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ABSTRACT

The objective of this project is to develop the capability of symbolically generating an
analytical model of a wind turbine for studies of control systems. This report focuses on a
theoretical formulation of the symbolic equations of motion (EOMs) modeler for
horizontal-axis wind turbines. In addition to the power train dynamics, a generic 7-axis
rotor assembly is used as the base model from which the EOMs of various turbine
configurations can be derived. A systematic approach to generate the EOMs is presented
using d’Alembert’s principle and Lagrangian dynamics. A Matlab M file was
implemented to generate the EOMs of a two-bladed, free-yaw wind turbine. The EOMs
will be compared in the future to those of a similar wind turbine modeled with the
Yawdyn code for verification. This project was sponsored by Sandia National
Laboratories as part of the Adaptive Structures and Control Task. This is the final report
of Sandia Contract AS-0985.
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1.0_Introduction

Wind turbine control systems for power regulation and structural load mitigation are
commonly treated as two decoupled and distinct problems. Much of the literature on wind
turbine controls makes use of simplified turbine models to avoid the complexity of turbine
dynamics. Turbine models without power train dynamics, for example, are typically used to
deal with aero-elastic control systems [Block and Gilliatt 1997]. The design of variable-
speed control algorithms, on the other hand, is generally done using only power train
models [Thiringer and Linders 1993, Leithead et al. 1994a, Cardenas et al. 1996].
Consequently, the performance of control algorithms designed with “improper” models is
questionable. Without an adequate dynamics model, it is not surprising to see that a
“properly” designed control algorithm can actually be the major contributor to excessive
fatigue loads in the turbine.

In the commercial sector, it is a common practice to design and analyze wind turbine
control algorithms by coding proprietary programs. Unless collaborated efforts are
organized, modeling efforts for turbines of similar configurations are repeated at different
companies. In addition, repeated modeling efforts are needed to explore different design
options for a new or existing turbine. For instance, to evaluate the benefits versus
disadvantages of adopting a full span pitch or a partial span pitch (aileron) controller for a
particular wind turbine, two programs have to be coded for computer analysis. This
problem can be illustrated by NREL’s recent effort to modify the FAST code to integrate
the dynamics of an aileron control system into the structure code [Wright 1995, Stuart
1996]. Modeling wind turbines and verification of these models demand tremendous
amounts of resources from the wind turbine industry. Consequently, simplified EOMs, e.g.,
only the EOMs of the subsystems to be studied, are generally used, and they might suffer
from loss of accuracy and sometimes yield unreliable designs.

From a control engineering point of view, many advanced control methodologies (such
as the robust adaptive controllers and neural-network fuzzy logic controllers) might provide
better performance for wind turbine applications than the commonly used proportional-
integral-derivative (PID) controllers [Bongers and Dijkstra 1992, Wu and De La Guardia
1996]. Many of the structural instabilities and load problems of contemporary wind
turbines might be alleviated, or even avoided, if a different control methodology were used.
For example, some European-designed constant-speed wind turbines (for 50Hz line
frequency) installed in US wind farms (with 60Hz line frequency) might perform much
better, in terms of fatigue life and power production, if they were operated as variable-




speed wind turbines. For variable-speed wind turbines and a new generation of
continuously controlled machines, the control problems become multi-variable and much
more complex than those of constant-speed wind turbines. Instability caused by improper
use of multi-variable controllers might result in catastrophic failures. Careful study and full
understanding of turbine control systems are crucial to the economics and reliability of these
machines.

Two structural codes, ADAMS/WT and BLADED [Elliott 1996, Garrad 1996], for
wind turbine design and analysis are capable of integrating limited control laws into their
computer models. However, both codes provide only time domain simulations of the
performance of the controllers. They do not offer linear analysis tools, such as transfer
function, root locus, eigenvector analysis, stability margins, and power spectrum analysis,
etc., that are critical to understanding the interactions between control systems and loads in
wind turbines. Consequently, these codes are not adequate for control system design.

The objective of this project is to develop the capability of generating symbolically the
analytical model of a wind turbine for the development and analysis of wind turbine control
algorithms. In addition to the power train dynamics, a 7-axis rotor assembly is used in this
report as the base model from which the EOMs of various turbine configurations can be
derived. The future goal of this project is to develop a turnkey wind turbine modeler or an
add-on package to a commercial software package like Matlab. The wind turbine modeling
software will include a wind turbine configuration builder, a symbolic EOM builder, and
interfaces to other engineering software. Users can create and modify interactively a wind
turbine model by editing the parameter files describing the turbine configurations. The
turbine modeler will then construct automatically the closed-form EOMs of the machine.
The symbolic EOM builder generates explicit nonlinear differential equations rather than
~ linear state matrices. Linear state matrices can be generated from the nonlinear EOMs
analytically or numerically using Taylor series expansion and perturbation methods
[Balafoutis 1991, Siljak 1969, Ogata 1992]. The closed-form EOMs can be extremely
informative when studying wind turbine performance at unusual operating conditions, such
as the system’s behavior when the turbine is at a high yaw angle and yaw rate (where the
inertial forces might dominate the turbine performance). Understanding control stability and
reliability at extreme operating conditions is critical to the approval of wind turbine
certifications, e.g., high yaw operations are part of the International Electrotechnical
Commission standard test cases. A Matlab M file was implemented to generate the EOMs
of a free-yaw, two-bladed, teetered-rotor wind turbine.



This report focuses on the mathematical formulation of the turbine modeler. It is
organized into six chapters. Chapter 2 discusses the basic components of a horizontal axis
wind turbine (HAWT) and how various turbine configurations with different control
options can be constructed from the basic components. Chapters 3 and 4 discuss the
mathematical formulation of the EOM builder. The EOMs of a rotating blade and a two-
bladed teetered-rotor wind turbine are generated using the mathematical formulation.
Chapter 5 presents the computer programs and the EOMs of these two examples. A
summary and conclusions are given in the final chapter.




2.0_Constructing a Horizontal Axis Wind Turbine (HAWT) Model

To accommodate different machine configurations, the wind turbine modeler should
be designed in a modular manner. A library of turbine components should be provided in
the modeler. Wind turbines can be easily modeled by mixing components from the
component library. Figure 1 depicts the block diagram of a HAWT model that includes a
tower, rotor, power train, blades, aerodynamics forces, and various control modules. The
arrows and their directions in the block diagram represent the inputs and outputs of each
component module. The tower and the blades can be modeled either as continuously
flexible beams or a collection of discrete elements depending on the modeling
requirements. The term “rotor” is used in this report to represent collectively the nacelle
assembly, hub, and teeter mechanism. The rotor is typically much stiffer than the tower
and the blades, so it is modeled as a collection of discrete rigid bodies in this study. The
power train consists of a combination of low- and high-speed shafts, gear boxes, brakes,
and generators, depending on its configuration. Mechanical brakes at the low- and high-
speed shafts can be modeled as external torques applied to the azimuth axis at the rotor side
and the generator side, respectively. Equal but opposite moments will also be added to the
component, €.g., the nacelle, where the brakes are mounted. Figure 2 shows a HAWT
model consisting of nine basic components: namely, the tower (1), bed plate (2), nacelle
(3), low-speed shaft (4), gearbox (5), high speed shaft (6), generator (7), hub (8), and
blades (9). Notice that these turbine components can be viewed as components connected
in series as an open-chain kinematic mechanism, see Figure 3, and only rotational motion is
observed between any two adjacent components. To facilitate a systematic approach that
can be programmed to generate the EOMs symbolically, all components in a wind turbine
model are constrained to have no more than one degree of freedom (1-DOF) in motion with
respect to the component upon which it is mounted (called the lower neighbor). For a
turbine component having more than 1-DOF relative to its lower neighbor, it is modeled as
a collection of several 1-DOF components. Examples are the wind turbine towers and
blades which can pitch, yaw, and roll with respect to their lower neighbors, i.e., the ground
and hubs, respectively.

2.1 The Tower

A wind turbine tower can be modeled as a continuously flexible beam or as multiple
sections of discrete rigid bodies jointed by springs and dampers. The spring and damper
represent the structural stiffness and damping of the tower, respectively. The mathematical
formulation discussed in chapters 3 and 4 supports a discrete tower model. A continuous
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flexible tower model can be found in the book by Junkins and Kim [1993]. The
aerodynamic forces, applied directly to the tower and transmitted from the rotor, and the
inertial forces due to turbine motion are considered as external forces driving the tower
motion, i.e., the inputs to the tower module as shown in Figure 1. The position and
velocity at the top of the tower, to where the positions of the rest of the turbine components
are referenced, are thus the outputs of the tower model.

A discrete tower model consists of a number of rigid bodies connected in sequence.
Each tower segment can have 3 rotational DOF in motion with respect to its lower
neighbor. To comply with the 1-DOF relative motion between any two adjacent turbine
components as discussed previously, a 3-DOF tower segment is represented by three 1-
DOF rotational joints (see Figure 4). The rotation axes of the three mutually perpendicular
joints intersect at a point. It is the center of rotation of the combined "3- DOF" joint.
Notice that if three 1-DOF joints are used to simulate a 3-DOF joint, the rotation angles of
the 1-DOF joints must be limited to small angles, typically less than 15 degrees, to ensure
the accuracy of the model. Because of this small angle limitation, a softer tower must be
modeled with a larger number of rigid tower segments for better modeling accuracy.
Another factor determining the number of rigid tower segments is the number of mode
shapes that need to be included in the tower model. Nevertheless, details of the tower
model are outside the scope of this study.

2.2 The Power Train

The power train of a wind turbine consists of a combination of low and high speed
shafts, brakes, gearboxes, and generators. Since the brakes are modeled as external torques
instead of physical devices in this study, they are discussed in Chapter 4. Some wind
turbines utilize coupling devices to provide compliance to sharp impacts in the drive train.
However, coupling devices are not commonly used in utility-scale wind turbines because of
their poor efficiencies. They are not discussed in this report.

2.2.1 The Drive Train Dynamics

The drive train dynamics relate the generator torque to the mechanical torque produced
by the wind. The drive train in a wind turbine can be modeled either as a solid drive train
or as two flexible shafts joined by the gearbox, depending on the application. For a
constant-speed wind turbine, the solid drive train is an appropriate assumption. However,
flexible shafts are necessary in the analysis of variable-speed operations [Hinrichsen and
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Nolan 1982, Leithead et al. 1993]. To simplify the drive train dynamics, gears and shafts in
the gearbox are assumed to be rigid bodies. Their mass moment of inertia and damping are
lumped into that of the low-speed shaft [Palm 1986].

A. First-order Drive Train Model

The solid drive train assumption yields a simple first-order drive train model. The
dynamics of the model in the Laplace domain are given by,
5—Tg=sx[i+lh)xw , M
n n 2 &
where
T, is the mechanical torque applied to the low-speed shaft by the rotating rotor,
T, is the electrical torque applied to the high-speed shaft by the generator,
n is the gearbox ratio,
s is the Laplace operator,
I, and I, are the mass moment of inertia of the low- and high-speed shaft about the rotation

axis, respectively, and
w, is the generator speed. The rotor speed is w, /n.

B. Flexible Drive Train Model

With flexible shafts, the drive train dynamics become a third-order system. The
EOMs can be written as, (see Figure 5)

s k, k, T
T IIS+bl+? s 0 @,
nk k
e 0 _?*1 _(1h5+bh+_;‘l) fw b, 2)
k k.n
| 0 A _l(klmzkh) A W,
] s s s -

where

k, and k, are the torsional stiffness of the low- and high-speed shafts, respectively

b, and b, are the viscous friction coefficients of the low- and high-speed shafts, respectively
w, is the rotor speed,
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@, is the angular velocity of the low-speed shaft at the gearbox side, and
@, is the generator speed.

2.2.2 Induction Generators

There are many articles discussing ways to model generator behavior [Fitzgerald et al.
1990, Leithead and Connor 1994b, Zhang 1994]. Three induction-generator models, a
steady- state, a first-order, and a fourth-order model, are summarized in this report. All
models are for squirrel-type induction motors whose torque is a function of slip. The slip S
relates the generator speed @, to the grid frequency a,, i.e.,

(Dg
S=1——m— . (3)
0

The utility grid is assumed to be a strong network in deriving these models. Since the
generator dynamics are dictated by the drive-train dynamics [Hinrichsen and Nolan 1982,
Wu 1997] in a strong network, a low-order generator model is adequate for quasi-static
turbine analysis and control purposes. However, high-order generator models are necessary
in the analysis of startup and shutdown operations, grid failure, power quality issues, and
advanced generator features, such as active slip controls.

A. Steady-State Model

The steady-state model based upon the Thevenin equivalent circuit is the most commonly
seen generator model [Fitzgerald et al., 1990]. This model yields the following algebraic
equation describing the generator torque as a function of slip:

3X2R,SV?2

T,=--L

- , @
20 |R R, +S(X3- XIIXZZ)}Z +(RX;; + SR X))

where

p is the number of generator poles,

X=Xy +X,,

X=X+ X,

o, is the grid frequency in rad/sec,

R, and X, are the stator resistance and leakage reactance, respectively
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R, and X, are the rotor resistance and leakage reactance, respectively
X, is the magnetizing reactance,

S is the generator slip, (Equation 3) and ST

V is the line voltage at the generator bus in phasor notation,

This method does not take into account any non-linearities in the generator and
contains no dynamic information, e.g., the electromagnetic transients.

B. First-Order Model

The dynamic model for a first-order approximation of the generator torque is given by
the equation

1 @y
STg=':c- Tg+De(mg_'—5—) ’ (5)

where

T is the generator time constant,

D, is the slope of the generator torque/speed curve. It is determined from the static state
model, i.e., Equation 4, and

s is the Laplace operator.

The first-order model contains some dynamic information about the generator, but
assumes a linear relationship between the slip and the generator torque. If the drive train is
assumed to be a solid shaft, this model alone does not provide much meaningful
information compared to the steady-state model. However, if a flexible drive train model is
used, this first- order approximation simulates some dynamic interactions, such as resonant
frequencies, between the drive train and the generator. It is recommended that it be used
with the flexible drive train model.

C. Electromagnetic Transient Model

To include electromagnetic transients in the power train model, the generator
discussed in Zhang’s report [Zhang 1994] is adopted in this study. The model bases its
theory on Park’s equation, which translates the three-phase voltage and current references
and rotating components into a stationary quadrature and direct-axis frame, i.e., the d-q
frame. That is,
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2 o)y,

val |3 3 3|
= ST 6)

Ya] |o _"_@ _\/_5_ v

3 3 cl

where
v, and v, are the line voltages in the g-d frame, and
v,;, Vy;, and v,, are the 3-phase line to line voltages in phasor notation.

The derived equations for the generator torque are fourth order and reduce to the

following form,
d [ ' R X
Yo, =X/, =0V, + DR, Eﬂ—l X, + D017 X,
dt s X )\ Xu XuXp,
d [ oRr [ X R X
Yy X, =gy + Dol | Lad 4 X, + W™ Aqd X,
dt |\ xo \X0 ) X, X, | * -
dy, T 0eR X 4 " “’oRZqu) Xy 1] %,
dt X Xpo X, X1,
dy, el R X 4 ORX i || Xaga
— =X, x3 w e x2 + 1 X4
dt X XL, X, X,
where

V1> War» oo W are the flux linkages per second of the g-d stator and rotor windings

_ XLIXLZXm
qd ~ &)
XX + XX X X,
and
W = ._.__wgp )
¢ 2
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where w, is the electrical speed of the generator and w, is the mechanical speed calculated
from Equation 1 or 2.

The resulting generator torque T, needed in Equations 1 and 2 is given by

3 . ) A
Tg:i 2%00 Wiy ~Vady) (10)

where iy, and i, are the q-d currents in the stator winding and are given by

= lI’ql - qulpql _ ququ
1
Y Xy Xfl XX

i = lIJdl _ qulpdl _ qu% (11)
d1 , :
X x4 XuXe

i

The generator, modeled in Equation 4, 5 or 10, together with the drive train, modeled in
Equation 1 or 2, form the power train model for a constant-speed wind turbine. The power
output to the utility grid is given by

P=Tw

For a power train with an electromagnetic transient generator model, the power output to
the utility grid is given by,

3 . .
P = Y Vgl +Varda) - (13)
If the generator efficiency is known, the power output can be adjusted accordingly using a
lookup table.
2.2.3 Power Electronics for Variable-Speed Wind Turbines
When a power electronics (PE) unit is used to regulate the generator torque (and the
power output), the generator and the PE together can be considered as a torque actuator. In

addition, the response of the torque actuator is much faster than that of the drive train,
typically an order of magnitude. The torque actuator can be modeled as an ideal one,
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which applies the desired (or commanded) torque to the high-speed shaft precisely and
instantaneously, i.e., (see Figure 1)

T =T .
boE (14)

2.2.4 Geometric Location of the Power Train

Some wind turbine configurations incorporate a rotor offset (a non-zero ¢ distance as
shown in Figure 2) and an uptilt angle (a constant angle about the z, axis) to
aerodynamically balance the rotor assembly and increase the blade-tip and tower clearance.
The a and b parameters, which are measured along the x, and z, axes, respectively, locate
the tilt axis z, of the bed plate. Notice that the x,-z, frame is located at the top of the
tower, whose instantaneous position and velocity are determined from the tower model.
Figure 2 shows positive a and b values. The geometry parameter ¢ represents the offset of
the low-speed shaft from the yaw axis. It is measured along the y, axis. Figure 2 shows a
positive ¢ value. To model a rotor without an offset, c is set to zero. Parameter d
represents a vertical offset of the low-speed shaft from the tilt axis. It is measured along
the z, axis. Figure 2 shows a positive d value. The sum of the b and d values represents
the clearance distance between the low-speed shaft and the base of the nacelle. For a wind
turbine with a constant tilt angle, the sense of the rotation is measured about the z, axis by
following the right-hand rule. A zero tilt angle places the low-speed shaft paralle] to the
nacelle. A positive tilt angle represents an up-tilt configuration, and a negative value
represents a down-tilt configuration.

2.3. The Rotor Dynamics

The rotor model, see Figure 1, studied in this report includes the nacelle assembly,
hub, and teeter mechanism. It does not include blades here because blades are considered
as independent wind turbine components in this report. The rotor dynamics are the most
complex among all wind turbine subsystems because the rotor can have many DOFs
relative to its adjacent components. It relates the aerodynamics forces to the motion and
loads in the rotor. The rotor studied in this report includes seven rotation axes, as shown in
Figure 2. The nacelle has yaw and tilt motion relative to the tower; the hub has azimuth
and teeter motion relative to the nacelle; and the blade root of each blade can have three

- DOF relative to the hub. The following sections describe the geometric parameters of the
rotor assembly. Derivations of the EOMs of the rotor are discussed in Chapters 3 and 4. A
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detailed drawing of the rotor assembly is given in Figure 6.
2.3.1 The Bed Plate and the Nacelle

The bed plate can yaw about the z, axis with respect to the tower, and the nacelle can
tilt (or pitch) about the z, axis with respect to the bed plate, see Figure 6. Notice that the
bed plate and the nacelle are generally considered as one component (called nacelle) in
most wind turbine models that allow 2-DOF components. However, to conform to the
constraints of one DOF per component in our models, the bed plate is introduced to
accommodate the yaw motion, and the nacelle that houses the drive train allows tilt motion
with respect to the bed plate.

2.3.2 The Hub, Teeter Axis, Overhang, and Undersling

For a two-bladed rotor, the hub assembly may have one rotational DOF, i.e., the teeter
motion, about the z; axis with respect to the low speed shaft. The teeter motion allows the
blades to flap and/or pitch to remove or reduce gyroscopic forces and bending moments
exerted on the low speed shaft. The angle between the teeter axis and the line
perpendicular to the spanwise axis of the blades is known as the 8, angle (see Figure 7).
The 9, angle is measured about the z, axis in the right-hand sense to align the teeter (z)
axis to the x, axis, i.e., paralle] to z, as in the configuration shown in Figure 6. Figure 6
shows a negative 8, angle, and Figure 7 shows a positive 8, angle. Notice that the direction
of z, is defined so that the rotation of the rotor follows the right-hand rule. When 6, =0,
the teeter motion causes the blades to flap in and out of the rotation plane. On the other
hand, the teeter motion causes the blades to pitch when 6, = 90°. If 8, is between 0 and 90°,
the teeter motion causes the blades to flap and pitch simultaneously.

The location of the teeter pin (or the intersection point of the teeter axis and the low-
speed shaft) is determined by the overhang and undersling distances. The terms overhang
and undersling do not appear to have clear definitions in the wind turbine industry,
regardless of their popularity in the literature. In this study, the term overhang (e shown in
Figure 6) is used as a measure of the distance along the low speed-shaft (Z, axis) from the
point T immediately below the tilt axis to the intersection point s of the span axes of the
blades at a zero coning angle. In general, a long overhang gives more geometric clearance
between the blade-tip and the tower. It also introduces a greater bending and yaw moment
to the low-speed shaft and tower due to gravity and aerodynamic forces.
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Although it is not a standard, undersling is defined as the distance from the
intersection point of the span axes of the blades (as the s point in Figure 6) to the teeter pin
in some literatures. In practice, the intersection point dynamically changes due to the effect
of varying aerodynamic blade loads. The s’ point in Figure 6 illustrates the intersection
point at some pre-cone angle. For precision, the term undersling (f) is used here as a
measure of the distance along the low-speed shaft from the point s, i.e., the intersection
point of the span axes of the blades at a zero coning angle, to the teeter pin. Undersling can
have either a positive or negative value (measured along the z, axis), depending on a
downwind or upwind configuration. Figure 6 shows a positive f value. An
aerodynamically balanced rotor will place the teeter pin coincident with the center of
gravity of the rotor (CGR) assembly to reduce the effect of the Coriolis force transmitted to
the low-speed shaft. Since the CGR dynamically shifts due to the flexibility of the blades
during operation, a good rotor design will place the teeter pin in the center of the region
where the CGR is dynamically moving.

The points at which the blades are attached to the hub are located by the parameter g
measured from the point S to the blade root. The parameter g is also known as the hub
radius and always has a positive value.

2.4 Blades

Similar to the tower model, a blade can be modeled as a continuously flexible beam or
a collection of rigid segments jointed in sequence. A blade has 3-DOF, i.e., pitch, flapping,
and lead-lag bending at the root with respect to the hub. Like a flexible tower, the 3-DOF
blade root is modeled as three mutually perpendicular 1-DOF joints intersecting at the
blade root point, see Figure 6. The blade feather has 1 DOF, i.e., the pitch motion about
the z axis with respect to the hub. The blade coning has 1 DOF, i.e., the coning motion
about the z, axis with respect to the feather. The blade torsion has 1 DOF, i.e., the
edgewise lead-lag bending motion about the z; axis with respect to the blade coning.
Springs and dampers can be attached to any of the three axes to model the structural
stiffness and damping at the blade roots. In this study, both the blades and tower are
modeled in separate modules from the rotor assembly. The rotor model outputs the
positions and velocities at the blade roots to the blade models, which return the
aerodynamics forces at the blade roots, or at prescribed geometric locations measured from
the blade roots. Interactions between the blade models and the rotor model are explored
more in Chapter 4.
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2.5 Deviations From the Example Model in Other Wind Turbine Configurations

The relative motion of the turbine components with respect to their neighboring
components can be inhibited by locking the corresponding axes to model wind turbines of
different configurations. For example, by locking the tilt axis, teeter axis, coning axis, and
pitch axis, a typical 2-bladed or 3-bladed rigid-rotor, stall-regulated, free-yaw wind turbine
can be modeled. A teetered-rotor configuration can be obtained from the same model by
freeing the motion about the teeter axis. Freeing the pitch axis simulates full or partial
pitch motion. Although the example model in Figure 2 consists of only nine basic
components, combinations of these basic components yield virtually unlimited turbine
configurations.

2.6 Driving Forces

Aerodynamic, actuator (or control), and external forces can be added to any of the
rotation axes described above to model springs, dampers, brakes, and viscous and coulomb
friction. For example, by adding spring and damping forces to the blade axes, constrained
motion of the blades is modeled to simulate coning, in-plane and out-of-plane bending.
Active controlled wind turbine configurations can be modeled by adding control dynamics
to any of the rotation axes. For example, an active yaw or pitch-controlled wind turbine
can be studied by adding control dynamics to the yaw or pitch axis. By adding control
dynamics to tilt and/or coning axes, advanced wind turbine configurations with active
up/down tilt and coning control systems can be simulated. The controllers incorporated in
the model can be referenced collectively, i.e., same pitch angles for all the blades, or
independently to yield optimal modeling flexibility of the turbine modeler.
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3.0 Kinematics of the Rotor Assembly of a HAWT

3.1 Kinematics of Structural Components

By placing the kinematic constraints of 1 DOF between any pair of adjacent
components, the wind turbine model described in Section 2 can be viewed as an open-chain
kinematic linkage where the tower is rigidly attached to earth (or the inertial frame) and the
upper bodies of the linkage (or the blades) are free to move in space, as illustrated in Figure
3. For the remainder of this report, the term “link” is used as a generic name for any one of
the turbine components. With this arrangement the kinematic relationship of the
neighboring bodies can be systematically established by assigning a body-attached
orthonormal coordinate system to each of the links of the wind turbine using the
Denavit-Hartenberg (D-H) convention [Denavit and Hartenberg 1955]. This convention
allows the spatial descriptions, i.e., kinematics, of the wind turbine to be established by
following a mechanical procedure that is independent of turbine configurations.

Each set of coordinates, (x;, ¥;, ;) denoted by {i}, or called Frame {i}, is rigidly
attached to the body (i) and rotates along with the body, and therefore is called a "body-
attached" coordinate system. The z-axes of the frames are always aligned with the rotation
axes of the joints (see Figure 6). If the link is unidirectional such as the blades, the
direction of the link rotation is determined by the z-axis in the right hand sense. After
establishing the Cartesian frames, four parameters (¢; , b; , 0, , d; ), namely, the twist angle,
the link length, the rotation angle, and the link offset, respectively, are determined for each
body frame {i}. Definitions of these parameters are given as follows,

1. «, is the angle of rotation about x,, in the right-hand sense to align z;; to z. Notice

that x, ,-z; , frame, or {i-1} frame, is assigned to link i-1, the lower neighbor of link
i.

2. b, is the distance along x;, ,from the joint axis z,, to joint axis z,.

3. 6, is the angle of rotation about z, in the right-hand sense to align x; , to x;,

4. d, is the distance along z; from the intersection point of x;, and z; to the origin of the

frame {i}.
Details and examples of the link parameters can be found in many kinematics and robotics
books [Craig 1989, Balafoutis and Patel 1991]. The D-H link parameters for the two-
bladed, teetered rotor HAWT shown in Figure 6 are given in Table 1.

The configuration, or spatial transformation, matrix describing the kinematic relationship
between link i and its lower neighbor (link i-1) is given by
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i—lci - i—lRi ici* + i_IPi , (15)

where

"IC, is a 3x1 position vector of a point C fixed on link i (denoted by the lower right
subscript in our notation) in a 3-D space measured and expressed with respect to Frame {i-
1} (denoted by the upper left superscript). That is, it is a vector from the origin of Frame
{i-1} to the point C on link i, expressed with respect to Frame {i-1},

cos(9,) ~sin(6,) 0
i'lRi= cos(a;)sin(0,) cos(e)cos(6,) -sin(c,) ) (16)

sin(et;)sin(0,) sin(e;)cos(8,) cos(e,)

IC"| is a position vector of a point C fixed in link i measured in Frame {i}, expressed with
respect to Frame {i-1}. That is, it is a vector from the origin of Frame {i} to the point C on
link i. It is a constant vector since Frame {i} is fixed to link i. Notice that the upper right
superscript * is used for the vectors that are measured with respect to their own body
frames.
Let

MP.=[b, -d,sin(ai) d,cos (a;) ] (17)

be the position vector of the origin of Frame {i} measured and expressed with respect to
Frame {i-1}. Notice that the symbol C is used for an arbitrary point on a link, e.g., the
center of mass, and the symbol P is used for the origin of a body frame in our notation (see
Figure 8).

After the user specifies the geometric configurations, (i.e., the values of the
parameters b, , d;, d,, and t;), and the DOFs of a turbine, (i.e., specifies whether 0, is a
constant or a variable), kinematic relationships among the turbine components can be
derived systematically by substituting the D-H link parameters as shown in Table 1 into
Equations 15 through 17.
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Table 1 D-H link parameters for the HAWT model in Figure 6.

Link | o; b, |6, d Link Name (Remark)

1 Reference frame at the tower top

2 0 0 |q b Yaw

3 90° a |-90°+q, -c Tilt

4 -90° d |-90-0,+q, e+f | Azimuth

5 90° 0 | -90°+q; 0 Teeter

6 90°-5, |f | 180°+qsttT, | -8 Pitch + blade twist T, at root (for blade 1)
7 -90° 0 | 90°+g,+q, 0 Coning (for blade 1), q, = precone

8 -90° 0 |90°+q, 0 Bending (for blade 1)

6 -90°-, |f 180°+q¢+T, | -g Pitch + blade twist T, at root (for blade 2)
7 -90° 0 |90°+q,+q, |O Coning (for blade 2), q, = precone

8 -90° 0 |90°+qgs 0 Bending (for blade 2)

3.2 Linear Velocity and Acceleration

The angular velocity o, of a link i with respect to the inertial frame can be expressed

as a sum of the relative angular velocities of all lower links. That is,

where

(18)

iq’;=[00q']], is the angular velocity of link j about joint axis j,

‘R,= R, 'R, ’R; R, - F'R; , and
q,j 5 Oqu = 01{j Jqu .

Notice that the upper-left superscript is omitted if it is O to simplify the notation. So z;
represents the unit vector of Frame {j} expressed with respect to the inertial frame. Letr;
be the position vector of the center of mass of link i (measured and expressed with respect
to the inertial frame, see Figure 8). The position vector can be written as
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i

=Y %R P+ R 'C/ =2 P+C (19)
£

j=1

where

P;"=°P;" =R;,"'P,, is the position vector of the origin of Frame {j} measured in Frame {j-
1} expressed with respect to the inertial frame, and

G’ =°C="R,'C/, is the position vector of the center of mass of body i measured in
Frame {i} expressed with respect to the inertial frame.

The linear velocity and acceleration of link i at its center of mass, observed in the
inertial frame, can then be derived by taking first and second time derivatives of Equation
19.

j=2 (20)
i j-1
+§ k=2(wk ¥ * By
S RPT)
+Q”i * Ci*
i
+Z(wj-1 *q'.l)* CI*
j=
+W *((")i* C )
where
Q”i =E quj (22)

n j

and q”; 2°q", = °R;’q"},’q"; = [0 0 ¢"]]' is the angular acceleration of link j about joint axis j.
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Although Equation 21 seems complicated, it is computationally efficient (using a linear
algebra software package) and highly structured. The first and fourth terms in Equation 21
represent the linear acceleration components due to the angular acceleration of the links
lower than i. The second and fifth terms are the linear acceleration components due to the
centrifugal acceleration of the lower components. The third and sixth terms correspond to
the Coriolis acceleration due to the linear motion of the lower links.
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4.0 Dynamics of the Rotor Assembly of a HAWT

4.1 Structural Dynamics -

In deriving the EOMs of a HAWT, the generalized d’Alembert (GD) formulation is
applied. Recall the well-known Lagrange equation

[—ak] S/ T s = 1,2,3,...,n _ (23)

L), - 3| oL -
aq s aqs

dt

where

La(L), denotes the Lagrangian operator applied to a system L with respect to a generalized
coordinate s,

L =Lagrangian function of the system L = total kinetic energy K - total potential energy V,
q, = generalized coordinate at the joint s where the system is free to move

q’, = first time derivative of the generalized coordinate, g,

T, = effective force (or torque) applied to the system at joint s.

The d’Alembert principle [Ogata 1992] states that the external forces [or torques (T)]
applied to a multi-body system must be equal to the inertial forces [or torques (M)] of the
system, measured with respect to the independent axes describing the degrees of freedom
of the system, for the system to be in dynamic equilibrium. That is

=M, s=12,..n . (24)

The wind turbine components considered in this study only have rotational motion
relative to their lower neighbors. Only the resultant torques at the joints will be considered
for the EOMs of the system. The external torques considered in this study are the torqlies
caused by the acrodynamic forces and moments 7, spring and damper torques T, and T, ,
respectively, actuator torques T, and torques transmitted from the upper links 7. Notice
that the energy-stored springs and the energy-dissipating dampers and brakes are
considered as external torques in this formulation. These mechanisms apply equal but
opposite torques to two links of the turbine where they are mounted. These torques will be
discussed more in detail later. The inertial torques are those caused by translational and
rotational motion as results of external forces, and motion caused by gravitation force on
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the individual turbine components, denoted by M, , M, , and M,, respectively. Equation 24
can be rewritten as

Mts +NIIs +Mgs = Tae.r * Ts]{y * Tda, + Tacs + Tfrs’ s=1,23,..,n (25)

where the letter s represents the generalized coordinates describing the DOF of the system.
Recall that

L=K-V=K+K -V , (26)

where

K, is the total kinetic energy due to the transnational effect, i.e., the linear translation of all
of the turbine components, and

K. is the total kinetic energy due to the rotational effect, i.., the angular rotation of all of
the turbine components.

Substituting Equation 26 into Equation 23,

27
LafL] =La[K ] +La[K ], ~La[V] =T,
If Equation 25 is compared with Equation 27, one obtains
TS =(Tae: + Tsp: + Tdas + Tacs + Tf’s) effective; S = 1,2,3,..n (28)
Mts =La[K ]
M, =Laf[K ]
M, =-La[V];
Substituting Equation 28 into Equation 23,
M, +M, +M_ =1
ts Is gs s (29)

Equations 25 and 28 are two important relations that form the mathematical basis of the
automatic EOM builder.
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4.2 Inertial Torques
4.2.1 Inertial Torque Due to Translational Effect M,

The kinetic energy of wind turbine component i, i=1,2,3, ..., n, with mass m; due to its
translational motion can be expressed as:

1

K, =%mi vov, (30)

where v, is the linear velocity of component i at its center of mass, see Equation 20. The
total kinetic energy of the wind turbine due to translational motion can be written as a
summation of the individual components. That is,

K=1Ymveoy, . 31)

n
i=1

DO |

If the Lagrangian operator is applied to the above equation with respect to generalized
coordinate s (see Equation 23), one obtains

Mts=§{ miai-[ zs*( ri_Ps)]} , (32)

where

(*) and (*) are the dot product and cross product of two vectors, respectively

P.=P =, + R, P, + - + R, *'P, is the position vector of the origin of Frame {s}
measured and expressed with respect to the inertial frame, and

z, is a unit vector along the generalized coordinate s measured with respect to the inertial
frame.

4.2.2 Inertial Torque Due to Rotational Effect M,

The rotational kinetic energy of wind turbine component i, with mass moment of
inertia I about its center of mass expressed with respect to Frame {i}, is given by
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kff%( iRO(")i)t I ( iRo‘*)i) . (33)

where 'R, = ("R)"

The total kinetic energy of the wind turbine due to the rotational effect can then be written
as a summation of the individual components. That is,

> (Ryw) I Row,) - (34)

Substituting Equation 18 into Equation 34 and applying the Lagrangian operator to the
resulting equation with respect to a generalized coordinate s leads to

n

M3 { (Roz1(RQ)

i=s

+(iRon)‘Ii{i iRo [q'j *(wi—mj)] (35)

+R, (Zs*“’iiflli(iRO“’i)} , Jessi

Notice that the first, second, and third terms in the above equation represent the inertial
torques due to angular accelerations, centrifugal forces, and Coriolis forces of the rotating
links, respectively.

4.2.3 Inertial Torque Due to Gravitation M,

The total potential energy of a wind turbine can be expressed as

n

V=Y -m g1 , (36)

i=1

where g is the gravitational acceleration vector, €.g., [0 0 9.81 m/sec?]".

Applying the Lagrange operation to the above equation with respect to the generalized
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coordinate s, leads to

Mgs=zn: m, g-[ z,*(r,-P,)] - (37

Details of the derivation of Equation 37 are outside the scope of this report.
4.3 External Loads and Torques

4.3.1Direct Torques Applied to links

A. Spring and Damping Torques

As shown in the free-body diagram depicted in Figure 9, the torques exerted on link s
by a torsional spring and damper can be expressed as

Tsp_‘ = _ksqszs + ks+1 Q541250 (3%
Tdas = _bs q,szs + bs+1 qls+1 Zs+1 ? (39)

where
k, is the torsional spring constant of the spring at joint s
b, is the damping coefficient of the damper at joint s.

The first terms in Equations 38 and 39 are the spring and damping torques,
respectively, due to the spring and damper connecting links s-1 and s. The second terms in
Equations 38 and 39 are the spring and damping torques, respectively, due to the spring and
damper connecting links s and s+1.

B. Actuator Torque (Controller torque)

Externally applied loads or torques can be modeled as

T,.=fa.q)z . (40)

where f represents an external forcing function or a function of the states of the wind
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turbine defined by users, e.g., a braking force can be a function of the shaft speed. It can
represent a mechanical brake or the dynamics of an active control system. If f represents a
brake force, an equal but opposite moment will be applied to the link where the brake is
mounted. If fis an actuator moment, the internally reacted actuator forces will be
neglected, i.e., the reacted actuator forces are assumed to be absorbed by the structure.

C. Aerodynamic Forces and Moments

As shown in Figure 10, the resulting moment of the aerodynamic force and moment
directly exerted on link s at the rotation axis can be calculated as

T, =M, + C, xF, 41

where Mae, and F; are the aerodynamic moment and force exerted on link s, respectively,
(calculated using an external aerodynamic subroutine). The aerodynamic moments and
forces are assumed to be point moments and forces acting through the center of gravity of
each link.

4.3.2 Forces Transmitted From Upper Links to Lower Components

External forces, like the aerodynamic force F,, exerted on link i will be partially
consumed by the link, by converting to kinetic energy through link rotation. The rest of
the forces are transmitted to its lower neighbors. Let

Cn =F, —(1 “H, )[Fn _(Fn.nn)nn - (Fn' Zn)zn] (42)

be the force transmitted from the uppermost link, n, to its lower neighbor n-1,
where n, is a unit vector parallel to the projection of the vector C’; on the x-y plane of
Frame {n}. That is

(43)

and L, is the joint coefficient of joint n. The joint is free if p,=0 and the joint is locked
(e.g., mechanically locked) if p =1.
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In practice, some of the torque generated from external forces are consumed by
friction in the joints. The frictional torque in a joint can be modeled as external torques as
discussed in Section 4.3.1B. For convenience, the joint coefficients can be used as an
alternative way to include friction loss in the model. Instead of using zero for the joint
coefficient of a free joint, any value between zero and one can be used to model the friction
loss at the joint. Nevertheless, one should be aware of the fact that joint coefficients are
not friction coefficients. It is proposed here merely for mathematical convenience.

Similar to Equation 42, let

Cn—l Fn (l IJ’n IB[F ( n-1Tg- l)nn 1 (Fn 1 Zn— ) n-l] (44)
+Cn( |J'nl) (chnl) (nZ

be the force transmitted from link n-1 to its lower neighbor n-2, where ¢, is the unit
vector parallel to the projected vector of P, on the x-y plane in Frame {n-1}. That is

o, LA S » 45)

Tl -ferzafec)

By induction, the force transmitted to link s-1 from link s can be written as

Com B o) (L HF+ Con) = (Form o =G 0)O[(Fr i) 2o} - g

In a typical wind turbine model, acrodynamic forces are calculated and applied to the
blades. Equation (46) can be used to calculate the aerodynamic forces transmitted from
the blades to the rest of the turbine components.

4.3.3 Moments Transmitted From Upper Links to Lower Component and the
Effective Torques

Like aerodynamic forces, moments exerted on link i will be partially converted to
kinetic energy by link i rotation. The rest of the moment is transmitted to its lower
neighbor i-1. Let T, be the total direct moment exerted on the last link n, i.e., the outermost
link n, excluding the externally applied torque. That is,
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T =T, +Ty * T, (47)

The effective torque that causes the link to rotate about its axis is

Tn =T.n.zn + Tacn ? (48)

where z, is a unit vector along the direction of the joint axis n. The portion of the moment
transmitted to its lower neighbor n-1 is

Ty =T, (1-)[(Ta Za)2a] - (49)

The total moment, excluding the actuator moment, exerted on link n-1 is

Tn—l =T,n +Pn X Cn + T.s'pn_1 + Tda,,_1 + Tae,,_i * (50)

The effective torque at joint axis n-1 is

tn—l “la 'Zn~1 * Tacn_, (51)
and
Tln—l =Tn—l —(1 _Mn—l)[(Tn—l .Zn—l )Zn-l] : (52)

By induction, the total moment exerted on link s and its effective torque can be derived as

Ts =T,s+1 +Pstlxcs+l +Tsp:+Tdas+Tae: (53)
T, =T, z,+T,, (54)
T =T, -(1-w) [ (Toz)z] (55)

Equation (53) calculated the acrodynamic torques transmitted from the blades to the rest of
the turbine components.
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4.4 EOM Builder and a Recursive Algorithm to Calculate the Effective Torque

The equations derived in the above sections are totally generic to the turbine
structures. The inertial components of the EOM, i.e., the left-hand side of Equation 26, of
a wind turbine can be derived symbolically using Equations 25, 32, 35, and 37. The
effective torque applied to each rotation axis will be systematically calculated in real time
using a recursive algorithm as stated below.

(1) Call an external aerodynamic subroutine (e.g., the Utah Aerodyn subroutine
[Hansen 1995]) to calculate the aerodynamic forces F, and moments Mae, directly
exerted on each of the blade segments, i=1,2, --, n. Notice that the aerodynamic
forces exerted on the nacelle and tower can also be included in the calculations.

(2) Calculate (;, for i = n, n-1, n-2, ..., 2, in reversed order using equations 43, 45 and
46. In the case where an aileron device is attached to the end of the blade, { ,, =
Myeon * & That s, C ., equals the weight of the aileron. Otherwise, {,,, = 0.

(3) Calculate T;, t;, T}, i=n, n-1, n-2,..., 1, in reverse order using Equations 53 through
55. Notice that T’,,,=O0.

The above algorithms were used to derive the EOMs of two simple wind turbines in the
following chapter.
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5.0 Phase I Test Cases

One of the most important tasks in developing a wind turbine modeler is to verify its
theoretical formulations. The formulations discussed in chapters 3 and 4 are verified in
two phases. The first phase focuses on the verifications of “text book” cases, i.e., simple
wind turbines whose EOMs can be found in the text books. The second phase checks the
EOM s against commercial wind turbine models and experimental data. This chapter
discusses two test cases as part of the Phase I verification test cases.

5.1 A Single Rotating Blade

The first test case is a single rotating blade as depicted in Figure 11. The single-blade
wind turbine is assumed to be a rigid blade mounted on a rigid tower with a fixed yaw
angle. The rotor has zero tilt angle, zero rotor offset, and no teeter axis, i.e.,

a=b=c=d=e=f=0and ;=0 . (56)

Since there is no yaw motion, the rotor length e and the overhang distance f can both
be set to zero without changing the dynamics of the turbine. The blade is assumed to be a
rigid blade but flexible at the root point about the in-plane bending axis relative to the hub.
This flexible blade-root configuration can be easily accommodated by locking the pitch and
coning axes of the generic wind turbine model as shown in Figure 6. This unrealistic
turbine configuration was chosen as the first test case because it resembles a double
pendulum problem whose EOMs can be found in many books. This turbine model can be
derived from the base model described in Chapter 2 by locking all rotation axes except for
the azimuth and the in-plane bending axes, see Figure 6. That is,

q,=0,9,=0,9,=06,,94s=0,9s=0,9,=0,93=9, , (57)

where 8, and 6, are two independent variables representing the azimuth angle and the in-
plane bending angle, respectively. The mass of the hub and rotor are denoted by m, and
m,. The hub radius is L, and the blade length is L,. The shapes of the hub and the blade
are both assumed to be slender rods. Aerodynamic forces and moment are symbolically
represented by the vectors Faeg=[fx, fy, fz,]' and Maeg=[tx, ty, tz,]'. The actual values of
the aerodynamic forces and moments are calculated from an external subroutine in real
time. They are attached to the blade at its center of gravity, i.e., L,/2 ft measured from the
blade root. The azimuth axis is assumed to be frictionless, and the in-plane bending axis is

35




restrained by a torsional spring and damper simulating the stiffness and damping at the
blade root.

Appendix A includes a Matlab M file that was implemented to generate the EOMs
specifically for this example. The EOMs generated by this problem are included in
Appendix B. The EOMs were verified and agree with the EOM:s of a double pendulum
discussed in [Shabana 1994, Murray et al. 1994]. EOM 1 in Appendix B represents the
EOM about the azimuth axis, and EOM 2 is the EOM about the in-pane bending axis.

5.2 A Down-Wind, Free-Yaw, Two-Bladed, Teetered-Rotor Wind Turbine

The second test case is a free-yaw, two-bladed, teetered-rotor wind turbine as shown in
Figure 12. The blades and the tower are both assumed to be rigid. The turbine is stall
regulated, and has no flexibility at the blade roots. It has zero delta-3 angle and zero
overhang distance. Each blade has 7 degrees of precone angle, down wind. From the base
model, this wind turbine configuration can be obtained by setting the joint variables as
follows,

©=0,6=0,0,=G,,¢=0954=0,9,=-7%, =0 , (57)
where q,, q4, g5 denote the yaw angles, azimuth angles, and teeter angles, respectively.

The rotor has zero offset and uptilt angle. The shaft length is assumed to be 6.97 ft. It
has no overhang, and the hub radius is 3 ft. Since the blades are preconed, the center of
gravity of the rotor assembly is assumed to be L, ft downwind along the x, axis, see Figure
6. The acrodynamic forces and moments are attached to the points L, ft along the span
axis of each blade measured from the blade root. A teeter spring and a damper are attached
to the teeter pin to restrain the teeter motion. K and b are used to denote the spring and
damping coefficients, respectively.

Appendix C contains the Matlab M file that was implemented to generate the EOMs
for this test case. The EOMs generated by this program are included in Appendix D. EOM
1 in Appendix D represents the yaw equation. EOM 2 is the azimuth equation, and EOM 3
is the teeter equation. The EOMs do not agree with the EOMs of a similar turbine model
discussed in the NREL report [Hansen 1992] in a term by term comparison. Nevertheless,
the disagreements in EOMs do not necessarily imply that the EOMs in Appendix D are
incorrect. The turbine model discussed in Hansen's report uses different coordinate
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systems and some simplification assumptions. For example; the generator speed in
Hansen'’s model is a constant and the center of gravity of the teetered-rotor is always
aligned with the azimuth axis. The EOMs in Appendix D do nof use these assumptions. A
possible way to verify the EOMs is to run time simulation on measured wind data and
compare the simulation results against measured field data.

Although the accuracy of the EOMs in Appendix D is yet to be verified, the two test
cases have demonstrated the potential of the EOM builder as proposed in this report. Using
the systematic procedures, a complicated wind turbine model can be easily generated. In
addition, a reliable free yaw wind turbine model can be easily derived from a verified fixed
yaw wind turbine model by simply changing the yaw joint coefficient from one to zero.

The behavior of the free yaw machine can then be studied analytically without any
hardware construction cost. A summary of the problems encountered and lessons learned
from implementations of these two test cases are discussed in the following chapter.
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6.0 Summary and Conclusions

Not only can a properly designed wind turbine control system produce higher power
output, but it also can reduce structural loads. To accomplish this, a reasonable dynamics
model must be included in the control studies. This project proposes a modular wind
turbine modeler. The modeler automatically constructs analytical wind turbine models
from user input files that describe the turbine configurations. A basic turbine model
consists of modules defining the tower, rotor, drive train, generator, power electronics, and
blade dynamics. Chapter 2 of this report discusses the dynamics of the power train
components. A mathematical formulation that attempts to provide a systematic way to
derive the EOMs describing the dynamics of the rotor assembly is presented in Chapters 3
and 4. Two test cases that served as preliminary checks for the theoretical formulation are
discussed in Chapter 5. The formulation generates explicit nonlinear differential
equations. The closed form EOMs can be extremely informative when studying wind
turbine performance at unusual operating conditions. Individual terms can be isolated from
the equations to gain insight on the turbine’s dynamic behavior. This mathematical
formulation has been tested to derive the EOMs of a two-bladed, free-yaw wind turbine;
test case 1.2 discussed in Chapter 5, which is modeled in the Yawdyn code for future
verification. Further verifications will also be conducted for industrial applications. With
the EOMs linearized at an operating point, control designs can be studied using commercial
control software like the Matlab control toolbox.

There are a few issues that need to be addressed in future studies. The first relates to
the software implementation. The Matlab M files listed in Appendix A and C were initially
implemented for Matlab Symbolic Toolbox Version 1.2. The Matlab Symbolic Toolbox
was chosen because the EOMs generated can be easily integrated into other Matlab
toolboxes for control studies. However, it was found that the 1.2 version was totally
inadequate to handle systems of complex dynamics. After a lengthy negotiation with
Mathworks, manufacturer of Matlab, a beta version of Symbolic Toolbox 2.0 was obtained
in May 1997. The production unit was released in late August. The M files were then
rewritten for the new version of the Symbolic Toolbox because the new version is
incompatible with the early ones. After taking all that trouble, the results were still
discouraging. The Symbolic Toolbox was installed on two Pentiums (75MHz and
166MHz, respectively, 40Mbytes of memory in each PC). Test case 1.1, see Chapter 5,
will run on either one of the computers and generates correct results within a few seconds.
Both machines failed to run test case 1.2. After dividing the M file of test case 1.2 into
three sections and executing each section sequentially, results can be generated on the
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166MHz Pentium in about 10 minutes but not on the 75MHz Pentium. In addition to
hardware dependency, the Symbolic Toolbox does not provide functions to collect terms
with common factors. This functional deficiency might result in very large EOMs that are
difficult to simplify manually by users. This problem can be illustrated by the EOMs of
test case 1.2 listed in Appendix D. A better symbolic math package should be investigated.

The second issue concerns the linearlization procedure. If the resulting nonlinear
EOM s are linearized at the “zero” nominal point, i.e., all nominal values of the states equal
to zero, then the linearization procedure is a straightforward process. However, if
linearization about a non-zero nominal point is desired, say, at a certain wind speed, the
nominal values of the other states need to be determined. This implies that a numerical
procedure must be integrated into the turbine modeler to solve for the state values at the
nominal operating points, otherwise they have to be given by the users.

The last issue, but not the least one, is the need for the integration of ordinary
differential equations, which describe rigid-body motion such as the rotor and power train
dynamics, and partial differential equations, which describe continuously flexible
components, such as the tower and blades. Models of continuous flexible components
were not discussed in this report. A good reference for this subject is the book by Junkins
[Junkins and Kim 1993]. It is expected that the Matlab Simulink software can integrate
these two types of models in one system and linearize the system at a nominal point
specified by the user. However, until it is done, many intricate problems are anticipated.
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Appendix A. Matlab M File for Test Case 1.1 (phase 1, case 1)

% Test Case 1.1 - A single-blade rigid rotor with a free rotational

% degree of freedom about the azimuth axis, i.e.,
% mu4 =k4 =b4 =0, and a constrained degree of
% freedom about the in-plane bending axis, i.e.,
% k8 and b8 are non zeros.

%

% User’s input
% define basic kinematic parameters, i.e., the D-H paramters

% L1, L2, thetal, and theta2 are used as the symbolic variables
% reprenting the hub length, blade length, azimuth angle,
% and in-plane bending angle, respectively.

syms L1 L2 thetal theta2;

g2 =0; g3 =0; q4 = thetal; q5 = 0; 96 = 0; q7 = 0; q8 = theta2;
a=0;b=0;¢c=0;d=0;e=0;f=0;

g=L1;

delta3 = 0;

% define the center of gravity (cg) of each mass w.r.t.
% its local frame

c44p = [L1/2;0;01;
c88p = [0;-1.2/2;0];

% define the mass of the hub and the rotor

syms m1 m2;
% define the inertial of each link w.r.t. it local frame
144 =[O0, 0, 0;..
0, ml1*L1/2/12, 0;..
0, 0, m1*L122/12];
I88 =[m2*1.2/2/12, O, 0; ...
0, O, 0; ...

0, 0, m2*L2"2/12];

% define the aerodynamic forces and moments w.r.t.
% the inertial frame

syms fx2 fy2 fz2 tx2 ty2 tz2;
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Faed = [0;0;0];

Mae4 = [0;0;0];

Fae8 = [fx2;fy2;fz2];

Mae8 = [tx2;ty2;tz2];

% define actuation torques

Tac4 =0;

Tac8 =0;

% define the spring and damping coefficients for each axis

syms k2 b2;
k4=0;b4=0;
k8 =k2; b8 =b2;

% define the viscous friction coefficients of the joints

mu4 =0; mu8 =0,

% build basic D-H matroces

T12 = dhmat(0,0,q2,b);

T23 = dhmat(pi/2,a,-pi/2+q3,-c);

T34 = dhmat(-pi/2,d,-pi/2-delta3+q4,e+f);
T45 = dhmat(pi/2,0,-pi/2+q5,0);

T56 = dhmat(pi/2-delta3.f,pi+q6,-g);

T67 = dhmat(-pi/2,0,pi/2+q7,0);

T78 = dhmat(-pi/2,0,pi/2+q8,0);

% build combined D-H matrices

T2 =TIi2;

T2 = simple(T2); % simplify T2 if possible
T24 =T23 * T34,

T24 = simple(T24);

T4 =T2 * T24;

T4 = simple(T4);

T46 = T45 * T56;

T46 = simple(T46);




T68 =T67 * T78,;
T68 = simple(T68);
T48 = T46 * T68,;
T48 = simple(T48);
T8 = T4 * T48;

T8 = simple(T8);

% change variable indices from 4,8 to 1,2
T1=T4;

T2 =TS;

T12 =T48;

I11 =144,
122 = 188;

Fael = Fae4; Mael = Maed;
Fae2 = Fae8; Mae2 = MaeS§;

Tacl = Tac4; Tac2 = Tac8;

ql = q4; 2 =¢8;
k1 =k4; bl = b4;
k2 =k8; b2 = b8;

clip =c44p;
c22p = c88p;

% extracts rotation matrices, z-vectors, and position vectors
% of the origins

R1 =hom2rot(T1);
R12 = hom2rot(T12);
R2 = hom2rot(T2);

z1 = wtextc(T1,3);
z2 = wtextc(T2,3);

Plp = wtextc(T1,4);
P12p = wtextc(T12,4);
P2p =R1 * P12p;

P1 =Plp;
P2 = wtextc(T2,4);
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% calculate the position vector of the cg w.r.t. the
% inertial frame Equation 5

Clp=RI1 * c44p;
C2p =R2 * c88p;

r1 =Plp + Clp; %1l =pl +clp
r2 =Plp + P2p + C2p; % 12 = p2 +c2p

% define the angular velocities and accelerations of each joint
% w.r.t. the initial frame, i.e., observed in the local frame
% but expressed w.r.t. the initial frame

qlp = sym('qlp) * z1; % angular velocity at the azimuth axis

q2p = sym('q2p) * z2; % angular velocity at the in-plane bending axis

qlpp = sym(’qlpp) * z1; % angular acceleration at the azimuth axis

q2pp = sym(’q2pp) * z2; % angular acceleration at the in-plane bending axis

% compute the angular velocity of each link w.r.t. the inertial
% frame using Equation 4, i.e., observed and expressed w.r.t.
% the inertial frame

Qlp=qlp;
Q2p=qlp +q2p;

% compute the linear acccelerations at the cg of each link
% using Equation 5, i.e., observed and expressed w.r.t. the
% inertial frame

Qlpp=qlpp;
Q2pp = qlpp + q2pp;

t4 = xproduct(Q1pp,Clp);

t6 = xproduct(Q1p, xproduct(Q1p,Clp));
al =t4 + t6;

al = simple(al);

t1 = xproduct(Q1pp,P2p);

t3 = xproduct(Q1lp, xproduct(Q1p,P2p));
t4 = xproduct(Q2pp,C2p);

t5 = xproduct( xproduct(Q1p,q2p),C2p);
t6 = xproduct( Q2p, xproduct (Q2p, C2p));
a2 =tl +t3 + t4 +t5 + t6;

a2 = simple(a2);

45




% compute the inertial due to the translation motion applied
% to joint 1 using Eqation 16, i.e.,s=1

tl = (m1*al)’* xproduct(z1 , (rl1 - P1));
t2 = (m2*a2)’ * xproduct(zl , (12 - P1));
Mtl =t1 +12;

Mtl = simple(Mt1);

% compute the inertial due to the translation motion applied
% to joint 2,i.e.,s =2

Mt2 = (m2*a2)’ * xproduct(z2 , (12 - P2));
Mt2 = simple(Mt2);

% compute the inertial due to the rotation motion applied
% to joint 1 using Eqation 19,i.e.s=1

% i=1

tl = (RI’* z1)’*I11 * (R1’* Qlpp);

t3 = (R1’ * xproduct(z1,Q1p))’ * I11 * (R1’* Qlp);
Mrl =tl +t3;

% 1=2

tl = (R2°* z1)’ * 22 * (R2’ * Q2pp);

t2 = (R2’* z1)’ * 122 * (R2’ * xproduct(q1p,Q2p-Qlp));
t3 = (R2’* xproduct(z1,Q2p))’ * 122 * (R2’ * Q2p);
Mrl =Mrl +tl +t2 +t3;

Mr1 = simple(Mrl);

% compute the inertial due to the rotation motion applied
% to joint 2,i.e.,s=2

% i=2

tl = (R2’* z2)’ * 22 * (R2’* Q2pp);

t2 = (R2’* z2)’ * [22 * (R2’ * xproduct(q1p,Q2p-Qlp));
t3 = (R2’ * xproduct(z2,Q2p))’ * 122 *(R2’ * Q2p);

Mr2 =t1 +1t2 +13;

Mr2 = simple(Mr2);

% compute the inertial due to the gravitation applied
% to joint 1 using Eqation 21,i.e.,s=1

% i=1

syms g; % define g as the gravitation constant, a scalar
% whose direction is along the negative y direction

% in this example
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t1 =ml * [0; 0; -g]’ * xproduct(z1,(r1-P1));
%o 1=2

t2 = m2 * [0; 0; -g]’ * xproduct(z1,(r2-P1));
Mgl =tl +1t2;

Mg! = simple(Mgl);

% compute the inertial due to the gravitation applied
% to joint 2 using Eqation 21, i.e.,s =2

Poi=2;

Mg2 =m2 * [0; 0; -g]’ * xproduct(z2,(r2-P2));

Mg2 = simple(Mg2);

% compute the spring and damper torque applied to each joint
% define the spring constants and damping coefficents

% of each joints using Equation 23

Tspl = k1 * thetal * z1 + k2 * theta2 * z2;

Tsp2 = -k2 * theta2 * z2;

Tdal =-bl * qlp + b2 * g2p;

Tda2 = -b2 * q2p;

% compute the actuator torques applied to each joint
% The actuator torques equal to zero in this example

%o compute the projection vectors on the x-y plane
[mum1,denl,n1] = projpp(Clp, z1);

[num2,den2,n2] = projpp(C2p , z2);

[num3,den3,phil] = projpp(P2p, z1);

% compute the direct aerodynamic torque applied to each link
Tae2 = Mae2 + xproduct(C2p, Fae2);

Tael = Mael + xproduct(Clp, Fael);

% define the viscous friction coefficients of the joints

mul =0;

mu?2 =0;

47




% compute the total external torque applied to the
% outmost link, i.e.,s =2

T2 = Tsp2 + Tda2 + Tae2;

% compute the effective torque at the joint

tau2 = T2’ * z2 + Tac2;

% compute the force transmitted from link s to s-1
% s =2, 1.e., force applied to link 1 by link 2

zeta2 = Fae2 - (1-mu2)*(Fae2- (Fae2™n2)*n2 - (Fae2™*22)*z2);
% compute the torque transmitted from link s to s-1
T2p = T2 - (1-mu2)*((T2’ * z2)*z2);

% compute the total external torque applied to the
% inner links, i.e., s <n

T1 = T2p + xproduct(P2p,zeta2) + Tspl + Tdal + Tael;
% compute the effective torque at the joint

taul =T1'* z1 + Tacl;

% construct the EOMs using Equaiton 13

LEOM1 = Mtl + Mrl + Mgl;

LEOMI1 = simple (LEOM1);

REOMI = simple (taul);

LEOM2 = Mt2 + Mr2 + Mg2;

LEOM2 = simple (LEOM2);

REOM?2 = simple (tau2);

% store the EOMs in a file

delete(Coneblade.eom’);

diary oneblade.eom;
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display('EOMs of Example 1°)
display(Inertial torques (LHS) of EOM 1));
pretty(LEOM1)

display(’External torques (RHS) of EOM 1),
pretty(REOM1)

display(Inertial torques (LHS) of EOM 2);
pretty(LEOM?2)

display(External torques (RHS) of EOM 2);
pretty(REOM?2)

diary off;
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Appendix B. EOMs for Test Case 1.1

Inertial torques (LHS) of EOM 1

2 2 2 2
m2qlppLl +13m1L1 qlpp-1/3m2L2 q2pp+13m2L2 qlpp

2
+1/2m2 L2 q2p L1 sin(theta2) - m2 L2 qlp q2p L1 sin(theta2)

- 172 m2 L2 q2pp L1 cos(theta2) + m2 qlpp L1 L2 cos(theta2)
+ 1/2 g m1 cos(thetal) L1 + g m2 cos(thetal) L1

+ 1/2 g m2 cos(thetal - theta2) L2

External torques (RHS) of EOM 1
- 172 L1 fy2 sin(thetal - 2 theta2) + 1/2 sin(thetal) L1 fy2
+ 1/2 L1 {z2 cos(thetal - 2 theta2) - 1/2 cos(thetal) L1 fz2 - k2 theta2

b2 q2p

Inertial torques (LHS) of EOM 2
2
- 1/6 m2 L2 (3 qlpp L1 cos(theta2) - 3 qlp L1 sin(theta2) + 2 L2 qlpp

-212 q2pp + 3 g cos(thetal - theta2))

External torques (RHS) of EOM 2
-k2 theta2 - b2 q2p - tx2 - 1/2 sin(thetal - theta2) L2 fy2

+ 1/2 cos(thetal - theta2) L2 fz2
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Appendix C. Matlab M File for Test Case 1.2 (phase 1, case 2)
% Test Case 1.2 - A Simplified ERS-80 Rotor Model
% User’s input

% q2, q4, and g5 are used as the symbolic variables
% reprenting the yaw, azimuth, and teeter angles, respectively.

syms q2 g4 q5;

q3=0; g6=0;q6p=0;

q7 =-7 * pi/ 360; % 7 degrees precone downwind
a=0;b=0;¢c=0;d=0;

e=6.97; % ft

f=0;

g =3; %ft

delta3 = 0;

% define the center of gravity (cg) of each mass w.r.t.
% its local frame

syms L5 L'7;

c22p =[0;0;0];

c44p = [0;0;0];

¢55p = [-L5;0;0]; % LS ft downwind

c77p = [L7;0;0]; % L7 ft outward along the span axis

% define the mass of the naceile, drive train and the rotor, respectively

syms m2 m5;
m4 =0;
% define the inertial of each link w.r.t. it local frame
syms 2xx Ryy 12zz;
syms I5Sxx ISyy I5zz;
122 =[I2xx, 0, o; ...
0, L2yy, 0; ...
0, 0, I2zz];
144 =[O0, 0, 0; ..
0, 0, 0; ..
0, 0, 01;
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I55 =[I5xx, 0, 0; ...
0, I5yy, 0; ..
0, 0, I5zz];

% define the aerodynamic forces and moments w.r.t.
% the inertial frame

syms fx7 fy7 {27 tx7 ty7 tz7,

syms fx7p fy7p fz7p tx7p tyTp tz7p;

Fae2 = [0;0;0];

Mae2 = [0;0;01;

Fae4 = [0;0;0];

Mae4 = [0;0;0];

Fae5 = [0;0;0];

Mae5 = [0;0;0];

Fae7 = [fx7;fy7;fz71;

Mae7 = [tx7;ty7;tz7];

Fae7p = [fx7p;fy7p;fz7p];

Mae7p = [txTp;ty7p;tz7p];

% define actuation torques

Tac2 =0;

Tac4 = sym(Tp’); % Torque transmitted from the power train
Tac5 =0;

% define the spring and damping coefficients for each axis
k2=0;b2=0;

k4=0;b4=0;
syms k5 b5;
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% define the viscous friction coefficients of the joints
mul =0; mu2 = 0; mu3 =0;

% define the angular velocities and accelerations of each joint
% For constant speed operation q4p = a constant
% q4pp = 0;

syms q2p q4p q5p q2pp q4pp 45pp

% build basic D-H matroces

T12 = dhmat(0,0,q2,b);

T23 = dhmat(pi/2,a,-pi/2+q3,-¢);

T34 = dhmat(-pi/2,d,-pi/2-delta3+q4,e+f);
T45 = dhmat(pi/2,0,-pi/2+q5,0);

T56 = dhmat(pi/2-delta3,f,pi+q6,-g);

T67 = dhmat(-pi/2,0,pi/2+q7,0);

T56p = dhmat(-pi/2-delta3,f,pi+q6,-g);
T6p7p = dhmat(-pi/2,0,pi/2+q7,0);

% build combined D-H matrices

T2=TI12;

T2 = simple(T2); % simplify T2 if possible
T24 =T23 * T34;

T24 = simple(T24);
T4 =T2 * T24;

T4 = simple(T4);

T5 =T4 * T45;

T5 = simple(T5);

T57 =T56 * T67;

T57 = simple(T57);
T7 =TS * T57;

T7= simple(T7);

T57p =T56p * T6p7p;
T57p = simple(T57p);
T7p =TS * T57p;

T7p = simple(T7p);

% change variable indices from 2,4,5,7 to 1,2,3,4
T1=T2; ”

T12 =T24;

T2 =T4;




T23 =T45;
T3 =T5;

T34 = T57,
T4 =TT,
T34p =T57p;
T4p =T7p;

ml =m2; m2 =m4; m3 =m5;

111 =122; 122 =144, 133 = I55;

Fael = Fae2; Mael = Mae2;

Fae2 = Fae4; Mae2 = Mae4;

Fae3 = Fae5; Mae3 = Mae5;

Fae4 = Fae7; Mae4 = Mae7,

Fae4p = Fae7p; Maedp = MaeT7p;

Tacl = Tac2; Tac2 = Tac4; Tac3 = Tac5;

ql =92; 92 =q4; g3 =g5;
k1 =k2; bl =b2;
k2 =k4; b2 = b4;
k3 =k5; b3 = b5;

% extracts rotation matrices, z-vectors, and position vectors
% of the origins

R1 =hom2rot(T1);

R12 = hom2rot(T12);
R2 = hom2rot(T2);

R23 = hom2rot(T23);
R3 = hom2rot(T3);

R34 = hom2rot(T34),
R34p = hom2rot(T34p);
R4 = hom2rot(T4);

R4p = hom2rot(T4p);

z1 = wtextc(T1,3);
z2 = wtextc(T2,3);
z3 = wtextc(T3,3);
z4 = wtextc(T4,3);
z4p = wtextc(T4p,3);

Plp = wtextc(T1,4);
P12p = wtextc(T12,4);
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P2p =R1 * P12p;

P23p = wtextc(T23,4);
P3p =R2 * P23p;

P34p = wtextc(T34,4);
P4p = R3 * P34p;

P34pp = wtextc(T34p,4);
P4pp = R3 * P34pp;

P1=Plp;

P2 = wtextc(T2,4);
P3 = wtextc(T3,4);
P4 = wtextc(T4,4);
P4p = wtextc(T4p,4);

% calculate the position vector of the cg w.r.t. the
% inertial frame Equation 5

Clp=RI1 *c22p;
C2p =R2 * c44p;
C3p=R3 * c55p;
C4p=R4 * c77p;
C4pp =R4p * c77p;

rl =Plp +Clp; % 11 =pl +clp

r2 =Plp + P2p + C2p; % 12 = p2 +c2p
3=Plp+P2p+P3p+C3p; %13 =p3 +c3p
% aerodynamic forces attach on Blade 1

r4 =Plp + P2p + P3p + P4p + C4p;

% aerodynamic forces attach on Blade 2

r4p = Plp + P2p + P3p + P4pp + Cdpp;

% define the angular velocities and accelerations of each joint
% w.r.t. the initial frame, i.e., observed in the local frame
% but expressed w.r.t. the initial frame

qlp = q2p * z1; % angular velocity at the yaw axis

q2p = q4p * z2; % angular velocity at the azimuth axis

q3p = q5p * 23; % angular velocity at the teeter axis

qlpp = q2pp* z1; % angular acceleration at the yaw axis
q2pp = g4pp* 22; % angular acceleration at the azimuth axis
q3pp = q5pp* z3; % angular acceleration at the teeter axis
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% compute the angular velocity of each link w.r.t. the inertial ‘.
% frame using Equation 4, i.e., observed and expressed w.r.t.
% the inertial frame

Qlp=qip;
Q2p =qlp + q2p;
Q3p=qlp +q2p + q3p;

% compute the linear acccelerations at the cg of each link
% using Equation 7, i.e., observed and expressed w.r.t. the
% inertial frame

Qlpp=qlpp;
Q2pp = qlpp + q2pp;
Q3pp =qlpp + q2pp + q3pp;

% 1=1

t4 = xproduct(Q1pp,Clp);

t6 = xproduct(Q1p, xproduct(Q1p,C1p));

al =t4 +t6;

al = simple(al);

Pi=2

t1 = xproduct(Q1pp,P2p);

t3 = xproduct(Q1p, xproduct(Q1p,P2p));

t4 = xproduct(Q2pp,C2p);

t5 = xproduct(xproduct(Q1p,q2p),C2p);

t6 = xproduct(Q2p, xproduct (Q2p, C2p));

a2 =tl +t3 + t4 + t5 + t6;

a2 = simple(a2);

%i=3

t1 = xproduct(Q1pp,P2p) + xproduct(Q2pp,P3p);

t2 = xproduct(xproduct(Q1p,q2p),P3p);

t3 = xproduct(Q1p, xproduct(Q1p,P2p)) ...
+ xproduct(Q2p, xproduct(Q2p,P3p));

t4 = xproduct(Q3pp,C3p);

t5 = xproduct(xproduct(Q1p,q2p)+xproduct(Q2p,q3p),C3p);

t6 = xproduct(Q3p, xproduct (Q3p, C3p));

a3 =tl1 +1t2 +1t3 +t4 +t5 + t6;

a3 = simple(a3);

% compute the inertial due to the translation motion applied
% to the yaw axis using Eqation 16, i.e.,s=1

tl = (ml1*al)’ * xproduct(zl , (r1 - P1));
t2 = (m2*a2)’ * xproduct(zl , 12 - P1));

56



t3 = (m3*a3)’ * xproduct(z1 , (r3 - P1));
Mtl =tl +1t2 +3;
Mt1 = simple(Mtl);

% compute the inertial due to the translation motion applied
% to the azimuth axis, i.e.,s =2

t2 = (m2*a2)’ * xproduct(z2 , (12 - P2));
t3 = (m3*a3)’ * xproduct(z2 , (13 - P2));
Mt2 =12 +t3;

Mt2 = simple(Mt2);

% compute the inertial due to the translation motion applied
% to the teeter axis, i.e.,s =3

t3 = (m3*a3)’ * xproduct(z3 , (13 - P3));
Mt3 =13;
Mt3 = simple(Mt3);

% compute the inertial due to the rotation motion applied
% to the yaw axis using Eqation 19,i.e.s=1

% i=1

tl = RI’*z1)’* 111 * (R1’* Qlpp);

t3 = (R1’ * xproduct(z1,Q1p))’ * I11 * (R1’* Qlp);

Mrl =tl1 +t3;

% i=2 :

tl = (R2’* z1)’ * 122 * (R2’ * Q2pp);

t2 = (R2’* z1)’ * 122 * (R2’ * xproduct(qlp,Q2p-Q1p));

t3 = (R2’ * xproduct(z1,Q2p))’ * 122 * (R2’ * Q2p);

Mrl =Mrl +tl +12 +1t3;

% i=3

tl = (R3’*z1)’* 33 * (R3’* Q3pp);

t2 = (R3’* z1)’ * I33 * (R3’ * (xproduct(q1p,Q3p-Qlp) ...
+xproduct(q2p,Q3p-Q2p)));

t3 = (R3’ * xproduct(z1,Q3p))’ * I33 * (R3** Q3p);

Mrl =Mrl +t1 +1t2 +13;

Mrl = simple(Mr1);
% compute the inertial due to the rotation motion applied
% to the azimuth axis, i.e.,s =2

% =2

tl = (R2’* z2)’ * 22 * (R2’* Q2pp);




t2 = (R2’* z2)’* 22 * (R2’ * xproduct(q1p,Q2p-Q1p));
t3 = (R2’* xproduct(z2,Q2p))’ * 122 * (R2’ * Q2p);
Mr2 =tl +t2 +1t3;

% i=3

tl = (R3’* z2)’ * I33 * (R3"* Q3pp);

t2 = (R3’* z2)’* I33 * (R3’ * (xproduct(q1p,Q3p-Qlp)+ ...
xproduct(q2p,Q3p-Q2p)));

t3 = (R3’* xproduct(z2,Q3p))’ * I33 * (R3’ * Q3p);

Mr2 =Mr2 +tl +t2 + t3;

Mr2 = simple(Mr2);

% compute the inertial due to the rotation motion applied
% to the teeter axis, i.e., s =3

% 1=3

t1 = (R3’* z3)’* 133 * (R3’ * Q3pp);

t2 = (R3’* z3)’ * I33 * (R3’ * (xproduct(q1p,Q3p-Qlp) + ...
xproduct(q2p,Q3p-Q2p)));

t3 = (R3’* xproduct(z3,Q3p))’ * I33 * (R3’* Q3p);

M3 =tl1 +t2 +t3;

Mr3 = simple(Mr3);

% compute the inertial due to the gravitation applied
% to the yaw axis using Eqation 21, i.e.,s =1

g=1[0;0; sym(-g)];
% define g as the gravitation vector, whose direction is
% along the negative z direction in this example

% i=1

t1 =ml * g’ * xproduct(z1,(r1-P1));
% 1=2

t2 =m?2 * g’ * xproduct(z1,(r2-P1));
% i=3

t3 =m3 * g’ * xproduct(z1,(r3-P1));
Mgl =t1 +t2 + t3;

Mgl = simple(Mgl);

% compute the inertial due to the gravitation applied
% to the azimuth axis using Eqation 21, i.e.,s =2

%i=2;
t2 =m2 * g’ * xproduct(z2,(r2-P2));
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%i=3;

t3 =m3 * g’ * xproduct(z2,(r3-P2));
Mg2 =t2 +13;

Mg2 = simple(Mg2);

% compute the inertial due to the gravitation applied
% to the teeter axis using Eqation 21, 1.e.,5=3

%1=3;

Mg3 = m3 * g’ * xproduct(z3,(r3-P3));
Mg3 = simple(Mg3);

% compute the spring and damper torque applied to each
% axis using equations 22 and 23

Tspl =-k1 *ql *¥z1 +k2 *q2 * 22;

Tsp2 =-k2 * q2 * z2 + k3 * q3 * z3;

Tsp3 =-k3 * q3 * z3;

Tdal =-bl * qlp + b2 * g2p;

Tda2 =-b2 * g2p + b3 * q3p;

Tda3 = -b3 * q3p;

% compute the projection vector n on the x-y plane
% using equation 27 and 29

[num1,deni,nl] = projpp(Clp, z1);
[num?2,den2,n2] = projpp(C2p , z2);
[num3,den3,n3] = projpp(C3p , z3);
[num4,den4,phil] = projpp(P2p, z1);
[numS5,den5,phi2] = projpp(P3p, z2);
[num6,den6,phi3] = projpp(P4p, z3);
[num5,den5,phi3p] = projpp(P4pp, z3);

% compute the direct aerodynamic torques applied to
% rotation axis using Equaiton 25

Tae4 = Mae4 + xproduct(C4p, Faed);




Taedp = Mae4p + xproduct(C4pp, Faedp);
Tae3 = Mae3 + xproduct(C3p, Fae2);.
Tae2 = Mae2 + xproduct(C2p, Fae2);
Tael = Mael + xproduct(Clp, Fael);

% compute the aerodynamic tprque transmitted to the
% teeter axis using Equation 30, note: mu4 = 1.

Ttr4 = Tae4,
Ttrdp = Taedp;
zetad = Fae4;
zetadp = Faedp;

% compute the total external torque applied to the
% teeter axis,i.e. s = 3, using Equation 37.

Tsum3 = Ttr4 + xproduct(P4p,zeta4) + Ttrdp + xproduct(P4pp,zetadp) ...
+ Tsp3 + Tda3 + Tae3;

% compute the effective torque at the teeter axis
tau3 = Tsum3’ * z3 + Tac3;

% compute the force transmitted from the rotor to
% the power train, i.e., s = 3, using Equation 30

tl = Fae3 - (1-mu3) * (Fae3 - (Fae3™n3)*n3 - (Fae3*z3)*z3);

t2 = zeta4 - (1-mu3) * (zetad - (zetad™*n3)*n3 - (zetad *phi3)*phi3);

t3 = zetadp - (1-mu3) * (zetadp - (zetadp™n3)*n3 - (zetadp™*phi3p)*phi3p);
zeta3 =tl +t2 + t3;

% compute the torque transmitted from the rotor to
% the power train, i.e., s = 3, using Equation 39

Ttr3 = Tsum3 - (1-mu3)*((Tsum3’ * z3)*z3);

% compute the total external torque applied to the
% azimuth axis,i.e. s = 2, using Equation 37.

Tsum2 = Ttr3 + xproduct(P3p,zeta3) + Tsp2 + Tda2 + Tae2;
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% compute the effective torque at the teeter axis
tau2 = Tsum?2’ * z2 + Tac2;

% compute the force transmitted from the power train to
% the nacelle, i.e., s = 2, using Equation 30

zeta2 = (Fae2 + zeta3) - (1-mu2) * ...

(..

(Fae2+zeta3) - (Fae2*n2)*n2 - ...
(zeta3™phi2)*phi2 - ((Fae2 + zeta3)™*z2)*z2 ...
);

% compute the torque transmitted from the power train to
% the nacelle, i.e., s = 2, using Equation 39

Ttr2 = Tsum?2 - (1-mu2)*((Tsum?2’ * z2)*z2);

% compute the total external torque applied to the
% yaw axis,i.e. s = 1, using Equation 37.

Tsuml = Ttr2 + xproduct(P2p,zeta2) + Tspl + Tdal + Tael;
% compute the effective torque at the teeter axis
taul = Tsuml’* z1 + Tacl;

% compute the force transmitted from the nacelle to
% the tower, i.e., s = 1, using Equation 30

zetal = (Fael + zeta2) - (1-mul) * ...

(..

(Fael+zeta2) - (Fael™nl)*nl - ...
(zeta2™*phil)*phil - ((Fael + zeta2)™z1)*z1 ...
)

% compute the torque transmitted from the necelle to
% the tower, i.e., s = 1, using Equation 39

Ttrl = Tsuml1 - (1-mul)*((Tsum1’ * z1)*z1);
% construct the EOMs using Equaiton 13

LEOM1 =Mtl + Mrl + Mgl;
REOM]1 =taul;
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LEOM2 = Mt2 + Mr2 + Mg2;
REOM?2 = tau2;

LEOM3 = Mt3 + Mr3 + Mg3;
REOM3 = tau3;

% store the EOMs in a file
delete(’case12.eom’);

diary casel2.eom,;
display(’EOM:s of Test Case 1.2))

display(Inertial torques (LHS) of EOM 1);
pretty(LEOM1)

display(’External torques (RHS) of EOM 1’);
pretty(REOM1)

display(Inertial torques (LHS) of EOM 2);
pretty(LEOM2)

display(’External torques (RHS) of EOM 2);
pretty(REOM2)

display(Inertial torques (LHS) of EOM 3?;
pretty(LEOM3)

display(External torques (RHS) of EOM 3);
pretty(REOM3)

diary off;
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Appendix D. EOMs for Test Case 1.2

Inertial torgues (LHS) of EOM 1
48580° 2 2
122z Q2pp + =------ mS g2pp - m5 g4p L5 cos(g4) sin(g5) cos(q5)

2 2
- m5 sin(g4) sin(g5) L5 g4pp cos{(gS) - ISxx q2pp cos(gs)

2 2
- I5Sxx g2pp cos(g4) + cos(gS) ISyy g2pp + cos(g4) ISzz g5pp

2 2 2 2
+ cos(g4) 1I5zz g2pp + m5 LS @gS5pp cos(g4) + m5S L5 q2pp cos(gs)

2 2 2 2 2
+ m5 L5 aq2pp cos(g4) - mS L5 q2pp cos(g4) cos(gs)

+ ISyy g5p sin(g4) qg4p + sin(g4) sin(g5) I5xx cos(gS) g4pp

2 2
- I52zz g4p gSp sin(g4) + ISxx g2pp + ISxx g2pp cos(g4) cos(gsS)
2 2
- sin(g4) cos(gS) ISyy sin{g5) g4pp - cos(g5) ISyy Q2pp cos(gd)
2
- ISxx g4p g5p sin{(g4) + ISxx cos(g4) sin(gS) qg4p cos(gs)
2 697 2
- I5yy cos(g4) sin(g5) g4p cos(g5) - --- m5 gS5p cos(g4) sin(g5) LS
100
2 2 697
- 2 m5 L5 g4p ¢5p sin(g4) cos(gS) - --- m5 sin(g4) sin(g5) LS qg4pp
100
687 2
- --- m5 L5 g4p g5p sin(g4) cos(g5) - 2 m5 sin(g5) L5 g2p g5p cos(gs)
50
697 6957
- --- m5 sin(g5) L5 g2p gSp + --- m5 LS gSpp cos(g4) cos(gsS)
50 100
€97 2 697
- --- m5 g4p L5 cos(g4) sin(g5) + --- mS L5 g2pp cos{gs)
100 50
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g8

)

2 2

m5 g2p L5 gS5p cos(g4) cos(g5) sin(g5)

2

mS sin(g4) L5 gq2p g4p cos(q4)

2 2

m5 sin(g4) L5 g2p g4p cos(qg4) cos(gSs)

2

ISyy gSp sin(g4) g4p cos(g5)

sin(gs)

sin(g5s)

sin(g4)

sin(g4)

cos (gS)

cos(gS)

cos (g4)

2
I5xx cos(g5) g2p g5p cos(qg4)

I5xx cos(g5) g2p gS5p + 2 sin(g4) ISxx cos(g4) g2p g4p

2
ISxx cos(g4) dg2p g4p cos(gs)

2
cos(gS) ISyy cos(g4) g2p g4p

ISyy sin(g5) g2p g5p
2
ISyy sin(g5) g2p gS5p cos(g4)

ISzz sin(g4) g2p g4p + 2 I5xx cos(g5)

2

gSp sin(g4) g4p



External torgques (RHS) of EOM 1

tz7 - (-%6 + %5) L7 £fx7 + (~%4 + %3) L7 fy7

+

+

+

/ 697 \
|-3 %2 + 3 sin(g2) sin(g5) - =--- sin(g2)]| £x7

\ 100 /

/ ' 697 \

[-3 %1 - 3 cos(g2) sin(g5) + --- cos(g2)| fy7 + tz7p
\ 100 /

(-%6 - %5) L7 £x7p + (=%4 - %3) L7 fy7p

(=3 %2 + 3 sin(q2) sin(g5)) £x7p + (-3 %1 -~ 3 cos(g2) sin(gS)) £fy7p - {
\

/
|tx7 - (%8 - %7) L7 £y7 + (~%6 + %5) L7 fz7 - 3 sin(g4) cos(g5) fy7

\

/ 697 \

|3 %2 - 3 sin(g2) sin(g5) + --- sin(qg2)| £27 + tx7p - (%8 + %7) L7 fy7p
\ 100 /

(-%6 - %5) L7 fz7p - 3 sin(g4) cos(g5) fy7p

(3 %2 - 3 sin(g2) sin(g5)) £z7p - k5 g5 sin(qg2) sin(g4)
. ) \ /
b5 g5p sin(g2) 51n(q4)| sin(g2) sin(g4) - |[ty7 + (%8 - %7) L7 £fx7
/ \

(-%4 + %3) L7 £27 + 3 sin(g4) cos(g5) £x7
. - 697 \
{3 %1 + 3 cos(g2) sin(g5) - -=-~ cos(g2)| £27 + ty7p + (%8 + %7) L7 £x7p
100 /

(-=%4 - %3) L7 fz7p + 3 sin(g4) cos(g5) £x7p

(3 %31 + 3 cos(qg2) sin(g5)) £z7p + k5 g5 cos(g2) sin(qg4)
) \ /
b5 g5p cos(q92) sin(g4)| cos(g2) sin(g4) + [tz7 - (-%6 + %5) L7 £x7
/ \
. / 697 \
(=%4 + %3) L7 £y7 + |-3 %2 + 3 sin(g2) sin(g5) - =--- sin(qg2)| £x7
\ 100 /
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o\
3

o
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697 \
-3 %1 - 3 cos(g2) sin(g5) + --- cos(g2)]| fy7 + tz7p
100 /

+

.

(-%6 - %5) L7 £x7p + (~%4 - 3%3) L7 fy7p

+ (=3 %2 + 3.sin(q92) sin(g5)) £x7p + (=3 %1 - 3 cos(q2) sin(g5)) fy7p

\ \
k5 g5 cos(g4) - b5 gSp cos(qg4)| cos(g4)| cos(g4)
/ /

sin(g2) cos(g4) cos(g5)

cos(g2) cos(g4) cos(gS)

173
(%1 + cos(q2) sin(g5)) sin(=--- pi)
360
173
(sin(g2) cos(g4) sin(g5) - cos(g2) cos(g5)) cos(=-- pi)
360
173
(=%2 + sin(qg2) sin(g5)) sin(-=-- pi)
360
173
(-cos(g2) cos(g4) sin(g5) - sin(g2) cos(gS)) cos(--- pi)
360
173
sin(g4) cos(g5) sin(--- pi)
360
173
sin(g4) sin(g5) cos(--- pi)
360



Inertial torgues (LHS) of EOM 2 -

-m5 LS

2

2 2
g4pp cos(g5) - m5 sin(g4) sin(g5) L5 g2pp cos(g5)

2 2 2 2 2
mS sin(g4) L5 g2p cos(g4) cos(g5) + m5 sin(g4) L5 dg2p cos(q4)

I5yy cos{g5) sin(g4) sin(g5) g2pp + ISyy 492p g5p sin(g4)

2 2
I5yy cos(g4) cos(gS) g2p sin(g4) + I5xx cos(g5) sin(g4) sin(g5) q2pp

2
I5zz g2p gSp sin(g4) + IS5zz sin(g4) g2p cos(g4)

2 2 2
I5xx cos(g4) g2p sin(g4) + I5xx cos(g4) g2p sin(g4) cos(g5)

2
I5xx g5p g2p sin(g4) + 2 mS sin(g5) LS g4p gS5p cos(gS)

2 2 2
2 m5 sin(g4) L5 g2p g5p cos(g5) + 2 m5 sin(g4) L5 g2p gS5p
697
--- m5 sin(g4) sin(g5) L5 g2pp + 2 I5yy cos(g5) sin(g5) g4p ¢Sp
100

2 2
2 ISyy g2p 4gSp sin(g4) cos(gS5S) + 2 I5xx cos(gS5) g2p ¢g5p sin(g4)

2
2 ISxx cos(g5) sin(g5) g4p g5p + ISyy qg4pp + m5 L5 q4pp

2 2
I5yy g4pp cos(gS5) + ISxx cos(gS) g4pp - m5 g L5 cos(g4) sin(gs)
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External torques (RHS) of EOM 2

/
[£x7
\

68

+

+

(%8 - %7) L7 fy7 + (-%6 + %5) L7 £z7 - 3 sin(g4) cos(g5) fy7 + %10
tx7p - (%8 + %7) L7 £y7p + (~%6 - %5) L7 fz7p - 3 sin(g4) cos(g5) f£y7p
/

(3 %2 - 3 sin(g2) sin(g5)) f27p - | (tx7 - (%8 - %7) L7 fy7
\

(-%6 + %5) L7 fz7 - 3 sin(q4) cos(g5) fy7 + %10 + tx7p

(%8 + %7) L7 £y7p + (-%6 - %5) L7 fz7p - 3 sin(g4) cos(g5) fy7p
(3 %2 - 3 sin(qg2) sin(g5)) fz7p - k5 g5 sin(g2) sin(q4)

b5 g5p sin(g2) sin(g4)) sin(g2) sin(g4) - (ty7 + (%8 - %7) L7 £x7
(-%4 + %3) L7 £2z7 + 3 sin(g4) cos(g5) £x7 + %9 + ty7p

(%8 + %7) L7 £xX7p - (-%4 - %3) L7 £27p + 3 sin(g4) cos(g5) fx7p

(3 31 + 3 cos(q2) sin(g5)) fz7p + kS5 g5 cos(g2) sin(qg4)

/
b5 g5p cos(q2) sin(g4)) cos(g2) sin(g4) + |tz7 - (-%6 + %5) L7 £x7
\

/ 697 \
(=%4 + %3) L7 £fy7 + |-3 %2 + 3 sin(q2) sin(g5) - =--- sin(q2)| £x7
\ 100 /
/ 697 \
|-3 %1 - 3 cos(q2) sin(g5) + =-=- cos(qg2)| fy7 + tz7p
\ 100 /

(-%6 - %5) L7 £x7p + (=%4 - %3) L7 £y7p

(-3 %2 + 3 sin(qg2) sin(q5)) £x7p + (-3 %1 - 3 cos(g2) sin(gS)) f£y7p

A \ \ /
k5 g5 cos(g4) - bS g5p cos(g4)| cos(g4)| sin(g2) sin(g4)| cos(g2) + |
/ / \

ty7 + (%8 - %7) L7 £x7 - (~%4 + %3) L7 £2z7 + 3 sin(g4) cos(g5) £x7 + %9

ty7p + (%8 + %7) L7 £x7p - (-%4 - %3) L7 f27p + 3 sin(qg4) cos(g5) £x7p

/
(3 %1 + 3 cos(g2) sin(g5)) £27p + | (tx7 - (%8 - %7) L7 £fy7
\



o

o\

+ (=%6 + %5) L7 £27 - 3 sin(g4) cos(g5) fy7 + %10 + tx7p

- (%8 + %7) L7 fy7p + (-%6 - %5) L7 £fz7p - 3 sin(g4) cos(g5) fy7p
+ (3 %2 - 3 sin(g2) sin(g5)) fz7p - k5 g5 sin(g2) sin(q4)

- b5 gS5p sin(q2) sin(g4)) sin(q2) sin(g4) - (ty7 + (%8 - %7) L7 £fx7
- (-%4 + %3) L7 £27 + 3 sin(g4) cos(gS) fx7 + %9 + ty7p

+ (%8 + %7) L7 £x7p - (-%4 - %3) L7 £27p + 3 sin(g4) cos(g5) fx7p

+ (3 %1 + 3 cos(g2) sin(g5)) fz7p + k5 g5 cos(g2) sin(g4)

/
+ b5 g5p cos(g2) sin{(g4)) cos(g2) sin(g4) + |t27 - (-%6 + %5) L7 £x7
\

/ 697 \
+ (-%4 + %3) L7 fy7 + |-3 %2 + 3 sin(g2) sin(g5) - --- sin(g2)]| £x7
100 /
/ 697 \
+ |~3 %1 - 3 cos(g2) sin(gS) + === cos(g2)| £fy7 + tz7p
\ 100 /

- (~%6 - %5) L7 £x7p + (~%4 - %3) L7 £y7p

+ (=3 %2 + 3 sin(g2) sin(g5)) £x7p + (-3 %1 - 3 cos(g2) sin(gS5)) £fy7p
\ \ \

- kX5 g5 cos(g4) - bS5 oS5p cos(qg4)| cos(g4a)| cos(g2) sin(g4)| sin(g2) + Tp
/ / /

:= sin(g2) cos(g4) cos(g5)

:= cos(g2) cos(g4) cos(g5)

173
:= (%1 + cos(g2) sin(g5)) sin(=-- pi)
: 360
173
:= (sin(g2) cos(g4) sin(g5) - cos(g2) cos(g5)) cos(-~- pi)
360
173
:= (-%2 + sin(g2) sin{(gS5)) sin(-=-- pi)
360
173
= (-cos(g2) ces(g4) sin(g5) - sin(g2) cos(gS)) cos(=--- pi)
360
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173

%7 := sin(g4) cos(g5) sin(--- pi)
360
173
%8 := sin(g4) sin(g5) cos(=-=-- pi)
360
/ 697 \
%9 := |3 %1 + 3 cos(q2) sin(g5) - --- cos(g2)| fz7
\ 100
/ _ 697 \
%10 := |3 32 - 3 sin(g2) sin(g5) + --- sin(g2)| fz7
\ 100 /
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Inertial torgues (LHS) of EOM 3

2 2 2 2
2 m5 L5 q2p g4p sin(g4) cos(g5) - 2 m5 L5 g2p g4p sin(g4) + m5 L5 gSpp

697 2 2
+ =—— m5 g2p sin(gS) L5 + m5 L5 g2pp cos(q4)
100

2 2 2 2 2
- m5 L5 qg2p cos(g5) sin(g5) cos(g4) + m5 L5 g2p cos(g5) sin(g5s)
2 2 697
- m5 g4p sin(gS5) LS5 cos(g5) + =--- m5 g2pp cos(g4) LS cos(g5)
100

2
- m5 g sin(g4) L5 cos(g8) - ISyy sin(g5) g4p cos(gSs)

2 2 2
+ ISyy cos(g5) g2p sin(g5) - ISyy cos(g5) g2p sin(gS) cos(g4)

2
+ 2 IS5yy cos(gS) g4p g2p sin(qg4) - ISyy sin(g4) g2p q4p

2
+ I5xx sin(g5) g4p cos{g5) - I5zz g2p g4p sin(g4) + ISxx g4p g2p sin(qg4)

2 2
- 2 I5xxX g4p g2p sin(g4) cos(g5) - ISxx cos(g5) g2p sin(gs)

2 2
+ I5xx cos(g5) g2p sin(gS5) cos(g4) + I5zz gSpp + I5zz cos(g4) g2pp
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External torgques (RHS) of EOM 3

/

|tx7 -

\

72

(%8 - 37) L7 £y7 + (-%6 + %5) L7 £z7 -~ 3 sin(g4) cos(g5) fy7

/ 697 \
|3 %2 - 3 sin(q2) sin(gS5) + =-- sin(qg2)| f£z7 + tx7p - (%8 + %7) L7 fy7p
\ 100 /

(-=%6 - %5) L7 £27p - 3 sin(qg4) cos(g5) fy7p

(3 %2 - 3 sin(qg2) sin(qS)) £27p ~ kK5 ¢5 sin(g2) sin(q4)
. . N . /
b5 g5p sin(qg2) sin(g4)| sin(g2) sin(q4) - |ty7 + (%8 - %7) L7 £x7
/ \

(-%4 + %3) L7 £27 + 3 sin(g4) cos(gS) £x7

/ 697 \

|3 %1 + 3 cos(g2) sin(g5) = --- cos(g2)| £27 + ty7p + (%8 + %7) L7 £x7p
\ 100 /

(-%4 ~ %3) L7 f27p + 3 sin(g4) cos(gS) fx7p

(3 %1 + 3 cos(g2) sin(g5)) fz7p + k5 g5 cos(q2) sin(qg4)

\ /
b5 g5p cos(g2) sin(q4)} cos(q2) sin(g4) + |tz7 - (-%6 + %5) L7 fx7
\

/ 697 \
(-%4 + %3) L7 £y7 + |-3 %2 + 3 sin(q2) sin(g5) - --- sin(qg2)| £x7
\ 100 /
/ 697 \
|-3 %1 - 3 cos(q2) sin(g5) + --- cos(q2)| fy7 + tz7p
\ 100 /

(-%6 - %5) L7 fx7p + (-%4 - %3) L7 fy7p

(=3 %2 + 3 sin(q2) sin(gS5)) £x7p + (=3 %1 - 3 cos(g2) sin(g5)) fy7p

\
k5 g5 cos(g4) - b5 gSp cos(g4)| cos(g4)
/




%4 :

%6 :

o0
~J

o
[e2]

sin(g2) cos(g4) cos(gS)

cos(g2) cos(g4) cos(g5)

173
(%31 + cos(g2) sin(g5)) sin(-=-- pi)
360
173
(sin(g2) cos(g4) sin(g5) - cos(g2) cos(g5)) COS(-;; pi)
3
173
(-%2 + sin(g2) sin(gS)) sin(--- pi)
360
173
(-cos(g2) cos(g4) sin(gS5) - sin(g2) cos(g5)) cos(--- pi)
360
173
sin(g4) cos(g5) sin(==- pi)
360
173
sin(g4) sin(g5) cos(--- pi)
360
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Appendix E. Matlab M Files Used in Test Cases 1.1 and 1.2
function h = dhmat(alpha,a,theta,d)

% dhmat(alpha,a,theta,d)

% - This function generates a symbolic 4x4 configuration
%  matrix relating the configuration of the i-th frame to
%  the (i-1)-th frame in the homogeneous coordinate system
%  using the Denavit-Hartenberg notation.

%

% Input: alpha - twist angle, in radian (v),

% a - link length (u),

% theta - joint angle, in radian (t),

% d - link offset (w).

%

% Kung Chris Wu

% Symbolic toolbox 2.0

v=sym(alpha);

u=sym(a);

t=sym(theta);

w=sym(d);

h=[ cos(t), -sin(t), 0, u;...
sin(t)*cos(v), cos(t)*cos(v), -sin(Vv), -sin(v)*w;...
sin(t)*sin(v), cos(t)*sin(v), cos(v), cos(v)*wi;...

0, 0, 0, 1];

function R = hom2rot(T)

% homZ2rot(T) - This function extracts the symbolic 3x3 rotation
% matrix R from a 4x4 matrix T in the homogeneous
% coordinate system.

%

% Input: T - a symbolic 4x4 matrix

%

% Kung Chris Wu

% Symbolic Toolbox v2.0

fori=1:3
forj=1:3
R(i.j) = TG,j);
end
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end

function w = wtextc(T,n)

% wtextc(T,n) - This function extracts the first 3 elements of the

%o n-th column from the input matrix T.
%
% inputs: T a 3x3 rotation or a 4x4 configuration
% matrix,
% n column index
%
% output: w a 3x1 vector.
%
% Kung Chris Wu
% Symbolic Toolbox v2.0
fori=1:3
w(i,1) = T(i,n);
end

function v = xproduct(a,b)

% xproduct(a,b) - This function computes the crorss product

%o of two 3x1 vectors.
%

% Input: a,b - symbolic 3x1 vectors
%

% Kung Chris Wu

% Symbolic Toolbox v2.0

S =10, -a(3,1), a(2,1);a(3,1),0,-a(1,1);-a(2,1),a(1,1),0];
v=S*b;
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function [num,den,n] = projpp(c,z)

% projpp(c,z) - this function finds the projection of the vector
% c on the plane (x-y plane) perpendicular to the
% vector z
%
% It returns a unit vector.
%
% Kung Chris Wu
¢ = sym(c);
z = sym(z);
num=c-(c’*z)*z;
num = simple(num);
den = num’ * num;
den = simple(den);
den = sqrt(den);
if (num == sym([0;0;0]) )
n = num;
else
n =num ./ den;
n = simple(n);
end
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