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INTRODUCTION

The Introduction of the space-dependent rebalance method in 1968*
>>

resulted in dramatic Improvement in the convergence of deep-penetration

transport problems. The value of the method was1 limited, however, by

its tendency to overcorrect. In the DOT III code,2 rebalance was applied

to only every third iteration. That method was so successful that the

code is still in use today.

In 1971, however, Reed showed a better way.3 He showed that sta-

bility could be insured, at least in 1-D geometry with uniform mesh and

cross sections, by adding fictitious boundary flows at each boundary.

Since then, the extension of this work to general multidimensional

problems has led to several interpretations. This paper will compare

three of theise interpretations and show a sound basis for the generaliza-

tion. !

DEVELOPMENT

With the 1-D discrete-ordinates iteration process for some group:

w w w!U)+ VK + a <

m

ai " I Vm'-m.i
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where: m " direction index

i • space interval index

k • iteration index

y • direction cosine with x axis

x » space dimension

Q - fixed source -I- inscatter

W • direction weight

o » cross section for self scatter
R
o " cross section for capture + outscatter

a r . • cross section for scattering from
m "*m>x

direction m1 to direction m

Y • curvature coupling coefficient

i|) - directional flux

v • mesh cell volume

and the ± % subscripts refer to mesh cell boundaries, it is evident \

that the failure of T/J to be perfectly converged is equivalent to a

fictitious source of magnitude:

aS, ̂  4 - Z W i^T
1. a î _ - t

i ^m,i , m rm ,i m ->m
m

This source has a different magnitude and shape at each iteration,

can be positive or negative, and can thwart convergence indefinitely.

Defining leftward partial boundary flows at boundary i-% as:

Fi-% = Ai-% S W>ml <i-%' V ° "
m

and similarly for rightward flow and flows at boundary i+%, we have, by

integrating Equation 1 over direction:

*\+
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The Y's are defined such that the last term on the left side of Equation

6 is 0. The order of the summation on the right can be reversed, giving:

In this equation, we define correction factors for the flux in,

and the flow emerging from, each interval such that balance is reached

without the fictitious non-convergence source:

u* + F U f i-%] + [ F U + F U + vi (ai + <) *i] f i

i*ifi 1 0

This can be simplified by eliminating either S. or a. from Equa-
Rs 9 and

preferable:

Rtions 9 and 10. From a numerical point of view, elimination of 0. is

F

Vi u
For large V. the solution approaches:

si
12

which can obviously produce negative values of f,, resulting in oscil-

litory non-convergence. : .o -•-•=INU
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Reed showed that stability can be ensured in the case of uniform

space mesh and constant cross section by adding, to each boundary flow,

a fictitious flow:

13

The augmented flows satisfy Equation 9, as did the original flows, but

as G becomes large, Equation 11 is satisfied by f. near unity. This

damping effect is space-dependent, having its strongest effect in regions

of large Ax and as, where the instability is likely to occur.

Returning to Equation 11, we can observe that the f. are positive
k-1 '

if <j>. >0 and if each boundary flow is augmented by:

14

In the case of uniform mesh and a , this is equivalent to Reed's criterion

with Y « 2. In other words, Y - 1 guarantees stability, while Y - 2

guarantees non-negativity. In later examples, we will see that even

larger values of Y may promote rapid convergence.

An equation equivalent to 14 can be written directly for 2-D geome-

tries. In this case, the flow terms of Equation 11 are joined by an

upward and a downward term, so that four fictitious flows affect each

cell:

Z TT rrS A^ XT rr S jM I , / :

4 j j j j+1 j+1 j+1 '

Z > 1 \ 17

This method is an option in the DOT IV code, called the !'4> method."

The value of Z can be adjusted by the user and can increase with each
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iteration. This last feature has brought convergence to very difficult

problems which would otherwise oscillate hopelessly.

A somewhat similar approach is described in reports of the cylindrical-

geometry SIMMER code,**5 although they use a form emphasizing the common

area between cells:

18

It may not be clear which Az or Ar is to be used in this formulation.

Yet another interpretation was made by the developers of DOT 3.5.

Observing that Reed's criterion had its basis in a diffusion-theory

analogue, they chose to interpret the cj>/4 term which recurs in these

equations as the one-sided diffusion-theory current, resulting in the

"J method:"

Z max | F ^ F ^ I 20

Gj+% « Z max F° + %,FJ J • 21

This method is used in DOT 3.5 and as an option into DOT IV. The lack

of dependence on interval width seems to be an omission in the context

of this discussion, but the proof of a convergence method is in the

testing!

RESULTS

The first illustration (PI of Table 1 and Figure 1) is a study of

neutron transmission along an annular gap surrounding a Sodium-filled

pipe which penetrates a thick concrete wall. A 30-direction biased

quadrature is used to detail streaming. The table shows that any value

of Z between 0.25 and 4 gives satisfactory convergence to this difficult

problem, with the optimum being 0.5. The <f> and J methods give nearly
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Table 1. Results of Comparing the J-Method with the <j>-Method
On Two Realistic Problems

Problem description Method

Number
of flux
iterations

Flux
convergence

Fission
convergence

o
z

(PI) Pipe duct streaming with
boundary source. Variable
space and direction mesh.
28 X 35 maximum space
mesh. 1 energy group of
a 14-group P., cross
section set Is solved. $ or J
Flux convergence of 1E-2
is sought.

(P2) Fast critical assembly,
4-group Pn cross sections.
A K calculation with 20
source iterations and 4
flux iterations per source ^
iteration is solved. The ^ or J
space mesh is 35 X 30.
A low value of fission
convergence is sought.

4
2
1
.5
.25
0
.25
.5
1
2
4

4
2
1
.5
.25
0
.25
.5
1
2
4

9
8
8
7
7

15*
7
7
7
8
8

80

7E-3
8£-3
3E-3
7E-3**
9E-3
2E-2
9E-3
7E-3**
9E-3
6E-3
8E-3

5E-5
2E-5
8E-6**
1E-4
2E-2
1E-2
8E-3
1E-4
2E-5**
3E-5
4E-5

Alteration limit reached.
**0pti»um value of 2
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Figure 1. Pipe duct streaming problem.
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comparable results. The solution with Z - 0, i.e., no stabilization,

failed to converge within the iteration limit.

Problem P2 (Figure 2) is a conventional 4-group, P calculation

of k-effective. The directional quadrature has six directions. The

best result was obtained from the J method, although results for Z near

0 are inferior to <j> method results. The optimum Z was 1 for this

problem.

Problem P3 (Table 2 and Figure 3) is a classical problem having a

uniform source in one quadrant of an X-Y geometry. The source material

has anisotropic scattering with:

y - 1/3 22

and a dominance ratio of 0.5. The volume outside the source region is

filled with an isotropic material of dominance 0.5 or 0.99 as noted.

The table shows that the low-dominance problems could be solved very

well with any value of Z less than or equal to 2. The first high domi-

nance problem is greatly benefitted by either J or if method smoothing,

while the second is not. Overall, any Z between 0.5 and 2 gives

satisfactory results, with the J method superior to the method in the

more difficult problems.

A fourth problem, representing a reactor head compartment, is shown

in Figure ,4. Seven groups of a 14-group cross section set are solved.

The principal interest is in the convergence of the difficult groups

6 and 7 (Table 3), which are given a maximum of 24 iterations each.

Groups 1-5 are given only five interations each in order to stay within

execution-time constraints. The value of Z is adjusted according to:

Z - C + (I-l)D 23

where I is the iteration count, and C and D are as noted. Various

combinations of <f> and J method damping are used as noted. Relatively

large values of Z were required to converge groups 6 and 7. Although
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Table 2. Number of Iterations to Converge a Hypothetical Test Problem

(P3) Classical source-in-a-box problem, 8 X 8 space mesh, uniform source in one quadrant with domi-
nance » 0.5 in source region. Flux convergence criterion * 1S-4. Total cross section m 1.

Dominance ratio
outside source

region

.5

.5

.5

.5

.99

.99

.99

.99

Ax
(mfp)

1

1

.25

.25

1

1

.25

.25

Ay
(mfp)

1

1

4

4

1

1

4

4

Method .125 .25 .5

10

10

8

8

39

39

12

12

10

10

8

8

23

25

12

12

9

9

7

8

18

19

12

13

8

9

7

8

13

15

10

13

8

8

8

8

10

11

12

19

9

8

10

10

13

17

27

10

8

12

12

16

I*

24

35

"8 ̂



Table 3. Groupwise Convergence of a Multigroup Head Compartment Problem

Case A B C D E F

C ^ 0.5 0.5 / 1 1 1
D 0 0 c 0 0.25 ' 1 1

Method <j> J J a J j s *

n
• r
v, >. i/>
;' «>
i ii
r _
- o
;• >T

IO

Z

Convergence
If Group

1

2

3

4.

5

6

7

al

7

7

1

2

3

.9

.2

.8

.9

.7

v5

21

"1

~2

~2

"1

~1

"1

/1.5"1)

9.2"2

5.4-2

7.0"2 ^ ^

V _ ^ > 2 " 2

3.4-I

(21/3.2"1)

8.5-2

2.2~2

1.8"2

2.2"2

1.2"2

1.9-1

(22/2.0"l)

6.8"

4.0"

9.0"

2.0"

2.9"

5.4"

1.4"

2

2

3

2

2

3

3

9.2"

2.2"

1.8"

2.7"

1.7"

b12/7

21/9

2

2 c

2

2

2

.6"1*

2.7-2

8.4-2

3.4-2

8.0"2

1.4-1 C

4.9"3

17/9.6"*

'interpreted as 1.9 x 10"1

Indicates convergence of <0.001 was reached in 12 iterations. Where only the convergence is shown,
the iteration limit of 5 iterations (groups 1-5) or 24 iterations (groups 6 and 7) was reached.

CResults in parentheses are incomplete due to the standard time limit, 4 minutes on a CDC CYB1R 76.
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Figure 2. Fast critical assembly problem.
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Figure 3. Box-in-a-corner problem.
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