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GROWTH OF BUCKLING INSTABILITIES DURING RADIAL COLLAPSE
OF AN IMPULSIVELY-LOADED CYLINDRICAL SHELL

by

T. A. Duffey, R. H. Uarnes, and J. M. Greene

ABSTRACT

Conditions leading to the growth of initial imperfections for
rings or cylindrical shells subjected to initial uniform inward
impulsive velocity loading are investigated. The work is motivated
by a need to prevent buckling of rings during the contracting ring
test, which is used to determine intermediate strain rate compressive
stress-strain data. A previous analysis by Abrahamson is extended to
include deceleration of the ring during inward motion; and the
rasults of this deceleration ~re found to greatly influence the
growth of imperfections (buckling). Qualitative comparisons with
experimental data are presented.

1. INTRODUCTION

There have been a number of practical engimering applications that

require the uniform radial collapse of simple structures, particularly cylin-

drical and spherical shells. Such applications include, for example, magnetic

flux compression devices for generating large magnetic fields, explosive clo-

sure devices far rapidly sealing off pipes, and contracting ring tests for

determining material properties ~t intermediate strain rates. In ell appli-

cations of which the authors I’aveknowledg:, the goal of the device requires

the preven’.ion of buckling of the structure during inward motion.

The work reported herein was motivated by a need to provent observed

buckling of the contracting thin ring as it Is being driven radially inward

during the contracting ring test, The presence of buckling invalidated the

determination of stress-strain behavior from the test; and it was hoped that

an understanding of growth of such instabilities might lead to a modified

design capable of substantial rad!us reductions without buckling.
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A wealth of papers are available on the plastic buckling of cylindrical

shells subjected to imp~lsive pressure leading, and the work is extensively

reviewed in Ref. 1. Unfortunately, must of the work is of little use in

predicting the buckling behavior of cylindrical shells undergoing radial

collapse since no account of the significant shell thickening is considered.

However, two papers do include such shell thickening.
2,3

It is shown in these

papers that increase in thickness during significant inward motion of a

cylindrical shell improves stability of the shell; and that at sufficiently

high collapse velocities, the buckling will be negligible.

Considered in Refs. 2, 3 is the case of constant collapse veloc!ty only.

This assumpt

shells for wh

the contract’

substantially

on may serve to approximate the case of some highly overdriven

ch material strength is unimportant. However, for the case of

ng ring test, the uniform component of inward velocity decreases

during inward motion, and the contracting shell may come to rest

before complete collapse. As a result, the time available for growth of ini-

tial imperfections is increased, and the concept of a “critical” initial

velocity no lonyer provides the entire pie’ ‘re for “sufficiently stable”
2

inwdrd shell motions.

It is the purpose of this paper to quantify the influence of shell decel-

eration on qrowth of instabilities during inward motion. In the next section,

the principles behind the earlier buckling analysis by ALrahamson2 are briefly

reviewed dnd extended to include ring deceleration. In Section 111, limited

experimental ddta are presented, taken from contracting ring tests.

Calculations using the new theory are presented and compared (to the extent

possible) with the experimental data, Fins’

presented. A simple closed-form solution for

is presented in the Appendix,

ly, conclusions (Section IV) are

the mean inward cylinder motion

11, DETAILS OF BUCKLING ANALYSIS AND REPRESENTATIVE RESOLTS

Consider a ring subjected to uniform inward r~di~l motion duc t.oznmc

l~rge initidl velocity, Vom As discussed in Refs, 2-4, if no v~ri~t ions or

imperfections in the qeometry, m~terial, or impulsive lo~ding of the problcm

,Irepresent, the ring will move Inward in a uniform manner, mdintdininq ltc

clrculdr shape, until the initial kinetic t!n~rgy is fully ~bsorbcd J5 pl~rtlc
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work in the ring. Assuming that the ring material is incompressible, the ring

will become progressively thicker on continued inward motion.

However, due to inevitable Imperfections in geometry, material proper-

ties, and loading, this unifcrm, radially inward motion will be perturbed.

The situation is depicted in Fig. 1, taken from Ref. 4, where a small part of

the ring lags behind the remainder of the ring. Because of the presence of

tilecompressive circumferential stress in the ring, the tendency will be for

this location to lag behind the overall inward ring motion even more. The
2,3

curvature of the ring is increased at this location.

For a perfectly plastic material, the flow stress is constant, so thr

perturbational increase in curvature causes no bending moment. There is thus

no resistance to the perturbation, and the perturbation grows, resulting in
2,3

unstable motion.

Hith the introduction of strain hardening, point B (Fig.1) has a somewhat

larger strain than point A due to the local change in curvature at the

perturbation location, and there results a restoring moment opposing the
2,3

~ction of the compressive circumferential stress. The situation is

~n~logous to that of the curved beam shown in Fig. 2.

Growth of the displacement perturbation in Fig, 2 is enhanced by the

compressive axial membrane stress (proportional to h) and opposed by the

presence of a restoring bending moment caused by ~ differential bending stress

cry

b

I

0

STRAIN—4

I“lqm 1. l)~trlurhvdMntlnn of Contrdctlnq Rintl (f”ronlRef. 4).
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Fig. Z. Curved Beam Artalogue.

across the beam cross-section (proportional to h3), tension on the top surface

and compression on the bottom surface.

Now due to large inward unperturbed displacements of the ring or cylin-

der, thickening of the shell occurs. Because of thickening, both thrust and

resistive motion of the perturbed state increase: thrust proportional to

thickness, and resistive motion proportional to thickness cubed. Therefore,

stability improves as inward motion proceeds. A given unstable mode may then

become stable upon inward motion.
2-4

By writing the equations of motion of the ring in terms of perturbed and

unperturbed displacements

Refs. 2, 4

ordinary d

and their spatial derivatives, it is shown in

that Instahi!ity growth is governed by the following second order

fferential equat on:

16 fn + (n2-l)(n2-s2[4)fn ■ s2~4(n2-1) (1)

with Initial cond~tions fn(o)=?n(o)=o

The following definitions apply:



[=:8 where r is original mean radius, and r is current mm radius;
o

n . f&e number of Initial dep~rture from circularity and buckling displace-

ment (initial departure from circularity and growth of buckling displace-

ment are assumed to be represented by a countably infinite series of

normal displacement modes, n ❑ 2, .... );

fn = ~plification function associated with the nth mode growth. It is the

ratio of the maximum amplitude of the nth mode at a given time to the

initial amplitude of the Shdpe imperfection associated with the nth mode.

Thus a value of fn = 100 means that the nth mode shape has grown to a

value of liJOtimes its initial imperfection amplitude;

S2

(J

r-
= 12 ~ f , where ho is initial shell thickness, Eh is the strain

h

hardening modulus* of the stress-strain curve (see Fig, 1), and ~ is a mean
*

stress. Finally, (“) denotes time derivative with respect to nondimensional

time, 7,

T . achtfr where
o’

2

r

E
a = ho2/12r02: Ch =: , where p is mass density; and t is real time.

In Refs, 2 and 4, Eq. (1) is solved numerically for each mode assuming

inward :,hellvelocity, ~ = constant, In the following, this restriction is

removed,

. ..--—.— —
*E is assumed small, so that ~ - a constant; but finite, so that there Is a
re~toring moment,
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It can be shown that, in terms of the nondimensional parameters previ-

ously defined, the unperturbed, purely inwdrd radial motion is given by (for

compressive stress assumed positive):

. . 2

0;

-v
subject to the initial conditions, ~(o) = 1; ~(0) =#, whereV is

h
o

initial impulsive shell velocity (assumed spatially

Equations (1) and (2) can be interpreted

problem,

y’=f(Y)l.-

!(O) = ~o, where

m

(2)

uniform).

as a general initial value

~z~ (nz - s2y14)y3 + ‘2> (nZ-l)

Y, Y,

(3)

I



and where y@

and

‘2

(Y$o

(Y$o

(Y$o

(YJO

‘4
= in

1

L
aCh

o

0

(4)

The above system was solved using a generalized fourth-order Runge-Kutt~

method. For each mode*, 2 S n c s, the above initial value problem was solved

in time until one cf the following three events occurred:

1. Initially unstable growth,

n2
- s2t4 ~ o (See Eq. (l)), (5)

becomes stable. Again, this stability change is due to shell thickening, and

occurs at d nondimensional radius of

(t) Jn
stable ● s

(6)

*Mode numbers n = O, 1 do not contribute to krowth of bending instability,

1
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2.

3.

Inward motion of the ring ceases, that is,

Total collapse of the ring occurs.

Note that all modes for which n 2 s are always stable, since ~ initially

equals unity and monotonically decreases toward zero with time. This can be

seen from either Eq. (1) or (5).

From Eq. (l), it can also be seen that growth of instabilities is of a

nature exponential in time,

Calculations based upon the above are performed for the following values

of the geometry - material parameter, s: 15, 30, 60, 100, and 150, This range

in s covers a wide and representative range of ring radius-to-thickness ratios

and material properties. Results are presented in Figs. 3-7, respectively.

For clarity, only selected modes are presented (every other mode for s = 15,

30; and every fourth mode for s = 60, 100, and 150). Generic behavior, for

each mode in Figs. 3-7 is shown in Fig. 8. Normalized instability growth, fn,

is plotted as the ordinate. This is the amplification function for the nth

mode growth and, again, is the ratio of amplitude of the nth mode at a given

time to the initial amplitude of the shape imperfection for that mode, Nor-

malized uniform initial velocity imparted to the ring is plotted as the

abscissa.

Two intersecting branches are observed for generic mode n in Fig. 8 (as

well as for ail plotted modes in Figs. 3-7), At the lower initial ring

velocities, instability growth is terminated by cessation of inward ring

motion, caused by inclusion of material strength for uniform inward motion.*

When inward motion ceases, unlu~ding occurs; and with the absence of a

compressive in-pldne force, there is no further tendency for buckling growth,

At higher ring velocities, mode n becomes stable due to ring thickening,

At the point of intersection of the two curves, inward uniform (n=O) shell

motion ceases at the instant the “stable thickness” of that particular mode is

re~ched,

‘Such m~terial strength and resultant ring deceleration is neglected in
Refs, 2-4.
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Concentrating on mode n in Fig. 8, say that a maximum instability growth,

f ‘, can be tolerated (perhaps a value 2-4 of 19 or 100). Then a horizontal
n
line drawn in Fig, 8for that Qartlcul ~ reveals that growth of the

instability remains acceptable as long as the initial (normalized) velocity

either remains below ~
1’

or above ~2.

The situation in Figs, 3-7 is similar, but the mcst dominant mode depends

upon the value of fn* selected. Also, for a given fn*, the dominant mcde on

the first branch (“inward motion ceases”) is different from the dominant mode

for the second branch (“motion becomes stable”).

III. COMPARISONS OF RESULTS WITH EXI

A number of experiments have

drive a thin metal ring radially

ERIMENTAL DATA

been performed in an attempt to uniformly

nward, The intent of the experimental

program was to obtain compressive stress-$train mechanical material

properties.x While some :uccess was had at recording and interpreting ring

motion, buckling was observed to develop rather early in the response of the

ring, limiting the useful strain range over which data could be obtained.

Experiments were performed with one of two driving mechanisms: explo-

sive or magnetic, A total of seven experiments was initially performed usin~

high explosive ignited by a series of circumferentially placed detonators.

The velocity of a point on the in$ide surface of each ring was recorded as ii

function of time using a velocity interferometer. Results suggested the pos-

sibility of buckllng. However, no samples from these tests were recovered,

nor were high-speed framing camera measurements of the overall motion taken.

A second set of explosively driven ring tests was performed on two rings

to look specifically at buckling using a high-:pecd c~mera. One of these

tests was highly successful in Illustrating the onsot and growth of the buck--

Iing shtipeduring inward ring motion. One typical frame recorded Is included

t:]Fig. 9, ~nd illustrates development of the buck llng ;J~ttern.

...,-—-- --.—.-—— ....——
‘iThe experiments are effectively the Inverse of the expanding ring tests.
descr{bed in Ref. 5, and used to obtairl dynamic tensilo mechanical propcrtles,

15
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Six ring tests were performed using the magnetic driving system. Uhile

no photographic coverage was undertaken, specimens on these tests were

recovered either partially or fully intact. These p~st-test specimens are

illustrated in Fig. 10. All rings underwent extensive buckling.

Experimental aetails of the seven ring tests potentially useful to this

buckling study (the one explosively driven ring with photographic coverage,

and the six magnetically driven rings) are indicated in Table I. In that

table, the “initial velocity” indicated was determined as follows: For

RS-3138 (explosive dri~ing system), differentiation of framing camera data was

used tc determine the velocity as the ring left the driver; and for Lile

remaining six magnetically driven rings listed in Table I, velocity inter-

ferometer data were used. The magnetic system caused a finite acceleration of

the ring up to a maximum veloclty. The “initial velocity” indicated for these

tests is actually the maximum velocit,y achieved by the ring.

Noting that all rings were 6061-T6 aluminum, values for mean plastic

stress, ;, and slope of the strain hardening curve, Eh, wore taken as follows

!?ef,4, ~ = 44000 psi; Eh r 1.3 x 105psi.

Also, p = 2.5 x 10-41bf-sec~in4,

Vdlues af
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Cf:- :~- 3bo~.ggr~:y ~f reccvered pieces of ~aqnetical l-driven ring samples..
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TABLE I
EXPERIMEtJiTALDETAILS OF IMPLODED RINGS USED IN BUCKLING STUDY

g~IvI~~ (h ) MEAN (r ) INITIAL DOMINANT
TEST 19 SYSTEM WTERIAL THICK~ESS RADIUSO VE\~Ul;~: (V) MODE COMMENTS

(IN) (IN)

Rs-313e EX?LgSIVE 606116 0-0315 0.4847 13779.5 n-14 n is dpprox. Half of
AL ring hard to see.

High speed camera data
only.

RS-2652 HA6NETIC 6051-T6 0.0258 0.4840 6299.2 n=16 Sample recovered.
AL

RS-2653 MAGNETIC 6061-T6 0.0280 0.4860 9448.8 n=16 Sample recovered
AL

RS-2654 MAGNETIC 6061-?6 0.0270 0.4865 9291.3 -- Ring tiotfully
AL recovered.

—

RS-26E7 MAGNETIC 6061-T6 0.02935 0.4860 6299.2 n=15 Sample recovered.
AL

RS-2658 MAGNETIC 6061-T6 0.0289 0.4855 5314.9 n.15 Sample recovered
AL

~-:29 MAGNETIC 5C51-T6 --- --- --- -- Ring not fully
recovered.
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were then calcu

sented in Table

Table II, there

ated for each ‘ing, Results of these evaluations are pre-

11. Test H-129 has been omitted due to incomplete data. From

is some variation in geometry, and considerable variation in

initial nondimensional velocity.

Next, calculations of buckling growth for the rings were performed using

the tileory in the previous section. Since \dlues of s were reasonably close

together, results of values near s = 31 are plotted in Fig. 11, and results of

values near s ❑ 38 are plotted in Fig. 12. Results reveal that all m~gneti-

cally driven tests lie in the region where inwara motion ceases, causing ter-

minating of buckling growth; whereas the one explosively driven ring (R5-3138)

is near the :ersection cf the two branches of the growth curve. All six

experiments iie in high buckling growi.h regions (all are above a nondimen-

sional growth of 100), qualitatively agreeing with the observed significant

observes buckling. However, tne following two points are worth noting:

1. The initial impulsive velocity assumed in the analysis, while con-

sidered reasonable for &he explosively driven ring, is definitely an

~pprGximation in the case of tkiefive magnetic tests correlated. This approx-

Imdtlon is due to the finite tme over which the ring accelerates in this type

cf test.

2. Cd”lculdtions are gxtrwlv s~ltlve-“ unon the parameters, such as s,

With the above limitations in mind, however, it appears that growth of

initidl imperfections (bucklirlg) can be limited by either dropping or raising

the initidl ring velocity or milking a geometry and/or material change (i.e., tI

ch~nge li~ the vdlue of the parameter, s), The particular parameters selected

do riotfdll in a low buckling qrowth region.

Iv. CONCLUSIONS AND RECOMMENDATIONS

A buckling theory origin,]lly developed by Abrahamson for colldpsinq

rings ~nd cyllndricdl shell} (including thickening) has been extended to

dccount for shel 1 decelerations, Growth of initial displacement lmperfectlcn~

1s found to be sub~tant ially modified; and intt~bility growth can be I!ml!’,li
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Table 11

CALCULATED BUCKLING PARAMETERS FOR EACH EXPERIMENT

TEST ID alh = r /h
00

s a J
UC

h

RS-3138 15.4 31.0 0.0188 32.1

RS-2652 18.75 37.8 0.0154 17.9

RS-2653 17.35 35.0 0.0166 25.0

RS-2654 18.0 36.3 0.0150 25.5
—. ——

RS-2657 16.5 33.3 0.0175 15.8

R5-2658 16.8 33.9 0.0172 13.6

I

21
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by driving rings inward at either low or high velocities. Max imum imperfec-

tion growth appears in an intermediate velocity region.

Contracting ring tests performed using either an explosive or magnetic

driving system are found to lie within the high growth region in all cases, in

qualitative agreement with the observed extreme buckling growth.
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APPENDIX

LE 5 FOR WAN CYmMOT~

mot

the

A simple closed-form solution is preserlted for uniform inward ring

on, The solution is useful for checkng results obtained numerically for

complete buckling analysis.

Begirlning with Eq. (2),

24
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.=

subject to tbe lnitlal co~ditlons

where r = aChtlr end other auantltles are Previously defined, let
o’

u
‘=dr

~henJ.E=dn=Luuml
2 Q?

dr
d[ dr ❑ IQ

Then Eq. [A.lj Decorws

(A.lj

(A 3)

Equation (A.3) can be Integrated by ser)aratlon of varlablf!s, res~ltlng lr

where C 1s a constant of lnteg:atlon. For the lnltlal condltlon:

26



(A.5)

Equation (A.5) gives the nondimensional inward velocity as a function of

nondimensional radius. Finally, the nondimensional radius at which the inward

~?locity goes to zero can be found from Eq. (A.5) dS

(A.6)


