the system
matrix associated with the FEM approach. Assuming
that the testing functions are the same as the bases,
typical entries in the element matrices for integral
equations are

a2)

1
B ;778
Z =l + =57
where
- A,
LZ _(/Y;’GA,Ag):
S.q’.”:(V-Aﬂ;K“’;V-A’;)

used when the electric field due to electric current
sources is required. Its dual, the operator
corresponding to the magnetic field due to magnetic
current sources, used in aperture or dielectric problems,
has the form

¥’ = joCl + -7 a3)
]60

where C; and T/ are also defined by duality. Similar
representations exist corresponding to electric fields
due to magnetic currents and their dual, magnetic fields
due to electric currents.

In three dimensions, the element matrix entries for
the electric field form of the Helmholtz operator (5) are

Y7 = joCH + #r;”"’
Jjo

(14)

where

CP" = go<Qfﬂ; £, >,
07 = i (Vx Q% 47V Q7)

A corresponding dual form exists for the magnetic form
of the Helmholtz operator®, )

The generalized form of the inner product notation
used above allows for the appearance of dyadic
quantities in the inner products; when these dyads are
also potential quantities, an extra integration over
source coordinates is alsc implied. The similarity in
form of the element matrices for both integral and
partial differential equations atlows similar algorithms

to be used. The construction of these element matrices
is essentially the core of any computational engine, and
nearly all of the possible combinations above have been
implemented in EIGER. A key feature in evaluating the
singular integrals which appear is the existence of
closed formulas for the quasi-static contribution of
various potentials for constant and linear source
densities on polygonal and polyhedral domains *°.

QUADRATURE

A variety of quadrature schemes must be available
for use in a general-purpose code. These include:

®  One-dimensional Gaussian quadrature rules
for various orders and types of singular
integrands.

®  Various order Gaussian quadrature rules for
triangles; for quadrilaterals, mappings can be
made to forms such that cartesian product
quadrature rules can be constructed.

¢ Various order Gaussian quadrature rules for
tetrahedrons; for prism and bricks, mappings
may be made to forms for which cartesian
product rules may be used.

®  Various special purpose schemes such as
adaptive integration.

Tables corresponding to various quadrature schemes
are stored as a module in EIGER and pointers are used
to select the appropriate coefficients and weights for
element matrix evaluation.

EXCITATIONS

Problems such as the determination of dispersion on
guided wave structures, cutoff frequencies for
waveguides, or resonant frequencies of cavities do not
require excitation sources. If the system matrix for
these source-free problems is linear with respect to the
quantity of interest, then it may be determined by
eigenvalue solution; if not, it is determined by
searching for roots of the determinantal equation.

Radiation, scattering, and penetration problems are
not source-free and may be distinguished primarily by
the location of excitation. Antenna or radiation
problems generally are excited by near field sources
such as delta-gap or frill sources. The weak forms used
in EIGER permit these quantities to be expressed
simply as voltages across terminal pairs. In scattering
and penetration problems plane wave excitations are
needed. An important point to observe is that once a
variety of Green's functions are available for
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constructing element matrices, these can also be used to
construct excitation by near field sources. Equally
important in reducing post-processing software is using
reciprocity to determine the fields radiated by
equivalent currents. That is, the field at a point in space
may be determined using the matrix exXcitation vector
for a point source located at that point.

BOUNDARY CONDITIONS

E!GER can handle a variety of boundary conditions
and is constructed so that new ones may be added as
needed. As currently implemented, the electric field
(EFIE), magnetic ficld (MFIE), or combined field
(CFIE) integral equations may be used on conducting
surfaces. For aperture problems, the aperture electric
field may be determined in terms of equivalent
magnetic currents. The continuity conditions of electric
and magnetic fields are used at dielectric interfaces to
determine equivalent electric and magnetic currents
there. Equivalent currents may be assumed to exist on
cither side of a surface element. Thus for open
conductors, it is possible to close the conductor by
aperture surfaces and determine not only the aperture
fields, but also the separate surface currents on the
exterior and interior conducting surfaces.

Both lumped and distributed impedance loading of
elements is permitted in EIGER through a simple
impedance boundary condition, and extensions to more
general boundary conditions, such as shells and
coatings, are currently in progress. Also, the variety of
boundary conditions for static solutions was discussed
carlier.

GLOBAL MATRIX ASSEMBLER

Clearly, elements of the element matrix correspond
to pairs of globa! unknown (degree of freedom)
indices, which in turn correspond to storage locations in
the system matrix. It is the job of the matrix assembler
to determine how element matrix contributions are to be
stored in the global system matrix. A number of further
index mappings may be needed in addition to those just
described, however. For example, an additional index
mapping may be needed to employ a sparse matrix
storage scheme for matrices generated by partial
differential equation formulations. Additional mappings
may be needed to store elements in certain blocks for
partitioned matrix solutions or for mapping to different
multi-processors. Other mappings may be needed to
account for an object's symmetry, or to utilize special
formulations at low frequencies to eliminate matrix
instabilities. Many of these mappings are currently
available in EIGER.

5

LINEAR SYSTEM SOLVERS

EIGER currently uses standard LINPACK routines
for the direct solution of the dense, complex matrices
arising in integral equation procedures on a serial
platform. A complex-symmetric matrix solution
algorithm may be chosen if appropriate. A conjugate-
gradient solution algorithm is also available and more
sophisticated iterative solvers are to be added. Because
many robust algorithms are widely available, and
because machine-specific solvers may be needed in
multi-processor environments, concentration has not
focused on development of solvers for EIGER.

It is anticipated that sparse matrix and eigenvalue
solvers will be needed for partia! differential equation
formulations. Special purpose solvers may aiso be
needed for the block sparse matrices arising in hybrid
formulations.

HPC IMPLEMENTATION

During the design of the EIGER software
architecture many different issues were addressed. One
of these concerned the computer platforms that the code
would be well tuned for. A decision was made early to
not limit target platforms. This was addressed by
identifying the flexibility needed for different
architectures (single processor, multi-processor, shared
memory, distributed memory, etc.) and addressing these
issues during initial design. This yields a package that is
not encumbered by legacy software issues when trying
to port to different platforms.

The initial port to parallel platforms was for
distributed memory (MIMD) architectures (DEC Alpha
clusters and IBM SP2). For these machines, the linear
algebra solvers usually dictate the manner in which the
algorithm is to be distributed. The primary concerns
here are bandwidth and latency issues.

Since the solution of the present set of operators
yields a linear system of equations, a given problem is
partitioned based upon the matrix equations (not based
upon the geometry directly), The Ppresent parallel
solution algorithms employ a block matrix partitioning
scheme, which is then used to distribute the
electromagnetic calculations at run time.

Future HPC considerations will address shared
memory (threaded) algorithms and hybrid parallel
algorithms,
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SUMMARY

Itis possible to develop an efficient general-purpose
electromagnetic solver primarily because of a
combination of relatively recent computational and
technological developments:

¢ Development of a convenient and unified
indexing and representation scheme for
interpolatory basis functions of arbitrary order
on any of the canonical clement shapes.

*  Development of robust representations and
means for computing Green's functions for
both periodic and nonperiodic, multi-layered
media.

® Development of a unified approach for
handling Green's functions singularities.

®  Ability of advanced languages to create
complex data types like vectors, dyads, and
even more complex objects, as well as to
create operators, such as dot and cross
products, which can operate on them.

¢  Capability of advanced languages to
dynamically dimension arrays, which allows,
for example, efficient handling of arrays of
variable size when selecting or mixing various
element shapes, orders of geometrical or
unknown representation, orders of quadrature,
or boundary conditions.

®  Organization of the computational paradigm
into an object-oriented approach by abstracting
algorithms, encapsulating data, giving
inheritance to data objects, and developing
code in modular form.

Careful abstraction and generalization of each step
in the numerical algorithm yields a code, which is
maintained easily and allows for future expansion.
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‘r COORDINATE CONSTRAINTS:

E+E + & =1
. 21 4
independent dependent
coordinates  coordinate

63 + 4:5 =1
\Y 5;— independent  dependent

coordinate  coordinate

Vép v

i Vefz
P.' (§‘>6 ’5 ;é aé )
=1(120 :.230J5 V;\/ \<
722732 4

coordinate multivector of point P: & = (£;,4,.,36;.65) = [%g%%g]

multi-index of point P: & = (i}>15,i,305,65) = (1,0,1,2,0)

Figure 1. Index and coordinate system notation for the prism element of order ¢=2.
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