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COMPARISON OF REBALANCE STABILIZATION METHODS FOR
TWO-DIMENSIONAL TRANSPORT CALCULATIONS*
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INTRODUCTION | ‘ llcanse in 4nd 20 sny copyright

The introduction of the épace—depéndent rebaléﬁcé method in 1968

. . P
resulted in dramatic improvement in the convergence of deep-penctration

transport problems. The value of the method wagilimited, however, by & , i
its ten'ency to overcorrect, In the DOT III code,2 rebalance was applied
to only every third iteration. That method was so successful that the

code is still in use today.

In 1971, however, Reed showed a better way.? He showed that sta-
bility could be insured, af least in 1~D geometry with uniform mesh and
cross sections, by adding fictitious boundary flows at each boundary.
Since then, the extension of this w&fk to general multidimensional
problems has led to ﬁeééral interpretations. This paper will compare
three of thesge interpretations and show a sound baéis for the generaliza-

tion. f

DEVELOPMENT

With the 1-D discrete-ordinates iteration process for some g;oﬁp: ’ !

b (A~ Ae¥ios) * [Tars¥o ™ Yosbms )+ (5 0) s

- k-l : 3
= . O 1
ViQm,i + Vii. wﬁ'wm',l m'-m,1 : -

el [kl k1) - |
N 2 P : 2

// /', N -
s _ ’ 3
Oy = I WO vy _ “

g m

. U.S. Department of Energy under contract W-7405-eng-26 with the Union

*Research spthbred by the Division of Nuclear Reéearch and Applications,

Carbide Corporation. _

Cheee rj
CLASSIFICATION & - ST A
. , ! ; . = [ T Ry

SpE AEs W AS L)

.\\ TYisT | PROUFER . CCRARECTLR |
N



where: = direction index

= gpace interval index

= iteration index

= direction cosine ﬁith x axis
space dimension

fixed source + inscaﬁter

direction weight
cross section for self scatter

Q Q
W O XM T % = B
[ ]

= cross section for capture + outscatter
O = cross section for scattering from
direction m' to direction m

Y = curvature coupling coefficient

Y = directional flux

v = mesh cell volume
and the * ¥ subscripts refer to mesh cell boundaries, it is evident !
that the failure of Y to be perfectly converged is equivalent to a |
fictitious source of magnitude:
k-1

s k
O3 wm,i - 1E:I,Wm'wr'.rl',:l. Om'sm

This source has a different magnitude and shape at each iterationm,
can be positive or negative, and can thwart convergence indéfinitely.

Défining leftward partial boundary flows at boundary i-% as:

L k.
Fi—Js - Ai—% i Wmh‘lml wm,i—’s' Um<0

and similarly for rightward flow and flows at boundary i+%, we have, by
integrating Equation 1 over direction:
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, litory non-convergence. o LD TVRING
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The Y's are defined such that the last term on the left si&g of Equation
6 is 0. The order of the summation on the right can be reversed, giving:

R

L R R - L R, 8
- - - = +
[Fi+%+Fi-# F vk Fi—#] +V, |ogto e =V,.S, Voi¢i 9
In this equation, we define correcfion factors f&r the flux in,
and the flow emerging from, each interval such that balance is reached
without the fictitious non-convergence source:
L R R L R
-[Fi+»’§fi+lf+ Fi—%fi-ii] + [Fi+15+ Fi_%-l.-vi Ui+ 0 ¢1]
, s, k ,
= VS, + V,000.f, : 10
This can be simplified by eliminating either Si'or 0? from Equa-
tions 9 and 10. From a numerical point of view, elimination of Oﬁ is
preferable:
1 - R T L R . s |, k-1
- £, + + |F, + + -
[Fm; 1+ Fi—%fi-%] [ wwy T iy T Vi85 - Vg0 (“’1 by ” £y
i
= visi 1
For large Vi the solution approaches:
-8
i
£, = 12

5, = of (o5 - o5 ]

“which can obviously produce negative values of fi’ resulting in oscil-
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- Reed showed that stability can be ensured in the\cane of uniform
space mesh and constant cross section by adding, to each boundary flow,

a fictitious flow: »
6., =A ., L 6® Ax max |[¢%¢¥ s Yol 13
ity itk 4 1°%441) 2
Y .

@
The augmented flows satisfy EQuation 9, as did the original flows, but

as G becomgs large, Equation 11 is'satisfied by fi near uuity. This
damping effect is space~dependent, having its strongest effect in regions
of large Ax and ca,ywhere the instability is iikely to occur,

Returning to Equation 11, we can observe that the fi are positive

if ¢§-120 and if each boundary flow is augmented by:

Gyygy = ¥ max [V,0 ¢1’ 141%441 ¢1+1 14
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In the case of uniiorm mesh and o° , this is equivalent to Reed's criterion

with Y = 2, 1In other words, Y=1 guarantees stability, while Y = 2

guarantees non-negativity. 1In later examples, we will see that even

larger values of Y may promote rapid convergence.

An equation equivalent to 14 can be written directly for 2-D geome-
tries. In this case, the flowvterms of Equation 11 are joined by an

upward and a downward tefm, so that four fictitious flows affect each

cell:

: A ‘g .k
Copg = 7 max | V0,7 ¢4,V,,40 141 ¢1+1 15
Z s .k s .k
Cirg = V4% #55V341%4 %51 \ 16
221 ' : 17

This method 1is an option in the DOT IV code, called the "¢ method."

The value of Z can be adjusted by the user and can increase with each
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iteration. This lalt fenture has brought convergence to vury difficult
problems which would otherwise oscillate hopelessly.

A somewhat similar approach is deséribed in reports of the cylindrical—
geometry SIMMER code,“*5 although they use a form emphasizing the common

area between cells:

Ar_ 8, :
Civk = T 1tk Arag TOX (¢1’¢1+1) .18
G = AEH r2 - r max ¢ ¢k 19
I+ 4 i+% i-%/ j’ J+1
It may not be clear which Az or Ar is to be used in this formulation.

Yet another interpretation was made by the developers of DOT 3.5.
Observing that Reed's criterion had its basis in a diffusion-theory
analogue, they chose to interpret the ¢/4 term which recurs in these
equations as the one-sided diffusion-theory current, resulting in the
"J method:"

L R
Gi+$ = 7 max (Fi+%'Fi+¥) 20
21

D U
GJ*% f Z max (Fj+%’Fj-%)

This method is used in DOT 3.5 and as an option into DOT IV. The lack
of dependence on interval width seems to be an omission in the context

of this discussion, but the proof of a convergence method 1s in the

testing!

* RESULTS
The first illustration (Pl of Table 1 and Figure 1) is a study of

neutron transmission along an annular gap surrounding a sodium-filled
plpe ﬁhich penetrates a thick concrete wall. A 30-direction biased
quadrature is used to detail streaming. The table shows that anj value
of Z between 0.25 and 4 glves satisfactory convergence to this difficult
problem, with the optimum being 0.5. The ¢ and J methods give nearly
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Table 1. Results of Comparing the J-Method with the ¢ —Method
On Two Realistic Problems

Number ‘ .
of flux Flux Fission
Problem description Method Z iterations convergence convergence
(P1) Pipe duct streaming with
boundary source. Variable J 4 9 7E-3
space and direction: mesh. 2 8 8E-3
28 X 35 maximum space 1 8 3E-3
o mesh. 1 energy group of .5 7 7TE=3%%
e a. l4-group P, cross .25 7 9g-3
I'é section set 1s solved. ¢ or J 0 15% 2E-2
b Flux convergence of 1E-2 .25. 7 9E-3
5o is sought. o - .5 7 TE-3%*
§ 2 _ - 1 ) 7 9E-3
) 2 8 6E-3
z 4 8 8E-3
(P2) Fast critical assembly, . J - 4 80 5E-5
4-group P. cross sections. : " 2 ‘ T 2E-5
- A K calcuiation with 20 1 ‘ 8E-6%%
'source lterations and 4 3 . 5 ' 1E-4
flux iterations per source ) 25 2E-2
iteration is solved. The $ or J 0 1E~2
‘ space mesh is 35 X 30. .25 : , 8E-3
A low value of fission «5 ; 1E-4
convergence is sought. 1 ‘ 2E~-5%%
- ‘ 2 Co ' 3E-5

...+ #*Iteration limit reached.
*%Optimum value of %

I
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Figure 1. Pipe duct streaming problem.
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comparable results. The solution with 2 = 0, 1. e.. no ltabilization,

failed to converge within the iteration limit.

Problem P2 (Figure 2) is a conventional 4-group, P° calculation
of k-effective. The directiona; quadrature has six directions. The
best result was obtained from the J method, although results for Z near
0 are inferior to ¢ method results. The optimum Z was 1 for this

probiem.

Problem P3 (Table 2 and Figure 3) is a classical problem having a
uniform source in one quadrant of an X-Y geometry. The source material

has anisotropic écattering with:
Ho=1/3 i 22

and a dominance ratio of 0.5. The volume cutside the source region is

filled with an isotropic material of dominance 0.5 or 0.99 as noted.

The table shows that the low-dominance problems could be ‘solved very
well with any value of Z less than or equal to 2. The first high domi-
nance probiem is greatly benefittéd by either J or ¢ method smoothing,
while the second is not. Overall, any Z between 0.5 and 2 gives
satisfacfory results, with the J method superior to the method in the
more difficult problems. '

A fourth problem, representing a reactor head compartment, is shown
in Figure 4. Seven groups of a l4-group cross section set are solved.
The principal interest is in the convergence of the difficult groups
6 and 7 (Table 3), which are given a maximum of 24 iterations each.
Groups 1-5 are given only five interations each in order to stay within

execution-time constraints. The value of Z is adjusted according to:
Z=C+ (I-1)D 23

where I is the iteration count, and C and D are as noted. Various

combinations of ¢ and J method damping are used as noted. Relatively

large values of Z were required to converge groups 6 and 7. Although
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Table 2. Number of Iterations to Converge a Hypothetical Test Problem

(P3) Classical source-in-a-box problem, 8 X 8 space mesh, uniform source in one quédrant with domi-
nance = 0.5 in source region. Flux convergence criterion = 1%5-4. Total cross section = 1,

Dominance ratio

outside source Ax Ay , ‘
region (mfp) (mfp) Method 0 .125- ) .25 ) .5 1 2 ,@,
.5 1 1 J 10 10 9 8 .8 9 10
.5 1 1 ¢ 10 10 9 9 8 8 8
.5 .25 4 3 8 8 7 7 8 .10 12
.5 .25 4 ¢ 8 8§ 8 8 8 10 12
.99 1 1 ,J 39 23 .18 13 10 13 16 :f? o
.99 1 1 ¢ 3 25 19 15 11 12 16
99 .25 4 J 12 12 127 10 12 24
.99 .25 4 _§ V

12 12 13 13 19 27 35
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; ! Table 3- 7
’ Case A ‘B C D E _F
¢ & 0.5 0.5 ¥ 1 1 1-
D 0" 0 0 0.25 ¢ 1 1
Method ¢ J J . J J . ¢
Convergence
1f Group
a N ) - ' - " — ) - - -
c 1 #1.971 9.272 8.572 6.872 9.272 2,772
é 2 7.272 5.472 2,272 4072 2,272 ° 8.472°
5 3 7.872 2,472 . 1.872 .. 9.0°3 1.872 3.472
-~ - - e - - - -
5 4. 1.9 7.0°2 2,272 2.0°2 2,72 8.02
‘ 5 2.771 1272 1.272 2.972 . 1.772 1470 7
6 3571 3.471 1.971 5.473 b12/7.57% 4.973
€(21/1.571) (21/3.271) (22/2.071) 1.473 21/9.6 ¢ 17/9.6°*
¥ % )

%Interpreted as 1.9 x 10 !

Indicates convergence of <0.001 was reached in 12 iterations.

Where only the cdﬁwergcncc is showm;

the iteration limit of '5 iterations (groups 1-5) or 24 iteratioms (groups 6 and 7) was reached. =~
“Results in parentheses are incomplete due to the standard time limit, 4 -1nutes on a CDC CYBER 76.
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Figure 2. Fast critical assembly problem.
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Figure 3. Box-in-a-corner problem.
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