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Potts Model Simulation of Grain Size Distributions during Final Stage Sintering
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ABSTRACT

The Potts Monte Carlo model was used to simulate microstructural evolution and
characterize grain size distribution during the final stages of sintering. Simultaneous grain growth,
pore migration and pore shrinkage were simulated in a system with an initial porosity of 10% with
varying ratios of grain boundary mobility to pore shrinkage rates. This investigation shows that the
presence of pores changes the grain size distribution and the topological characteristics due to
pinning of grains by pores. As pores shrink away, their pinning effect decreases. Once pore
shrinkage is complete, normal grain growth is achieved.

INTRODUCTION

During the final stages of sintering, pore channels along grain boundary begin to shrink
and pores are isolated on grain boundaries and triple junctions then shrink continuously and may
disappear altogether'. However, in many cases, pores would break away from grain boundaries
and become trapped within grains, resulting in some amount of residual porosity?. These
observations neglect the importarice of surface diffuison and bulk diffusion during final stage
sintering. For pore shrinkage in the final stage of sintering, grain boundary diffusion is the most
important mechanism. However, surface diffusion is responsible for pore mobility and will affect
both sintering microstructure and sintering kinetics.

In this paper, we have developed a modified Potts Monte Carlo simulation algorithm to
study final stage sintering, which is based on the previous development on the microstructure
evolution such as grain growth and pore migration. Multiple kinetics are incorporated by assigning
different Monte Carlo probability to different mechanisms based on the experimental conditions
which eyist during final stage sintering. Using a 2D Potts model, microstructural evolution,
topological distribution and grain size distribution are discussed in detail.

MODEL AND SIMULATION METHOD

The two-dimensional Potts model was used to study simultaneous grain growth, pore
migration and pore shrinkage simulation. Grain structure is mapped onto a square lattice with
periodic boundary conditions in both the X- and Y-directions. Each lattice is assigned a spin
between 1 and q ( g=100 ) which represents the different orientation of the grain in which the site
is embedded. Each pore site is assigned a spin = -1. Each grain or pore site may be considered as a
discrete domain, consisting of some billions of atoms, which maps to a 400x 400 lattice to form a
meso-scale microstructure. In this investigation, we chose the grain boundary energy and surface
energy to be isotropic and independent of the grain orientation. Thus, we assign the bond energy,
E,, to be constant with direction and spin. First and second nearest neighbor interactions are
considered as this results in lower anisotropy’. The equation of state for this system, also know as
the Hamiltonian, was defined as
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E=1E, igu}::l(l -§(s..8,)) eq.1

~where E, is the bond energy between neighboring sites of unlike spin (s, s;, €.g. grain boundary or
surface). The Hamiltonian counts the number of unlike bonds between all sites i and their 8 1* and
2" nearest neighbors j.

Grain growth is simulated using Potts model: a grain site is chosen at random from the
simulation space, then a new trial spin is chosen at random from q spins. The energy change is
evaluated using eq.1. The change in energy for the grain growth step, AE, is then used to calculate
the transition probability, P, using Boltzmann statistics as

AE
exp(— fB‘Tf) for AE>0
for AE<0

P= eq.2

1

where K} is the Boltzmann constant and T is absolute temperature. The Metropolis algorithm® is
used to determine if an exchange is accepted or not by choosing a random number between 0 and
1. If the random number is less than or equal to P, then the transition is accepted. If not, the
transition is rejected. A Monte Carlo temperature T = 0 is used for grain growth simulation to
eliminate the thermal fluctuations and has been shown to simulate grain growth well*®

Pore migration is simulated using conserved dynamics. A pore site is picked at random,
then a neighboring grain site is chosen also at random. A trial exchange of the grain site and the
pore site with the grain site assuming the spin which results in the minimum energy is considered.
The energy change of this trial exchange is calculated using eq.1. The transition probability is
determined by applying eq.2 and the Metropolis algorithm is used to accept or reject the pore
migration step. In this simulation, almost all pore migration events happen by grain sites moving
along the pore-grain interface, thus, simulating pore migration by surface diffusion as shown by
Tikare and Holm®. The mobility ratio of pore boundaries to grain boundaries was chosen to be 1:1
based on earlier work. Monte Carlo temperature of K;T= 0.5 was chosen for pore migration also
based on earlier work®.

Pore shrinkage is assumed to occur by grain boundary diffusion only. First, we select a
pore site at random. If the pore site is at a grain boundary, pore shrinkage is attempted. Ifit is an
internal pore site then pore shrinkage is not permitted, as it is an intragranular pore. Pore
shrinkage is simulated by replacing that pore site with a grain site which has a spin resulting in the
minimum energy as calculated by eq. 1. We calculate the change in energy for shrinkage using eq.
1. The transition probability corresponding to this change is calculated using eq. 2 and finally, the
Metropolis algorithm is used to accept or reject the transition.

The grain boundary mobility to pore migration ratio was held constant at 1 for all the
simulations in this investigation. The pore migration to pore shrinkage ratio, m, was varied from
1,000 to 10,000. This was done by attempting m pore migration events for each pore shrinkage
event. Pore migration and shrinkage are simulated under temperature k;T=0.5, this high
temperature is necessary to sample higher entropy states required for simulation of pore migration
and shrinkage. At lower temperature, pores would not have sufficient energy to diffuse in the
microstructure’.

Time in the Potts model is measured in units of Monte Carlo steps, MCS. At 1 MCS, the
number of attempted changes is equal to the total number of lattice sites in the simulation.
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Simulations were run up to 10° MCS. Data was collected from four independent runs for each set
of simulations run under identical conditions to obtain good statistics for grain size distributions
and topologies.

RESULTS AND DISCUSSIONS

Previous study of pore migration and grain growth with no pore shrinkage showed that
pores grow by coalescence and the grain growth is pinned by pores. In this simulation, we choose
initial porosity of 10%, which is considered appropriate for the final stage sintering®’. The starting
microstructure for pore shrinkage simulations is obtained by only allowing grain growth and pore
migration for a system with constant porosity of 10%. After the average grain size, measured in
grain area, reaches 100 sites, pore shrinkage, along with grain growth and pore migration, is
allowed to be active. This initial microstructure, Fig. 1a, shows that pores are present at grain
triple junctions and almost all the triple junctions are occupied by pores. The pores and grains are
equi-axed with smooth, regular interfaces.

A series of simulations with pore migration to pore shrinkage ratios of 1000, 3000, 7000
and 10,000 were run. These ratios were chosen to simulate the surface to grain boundary diffusion
ratios typically observed in real materials systems.

For a two dimensional system with constant volume fraction of pores, pore growth rate was
predicted by Tikare and Holm to be

R o t%2 eq.3
where R is the grain radius and t is time. They obtained this relationship for the case where pores
migrate through the microstructure by random walk and grow by coalescence (two or more pores
become one large pore when they touch each other). Fig.2 shows that the pore growth curves,
pore size vs. time, for systems with (a) grain growth and pore migration and (b-¢) grain growth,
pore migration and shrinkage at different pore migration to pore shrinkage ratios. For the system
with no pore shrinkage, only grain growth and pore migration, pore growth curve shows that the
pore growth exponent is about 0.15, which is a good agreement with the predicted pore growth
exponent, indicating that pores do grow by coalescence. In the simulation with both pore
shrinkage and pore migration, two competing events occur, pore growth by migrating pores which
coalesce and pore shrinkage. The smaller pores disappear faster because of their higher curvature,
thus increasing the mean distance between pores. This in turn makes pore coalesces via random
walk less frequent. The competition between pore growth via coalescence and pore shrinkage via
grain boundary diffusion tends to favor shrinkage as surface to grain boundary diffusion rate
decreases as shown in Fig.2. However, at the slow shrinkage ratio, the pore coalescence could be
seen in the microstructures shown in Fig. 1b to Fig. 1d. Pore breakaway could also been seen in
those microstructures as pore shrink and no longer pin grain boundaries.

Fig.3 shows the grain growth curves for (a) grain growth without pores, (b) constant
porosity, grain growth and pore migration and (c-f) different pore migration to shrinkage ratios.
The grain growth kinetics display power law behavior with a grain growth exponent n, R oct”,
with n = 0.5". In the simulations, the grain growth exponent for normal growth was n = 0.5, which
is in good agreement with that predicted by the theory of single phase grain growth ( ng = 0.5").
For grain growth together with pore migration, grain growth is pinned by pores and thus, scales
with pore growth with exponent n, = 0.2 as indicated by Eq.3. The grain growth with pore
migration simulation shows that n = 0.25 as shown in Fig.3, which is a reasonably good
agreement. Grain growth with pore migration and shrinkage at different ratios shows that the
grain growth is not log-linear. However, the grain growth curves for these simulations fall
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(b) 80,000 (c) 90,000 and (d) 100,000 MCS at pore migration to pore shrinkage ratio m
10,000. Pore coalescence events are circled.

Fig.1 (a) Starting microstructure for pore shrinkage with initial porosity 10%, microstructure at
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Fig.2 Pore size vs. time for different pore migration to pore shrinkage ratios m.
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Fig.3 Grain growth curves with different Fig.4 Second moment of grain area at different
pore migration to pore shrinkage rations m. time for different pore migration to pore
shrinkage rations m. For m=1,000, pores
disappear at 40,000 MCS.

between those of normal grain growth and grain growth with pore migration. Furthermore, the
simulation with highest pore shrinkage rate is closest to the normal grain growth curve with the
lower shrinkage rate simulations progressively deviating from the normal grain growth curve.
These results indicate that grain growth is pinned by pores in all cases however, the pinning
effect is decreasing as the pores shrink and disappear.

Fig.4 is the plot of the second moment of grain area as function of simulation time for all
simulations. The second moment is the variance of the grain size distribution and is calculated
as

1 . Al

HZ(A) - n—ligl <A >2
where n is the number of grains, A is the grain area and <A> is the average area. Fig.4 shows
that the systems with faster pore shrinkage rates tend to have broader grain size distributions than
the normal grain growth size distribution. This effect not only persists after the pores completely
disappear, but continues to deviate from the normal grain growth behavior in the case where pore
shrinkage rate is highest. To understand this behavior we examined the microstructures of the
simulation with the highest pore shrinkage rate and compared them to the others. We found that
the initial microstructure for the simulation with the fastest pore shrinkage rate had pores evenly
distributes at triple junctions as seen in Fig. 1a. As pore shrinkage was started entire pores would
shrink away quickly unpinning a few grain boundaries while most were still pinned. These
unpinned grains grew quickly giving abnormal grain growth of a few grains as shown in Fig. 5.
At lower pore shrinkage rates, the grain pinning effect of pores is more persistent as well as more
even, thus abnormal grain growth did not occur. Furthermore, as the low pore shrinkage rates,
the grain size distribution was narrower than that of normal grain growth because the pore
pinning.

The changes of average grain sides also indicate that pore shrinkage alters the grain
growth, as shown in Fig. 6. For all system, the average grain sides is about 6, which is a
consequence of the Euler-Poincare relationship applying to a two-dimensional cellular structures
if grains meet only at tri-junctions. The normal grain growth without pore’s appearance give the
lowest average grain side value and the grain growth in a system which pore only migrates give a

-1 eq. 4
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value a little higher. The shrinkage of pores effect greatly in the topologies of the microstructure
until the pores shrink away completely.
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Fig.5 Microstructures from the fast pore shrinkage simulation at (a) 20,000 and (b) 100,000 MCS
showing the development of a broad grain size distribution as a result of uneven pinning by
pores. (¢) Microstructure of a normal grain growth simulation and (d) grain growth and
pore migration simulation with no pore shrinkage to show that both result in a narrower
grain size distribution.
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Fig.6 Average grain sides vs. simulation time for different pore migration to pore shrinkage
ratios. Pore disappear at 40,000 MCS for m = 1,000.
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SUMMARY

The microstructural evolution during the final stage sintering was studied using the Potts
model. Grain growth by grain boundary migration, pore migration by surface diffusion and pore
shrinkage by grain boundary diffusion were incorporated in the Potts model. An initial porosity
of 10% was chosen as a representative microstructure during the final stage sintering. The
microstructure evolution shows that pore will migrate along the grain boundaries and coalesce to
form larger pores at the triple junctions. Simultaneously, pore shrinkage competed with the pore
growth by coalesce especially at the higher shrinkage rates. Simulation results show that the
shrinkage of pores and the shrinkage rate effects the topological and grain size distribution. Fast
shrinkage results in a broad grain size distribution because some grains are pinned by the pores
and will not grow while other grains grow bigger, then the small grains would shrink after all the
pores are vanished. In contrast, at the slow pore shrinkage rates, the grain size distribution is
narrower because pores hinder grain growth evenly.
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