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This thesis presents the results of an experimental investigation of natural
convection heat transfer in a staggered array of heated cylinders, oriented
horizontally within a rectangular enclosure. The main purpose of this research was
to extend the knowledge of heat transfer within enclosed bundles of spent nuclear
fuel rods sealed within a shipping or storage container. This research extends
Canaan's investigation of an aligned array of heated cylinders that thermally
simulated a boiling water reactor (BWR) spent fuel assembly sealed within a
shipping or storage cask.

The heated rod array was comprised of 60 tubular stainless steel heater rods
with a nickel-chromium resistance heating element running through the center of
eachrod. The heater rods were supplied with uniform power generation per unit
length. A rectangular, copper, water-cooled box provided an isothermal enclosure
for the heater rods. The rod ends were insulated to minimize axial temperature
variations, which allowed a two-dimensional heat transfer analysis to accurately
characterize the thermal characteristics of the rod bundle. The temperature
variations throughout the rod bundle were measured with embedded thermocouples
placed just beneath the outer surface of each rod. Extensive thermal characterization



of the staggered rod array was performed by varying three parameters
independently. Placing the test assembly within a sealed pressure vessel allowed
variations both of the type of backfill fluid and of the fluid pressure. The two types
of gas used were helium and nitrogen, and the pressure was varied from 0 to 60
psig. The third parameter varied was the total power input to the assembly, which
was varied uniformly from 1 to 5 watts per rod.

The results are presented in terms of piecewise Nusselt-Rayleigh number
correlations of the form Nu = C(Ra)?, where C and n are constants. Correlations
are presented both for individual rods within the array and for the array as a whole.
The correlations are based only on the convective component of the heat transfer.
The radiative component was calculated with a finite-element code that used
measured surface temperatures, rod array geometry, and measured surface
emissivities as inputs. The correlation results are compared to Canaan's aligned
array results and to other studies of natural convection in horizontal tube arrays.

For the rod bundle as a whole, the data show a distinct two-regime trend
that is reminiscent of the Rayleigh-Benard problem, which describes a conduction
regime and a convection regime. In the conduction regime, the bundle-averaged
Nusselt numbers are lower for the staggered array than for Canaan's aligned array.
However, in the convection regime, the staggered array has higher bundle-averaged
Nusselt numbers than the aligned array. Also, the slope of the Nusselt-Rayleigh
curve in the convection regime indicates that turbulent flow is present within the rod
bundle.

For individual rods, the research shows that fluid rising from the rods in the
lower half of the array tend to preheat rods in the upper half, resulting in lower
Nusselt numbers for the upper row rods. Rods in the lower half of the array
exhibit two-regime Nusselt number behavior, similar to the bundle-averaged
Nusselt numbers. However, rods in the upper half of the array do not display this
trend. Comparing this enclosed staggered array to a non-enclosed staggered array
shows that the reduction in Nusselt number as one goes up a given column of rods
is more dramatic for the enclosed array than for the non-enclosed array.
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Chapter 1 -- Introduction

1.1 APPLICATIONS OF THE STUDY OF NATURAL CONVECTION OF
HEATED TUBE ARRAYS WITHIN ENCLOSURES

The study of natural convection from horizontally-oriented heated cylinder
arrays within an enclosure has three primary applications of interest to current
industry. The first application is electronics packaging, where electronic
components generate heat within a computer or other packaging and are cooled
primarily through natural convection. As computer components become smaller
and faster, heat generated by these components must be rejected more effectively to
prevent thermally-induced changes in material properties that could cause
malfunctions. The smaller the product, the more difficult it becomes to use forced
convection to provide cooling within the product housing. Thus, an understanding
of natural convection for complex shapes within an enclosure allows product
designers to geometrically arrange the components in a way that maximizes natural
convection.

The second application is immersion heating, where a heated tube bank is
used to heat a fluid in a container, such as oil in a large tank. The tube bank may be
electrically heated, or it could be a heat exchanger in which hot fluid passes through
the hollow tubes to heat the surrounding liquid. The effectiveness of the heat
transfer can be changed, depending on the spacing of the tubes and the orientation
of the tube bundle within the fluid. Thus, an understanding of the relationship
between these factors and the overall heat transfer can aid the design of a tube
bundle that heats the fluid in an optimal manner.

The third common application in which natural convection from a tube bank
within an enclosure is important is in the thermal study of the transportation and
storage of spent nuclear fuel (SNF) rods. Approximately half of the commercial
nuclear power plants in the U.S. are boiling water reactors (BWRs) [Todreas and
Kazimi, 1990]. In a BWR, water boils as it flows over nuclear fuel rods in which

heat is generated through nuclear fission. This steam is directly used to drive the




turbine-generator. The other half of U.S. commercial reactors are pressurized
water reactors (PWRs), which heat water at high pressure, but do not cause the
water to boil in the reactor. A secondary heat transfer loop using heat exchangers
creates the steam used to drive the turbine-generator. For both BWRs and PWRs,
the construction of the fuel rods, fuel assemblies, and reactor cores are very similar.
However, since PWR fuel assemblies contain about 4 times as many rods as a
BWR fuel assembly, let us focus on the less complex construction of the BWR fuel
assembly.

Figure 1.1 shows a typical nuclear fuel rod used in a boiling water reactor.
It is made up of cylindrical pellets of uranium oxide (UO?) that are stacked within a
zircalloy cladding to form a fuel rod that is a little over 4 meters in length. The

individual fuel pellets are about 1 cm in diameter and about 1 cm in length [Todreas
and Kazimi, 1990]. As shown in Figure 1.2, these rods are grouped into an 8x8
square array housed within a rectangular casing to form a single fuel assembly that
is about 4.4 meters long [Todreas and Kazimi, 1990]. A PWR fuel assembly
contains either a 15x15, a 16x16, or a 17x17 square array of fuel rods. A typical
BWR core contains several hundred fuel assemblies, oriented vertically and
arranged in a roughly cylindrical pattern. Figure 1.3 shows the arrangement of fuel
assemblies within a typical BWR core.
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Figure 1.1 Diagram of a BWR fuel rod, showing UO2 pellets.
(drawing not to scale)
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Figure 1.2 Diagram of a typical BWR fuel assembly.
[Canaan, 1995] (drawing not to scale).
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Figure 1.3 Arrangement of BWR fuel assemblies in a reactor core.



In the BWR core, water flows vertically through the spaces between the fuel
rods, removing the heat generated by the fission process and turning into steam.
As the fission process continues, the amount of useful UO2 within the rods
gradually is used up, being converted to lighter elements such as barium, cesium,
niobium, and zirconium. When the amount of UO2 reaches a certain low level, the
fuel assemblies are removed from the reactor and are referred to as spent nuclear
fuel (SNF) assemblies. These SNF assemblies are currently stored on-site at the
plant until a permanent storage facility for spent fuel can be approved and
constructed.

When this permanent facility is built, the SNF will be transported to the
permanent disposal site in specially designed casks. These casks must isolate the

SNE—which remains highly radioactive—from the outside environment, The
casks must be tough enough to remain sealed even if a severe accident were to
occur during transport. Since the rods continue to generate heat for many years
after they are removed from the reactor, the cask must also be able to withstand the
elevated temperatures generated by this decay heat within the cask. As shown in
Figure 1.4, a typical transport cask would be carried on a rail car or large truck, and
would carry many fuel assemblies. Since the fuel assemblies are very long, they
are stored in a horizontal configuration within the cask. Each assembly is separated
from the others by a rectangular stainless steel sleeve. In this geometry, an
individual fuel assembly can be modeled thermally as an aligned array of 64 very
long cylinders with internal heat generation, enclosed by a rectangular, isothermal
box. Understanding the heat transfer mechanisms within the fuel assembly allows
cask designers to predict and design for the maximum temperatures that will occur
within the cask as a result of the SNF decay heat.
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1.2 THE UT / CANAAN EXPERIMENTS ON SIMULATED SNF
BUNDLES

Of the three applications described above, the thermal analysis of spent fuel
rods is the one that is driving the current research. The author’s current project is
an extension of Canaan's investigation into the thermal behavior of enclosed SNF
rods begun in 1991 at The University of Texas at Austin (UT).

Canaan's doctoral research experimentally modeled a single, horizontally-
oriented BWR spent fuel assembly within an isothermal enclosure. The individual
spent nuclear fuel rods were modeled with tubular stainless steel heater rods, each
with an electric resistance heating element that ran through the rod centerline. The
rods were made to the same diameter as BWR spent fuel rods and arranged in an
aligned array of the same spacing as rods within a BWR fuel assembly. The rods
were made of materials which are thermally similar to actual BWR rod materials.
By making the rods long enough, and by thermally insulating the ends of each rod,
the axial flow and heat transfer effects were minimized, and a 2-D analysis was
possible.

The electric heater rod bundle was surrounded with a rectangular, water-
cooled copper enclosure that was maintained at constant temperature on all sides.
The entire rod bundle and enclosure was placed within a pressure vessel, which
allowed experiments with different types of gas at varying pressures. By
independently varying the vessel pressure, the type of gas, and the rod power, a
wide range of natural convection flow regimes could be investigated. Two types of
backfill gas were used, helium and nitrogen. The heater rod power input, which
was approximately the same for each rod, was set to levels that simulated the range
of decay heats likely to be generated in actual spent fuel assemblies of various ages
stored within a transportation cask. The surface temperature of each rod within the
array was measured with thermocouples placed just beneath the rod surfaces. The
rod surfaces were assumed to be isothermal around their circamference. The
validity of this assumption was confirmed both with experimentation and numerical
analysis [Canaan, 1995}



By measuring the temperatures of all rod surfaces, the enclosure
temperature, the heater rod input power, and the thermal radiation properties of the
rod and enclosure surfaces, Canaan was able to produce dimensionless heat transfer
correlations not only for the overall rod bundle, but for each individual rod as well.
These results were published in his Ph.D. dissertation [1995].

1.3 OBJECTIVES OF THE CURRENT RESEARCH

To extend the fundamental knowledge gained from Canaan's experiments,
the 8 by 8 aligned array of heater rods was modified to form a staggered array.
Most studies and experimental heat transfer correlations for flow across tube
bundles give results for both aligned and staggered array configurations. While a
staggered array using heater rods of the size and spacing used in this experiment
does not directly relate to a specific spent fuel assembly, it is important to compare
Canaan's results to a staggered array and to other enclosed tube arrays to learn more
about the fundamental characteristics of natural convection in this configuration.

For example, consider the fact that many published results for overall heat
transfer coefficients of a tube array show that a staggered array transfers heat more
effectively from the tubes to the fluid, both in forced and in natural convection
situations [Choi and Cha, 1990; Incropera and DeWitt, 1990]. If it could be shown
that heat transfer could be improved significantly within a BWR spent fuel
assembly simply by shifting the rods to a staggered array spacing, this
reconfiguration might be warranted in order to reduce the cost of the cask by
simplifying its thermal design. This would make the cask safer, and could possibly
reduce the cost of the cask by reducing the amount of thermal engineering needed to
handle the cask's lowered maximum temperature.

A diagram of the cross-section of Canaan's array and the current staggered
array is shown in Figure 1.5. This staggered array was made by removing one
heater rod from the first, third, fifth, and seventh rows (the top row of rods is
considered the first row), and then shifting these rows horizontally. Thus,
Canaan's array contained 64 rods, and the current staggered array contains 60 rods.



Figure 1.5 also shows the outer diameters of the heater rods, the "pitch", or spacing
between each rod, and the dimensions of the inner walls of the enclosure. Other
details of the experimental setup, such as the heater rod construction, the pressure
vessel, thermocouples, enclosure cooling system, rod power supply, and the data
acquisition system are described in Chapter 3 -- Experimental Apparatus and Setup.

There are two basic objectives of this experimental work. The first is to
produce non-dimensional Nusselt-Rayleigh number heat transfer correlations for
this staggered array and compare the results to thé Canaan aligned array. The
vessel pressure and rod powers are independently varied over a similar range as in
the Canaan experiment. The comparison between the staggered and Canaan's
aligned array investigates whether or not overall heat transfer is improved or
hindered by changing the array geometry. Also, correlations are compared for
individual rods to see how the fundamental natural convection behavior changes for
specific rods between aligned and staggered arrays.

The second objective is to compare the results from the staggered array
experiment to other experiments done on natural convection from heated tube
arrays. Other research has experimentally investigated natural convection from both
aligned and staggered arrays, both in enclosed and non-enclosed arrays.

Hopefully, some useful information about the fundamental nature of natural
convection from enclosed tube arrays can be obtained by comparing the current
staggered array results to these previous experimental works. However, not much
experimental research has been performed on enclosed tube arrays. In fact, the UT
research begun in 1991 by Canaan and continued in this thesis is the first
experimental investigation of enclosed, heated tube arrays that both fully describes
the temperature variation for all of the rods within the array and that produces
radiation-corrected Nusselt and Rayleigh number correlations.

10



Staggered Array

heater rod
outer diameter =

e 1 ®000000

O0O0O0O00O0O
OOO0O000O0O0O0

OO00O0O0O0O0
0J0J010101020)0)

0J0)010)1010X010,
—?OOOOOO
D000 O0O0BW

13.41 cm

Y

Aligned Array

.62cm

1.03 cm —Pp,

000000 ®
QO00000®
Q0000000
00000000
00000000
00000000
00000000
00000000

E& cm

g— 1341 cm

Figure 1.5 Cross-sectional views of the geometry of Canaan's aligned array and

the current staggered array.

11



Furthermore, this experimental investigation of natural convection within an
enclosed tube array is important because numerical techniques have difficulty
modeling the full, multi-mode heat transfer and flow behavior within the array.

Numerical techniques can model laminar natural convection in this geometry
relatively easily; however, it is much more difficult to solve the necessary equations
when natural convection is coupled with thermal radiation between the rod surfaces
and the enclosure. The modeling task becomes even more difficult when one
realizes that for higher rod powers, the natural convection flow is probably
turbulent within the array, and that an even more sophisticated model is needed.

1.4 LITERATURE SURVEY

While the available literature regarding natural convection within enclosed,
horizontally-oriented tube arrays is limited, particularly for the staggered array
configuration, there are some studies that are important and that relate closely to this
research. One main reference used for this work is Canaan's 1995 Ph.D.
dissertation, Natural Convection Heat Transfer Within Horizontal Spent Nuclear
Fuel Assemblies.

One of the best studies of natural convection from a heated, staggered
cylinder array comes from a 1990 report from Choi and Cha. They published
results from a flow visualization study of natural convection from a horizontally-
oriented array of heated cylinders. These cylinders were hollow, stainless steel
tubes about 10 cm in length. These tubes were arranged in a rectangular, aligned
array of 12 rows and 7 columns. A DC current passed through the walls of the
tubes was used to heat the rods, and a Mach-Zehnder interferometer was used to
record visual images of the temperature contours around eachrod. The tube bundle
could be rotated about one corner of the rectangle to produce a staggered array.
They used two different tube diameters, 3.2 and 6.4 mm, at a spacing of about 13
mm, yielding an approximate pitch-to-diameter ratio of 4 and 2, respectively. Their
array was open to the quiescent room air and was not enclosed. Figure 1.6 gives a
diagram of the rod array used by Choi and Cha. Notice that the staggered array

12



produced by rotating the aligned array is different geometrically from a staggered
array produced by horizontally shifting alternate rows of rods.

Choi and Cha used the temperature contour and temperature gradients
measured directly from the interferometric images to calculate Nusselt number as a
function of circumferential angle around each rod. They also calculated rod-
averaged Nusselt numbers for several rods in the array, and compared results for a
staggered versus an aligned array. However, since they did not calculate an array-

averaged Nusselt number, their array was not enclosed, and their staggered array
had a different configuration, their quantitiative results are not directly comparable.
Also, because they did not include a correction for radiation, the correlations they
produced are the result of multi-mode heat transfer, not just convection. This
means that the total heat transfer is counted as all convection, which tends to inflate
the Nusselt number. But since they did compare an aligned array to a staggered
array, their results have some bearing on the current research. The results of the
current UT research are compared to Choi and Cha's work in Chapter 5 -- Results
and Discussion.

In 1984, Warrington and Weaver presented their results of an investigation
of both aligned and staggered arrays of heated, horizontally-oriented rods within a
water cooled, rectangular enclosure. They studied a 4 by 4 and a 3 by 3 aligned
array, and a 14-rod and an 8-rod staggered array. The hollow copper tubes were
19.5 cm in length and 4.2 cm in diameter, with a wall thickness of 0.4 cm. Heat
was supplied to the inner surface of the tubes with DC-powered heat tape applied to
the inner tube surface. Since their rods were fairly short, conduction losses were
significant, but they were corrected for using a 1-D fin conduction analysis.

13
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Warrington and Weaver accounted for radiation by evacuating the enclosure
to a very low pressure, then adjusting the rod power levels independently in order
to produce the same rod temperature field as when the enclosure was filled with
fluid. The rod power used to produce this temperature ficld within the evacuated
enclosure was the radiation heat transfer. However, the authors did not state the
error of this method. The problem with this form of radiation correction is that
independently varying each rod power to produce the same temperature field as the
multi-mode heat transfer case is like trying to solve a set of N linear equations
(where N is the number of rods--14 or 16 in this case) simply by guessing values
independently for all the coefficients--it is not very accurate. However, itis
possible that the error of this method may be within the overall experimental error
caused by the uncertainty of the other measurements.

The enclosure was tested with four different fluids--air, water, glycerine,
and silicone oil. The rod and enclosure surface temperatures were measured with
embedded type T thermocouples. A diagram of their geometry is shown below in
Figure 1.7.

Warrington and Weaver calculated only bundle-averaged Nusselt numbers
for the four arrays. That is, they did not calculate Nusselt numbers for individual
rods. They report that “the enclosure reduced the expected increase in both the
average and the local heat transfer coefficients caused by changing the inner body
[cylinder array] from an in-line arrangement to a staggered arrangement of
comparable spacing.” It is not clear exactly how much of an increase the authors
were expecting based on their report; however, it is clear that they expected a larger
difference in average Nusselt number between an aligned and a staggered array.
They report that at lower Rayleigh numbers, a staggered array had a bundle-
averaged Nusselt number that was about 10 percent higher than a comparable
aligned array. However, at higher Rayleigh numbers, the bundle-averaged Nusselt
number was about the same. These results are compared to the UT aligned and
staggered results in Chapter 5.

15
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In 1979, Tilman reported results for a non-enclosed array of aligned and
staggered cylinders that were surrounded by room air at atmospheric pressure. The
two arrays were a 4 by 4 and a 14-rod staggered array. The rods were 1.3 cm in
diameter and 10.2 cm long. Tilman neglects conduction end losses; however, the
short length of the rods makes this assumption questionable. Power was supplied
using resistance heaters in the centerline of the rods, and rod surface temperatures
were measured with a single thermocouple soldered to the rod surface at the
midpoint. Tilman reports that rods above the bottom row had lower Nusselt
numbers than that of a single, isolated cylinder, due to the heating of the fluid that
surrounded the upper rods by the buoyant plume from the lower rods. Also,
Tilman reports that the staggered configuration had an average Nusselt number that
was about 17 percent higher than the aligned array. However, since Tilman made
no correction either for conduction end losses or for radiation losses, his Nusselt
numbers are likely inflated due to counting all of the heat loss from the rods as
leaving through convection only.

Sparrow and Niethammer [1981] provide an interesting study of the
interaction between two heated, horizontal cylinders located directly above one
another in a vertical plane. They supplied the same internal electric heat generation
to both rods, and then varied the vertical rod center-to-center separation distance, P,
between the rods. Both radiation and conduction end losses were taken into
account. First, for a given rod power, they calculated the rod-averaged Nusselt

- number for a single cylinder. They then compared the Nusselt numbers for the two
interacting cylinders. As they varied the distance of the upper rod from the lower
rod, they describe 4 different spacing regimes and the effect on the Nusselt number
of each rod. At very small spacings (P < 1.2D, where D is the cylinder diameter),
the upper rod was heated by the plume from the lower rod, and had a lower Nusselt
number than the lower rod. Also, because a stagnation region formed between the
two rods, the lower cylinder had a lower Nusselt number than the single, isolated
cylinder. At larger spacings (P > 2D), the lower rod had a Nusselt number that was
about the same as the isolated cylinder. For P = 2D to 3D, the upper rod was still
heated by the plume from the lower rod, and had a lower Nusselt number than the

17



bottom rod. However, at higher separation distances (P = 7D to 9D), the Nusselt
number of the upper rod actually became higher than that of the lower rod. This
effect is caused by the upper rod being in a forced convection situation caused by

the plume from the lower rod. Even though the plume does tend to preheat the
upper rod, at these higher separation distances the increased flow velocity on the
upper rod is a more dominant effect. At very high separation distances (P 2 10D),
both the upper and lower cylinders behaved like single, isolated cylinders. The
above results are pertinent to the discussion of the Nusselt numbers of rods of
different positions within the UT staggered and aligned arrays, and this comparison
is also discussed in Chapter 5.

One of the oldest studies of natural convection from horizontal, heated
cylinders comes from an Air Force report by Eckert and Soehngen released in
1948. They used interferometric techniques to produce very sharp pictures of the
temperature contours around three heated, horizontal copper cylinders that were 2.2
cm in diameter . They used the temperature gradient from the interferograms to find
the Nusselt number of the three rods for two different geometric arrangements. The
first arrangement had all three cylinders lined up in a vertical column with each
other, while the second arrangement shifted the middle rod over to the right by one
half of a rod diameter. The separation distance between each of the cylinders when
they were all in line was about 1.9 rod diameters. For the in-line arrangement, they
found that the bottom rod Nusselt number was about the same as an.isolated
cylinder, and that the middle and upper rods had Nusselt numbers that were 83%
and 65% of the Nusselt number for the bottom rod, respectively. When the middle
rod was shifted over, it's Nusselt number became 103% of the lower rod, and the
upper rod's Nusselt number was 86% of the Nusselt number for the lower rod.
Thus, the overall heat transfer coefficient was higher in the staggered arrangement
than for the in-line arrangement. The increase in Nusselt number for the shifted
middle rod was due to the increased flow velocity past the middle cylinder due to
the plume from the lower cylinder. Figure 1.8 shows the temperature contours
from the staggered arrangement of their experiment.

18
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1.5 THESIS OVERVIEW

This chapter has briefly introduced the topic of natural convection from
heated tube arrays oriented horizontally within an enclosure. Some applications of
the research were given, most notably the thermal characterization of spent nuclear
fuel assemblies within a storage cask. The objectives of the research were given,
and a brief survey of some pertinent related research was provided.

Chapter 2 derives or simply states some of the important equations needed
for this research. It defines the important non-dimensional quantities both for the
bundle-averaged correlations and for the individual rod correlations. Also, Chapter
2 discusses the calculation of the radiation heat transfer component, which is
important in making sure that the correlations presented are system independent and
can be used for other rod bundles.

Chapter 3 describes the equipment and experimental apparatus used in this
experiment. Major features include discussion of the heater rods and their
construction, the placement of thermocouples just beneath the rod surfaces, the
copper boundary enclosure (CuBE) and it's water cooling system, the pressure
vessel, the power supply system, and the automated data acquisition system used to
measure thermocouple temperatures and rod power levels. Diagrams and figures
are used to show the layout of the overall system.

Chapter 4 describes the procedure used to run the experiments, take data,
and reduce the data to produce the heat transfer correlations. The quantities that
were independently varied are discussed, and examples of calculations performed to
obtain bundle-averaged and individual rod heat transfer correlations are given.
Also, the procedure for using the numerical radiation code described in Chapter 2 is
given. Finally, this chapter discusses the overall experimental uncertainty of the
heat transfer results and correlations presented in Chapter 5.

Chapter 5 is the heart of the thesis. It presents the results of the experiment
in the form of non-dimensional heat transfer correlations, both for the average
bundle and for individual rods. These results are discussed in three ways. First,
the results are examined for interesting trends within the staggered array. Second,
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the results are compared to Canaan's aligned array. Finally, the results are
compared to other experiments on natural convection from horizontal tube bundles.
The most important trends and results are summarized at the end of the chapter.

Chapter 6 concludes the thesis and describes some interesting possibilities
for future work on this subject.
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Chapter 2 -- Theory

This chapter briefly discusses some basic theory behind the equations used
to calculate the Nusselt and Rayleigh numbers, both for the individual rods and for
the tube array as a whole. The first section discusses the heat transfer behavior for
a single heater rod. The heat transfer mechanisms are diagrammed, and the Nusselt
and Rayleigh numbers are defined for the individual rod. Some simplifying
assumptions are made and discussed. The second section discusses the heat
transfer behavior for an enclosed rod bundle, and derives the Nusselt and Rayleigh

numbers averaged over the entire rod bundle. The final section discusses the
calculation of the radiation component of the heat transfer, which is necessary to
ensure that the dimensionless correlations produced are independent of the surface
radiation properties of the rods. Keep in mind that this analysis is for arod or arod
array that is at steady state; that is, no transient heat transfer is considered in this
thesis.

2.1 HEAT TRANSFER FOR A SINGLE HEATER ROD

Figure 2.1 shows a simplified cross-sectional view of one of the heater rods
used in this experiment. The exact dimensions and construction of these rods is
given in Chapter 3. The rod is heated by a nichrome wire coil that runs down the
center of the rod and dissipates DC current to generate heat. Since the magnesium
oxide ceramic that fills the inside of the rod has a relatively low thermal
conductivity, the heat dissipated from the wire and conducted through the ceramic
imposes a uniform heat flux on the inside surface of the cladding, q"inner.
However, this does not mean that the heat flux on the outside of the cladding is
uniform. In fact Canaan demonstrated, using both numerical techniques and
experimental measurements, that the outside surface of the cladding is isothermal to
within 0.5 degrees C over the entire range of experimental parameters [Canaan,
1995]. The basic explanation for this is that the high-conductivity stainless steel
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cladding conducts heat very easily in the circumferential direction, and thus the
circumferential temperature variation is very small.

radiation to surroundings
at Toyrr

rod surface temperature, T

conduction through and
around cladding

electric heat generation

uniform inner clad
heat flux

convection to fluid
surrounding rod, T,

Figure 2.1 Diagram of heat transfer modes for a single heater rod.
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The heat is then removed from the rod surface by convection to the fluid
surrounding the rod and by radiation to other surfaces surrounding the rod. Heat
can also flow by conduction in the axial direction (into or out of the page in Figure
2.1). However, since the length of the rods is about 65 times the rod diameter, and
since the ends of the rods are insulated quite well, axial conduction is minimal.
Canaan showed that for these heater rods, the axial temperature variation along the
heated length of the rod is much less than 1 percent of the temperature at the rod's
midpoint [Canaan, 1995]. There may, however, be some 3-D convection occurring
near the ends of the rod. For this analysis, only a 2-D convection model is
considered.

2.1.1 Nusselt Number for an Individual Heater Rod

Natural convection from the rod surface to the surrounding fluid is
characterized by the Nusselt and Rayleigh numbers. The Nusselt number is the
dimensionless temperature gradient at the surface, and the Rayleigh number defines
the strength of the buoyant forces that drive natural convection flow from the rod
surface. In general, the Nusselt number is given by

Nu=— 2.1)

where h is the convection coefficient, x is some characteristic length, and k is the
thermal conductivity of the fluid surrounding the body or surface of interest. For a
single heater rod, this characteristic distance is the rod diameter, d. The fluid
thermal conductivity is evaluated at the "film temperature,” T, which is the average
of the rod surface temperature, Tr, and the bulk temperature of the fluid to which
the rod is transferring heat, Teo. The convection coefficient, hy, at a given point on

the rod surface is given by
qr
h, =-=L 2.2
TS AT : (2.2)
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where q¢" is the heat flux at a point on the rod surface, and AT is the temperature
difference Ty - Too, Where Ty is the surface temperature on the rod at the same point.
While the characteristic rod temperature difference, AT, is uniform around
the rod surface, the local heat flux, g;", is not. Since there is no simple way in this
experiment to determine the local heat flux on the rod surface as a function of
circumferential angle, a rod-averaged convection coefficient is used. This

coefficient is defined as

_Grave _  9r  _ G (2.3)

h,..= = =
LAVE AT  (AT)nd L(AT)nd

where q"r avg is the average heat flux on the rod surface, calculated by dividing the
heat flow per unit rod length at the rod surface, gy, divided by the circumference of
the rod, md. The heat flow per unit rod length is the total rod power input, qr,
divided by the heated length of the rod, L. By using this convection coefficient,
one can calculate a rod-averaged Nusselt number using equation 2.1.

However, the above convection coefficient has assumed that all of the heat
input to the rod was removed by convection only. This is not actually true, since
some of the heat was removed by radiation as well. A convection coefficient based
only on the heat removed through convection is required to accurately characterize
the convection behavior from the rod. The heat balance at the rod surface, on a per-
unit-length basis shows that

q; = q;ad + q::onv (2.4)
where g is the heat input to the rod per unit length, q'rad is the net radiation heat
transfer from the rod to the surroundings per unit rod length, and q'conv is the net

heat transferred from the rod by convection per unit length. The total power input
to the rod per unit length is given by
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9r =— 2.5)

where i is the current flowing through the nichrome coil running along the rod
centerline, and R is the total electric resistance of the wire. If a single heater rod
was surrounded by a very large enclosure that was at a constant temperature, Tsurr,
and if the surface emissivity over the entire rod surface was a constant, €, then the

net radiation from the rod per unit length would be given by
Qpoa = (1d)q75q = (Ad)EO(T] = Tgir) (2.6)

where Tr is the rod surface temperature in Kelvin, ¢ is the Stefan-Boltzmann
constant (5.67 x 10 -8 W / m? - K#), and d is the rod diameter. The convective
heat transfer per unit length could be calculated from equation 2.4, and then the rod-
averaged heat transfer coefficient would be given as

q:;onv
h = _Aconv 2.7
nE (AT)nd 7)

The Nusselt number would then be given by

iR 4 md
., —_— ndec(Tr - Tsm)
_bhravgd  (qf—qpa)d _\ L
Nu, 0, = = = (2.8)
’ k (AT)mdk (AT)mk

However, in general, the surroundings of the rod are not at a constant
temperature. In this thesis experiment, a given heater rod is surrounded by many
other rods that are at varying temperatures. Some rods also exhange thermal
radiation with the cool enclosure wall. Thus, the Nusselt number that is properly
corrected for radiation must take the complexity of the surroundings into account.
In general, the net radiation heat rate per unit length for each rod, q'rad, is not given
by equation 2.6. The correct calculation for q'raq will be discussed later in this
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chapter. Once the correct method of calculating q'rag is known, the final form for
the Nusselt number of an individual rod will be given by

(iZR » )

Y 4 ’ - d

SR . L (2.9)
hAE (AT)nk (AT)7k

2.1.2 Rayleigh Number for an Individual Heater Rod

There are two dimensionless quantities that describe the strength of the flow
field in a natural convection situation. These two numbers are the Grashof number
and the Rayleigh number. The Grashof number is similar to the Reynolds number
for forced convection flow. While the Reynolds number characterizes the ratio of
the inertial forces to the viscous forces acting on a fluid particle, the Grashof
number describes the ratio of the buoyant forces to the viscous forces on a fluid
particle. The Grashof number is given by

3
Gr, = SRADX (2.10)
v

where g is the gravitational acceleration (9.81 m/s2 at sea level), B is the coefficient
of thermal expansion, AT is the temperature difference between the surface and the
ambient surrounding fluid, x is some characteristic length scale, and v is the
kinematic viscosity of the fluid. The subscript x indicates that the Grashof number
is based on the length scale defined by x. If one assumes an ideal gas, the thermal
expansion coefficient is given by

1 [T, +T.7T*
o g-[25]

where T is the mean film temperature, which is the average of the surface
temperature, T, and the ambient fluid temperature, Too. All of the fluid properties
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for natural convection correlations, such as fluid thermal conductivity and kinematic
viscosity, are evaluated at this mean film temperature.

In natural convection, heat transfer correlations are often given in the form
Nu = f(Gr, Pr), where Pr is the Prandt] number, a dimensionless quantity that
describes the ratio of viscous diffusivity to thermal diffusivity of a fluid. The
Prandtl number is given by

Pr=— 2.12)
o

where o is the thermal diffusivity, given by

= X (2.13)

PCp

The variable k is the fluid thermal conductivity, p is the fluid density, and cp is the
specific heat at constant pressure. All of these properties are evaluated at the mean
film temperature, Tt.

If a heat transfer correlation is given that involves one or several fluids that
span a very narrow Prandtl number range, the correlation is often given in the form
of Nu = f(Ra), where Ra is the Rayleigh number, which is the product of the
Grashof and Prandtl numbers. For this experiment, the working fluids are
nitrogen, which has a Prandti number of 0.716 at 350 K, and helium, which has a
Prandt]l number of 0.678 at 350 K. Since these Prandil numbers are not very
different, the Prandtl number is not correlated separately in this thesis. The
Rayleigh number can be written as

3
Ra, =g—B-(-%x— (2.14)

where again, the subscript x indicates that the Rayleigh number is based on the

length scale x. For an individual heater rod, the length scale is the rod diameter, d,
and AT is the temperature difference between the rod surface and the surrounding
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fluid, Ty - Too. Thus, for an individual heater rod with an ideal gas surrounding the
rod, the Rayleigh number is given by

- 3
Ray = 2RI ~Te)d (2.15)
Vo, )

where the expansion coefficient, B, is given by equation 2.11, substituting the
subscript r for "rod" instead of s for "surface."

The final results for the Nusselt-Rayleigh number correlations of the
individual rods of the UT staggered array are given in Chapter 5, section 4.
However, there is one major difference between the Nusselt and Rayleigh numbers
used for those correlations and the Nusselt and Rayleigh numbers presented in
above equations. The equations presented above are for a single heater rod that is
open to an ambient, quiescent fluid. But in the UT staggered array, a given
individual rod is surrounded by a cooled enclosure and by 59 other rods in a fairly
tight spacing. In this situation, it is difficult to define the ambient fluid temperature,
Too, around each rod. In this enclosed rod array experiment, a simpler and easier-
to-measure choice of the characteristic temperature difference, AT, is between the
rod surface and the enclosure temperature, Tc. The subscript "c" refers to the
Copper (Cu) Boundary Enclosure, or CuBE. Thus, the Nusselt and Rayleigh
numbers used for the individual rod correlations of section 5.4 are given below in
equations 2.16 and 2.17. Since this thesis never calculates Nusselt numbers as a
function of rod circumferential angle, the subscript "avg" will be dropped from the
rod-averaged Nusselt number.

(fz_q, ]
r_ ot L rad
Nllr — (qr qrad) _ (2.16)
(AT)nk (T, —T,)nk
_ 3
Rad p— gB(Tr Tc)d (2.17)
VoL
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T, =[Tr +«T°] (2.18)

2.2 HEAT TRANSFER FOR AN ENCLOSED ROD ARRAY

The above section has discussed the heat transfer mechanisms for a single
horizontal heater rod at steady state in an unbounded, quiescent fluid medium. Let
us now consider an array of rods within an enclosure. Heat generation occurs
within each rod, and this heat leaves the rod by convection and conduction through
the fluid surrounding each rod. Each rod also exchanges radiation with the other
rods and with the enclosure surface. Ultimately, the heat generated within all of the
rods is conducted, convected, and radiated to the cooled enclosure wall, which is
maintained at a constant temperature through a water cooling system. The
experimental apparatus and layout is described in Chapter 3.

2.2.1 Nusselt Numbers for the UT Staggered Array

The previous section described the Nusselt and Rayleigh numbers for an
individual heater rod. One can also define Nusselt and Rayleigh numbers for the
entire tube bundle. The full array Nusselt number is defined as

Nu = — (2.19)

where x is now some characteristic length for entire bundle, and h is defined as the
total convective heat transfer from the rod bundle to the enclosure wall, divided by a
characteristic temperature difference for the full array. This overall heat transfer

coefficient is given by
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N ’
quonv,i Q/

h = i=1 = conv (2.20)
4H(AT) 4H(AT) ~

where q'cony i is the convective heat transfer per unit length for an individual rod, i,
and AT is some characteristic temperature difference between the rod bundle and the
enclosure. "H" is the height of the CuBE side wall. The convective heat rate per
unit length for each rod can be calculated by subtracting the radiative heat rate per
unit length for each rod, q'rag, from the total heat input for each rod, given by
equation 2.5. The calculation of q'ryg for each rod is given in section 2.3 of this
chapter.

The characteristic temperature difference for the rod bundle can be defined
in one of two ways. The first way defines a characteristic temperature difference
based on the average surface temperature of all of the rods, Thynd, minus the CuBE
temperature, Tc. The second way defines the characteristic temperature difference
based on the surface temperature of the hottest rod in the array, Trax, minus the
CuBE temperature, T¢. This thesis will refer to the characteristic temperature
difference based on the bundle-averaged rod temperature as ATpyng, and the
characteristic temperature difference based on the maximum rod temperature as
ATmax.

These two definitions for the bundle characteristic temperature difference
can be used in equation 2.20 to define the full array convection coefficient, and then
in equation 2.19 for the full array Nusselt number. The characteristic length used
for the full array correlations is the CuBE height, H. Thus, the two Nusselt
numbers used for the full array heat transfer correlations are given as

Nub,_md = K (221)
Nu,,, hm;xH (2.22)
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For both definitions of the Nusselt numbers, the thermal conductivity is based on
the bundle-averaged film temperature, Tgpund, which is defined as

_ Tyua +Tc

Tt bund = 5 (2.23)

where Thund is the average of all of the rod surface temperatures. The above
definitions of the Nusselt number are used to calculate the results for the rod bundle
that are presented in Chapter 5, section 3.

2.2.2 Rayleigh Numbers for the UT Staggered Array

As with the Nusselt number, one can use two different definitions of the
bundle Rayleigh number based on the two different definitions of the bundle
characteristic temperature difference described above. These two Rayleigh numbers
are defined as

AT, ) H
Ray, = B0 Vb&md) (2.24)
3
Ra, = M (2.25)
Vo

As with the above full array Nusselt numbers, the expansion coefficient B, the
kinematic viscosity v, and the thermal diffusivity o are evaluated at the mean bundle
film temperature defined in equation 2.23. These two Rayleigh numbers are used
in conjuction with the Nusselt numbers of equations 2.22 and 2.23 to correlate the
bundle heat transfer data.

There is an alternate definition of the Rayleigh number that uses a heat flux,
rather than a temperature difference. In general, this modified Rayleigh number is
given by
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gBq”x
Ra =

mod =y ok

(2.26)

where q" is the heat flux at the surface of interest. For the enclosed rod bundle, this
modified Rayleigh number is given as

’ 4 ’ 3
Ra . = gBQcoan = gBQCOﬂVH (2.27)
Q 4Hvok 4vok

This modified Rayleigh number is used along with the bundle-averaged Nusselt
number defined in Equation 2.21 to produce the third type of correlation for the
bundle heat transfer data presented in Chapter 5.

Morgan (1975) has recommended a power curve correlation for Nusselt and
Rayleigh number data for a single, smooth, horizontal cylinder in natural
convection. It has the form Nu = C(Ra)?, where C and n are constants. Piecewise
correlations for the individual rod heat transfer data and the full bundle data are
correlated in this form, using a least-squares curve fit analysis. All of these
correlations for the UT staggered array are presented in Chapter 5.

2.3 CALCULATION OF THE RADIATION COMPONENT, q'rad

In order to produce dimensionless heat transfer coefficients that are not
dependent on the specific radiative properties of the apparatus used in this particular
experiment, the Nusselt and Rayleigh numbers must be based on the net convective
heat rate per unit length, q'cony, and not the total heat rate per unit length, q'r. As
shown in the energy balance of equation 2.4, the net radiative heat flux per unit
length, q'rad, is needed to obtain the net convective heat rate.

2.3.1 Experimental vs. Numerical Determination of q'rad
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There are two ways to obtain this radiative heat transfer component. The
first way involves an experimental approach. Assume that one has measured a
complete set of rod and enclosure surface temperatures for a certain rod input power
and pressure. The heat input to each rod leaves through radiation and convection,
neglecting axial conduction losses. If the pressure vessel were then totally
evacuated, then the only way heat would be exchanged would be through radiation.
If the power to each rod were then changed independently so that the surface
temperatures of all of the rods and the enclosure matched the "at pressure”

temperature field, then the power input to each rod for the evacuated vessel would
be equivalent to the net radiative heat rate for each rod for the "at pressure” case.

While this method is the most direct way to obtain the radiative heat transfer
component, there are two difficulties with this technique. First, it is very difficult
to produce a "hard" enough vacuum with the current UT equipment to reduce the
thermal conductivity of the gas low enough to where all heat transfer is essentially
radiation. Second, this method requires independently adjusting the power to all
rods of the array to reproduce the temperature field, which is a problem similar in
complexity to solving a set of N equations in N unknowns, where N is the number
of rods in the array. Since the UT staggered array has 60 rods, and since the
dependence of radiation on temperature is a fourth-power relationship, not a linear
relationship, this is a very complex problem that would require a sophisticated
power control system.

The second way to calculate the radiative heat transfer component is by
using the experimentally measured surface temperatures to calculate the radiative
heat flux numerically. Because the UT equipment could not produce a low enough
vacuum, and because of the difficulties associated with properly controlling the
power independently for each rod, the numerical calculation method was chosen.

2.3.2 Numerical Determination of the Radiation Component, q'rad

For the geometry of this problem, a typical first analysis of the radiation
exchange between the rods might focus on calculating the view factors (also called
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configuration factors) between each cylinder and the other cylinders and between
each cylinder and the CuBE wall. In other words, one might calculate a view factor
between the lower comer cylinder and the cylinder next toit. At first, this seems
like a reasonable thing to do, since each rod is approximately isothermal around its
circumference. This means that the emitted heat flux at the rod surface, Q"emitted =
£o6’T4, is constant around each rod circumference. Unfortunately, the use of view
factors between the entire cylinder surfaces requires that the entire surface have
uniform radiosity, not just uniform emitted heat flux [Seigel and Howell, 1992].
The radiosity is the emitted heat flux plus the radiation from other sources that is
reflected from the rod surface. Since the rods and walls that surround a given rod
are not all at the same temperature, the radiation that is reflected from a given rod
surface varies around the rod circumference. Thus, the rod surfaces must be
broken up into smaller areas, and then the assumption of uniform radiosity made
over the surface of the smaller area element.

This thesis uses a finite element method developed by Burns [1995] to solve
for the net radiative heat flux for each rod. The code works by using input files that
describe the geometry and temperature boundary conditions of the enclosed rod
array, and then calculating the radiation exchange between small area elements on
the rod surfaces. The details of radiation heat transfer and the operation of the code
that Burns developed to calculate the radiation for each rod of an enclosed array are
very complex and are described in detail by Canaan [1995]. The code used to
calculate the radiation heat transfer for each rod is essentially the same as that of
Canaan, except that in the current work the rods are in a different configuration.
However, it is helpful to briefly mention the basics of how the code operates.

In the analysis of radiation in this experiment, several assumptions are made
regarding the radiation heat transfer and the radiation properties of the interior
surfaces of the rod bundle. These assumptions are:

Nonparticipating media within the enclosure. Itis assumed that the gas or
fluid that fills the enclosure and surrounds the rods is transparent to thermal

radiation. Seigel and Howell [1992] state that helium and nitrogen gas are
transparent to thermal radiation, thus this approximation is likely valid.
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Diffuse, gray. opaque surfaces. For the UT aligned and staggered array
experiments, the outer surfaces of all rods and the inner CuBE wall were coated
with Pyromark 2500 flat black paint, manufactured by Big Three Industries.
Experiments conducted at NASA [Wade and Slemp, 1962], at Sandia National
Laboratories [Longenbaugh, et al, 1990], and at UT [Canaan, 1995], have shown
that the surface emissivity, €, is relatively constant over all of the radiation
wavelengths of interest, and that the paint obeys Lambert's cosine Law for
diffusely emitting surfaces.

Surface emissivity is invariant with changing surface temperature. The
Sandia Labs study of Pyromark 2500 paint on a smooth, mild steel surface showed

that the emissivity values for this paint over the temperature range of this
experiment (approximately 20 to 150 degrees C) ranged from 0.81 to 0.83, with an
experimental error of about 0.02. The NASA study gave an emissivity for this
same paint on 304 stainless steel of 0.78 & 0.02, and this value did not vary over a
similar temperature range. An experimental investigation of the emissivity of
Pyromark 2500 was also conducted at the UT facilities, using an Inframetrics
thermal imaging camera. This investigation, which is thoroughly described in
Canaan's dissertation, yielded an emissivity value of 0.8. Aliaga [1992] reports an
experimental uncertainty of about 0.02 in emissivity values using this method.
Thus, for this experiment, the emissivity of all interior surfaces within the rod
bundle was taken to be 0.8 £ 0.02, and was assumed to be independent of surface

temperature for the experimental conditions encountered.

Figure 2.2 defines some of the important quantities used to calculate the net
radiation component from each rod. Consider two points, designated nodes i and j,
which are on the surfaces of two bodies. The positions of these two points are
denoted by vectors rj and rj. The vector between the two points is defined as rj;,
which is equal to the vector difference ri - rj. Node i is in the center of an
infinitesmal area element on the surface of the first body, denoted by daj, while
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node j is also at the center of an infinitesmal area element, called da;. Both nodes i
and j have outward pointing unit normal vectors, #i; and it 5+

body #2

elemental area, daJ

body #1

elemental area, da;

Figure 2.2 Radiation exchange between nodes on two surfaces.

We are interested in obtaining the net heat radiative flux at point i. This
consists of two parts, the radiative heat flux emitted from point i due to the
temperature of point i, and the flux that is incident on point i from all other sources
in the domain of interest. The emitted radiative heat flux is given by q"emitted =
eoT;#, where € is the emissivity of surface i and Tj is the absolute temperature of
surface i. This is a relatively straightforward calculation. The second component,
however, is much more complex, because it must account for the radiation incident
on node i from all other points j in the computational domain, not just a single
point. The mathematical expression that describes the incident radiative flux,
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q"i,inc, on point i from all other points is stated, without proof, below in equation
2.28. This equation defines the vector ry as the product of a unit vector ry; and its

magnitude, ‘r,j| .

afine(r) = ffesTi e[ .;u)lfﬂlz_daj
i
+'11;a{2[qfi:inc(rj)](1— g;)(f; * fu)-:;"lfdaj (2.28)

This expression is derived for radiation exchange for diffuse, gray bodies within an
enclosure in Siegel and Howell, and is discussed more thoroughly in Canaan's
dissertation. The first term on the right hand side solves for the radiant flux
incident on node i from direct emission from all nodes j. The second term describes
the radiant flux on node i coming from the surface of all nodes j via reflection.

Burns' finite element code, RADERA II (RADiation in Enclosed Rod
Arrays, vefsion 1I) solves for this incident radiant flux vector on node i, for all
nodes i. For the three-dimensional geometry described in Figure 2.2, the integrals
of equation 2.28 are surface integrals. However, in the two-dimensional analysis
of the current UT experiment, the integrals are only line integrals. Figure 2.3
describes the geometry that is more appropriate for the radiation analysis of the UT
experiment. The rods and the CuBE interior wall are broken up into small elements
over which uniform radiosity is assumed. The radiant flux incident on each node i
is found by integrating the emitted and reflected flux coming from all other nodes j.
The finite element formulation used to solve equation 2.28 for all nodes i is also
thoroughly discussed in Canaan's dissertation.
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Figure 2.3 2-D radiation exchange between nodes of the UT enclosed rod array.
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The radiation code is simplified by performing visibility checks. As shown

in Figure 2.4, many of the nodes within the rod bundle cannot "see" an particular
node i because they are either on the same rod, which is a convex surface (case 1),
or they are blocked by nodes on other rods (cases 2 and 3). The code simplifies the
calculation of the incident radiative flux on a particular node by calculating the
radiant exchange only between nodes that can "see" each other, such as cases 4 and
5 in Figure 2.4. Also, the middle line of the array was assumed to be a symmetry
boundary, with no radiant heat flux across this boundary. The specifics of how
these checks and simplifications were implemented in the code are described in
Canaan's dissertation [1995].

node j;

N

node j4

Figure 2.4 Different visibility situations for different nodes within the enclosed rod
array.
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Once the incident flux on a particular node is calculated, the net radiative
flux from a particular node can be calculated from equation 2.29 as

f/ner = &:0T§ — 03 (o (ry) o iy) (2.29)

where 1i is the outward unit normal vector from the surface of node i, q{’j,c(ry) is

the radiative flux vector incident on node i, and a is the surface absorptivity at node
i. This equation results from a radiative energy balance at node i that is diagrammed
in Figure 2.5.

(1-0) q"5inc

t
q 'i,inc

Q"emitted = 81°T41

1
q inet

Figure 2.5 Energy balance for radiation at node i.

Since, for a diffuse, gray, opaque surface, the absorptivity is equal to the surface
emissivity, we can rewrite the net radiant flux at the rod surface node as

Qe = &[OTF = (e () o 1y ) (2.30)
The final quantity that remains to be calculated is to integrate the heat flux around

the surface of each rod to find the actual quantity we desire, the net radiant heat rate
for the rod, per unit length of the rod, q'rag. This quantity-is-given by
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Gaa = $97nads; (2.31)
rod surface

where ds; is the arc length of the individual node on the rod surface. Equation 2.31
gives the quantity that is needed in equations 2.9 and 2.16 to calculate the
convective heat transfer per unit length from each rod.

The code was benchmarked by comparing the code results to analytical
results for some simple geometric cases, and a heat balance error was also
calculated that compared the sum of all the radiant heat leaving the rods to the total
heat rate to the CuBE wall [Canaan, 1995]. For all cases, this heat balance error

was less than 1 percent. The listing of the RADERA II code is given in the
Appendix. The Appendix also gives examples of input and output files used and
produced by the code. Chapter 4 shows how the radiation code fits into the overall
data reduction procedure used to obtain tﬂe final heat transfer correlations.

This chapter has presented the theory and equations needed to calculate the
Nusselt and Rayleigh numbers for the individual heater rods and for the entire rod
bundle. The next chapter describes the complete experimental apparatus and layout
of the system used to investigate natural convection within an enclosed, staggered
rod bundle.
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Chapter 3 -- Experimental Apparatus and Setup

This chapter presents a concise look at the equipment used in this
experiment, how this equipment was set up, and how the components fit together.
It should be mentioned that much of Canaan's 4-year research effort focused on the
design and construction of the equipment described in this chapter. Since the only
major change in experimental setup between this thesis research and his research is
the change in rod array geometry, this chapter will not go into the same level of
detail as Canaan's dissertation. While this thesis gives the reader an overall view of
the experimental equipment and setup used, Canaan's dissertation provides such a
fine level of detail of most components (including part serial numbers and
manufacturers) that the entire experimental setup could be reconstructed by using
his dissertation as a reference.

The experimental equipment and apparatus is discussed in the following
order. First, the geometry and construction of the individual heater rods are
discussed, and the location and construction of the thermocouples used to measure
each rod's surface temperature are described. Next, the copper boundary enclosure
(CuBE) is discussed, showing how the rods are supported within the enclosure and
how the enclosure is water-cooled to provide an isothermal heat sink. The pressure
vessel is described next, followed by a description of the power supply system that
heats the rods. The final section describes the automated data acquisition system
used to take measurements of the surface temperature of each rod and the power
being dissipated by each rod. As each component is described, an effort is made to
show how each component fits into the overall experimental apparatus.

3.1 THE ELECTRIC HEATER RODS

Figures 3.1 and 3.2 diagram the construction of an individual heater rod.
Table 3.1 also lists some important specifications for the rods. The rods are 1.224
cm in outer diameter and are 92.1 cm in overall length. They were made by the
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Watlow Electric Mfg. Co. of St. Louis, MO. The heater rods feature a nichrome
coil that runs along the centerline of the rod. This coil dissipates electricity from a
DC power supply to generate heat within the rod. The inside of the rod is filled
with compacted magnesium oxide ceramic, and the rod is sheathed with a 304
stainless steel cladding. The ends of the rod are thermally insulated with cylindrical
mica endpieces to minimize axial conduction effects. Each end of the rod provides
a threaded pin and some hexagonal nuts, which allow secure attachment of electrical
leads. Note that Figure 3.1 is not a scale drawing, in that the insulated end of the
rod is shown as being right next to the rod's midpoint, where the thermocouple
junctions are located just under the rod sheath. In reality, the end of the rod isa
little over 40 cm from the rod midpoint, and this drawing simply shows most of the
major features of the heater rod in one schematic.

Rod Midpoint

Type K MIMSTC MgO

TC lead

Type K MIMS TC  mica endpieces, typ.

Rod Midpoint:

Figure 3.1 Schematic of a single instrumented heater rod.
[Canaan, 1995]
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Table 3.1 UT Heater Rod Specifications
[from Canaan, 1995]

Sheath material

Resistance element

Insulation

Terminal insulator

Heater coil resistance

Coil to sheath insulation resistance
Rod outer diameter

Sheath thickness

Heated length

Thermocouples

TC junction location
TC metal sheath diameter
TC individual wire diameter

TC wire resistance

stainless steel, SS304

nichrome wire (80% Ni /20% Cir)

magnesium oxide (MgO)
mica

60+03Q

>25MQ

1.224 + 0.0051 cm
0.198 cm
82.1+1.65cm

Type K metal-insulated metal
sheathed (MIMS)

0.051 cm below rod surface
0.081 cm

0.013 cm

39.5+1.0Q
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The individual heater rods were designed to thermally simulate individual
BWR fuel rods. Thus, the dimensions of the heater rods are similar to a BWR, as
are the thermal characteristics. As listed in Table 3.2, the dimensions and thermal
conductivities of the materials used for the electric heater rods are very similar to
those of an individual spent fuel rod.

Table 3.2 Comparison of the Thermal Properties of Spent Fuel and a UT Heater
Rod (averaged from 200°C to 1000°C)

Material k, W/m-K
MgO 2.07
SS304 clad 15.2
[8[0] 3.60
Zircalloy clad 13.0

There are three types of Watlow heater rods used in the UT staggered array.
The first type is an uninstrumented heater rod, which contains no thermocouples.
Since the natural convection flow and the temperature distribution within the rod
bundle is symmetric about the vertical centerline of the array, the experimental setup
was simplified by only measuring the temperature of the rods on one side of the
array. By only using rods with thermocouples on one side of the array, the number
of thermocouple wires and the size of the data acquisition system was significantly
reduced.

The second type of heater rod is the one diagrammed in Figures 3.1 and
3.2. This rod contains 2 type K, mineral insulated, metal sheathed (MIMS)
thermocouples whose junctions are located at the axial midpoint of the heater rod.
“The two thermocouples are located within the stainless steel cladding, 0.05 cm from
the rod surface. These two thermocouples are circumferentially separated by 180
degrees. The reason the thermocouples are placed within the cladding is as
follows. If thermocouples were attached directly to the outer rod surface, then the
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lead wires that run to the data acquisition system would likely interfere with the
convection flow patterns and the radiation exchange between the rods. Having the
thermocouples run just underneath the rod surface allows the study of heat transfer
within an uncluttered rod array, while still giving an accurate measurement of the
rod surface temperature. Also, embedding the TCs reduces the conduction errors
that would result from having exposed TC wires. Although the rod surfaces were
assumed to be isothermal, having two thermocouples 180 degrees apart allows an
experimental verification of this assumption.

The third type of heater rod is instrumented with the same two
thermocouples as the heater rod in Figures 3.1 and 3.2, but also has a third
thermocouple whose junction is located about halfway between the rod's axial
midpoint and the end of the rod. This thermocouple allows an experimental check
of the temperature variation with axial position along the rod. Recall that this
analysis assumes no axial temperature variation along the rod, and thus no
conduction losses.

Figure 3.3 shows a cross-sectional view of the heater rods within the array.
This diagram shows which rods are uninstrumented, which rods have two TCs,
and which rods have three TCs. While the rod temperatures on most of one side of
the array are not measured because of the symmetry assumption, there are two rods
with thermocouples on that side. These two temperature measurements allow
confirmation of the symmetry assumption by allowing comparisons of the surface
temperatures of two rods that are in the same "mirrored” positions about the array
vertical centerline. For example, the rod on the fourth row from the top on the far
left side of the array should have the same temperature as the rod from the same
row on the far right side of the array, if the symmetry assumption is valid. These
temperature symmetry and axial temperature variation checks are performed on the
fifth row from the bottom because it is this row that is expected to have the highest
temperatures. Thus it is likely that any symmetry or axial variation errors would be
greatest on this row.
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Uninstrumented heater rod

Instrumented heater rod with 2 TCs
(both at midpoint, 180° circumferentially apart)

Instrumented heater rod with 3 TCs

(two at midpoint, 180° apart; one 12.7cm off
midpoint)

Figure 3.3 Diagram showing positions of uninstrumented and instrumented heater
rods.
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3.2 THE COPPER BOUNDARY ENCLOSURE (CUBE)

3.2.1 CuBE Construction

The purpose of the Copper Boundary Enclosure (CuBE) is twofold. First,
the endplates of the CuBE support the heater rods in the array geometry. Second,
the CuBE provides a constant temperature heat sink that surrounds the rod bundle.
Figures 3.4 through 3.8 show the CuBE construction. The CuBE is a rectangular
box that is square in cross-section. The walls of the CuBE are 1.27 cm (1/2")
thick, and the CuBE is 87.3 cm (34.4") in length. Copper tubing (0.64 cm, or
1/4", 0.D.) is soldered in an "S" pattern over the outer surface of the 4 long sides
of the CuBE. The water tubes that provide the cooling water that keeps the box ata
constant temperature are attached to the ends of the copper tubing with Swagelok
tube fittings, which provide a tight seal between the copper tubing and the flexible
plastic tubing through which the supplied cooling water flows. Small ceramic feet
are attached to the bottom surface of the CuBE, which allows the CuBE to sit on its
support plate within the pressure vessel without crushing the ductile copper tubing
on the bottom face of the CuBE.

Figure 3.4 shows an end, cross-sectional view of the CuBE, while Figures
3.5 and 3.6 show the top / bottom and left side / right side views of the outside of
the CuBE. Figure 3.7 shows one of the two endplates that support the heater rods
in the current staggered configuration. The brass endplates are 1/16" thick, and
provide essentially a point contact between the CuBE and the rod end, which limits
axial conduction losses. Figure 3.8 shows a top, oblique, cutaway view of how
the rods sit in the CuBE. Except for the endplates, all of the inner surfaces of the
CuBE and the outer rod surfaces are painted with Pyromark 2500 flat black paint,
which provides a consistent, high emissivity surface that allows for less complex
radiation analysis. Small, thin foil TCs (not shown) are attached to the inside
surfaces of the CuBE walls at various locations. These temperature measurements
are critical not only in the heat transfer analysis of the rod bundle, but they also
ensure that the inner surface of the CuBE is indeed isothermal, as assumed.
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Figure 3.4 End view of the CuBE (units in inches).

[Canaan, 1995].
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[Canaan, 1995].
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Figure 3.7 End support plates for the heater rods (units in inches).




lid bolts to body of CuBE

foil thermocouples

foil TC leads
’
0000000 4 Copper tubing soldered
00000000 to outside of CuBE wall
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heater rod OOOOOOOOOOOOOOO Heater rod loaded into CuBE
fully loaded CuBE has 60 rod
TC leads 00000000 (fully loade rods)
End support plate CuBE support leg

Figure 3.8 Top oblique view of CuBE loaded with a single heater rod.
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3.2.2 CuBE Cooling Water System

Figure 3.9 gives a simple diagram of the cooling water system. Water from
the UT Pickle Research Center chilled water supply flows first through a filter, next
through tee junctions, then through 4 separate valves to each of the four plastic
tubing lines that attach to the CuBE copper tubing with Swagelok 1/4" tube fittings.
Four visual flowmeters on each of the four tubing branches ensure that the water
flow rate is the same for each face of the CuBE. The water flows through the

copper tubing, then drains out through four more plastic tubes to a sink drain.

. filter chilled water
tee junction (4, typ.)

plug | l—-l faucet
ball valve
4 typ.

Swagelok 1/4"
flowmeter, d-— tube fitting, 4 typ.
4 typ.
inlet feedthrough
to pressure

vessel

Foomommmmmmes - -
I CuBE |
1 bt mr e =—- 1
== s pressure vessel
outlet feedthrough to drain

(outlet feedthrough is on back side of pressure vessel)

Figure 3.9 Diagram of water cooling system.
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3.3 THE PRESSURE VESSEL

Figure 3.10 gives a side cutaway view of the cylindrical pressure vessel
used in the UT experiments. The vessel is made of low carbon steel and is 47.2 cm
(18.6") in outer diameter and is about 1.3 cm (1/2") thick. Itis sealed on each end
with a hinged door that shuts on a gasket that is trapped between the door and a
flange. The door is sealed shut by sixteen 1.91 cm (3/4") bolts on each end. The
vessel's maximum pressure is 618 kPa (75 psig), but this experiment ran at
pressures ranging only from 101.3 to 514.8 kPa (0 to 60 psig). A safety relief
valve ensures that the maximum pressure is not exceeded. Three Conax
feedthrough connections allow the thermocouple leads, the heater rod electrical
power leads, and the inlet and outlet cooling water lines to be passed into and out of
the pressure vessel, while allowing the vessel to remain tightly sealed. A ball valve
was connected to a supply gas canister, which allowed the vessel to be filled to a
desired pressure either with helium or nitrogen. Another ball valve attached to a
Sargent-Welch vacuum pump that can depressurize the tank down to about 1 torr.
The vessel pressure was measured with an analog Omega type-T Bourdon tube
pressure gauge that gives a visual readout of the tank pressure to a resolution of £
0.2 psig.

Inside the pressure vessel, a steel support table slides in and out to allow the
placement of the CuBE within the vessel. The leads from all of the heater rod TCs,
as well as from all of the CuBE foil TCs plug into a TC jack panel at one end of the
pressure vessel. Attached to the bottom of the jack panel are the wires that are fed
out of the pressure vessel through Conax feedthroughs to the automated data
acquisition system.
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3.10 Side cutaway view of the pressure vessel.
[adapted from Canaan, 1995].
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3.4 THE DC POWER SUPPLY SYSTEM

The heater rods were heated internally by dissipating DC current in the
nichrome coil that runs through the center of each rod. The power was supplied to
the heater rods with a Hewlett-Packard model 6030A DC power supply. This
power supply has a GPIB board that allows direct control and monitoring of the
heater rod power from the automated data acquisition system. As shown in Figure
3.11, power was supplied to the rod bundle through one of 4 parallel branches.
Each branch consisted of 15 individual heater rods connected in series. The power
leads were passed into and out of the pressure vessel through Conax feedthrough
valves.

The most accurate way to measure the heater rod power for each rod would
be to individually measure the current and voltage drop across each rod. However,
since there was limited space in the data acquisition system, only 4 branches could
be used. The voltage drop across 4 small shunt resistors was used to determine the
current in each branch. The resistance of the shunt resistors and of each rod was
measured very accurately with an HP multimeter. Canaan determined that the
resistance change of the heater rods over the temperature range of this experiment
was less than 1 percent, so the resistance of each rod was assumed constant
[Canaan, 1995]. Given these quantities, the heat dissipated by each rod is given by

q: = i%tancth 3.1
where R; is the measured resistance of each rod, which is 6 + 0.3 ohms, at room

temperature. The heat dissipated per unit rod length is found by dividing qr by the
heated length of the rod, L, which is 82.1 cm (32.3 in).
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Figure 3.11 Diagram of DC power supply system for the heater rods.
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3.5 THE AUTOMATED DATA ACQUISITION SYSTEM

This experiment requires the acquisition of millivolt signals from 78
thermocouples and the monitoring of individual heater rod powers. To acquire all
of this data quickly and accurately requires an automated data acquisition system
(ADAS), particularly if one is interested in performing multiple sample passes very
quickly. The ADAS used in this experiment features LabVIEW software running
on a Macintosh IIx personal computer. The Macintosh had two National
Instruments NuBus cards installed. The first card is the 16-bit A/D board that
converts analog voltage signals into digital signals that can be processed by the
LabVIEW software. The second card is a general purpose instrument bus (GPIB)
card that both controls and reads data from the HP 6030A DC power supply.
National Instruments hardware was used first to multiplex the analog voltages from
the TCs and the shunt resistors, and then to amplify and condition the signals to
increase the resolution of the voltage measurements and reduce the effects of
environmental noise. The ADAS is diagrammed in Figure 3.12.

The LabVIEW software controls all aspects of the data acquisition process,
such as sampling rate, the order in which individual multiplexer channels are read,
the total number of samples read, and amplifier gains. Also, the software performs
the mathematical conversions from voltages to temperature, and the conversions
from shunt resistor voltages to DC current in each of the 4 heater rod power
branches. The software then displays the temperature and power readings, and
stores the results in a spreadsheet format. Once the data are in a spreadsheet
format, the temperature and rod power data can be analyzed and reduced to produce
heat transfer correlations.
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Figure 3.12 Diagram of the automated data acquisition system.

This chapter has given a concise look at the experimental apparatus and
setup used for this experiment. The next chapter looks at the steps involved in
running an experiment, as well as the steps involved in reducing the data into useful
heat transfer correlations.
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Chapter 4 -- Experimental Procedure and Data Reduction

This chapter presents the steps involved in preparing the experimental
apparatus for taking data, the procedure for running an experiment, and the steps
needed to reduce the data into the final results that are presented in Chapter 5. This
chapter is divided into five sections. Section 4.1 describes the initial steps involved
in setting up the apparatus. Section 4.2 describes the range over which the
independent parameters of this experiment--rod power, backfill fluid type, and
vessel pressure--were varied to thoroughly characterize the heat transfer behavior
within the enclosed, staggered rod array. The test procedure used for taking each
data set is described in section 4.3, followed by a description of the steps involved
in reducing the data, given in section 4.4. Section 4.5 summarizes the main
sources of experimental error for this research and gives error estimates for the
Nusselt and Rayleigh numbers that are presented in Chapter 5.

4.1 INITIAL SETUP

This section describes the steps involved in setting up the experiment prior
to acquiring all of the data sets. Individual tasks are listed below.

» Disassemble Canaan's experiment. The first step in getting this experiment
set up was to take apart Canaan's rod bundle. This involved opening the
pressure vessel, disconnecting all of the heater rod TC leads from the jack
panel, disconnecting the water and power leads from the CuBE, and
removing the CuBE from the pressure vessel. The CuBE was placed on a
workbench, the lid was removed, and the heater rods were disengaged from
the end support plates. Finally, the alignéd configuration end support plates
were removed.
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Reload CuBE with heater rods in staggered configuration. New end

support plates (recall Figure 3.7) were fabricated by the UT mechanical
engineering machine shop. After the aligned rod support plates were
removed, the staggered array support plates were attached to the ends of the
CuBE. Each heater rod was loaded into the CuBE, and the CuBE top was

then replaced.

Test ADAS: calibrate TC channels. Before the CuBE was placed back into
the pressure vessel, the thermocouples and the data acquisition system were

checked out to ensure proper operation. Each channel of the ADAS was
tested with an Omega hand-held TC calibrator. This calibrator sent DC
millivolt signals into each ADAS channel that corresponded to the voltages
for a type K thermocouple at specified temperatures. The TC measurement
error was determined by noting the difference between the set calibration
temperature and the temperature read by the ADAS. This error is discussed
in section 4.5.

Load CuBE into pressure vessel. After testing the ADAS, an engine hoist
crane was used to lift the 200+ pound CuBE onto the support table inside
the vessel. This support table can slide in and out to allow easy removal
and insertion of the CuBE.

Connect water lines to CuBE: leak test. After placing the CuBE in the
vessel, the flexible water lines used to cool the CuBE were inserted into the
vessel feedthroughs, then connected to the ends of the copper tubing with

Swagelok 1/4" tube fittings. The water valves were turned on and water
allowed to flow for several minutes to ensure that no water would leak into
the pressure vessel and damage the electronic equipment.

Plug in all TCs to plug board. Next, the TC connectors from each rod and

from the foil TCs inside the CuBE wall were connected to the outlets on the
ADAS plug board. Room temperature readings were then taken from all of
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the TCs through the ADAS, and these readings were compared to the room
temperature measured by the TC calibrator. From this comparison, an
initial estimate of the TC bias error could be found.

Connect power leads; test connectivity. Next, the power leads from the DC
power supply were run into the pressure vessel and connected to the heater
rods. As shown in Figure 3.11, the 60 heater rods were connected in 4

parallel branches, each of which have 15 heater rods connected in series
using small copper clips. The connectivity of each branch was thoroughly
checked to ensure that current was actually flowing through each rod.

Turn on power, check TCs. The next step involved turning on the power to
the heater rods, then observing the TC readings from the ADAS to ensure
that the temperature trends were qualitatively reasonable and that the DC
current to the rods did not influence the millivolt signals from the TCs to the
ADAS. If a heater rod TC was not properly grounded, the DC current in
the coil would influence the TC voltage signals and give erroneous
temperature readings. The debugging of this system and the grounding
procedures required are discussed in Chapter 6 of Canaan's dissertation
[1995].

Ensure proper CuBE cooling. This step involved turning on the water
cooling system with the heater rods powered up to ensure that the cooling
system maintains a constant temperature on all walls. For all test cases, the
CuBE wall temperature was found to be constant to within 0.5 degrees C.

Seal pressure vessel: leak test. After all of the system components were
tested and found to operate satisfactorily, the vessel was sealed. The vessel
was then purged of room air by shutting the valve to the gas canister,
opening the vacuum valve, and then reducing the pressure within the vessel
to 1 torr with the vacuum pump. The vacuum valve was then shut, and
high-purity (99.999%) nitrogen was introduced from the gas canister to
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bring the vessel pressure back up to approximately atmospheric. This
process was repeated twice to ensure a reasonably pure nitrogen backfill.
The vessel was then pressurized to 60 psig and leak-tested both by checking
to ensure that the tank pressure did not fall over time and by applying a
soap-bubble liquid to the vessel penetrations. No leaks were found at the
penetrations, and the pressure remained constant over 8 hours, which is the
typical length of time between data sets. Thus, the vessel was assumed to
be sealed satisfactorily.

4.2 TEST PARAMETERS

To ensure that the heat transfer behavior of the rod bundle could be
characterized over a wide range of flow regimes, three parameters were varied
independently in this experiment. First, two different gases were used to fill the
vessel--nitrogen and helium. Both gases are inert and are transparent to thermal
radiation. For a given temperature and pressure, nitrogen has a Rayleigh number
that is about 65 times higher than helium [Canaan, 1995]; thus, using both helium
and nitrogen allows the investigation of a wide range of Rayleigh numbers.
Second, the power to the rods was varied between 1, 3, and 5 watts per rod. These
rod powers are similar to the settings Canaan used in his experiment, and are
comparable to the typical range of decay heat produced by SNF rods stored in
transportation casks [Canaan, 1995]. Finally, the pressure of the gas in the vessel
was set to seven different pressure settings between 0 and 60 psig, in 10-psi
increments (0, 10, 20, ... , 60 psig). Since the Rayleigh number is approximately
proportional to the square of the absolute pressure [Canaan, 1995], varying the
vessel pressure was a good way to obtain a large Rayleigh number variation. The
combination of taking data at three power levels, at seven pressures, and with two
different gases led to a total of 42 data runs for the staggered array. Each run
produced Nusselt-Rayleigh information both for the overall rod array and for each
rod.
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4.3 EXPERIMENTAL PROCEDURE

Once all of the initial setup steps were completed, the experimental runs
were begun. To start the experimental runs, the pressure vessel was again purged
with nitrogen. After a couple of purgings to ensure that the gas in the vessel was
relatively pure, the pressure was adjusted to 0 psig, and the rod power was set to
about 1 watt /rod. The cooling water was turned on, and then the system was left
to equilibrate for several hours.

The first step involved in taking a data set was to turn on the ADAS
equipment and open the appropriate LabVIEW software files. Next, the vessel
pressure and cooling water flow rates were recorded. After about 15 or 20 minutes
to allow the ADAS hardware to warm up, the temperatures of selected
thermocouples within the assembly were plotted versus time to ensure that the entire
assembly was at steady state. Also, the assembly power was checked to make sure
that the data were being taken at the intended power state point.

Next, the data sets were recorded. At each state point, two data sets were
taken to ensure repeatability and to reduce environmental noise effects. The data
taken consisted of readings of all of the heater rod and CuBE thermocouples, along
with the 4 branch current readings. Each temperature and branch current reading
was actually an average of 3250 samples. Fifty data samples were collected every 5
seconds, and each of these 50 readings was actually an average of 65 samples taken
over a span of approximately 0.02 seconds. This multiple averaging scheme
reduced the effects of environmental electronic noise. The variation of sample
readings from this average value gave a measure of the noise error in the samples.
The temperature and branch current data was stored in a text file, and then later
converted to an Excel spreadsheet to perform data reduction calculations.

Once the data were recorded, the ADAS hardware was turned off. The
vessel pressure was then increased to 10 psig by adding nitrogen from the cylinder.
Once the pressure reading had settled, slight pressure adjustments were made either
by cracking the vacuum valve or by introducing more nitrogen from the canister.
When the guage read 10 psig (£ 0.1 psig), the entire system was left alone for 6-8
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hours to settle into the new equilibrium state point. Later, the next data set was
taken, the pressure was increased to 20 psig, and so on up to 60 psig.

Next, the rod power was changed to 3 watts per rod, and the data sets were
again taken for the seven pressure settings. Finally, the rod power was changed to
5 watts per rod, and again data was taken over the seven pressure settings. When
these data sets were completed, certain state points were repeated to determine a

repeatability error. When the nitrogen data sets were completed, the vessel was
purged with helium, and the entire procedure was repeated for the three different
power settings and the seven different pressure settings. Certain state points were
also repeated with helium backfill to further characterize the repeatability error.

4.4 DATA REDUCTION

The next step in this experiment involved analyzing the raw data from the
test results and calculating the Nusselt and Rayleigh numbers both for the individual
rods and for the rod array as a whole. Figure 4.1 gives a diagram that describes the
data reduction methodology. The data were reduced by converting the raw data text
files into an Excel spreadsheet, on which all of the calculations were performed.

The first step in the data reduction process was to average the multiple TC
readings and determine their standard deviation from the average. This standard
deviation gives an estimate of the noise and repeatability error in the TC readings.
The two TC readings from each rod and the ten CuBE TC readings were then
averaged to give a single surface temperature for each rod (Ty) and for the CuBE
(Tc). The film temperature for each rod was calculated next, followed by the
average rod temperature and the bundle-averaged film temperature.

~ This temperature data, the bundle geometry, and the measured surface
emissivities formed the inputs to the RADERA II code, listed in the Appendix. As
described briefly in Chapter 2, this code solves a finite-element form of the
radiation transport equation for discrete elements of each rod and of the CuBE wall.
This solution yields the net radiative heat flux for each element. The code then
integrates this heat flux around the each rod's surface to calculate the net radiative
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Figure 4.1 Diagram of data reduction sequence.
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heat rate per unit length for each rod, q'rag. Examples of an input file to and an
output file from this code are also given in the Appendix.

The branch current readings were, like the temperature readings, also
averaged over many samples. The averaged current readings, the measured
resistances of each rod (about 6 ohms), and the known heated length of each rod
(about 82 cm) allowed the calculation of the total rod input power per unit length,
q'r (see equation 2.5). Next, the net radiative heat rate per unit length was
subtracted from the total input power per unit length to yield the net convective heat
rate per unit length, q'cony (See equation 2.4). This quantity was summed for each
rod to yield the total convective heat rate for the bundle, Q'conv (see equation 2.20).
A fraction of the total bundle heat rate that is transferred by radiation and convection
was also calculated and is discussed in Chapter 5.

Next, the individual rod and the full array heat transfer coefficients are
calculated from the temperature results and the net convective heat rate results. The
individual rod heat transfer coefficient is given in equation 2.7, and the full array
heat transfer coefficient is given in equation 2.20.

Almost all of the relevant fluid properties were calculated using semi-
empirical correlations obtained from The Properties of Liquids and Gases [Reid,
Prausnitz, and Poling, 1987]. These correlations used the backfill gas identity
(either nitrogen or helium), the vessel pressure, and the appropriate film
temperature as inputs. For the individual rod correlations, these fluid properties
were evaluated at the individual rod film temperature, given in equation 2.18. For
the full array correlations, the fluid properties were evaluated at the mean bundle
film temperature, given in equation 2.23. The one exception to this was the thermal
expansion coefficient, § (eqn. 2.11), which was calculated theoretically based on
the ideal gas law.

Next, the heat transfer coefficients, the temperature data, and the fluid
properties were used to calculate the individual rod Nusselt and Rayleigh numbers
(equations 2.16 and 2.17), as well as the full array Nusselt (eqns. 2.21 & 2.22)
and Rayleigh numbers (eqns. 2.24, 2.25, & 2.27). Finally, the Nusselt and
Rayleigh number data were plotted and piecewise curve-fits for the data were
calculated using the logarithmic correlation form recommended by Morgan [1975],
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Nu = C(Ra)". Chapter 5 presents all of the Nusselt and Rayleigh number data,
along with tabulations of the correlations.

4.5 EXPERIMENTAL UNCERTAINTY

As with any experimental procedure, there is uncertainty both in each
measurement taken and subsequent calculations based on those measurements.
This section describes some of the major sources of experimental error and gives
the overall uncertainty of the individual rod and full array Nusselt and Rayleigh
numbers. However, this thesis will not discuss the propagation of each individual

‘error source throughout all of the data reduction. This topic is thoroughly
discussed in Chapter 9 of Canaan's dissertation. Canaan's analysis used the
method of sequential perturbation [Moffatt, 1988] to propagate uncertainties in
directly measured quantities (such as temperature and pressure) through to the
derived quantities (such as Nusselt and Rayleigh numbers) that are based on these
measured variables. This section will simply describe the major error sources and
state the approximate uncertainty from each source, then present the final
uncertainty in the Nusselt and Rayleigh numbers.

4.5.1 Surface Temperature Uncertainty

There are many potential sources of error influencing the temperature values
recorded by the automated data acquisition system (ADAS). There are two general
types of temperature measurement error. The first type of errors are errors resulting
either from thermal effects or from experimental assumptions--errors in which the
temperature measured at the TC junction is not the same as the true temperature of
interest. The second error type results from errors in the TCs and the ADAS--the
components that translate a temperature into a measured voltage signal.

One contributor to the first type of error is thermocouple (TC) mounting
error, which results from the fact that the TC junction may not be at exactly the
same temperature as the rod or the CuBE surface. For example, the foil TCs
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mounted on the CuBE walls have a thin layer of epoxy that separates the TC
junction from the actual surface. Also, the junctions of the rod TCs are mounted
about 0.5 mm below the rod surface. However, a radial thermal conduction
analysis has shown that the temperature difference between the rod surface and the
TC junctions is less than 0.01°C [Canaan, 1995].

Another contributor to the first type of error arises from the symmetry and
isothermal assumptions made in this experiment. First, it was assumed that the
entire CuBE surface was isothermal. Ten different TCs were used to measure the
CuBE temperature, and the final CuBE temperature used was an average of these
10 readings. For the most extreme case, which was a nitrogen backfill at O psig
and 5 watts / rod, the variation in all the CuBE readings was + 0.3°C. Second, the
rod surface temperatures were assumed to be symmetric about the vertical plane of
the array. A couple of instrumented rods were used on the "non-instrumented” side
(the right side in Figure 3.3) to check this assumption, and the worst error case
showed an error of about * 0.4°C in the symmetry assumption. A final temperature
assumption is that the rod surface is isothermal around its circumference. Each rod
surface temperature is an average of two TC readings at different points on the rod
circumference. The maximum variability between TC readings on the same rod
was * 0.2°C.

The main source of error in the surface temperature comes from using
thermocouples and the ADAS to measure the temperature. The thermocouples
produce a small voltage that is proportional to the temperature at its junction, and
the ADAS multiplexes these signals, amplifies them and converts them to digital
signals. There are errors associated both with the TCs themselves and with the
signal processing and conditioning within the ADAS.

There are two ways to determine the overall uncertainty associated with the
ADAS. The indirect method involves adding up all of the stated individual
manufacturer error specifications for the TCs and the ADAS hardware. Canaan's
analysis yields an overall uncertainty of + 2.3°C from the overall TC and ADAS
hardware [Canaan, 1995].

The direct calibration method involves comparing the readings from the
ADAS at various temperatures to a known standard. For the UT experimental error
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analysis, the "known standard" took the form of an Omega hand-held TC
calibrator. First, a given terperature is set on the calibrator and a small TC
connector is run between the calibrator and the plug board of the ADAS. The
calibrator sends out a DC voltage signal that is equal to the voltage that the National
Institute for Standards and Technology (NIST) has established for that temperature
as the standard for a Type K thermocouple. The difference between the temperature
read by the ADAS and the set temperature on the calibrator gives a measure of the
ADAS error. For this experiment, the maximum deviation between the Omega
calibrator setting and the ADAS reading was + 1.5°C [Canaan, 1995].

When this direct calibration error of + 1.5°C was combined with the
uncertainty of the calibrator of 1.0°C and the additional temperature uncertainties
from the mounting errors and the symmetry assumptions described above, the
overall surface temperature uncertainty was taken to be £ 2.0°C [Canaan, 1995].
This is the error for a single TC measurement. The uncertainty in the rod surface
temperature, Tr, which is the average of 2 TC readings, is only + 1.5°C. This is
because the process of averaging measured values reduces the uncertainty in the
averaged result. The final uncertainties in all of the temperature variables used in
this analysis are summarized below in Table 4.1.

Table 4.1 Uncertainties of Temperature Variables
[Canaan, 1995]

Temgmture variable Uncertaing, +°C
Individual TC measurement 2.0
Rod surface temp., Ty 1.5
CuBE surface temp., T¢ 0.71
Ind. rod film temp., T¢ 0.79
Bundle-averaged rod temp., Tyund 0.25
Mean bundle film temp., Tfpund 0.38
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4.5.2 Rod Power Uncertainty

The rod input power per unit length, q'r, is an essential quantity in
determining the heat transfer coefficients used to calculate the Nusselt numbers.
This quantity, given by equation 2.5, depends on knowing the current in the
nichrome coil, the resistance of the coil, and the heated length of the rod. The
heated length of each rod is 82.1 % 1.5 cm, and the uncertainty in the measured
resistance of each rod at room temperature is about 0.001 Q [Canaan, 1995]. This
very small uncertainty comes from the measurement error of the multimeter used to
measure the rod's resistance. However, since the rod resistance varies from its
room temperature value (about 6 ) by about 1% over the temperature range of this
experiment, a value of * 0.05 Q is more appropriate to use for the uncertainty
analysis [Canaan, 1995].

The error in the measured current in each rod is more complicated, because
the ADAS is used to measure current. Thus, this measurement is subject to the
same types of ADAS errors as the temperature measurements. Canaan's analysis
asserts that the overall error in branch current measurement is about 3.5 mA. At the
lowest experimental power setting of 1 W / rod, the current is about 0.4 A; thus, the
current measurement error corresponds to an uncertainty of about 0.9 percent.
Propagating these error values through the calculation for rod power per unit length
results in an uncertainty in g’y of £ 0.067 W/m for the most extreme case, and an
uncertainty of + 0.030 W/m on the average [Canaan, 1995].

4.5.3 Uncertainty of Pressure

Recall from Chapter 3 that the vessel pressure was measured with an Omega
type T Bourdon tube pressure gauge with a visual analog readout. The resolution
of this gauge was 0.5 psig; thus, the gauge uncertainty was taken to be £ 0.2 /2
psig, or + 0.1 psig.
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4.5.4 Uncertainty of the Net Radiative Heat Rate, q'rad

There are three main sources of error in the numerical calculation of the net
radiative heat rate per unit length of each rod, q'rag. The first error source is the
error that is propagated through the code due to the uncertainties in the surface
temperatures, which form one of the code's main inputs. The uncertainty in the
mean temperature of each rod is + 1.5°C. The second error source is the
uncertainty in the surface emissivities of each rod and of the CuBE surface. The
emissivity of all interior surfaces within the bundle was taken to be £ = 0.80 +
0.02. The final error source is the error that comes from discretizing the continuous
surfaces into finite elements. The first two errors are arise from uncertainties in
measured variables or properties, while the third error comes from the uncertainties
in the RADERA 1I code's solution.

Canaan performed a systematic investigation of the effect of each error
source on the final net radiative heat rate for each rod. This investigation was
performed on the state point of nitrogen at 0 psig, with a rod power input of 5
W/rod, which corresponds to a rod power input per unit length of qr =6.1 W/m.
The results of this calculation yielded both a maximum and an average uncertainty
in g'rad due to each of the above three factors. These errors were then combined
using the appropriate root-sum-square method recommended by Moffatt to combine
uncertainties. The final results of this investigation showed that the maximum
uncertainty in q'rad for any given rod was 0.76 W/m, and the average uncertainty in
q'rad for a given rod was 0.12 W/m. Thus, the maximum radiative heat rate
uncertainty for any rod was about 12 percent of the rod input power, and the
average radiative heat rate uncertainty for all of the rods was about 2 percent of the _
rod input power.

4.5.5 Uncertainty of Calculated Fluid Properties

As mentioned in-section-4.4; semi-empirical correlations from Reid et al.
[1987] were used to calculate the fluid properties needed to calculate Nusselt and
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Rayleigh numbers. When these correlations were compared to experimentally
measured values for nitrogen and helium [Vargaftik, 1975] over the range of
temperature and pressure in this experiment, the maximum percentage error for any
property was less than 1 percent, and the average deviation was about 0.7 percent.
These errors are much smaller than the uncertainty introduced into the fluid
properties due to uncertainties in the temperature and pressure used as calculation
inputs. Thus, this error was deemed negligible [Canaan, 1995].

4.5.6 Other Uncertainties

Some other uncertainties in this experiment included uncertainties in the
Jength scales involved, as well as experimental repeatability errors. The heater rod
length, L, the rod outer diameter, d, and the height of the inside wall of the CuBE,
H, are all quantities needed to calculate the Nusselt and Rayleigh numbers. As
mentioned earlier, the heated length of the rods is 82.1 % 1.65 cm. The rod
diameter is 1.224 % 0.005 cm, and the CuBE height is 13.406 + 0.003 cm. These
uncertainties were incorporated into the uncertainty analysis of the Nusselt and
Rayleigh numbers.

One variable factor that one might think would be an experimental error but
is actually not is the variability in the CuBE temperature, Tc. This variability results
from day-to-day changes in the UT cooling water supply at the J.J. Pickle Research
Campus. Over the course of this series of experiments, this temperature varied by
about 1.5°C. However, the Nusselt and Rayleigh numbers are based on the
temperature difference between the rods and the CuBE. Thus, while the CuBE
temperature may have varied from experiment to experiment, the actual temperature
difference between data sets for rods at the same power and pressure settings varied
less than 0.5°C. Since this error is well within the 2.0°C experimental uncertainty
of a temperature measurement, this error was neglected.

Another possible factor that could increase the overall experimental error is
the fact that the uncertainty in the surface emissivities of the rods and the CuBE
could be higher than the 0.02 value used in this uncertainty analysis. This 0.02
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value comes from testing done both at NASA and at Sandia for the Pyromark 2500
coating on steel. Further experimental testing at UT with a thermal imaging camera
supported the emissivity measurement [Canaan, 1995], and Aliaga [1992] asserts
that the uncertainty of emissivity measurements with the thermal camera are about
0.02. However, since it was not feasible to make direct emissivity measurements
inside the rod bundle, it is possible that the emissivity could be slightly lower than
0.78 or higher than 0.82.

An additional possible error source arises from the definition of the bundle
averaged film temperature (eqn. 2.23). This temperature may not be the best
definition of the average temperature of the fluid in the bundle. Thus, the calculated
fluid properties based on this bundle averaged film temperature may not accurately
represent the average fluid properties of the fluid in the entire bundle.

4.5.7 Uncertainties in Nusselt and Rayleigh Numbers

Table 4.2 presents the results of the uncertainty propagation to the final
Nusselt and Rayleigh numbers. Notice that the uncertainties in the full bundle
numbers are lower than the uncertainties for the individual rod Nu and Ra numbers.
This is because the bundle-averaged Nu and Ra numbers are based on upon
averages of many more quantities, which reduces the experimental uncertainty.

These figures represent the overall experimental uncertainty in the Nusselt
and Rayleigh number data. They do not include the deviation of the data from the
logarithmic curve fits given in the following chapter. Because this thesis may not
consider all possible types of error (such as the possibility of higher emissivity
error), a conservative error estimate would be to assume 15 to 20 percent error for
the individual rod Nusselt and Rayleigh number data and 10 percent error for the
bundle-averaged Nusselt and Rayleigh number data.
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Table 4.2 Summary of Nusselt and Rayleigh Number Uncertainties

[Canaan, 1995]
Dimensionless number Uncerta.in;z_, +%
Ind. rod Rayleigh number, Ra 5%

Ind. rod Nusselt number, Nu 13 %
Bundle Nusselt number, Nupund 2%
Bundle Nusselt number, Numax 2%

Bundle Rayleigh number, Rapund 4 %
Bundle Rayleigh number, Ramax 4%
Bundle Rayleigh number, Rag 4 %

This chapter has presented the experimental procedure and data reduction
methodology for this research, as well as briefly summarized the major contributors

to experimental error and uncertainty. The following chapter presents the results of
the research, and Chapter 6 summarizes the thesis' main points and recommends

some possible future research work.
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Chapter 5 -- Results and Discussion

5.1 OVERVIEW

This chapter presents the final results of the measurements and calculations
described in the previous chapter. The results are presented in three sections.

The first section discusses variations of temperature and heat transfer within
the rod bundle as the system state points are varied. The variation of maximum rod
temperature difference with respect to changes in vessel pressure and rod input
power is discussed first, along with a discussion of the location of the maximum
rod temperature. Next, the change in the contribution of radiation and convection to
the overall heat transferred within the bundle is discussed. As these trends are
discussed, comparisons are made to trends observed in the aligned rod bundle
experiment.

The second section discusses the dimensionless Nusselt-Rayleigh number
correlations for the entire rod bundle. These trends in these full array correlations
are discussed and compared to similar correlations for the aligned bundle. The
experimental results for these two arrays are also compared to results of a numerical
conduction study in order to investigate differences between the aligned and
staggered arrays in the low Rayleigh number regime. The results are also compared
to known results from forced convection in aligned and staggered tube bundles, and
to known results from natural convection in non-enclosed and enclosed tube
bundles.

The third section presents Nusselt-Rayleigh number correlations for
individual rods. This section discusses trends in heat transfer for different rods,
and points out some unexpected results for certain rod locations. Next, this section
compares the results for individual rods to results for individual rods in similar
positions in Canaan'’s aligned array. Also, the results are compared to individual
rods in other natural convection experiments, such as the results of Choi and Cha
[1990].

79



5.2 TEMPERATURE AND HEAT TRANSFER TRENDS

5.2.1 Maximum Rod Temperature Variation

Figure 5.1 shows the steady state maximum rod temperature difference for
each of the 42 equilibrium states. The maximum temperature difference, rather than
the absolute maximum temperature, is presented because it is the temperature
difference which drives heat transfer from the rods to the CuBE. For all of these
experiments, the CuBE temperature varied between 21 and 23 degrees C. Recall
that the maximum rod temperature difference is defined as the maximum rod
temperature minus the CuBE temperature (ATmax = Tmax - T¢). The maximum
temperature difference is plotted for seven different pressures (0 to 60 psig), for 3
different power levels (1, 3 and 5 watts per rod), and for the two backfill gases,
nitrogen and helium.

Two main trends should be observed immediately from these curves. First,
notice that for both a nitrogen and a helium backfill at any fixed pressure, the
maximum temperature difference increases as the rod input power is increased.
Since temperature difference is the driving force for heat flow, this rise in
temperature difference with increased heat input is expected.

Second, notice that for a given power input, the temperature difference
decreases as the system pressure is increased. This decrease in temperature is due
to increased natural convection between the heated rods and the cooled enclosure
wall. Increasing the system pressure increases the system Rayleigh number, which
increases the strength of the buoyancy forces within the rod array. For an ideal
gas, the Rayleigh number is proportional to the square of the absolute pressure
[Canaan, 1995].
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Figure 5.1 Maximum rod temperature difference (ATmax) versus vessel pressure.
Te=22"%11°C.

However, the increase in Rayleigh number only causes a significant
temperature decrease for the nitrogen backfill. For the nitrogen backfill at 5 W /
rod, the maximum temperature difference drops by about 60° C (from 114°C to
54°C) from a pressure of 0 psig to 60 psig, a drop of a little over 50%. For the
helium at 5 W / rod, the maximum temperature is much lower, and the temperature
drops by only about 100 C over the same 0-to-60 psig pressure range. For the case
of helium at 1 W /rod, the maximum temperature changes less than one degree over
the entire pressure range.

Since, for the helium backfill, the temperature difference is approximately
constant while the driving force for natural convection is increasing, this indicates
that conduction and not convection is the primary mode-ef heat transfer from the
rods to the enclosure. For a given bulk gas temperature and pressure, nitrogen has

81



a Rayleigh number that is about 65 times greater than helium [Canaan, 1995].
Thus, for a given state, the buoyancy forces that drive natural convection are much
stronger in a nitrogen backfill than in a helium backfill. However, since helium's
thermal conductivity is about 7 times higher than that of nitrogen, the helium
transfers heat more easily from the rods to the wall.

5.2.2 Comparison of Maximum Rod Temperature for Aligned and
Staggered Arrays

Figure 5.2 shows maximum rod temperature difference data for the aligned
array experiment. This data shows many of the same trends as the staggered array.
However, while this data may look exactly like the staggered array data, a couple of
points should be noted.
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Figure 5.2 Maximum temperature difference vs. pressure for aligned array.
Tc =22° +1° C [Canaan, 1995].
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For the nitrogen data, the aligned array has a slightly higher maximum
temperature at a given pressure and rod power. This is an expected result, because
while both array configuration experiments used the same heat input per rod, the
aligned array has 4 more rods than the staggered array. Thus, the total heat input
for the aligned array is greater for a given rod power setpoint, resulting in a slightly
higher maximum temperature.

However, for the helium data, the maximum temperature difference is about
the same between the two geometries, even though the total heat input is higher for
the aligned array. This suggests that, for the helium backfill, the aligned array may
be transferring heat more effectively from the rod bundle to the walls than the
staggered array. This topic will be discussed in more detail in section 5.3 of this
chapter.

5.2.3 Location of Maximum Rod Temperature

Figure 5.3 gives the location of the rod with the maximum surface
temperature in the staggered array. The maximum rod temperature was always on a
rod in column D, the column closest to the vertical centerline of the bundle. Since
the vertical centerline is farthest from the cooled side walls of the enclosure, this
result is expected. The plot gives the column D row number of the rod versus the
bundle averaged Rayleigh number, defined in equation 2.24 (refer to Figure 5.4 for
a diagram of the rod locations).
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Figure 5.4 Diagram of rod locations within the UT staggered array.

The bundle average Rayleigh number defines the strength of the buoyant
flow in the entire enclosed rod bundle. As the Rayleigh number increases, one
would expect to see the location of the maximum temperature move upward within
the enclosure as the natural convection velocities increase. For a non-enclosed rod
bundle, the maximum rod temperature could be located as high as the top row of
rods. However, since the enclosure "ceiling" is maintained at a constant cool
temperature by the water flow, the maximum temperature location is kept within the
interior of the rod bundle. Also, note that because of the geometry of the staggered
rods and the symmetry of the flow about the vertical centerline, the maximum
temperature is shared by two rods on rows 2 and 4—rods D2/E2 and D4/E4,
respectively. The Rayleigh number where the maximum rod temperature moves
from rod D4 to D3 is about 7.0%103. For transition from D3 to D2, the Rayleigh
number is about 1.5%107. This transition is not a perfectly "sharp" transition but is
slightly blurred. This is evidenced by the "jumps" of maximum temperature
location back and forth between rods in the vicinity of these transition Rayleigh
numbers.
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5.2.4 Contribution of Radiation to Overall Heat Transfer

Figure 5.5 (next page) shows the percent contribution of radiation heat
transfer to the total heat dissipated in the rod bundle, for the same experimental
data. Recall that the heat input to each rod is dissipated as both radiation and
convection. The percent radiation contribution is the sum of the radiative power per
unit length (q'raq) summed over all rods, divided by total input power per unit
length to all rods (Q'), multiplied by 100. The remaining percentage of heat input is
removed through convection.

There are two main trends that should be observed from this data. First,
notice that for a given rod power and pressure, radiation heat transfer is greater for
the nitrogen gas than for the helium. This is because the average temperature of the
rod bundle is much lower in the helium backﬁl} than in the nitrogen back{ill, due to
helium's high thermal conductivity. As-the average bundle temperature increases,
the amount of heat transferred through radiation increases because of the fourth-
power dependence of radiation on surface temperatures.

Second, notice that in the nitrogen backfill, the percent radiation decreases
significantly as the system pressure is increased, but for the helium backfill, the
percent radiation changes very little as the pressure is increased. These trends
support the assertion that the helium backfill is primarily in a conduction heat
transfer mode, while the nitrogen backfill is more in a convection mode. As the
system pressure, and thus the Rayleigh number, is increased, the percent
convection increases significantly for the nitrogen backfill, but not for the helium
backfill. Since an increasing Rayleigh number implies increasing buoyant forces
and local fluid velocities, the fact that convection doesn't change appreciably with
Rayleigh number indicates that conduction is the dominant heat transfer mechanism.
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Figure 5.6 shows the percent contribution of radiation versus system
pressure for Canaan's aligned experiment. Again, the trends are very similar to
those of the staggered array. However, a couple of interesting contrasts should be

noted.
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Figure 5.6 Percent radiation contribution vs. pressure for Canaan's aligned array.
Tc =22 £ 1°C [Canaan, 1995].

For the nitrogen data, the percent radiation is slightly higher for the aligned

array than the staggered array. This is probably because the average temperature
difference between the rods and the enclosure is higher in the aligned array due to
the additional 4 heated rods. However, for the helium data, the percent radiation is

higher in the staggered array, which means that the percent contribution of
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convection / conduction is lower in the staggered array than in the aligned array.
This is a bit surprising, because one normally thinks of convection and heat transfer
being enhanced in a staggered array versus an aligned array. However, since the
helium data is in more of a conduction regime, factors other than flow conditions
around the rods are influencing the overall heat transfer. This topic will be
discussed in section 5.3 of this chapter. |

The results and trends presented in this section are unique to the geometry,
input parameters, and setpoints used for this experiment. While the qualitative
trends provide insight into the natural convection in enclosed, staggered horizontal
cylinder bundles, the reader should exercise caution before quantitatively applying
these to bundles with different enclosure temperatures, different size rods, different
rod powers, or different system pressures.

5.3 FULL ARRAY HEAT TRANSFER CORRELATIONS

This section presents the dimensionless Nusselt-Rayleigh number
correlations for the entire rod array. All of the correlations are of the form
recommended by Morgan for natural convection from single horizontal cylinders,
where Nu = C(Ra)R [Morgan, 1975]. Since both helium and nitrogen have Prandtl
numbers close to that of air (helium ranges from 0.678 to 0.680, nitrogen ranges
from 0.704 to 0.716), no explicit dependence on Prandtl number is needed for
these correlations. Three bundle correlations are presented. The first correlation
defines the Nusselt and Rayleigh numbers using the bundle average temperature
difference, ATpund. The second correlation uses the Nusselt and Rayleigh numbers
based on the maximum rod temperature difference, ATmax. The third full array
correlation again uses the Nusselt number based on ATpynd, but uses the Rayleigh
number based on the total convective heat rate, Q'conv (eqn. 2.27). Next, the full
array results are compared to the results for Canaan's aligned array. Finally, the
results are compared to convection results for forced convection over aligned and
staggered tube banks and to results from other natural convection studies of
staggered tube arrays.
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5.3.1 Correlation 1: Based on Average Temperature Difference,
ATbund

Figure 5.7 presents the Nusselt-Rayleigh number data calculated using
equation 2.21 for the Nusselt number and equation 2.24 for the Rayleigh number.
The data seem split into two separate regimes, one in which the Nusselt number
increases very slowly with Rayleigh number, and another in which the Nusselt
number increases much more rapidly. The two regimes were fit according to the

equation:

'Nupynd = 10.4 (Rapynd)0-01° 3.2%104 < Rapyng < 1.0%106
Nubund = 0.140 Rapyna)0-322 1.4%106 < Rapyng < 1.9%108
Racritical = approx. 1.2¥106 (5.1)
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Figure 5.7 Full array Nusselt vs. Rayleigh numbers, where Nu and Ra are
functions of the mean bundle temperature difference, ATpynd.
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The two-regime trend of the data is similar to the pattern of the Rayleigh-
Benard conduction / convection problem. In the Rayleigh-Benard problem, heat
being transferred from a hot lower flat plate to a cooler upper plate occurs only by
conduction at small Rayleigh numbers. For conduction, the Nusselt number is
constant as the temperature difference between the plates (which is proportional to
the Rayleigh number) is increased. However, once a critical Rayleigh number is
reached, buoyant forces overcome viscous fluid forces and fluid motion occurs.
From this point on, the Nusselt number increases monotonically as Rayleigh
number is increased [Koschmeider, 1993]. While this enclosed staggered tube
bundle experiment has a much different geometry and boundary conditions than
two horizontal flat plates, the heat transfer behavior is similar.

Notice that the slope of the first regime is not exactly zero, but is slightly
positive. This indicates that heat transfer in the lower Rayleigh number regime is
not pure conduction, but has a slight amount of fluid flow and convection
occurring. Also, notice that in the convective regime, the Nusselt number increases
with Rayleigh number to the power of about 1/3. This is consistent with the
correlation of Globe and Dropkin [1959] for Rayleigh-Benard type convection of a
fluid within a rectangular cavity with a hot bottom plate, a cool top plate, and
insulated side walls. Their correlation is given as

Nu, = 0.069Ra"? pr%07* (5.2)

Thus, the comparison of this experiment to the Rayleigh-Benard convection
problem seems valid.

It has been observed that for turbulent natural convection, the Nusselt
number is proportional to the characteristic temperature difference, AT, raised to the
power of 1/3 [Bejan, 1984]. For the above correlation (eqn. 5.1), the defined
Rayleigh number, Rapyng, is proportional to the bundle-averaged temperature
difference, ATpund (see eqn. 2.24). Since the correlation's Rayleigh number
exponent is 0.322, which is very close to 1/3, this gives evidence that the
convection within the rod bundle is turbulent for Rayleigh numbers above the
critical value.
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The transition to the turbulent convection regime is not at the same Rayleigh
number as the division between the helium and nitrogen data. The fact that the
nitrogen and helium data do not overlap is simply a coincidence. If a helium
backfill were used with much higher vessel pressures or higher rod input powers,
then the helium data would overlap into the nitrogen data. Similarly, if the nitrogen
backfill were used with very low rod powers and / or vessel pressures, then the
nitrogen data would overlap into the upper end of the helium data. It just so
happens that the Rayleigh number for the 1 W /rod, 0 psig, nitrogen case is a bit

higher than the Rayleigh number for the 5 W / rod, 60 psig, helium case.

5.3.2 Correlation 2: Based on Maximum Rod Temperature
Difference, ATmax

Figure 5.8 presents the Nusselt-Rayleigh number data for the 42
experimental state points, correlated using the maximum rod temperature difference,
ATmax, instead of the average rod temperature difference. The definitions of
Numax and Ramax are given in equations 2.22 and 2.25, respectively. Notice that
the characteristic temperature difference used is the maximum rod temperature
difference, but that the fluid properties are still based upon the mean bundle film
temperature, Tf bund = (Tc + Tound) / 2. The data were correlated with the following

equation:
NUmax =6.36 (Rama_x)o‘Ols 5.3*104 < Ramax < 1.7*106
Numax = 0.038 (Ragpax)0-366 2.3%¥106 < Rapax < 2.6%108
Récritical = approx. 2.0%106 (5.3)

The data of Figure 5.8 show the same trends as the data based on the mean
bundle film temperature. There is a two-regime division which is characterized by a
critical Rayleigh number. The first regime Nusselt number has a weak dependence
on Rayleigh number, suggesting heat transfer dominated by conduction. The
second regime has a stronger dependence on Rayleigh number, which suggests heat
transfer dominated by convection.
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Figure 5.8 Nusselt-Rayleigh number data for the staggered array, where Nu and
Ra are functions of the maximum rod temperature difference, ATmax.

Notice that the slope of the convection regime data in correlation 1 is steeper
than the slope of the data in correlation 2. This is because the first correlation is
based on the bundle average temperature difference, while the second is based on
the maximum rod temperature difference. If the ratio between the two temperature
differences were constant over all of the state points, then the slopes of the two
correlations should be very close to each other. However, as shown in Figure 5.9,
the ratio of ATmax to ATpung varies between 1.7 and 1.4, This variation in
temperature ratio is the cause of the change of the shapes of the Nusselt-Rayleigh
number curves between correlations 1 and 2.
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Figure 5.9 Ratio of maximum rod temperature difference to bundle average
temperature difference.

The fact that the two temperature differences do not vary in exactly the same
way indicates the importance of selecting the proper characteristic temperature
difference for natural convection correlations. It is important to select a temperature
difference that is a good physical representation of the driving force for heat
transfer. In this case, the bundle average temperature difference, ATpynd, is
probably a better characteristic temperature difference for heat transfer from the
entire bundle to the CuBE surface. However, the correlation based on ATmax is
useful because it gives information about the maximum rod temperature in the
bundle, which is often useful in heat transfer calculations and design. Often, the
critical factor in a cooling application is keeping a certain component or material
under a critical maximum temperature. Thus, the type of correlation used depends
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upon whether one is interested in the overall heat transfer behavior or in the
maximum temperature.

5.3.3 Correlation 3: Based on Total Convective Heat Rate Per Unit
Length, Q'conv

Figure 5.10 presents the Nusselt-Rayleigh number data using the definitions
of Nusselt and Rayleigh number from equations 2.21 and 2.27, respectively. The
Nusselt number is based on the bundle-averaged rod temperature. In this data, the
Nusselt numbers are the same as the Nusselt numbers from correlation 1; however,
the Rayleigh numbers based on total convective heat rate are larger than the
Rayleigh numbers based on AThund. Thus, the curve is shifted to the right on the

Rayleigh number axis. The data in Figure 5.10 was correlated using the following

equation:
Nupund = 993 (Rag)0-01? 4.1*105 < Ragy < 1.4¥107
Nupund = 0.224 (Rag)0-244 2.0¥107 < Ragy < 1.2*1010
Ragritical = approx. 1.7*107 (5.4)

Figure 5.11 gives a plot of all three sets of data, and Table 5.1 gives a
summary of the full array convection correlations. The percent error reported for
each correlation is the maximum data point deviation from the best-fit equation.
First, the Nusselt number is calculated from each Rayleigh number by using the Nu
= CRaDequations. The percent error for each data point is calculated by
comparing the calculated value of Nu to the actual data point. The maximum
percent error is the one reported below. Notice that this is the correlation error
only. Recall from Chapter 4 that the data itself has experimental uncertainty
associated with it of approximately 4 percent error for full array Rayleigh numbers
and about 2 percent error for full array Nusselt numbers.
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Figure 5.10 Nusselt-Rayleigh number data for the staggered array based on linear
convective heat rate, Q'cony-
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Figure 5.11 Full array Nusselt-Rayleigh number data for the staggered array, using
all three calculation methods.
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Table 5.1 Summary of Full Array Convection Coefficients

Critical Rayleigh | Maximum
Correlation Range number percent
e — = ~ ermr*
Nupund = 3.2%104 < Rapynd
10.4 (Rapyng)0-019 < 1.0%106
1.2%106 14
Nupund = 1.4%105 <Ra
. bund
0.140 Rapund®322| ~ _ 7 gw108
Numax = 5.3*104 < Ramax
6.36 (Ramax)0-018 < 1.7%106
2.0%106 1
NUmax = 2.3*106 <Ra
0.038 Rama)0366| Lo gH108
Nupynd = 0,019 4.1¥10° <Rag <
9.93 (Rag)?- 1.4*107
Q 1.7%107 9
Nupund = 2.0¥107 <Ragy <
0.224 (Ragy)0.244 1_2*1010Q

* defined as the maximum deviation between any Nusselt number data point and the correlation.

5.3.4 Comparison of Full Array Results for the Staggered and

Aligned Rod Bundles

Figure 5.12 shows the full array Nusselt-Rayleigh number correlation for
Canaan's aligned rod bundle. The data, like the staggered array data, fall into two
distinct regimes corresponding to a conduction and a convection regime. Canaan's
aligned array data were correlated with the equation [Canaan, 1995]:

Nupynd = 11.6 Rapynd)?-022 3.0¥104 < Rapynd < 2.7%100
Nupund = 0.137 Rapyng)0-321 2.7%105 < Rapynd < 2.0*108
Racritical = approx. 1.2*106 (5.5)

The Rayleigh number exponent of about 0.32 in the second regime is, like the
staggered array, very close to 1/3. This result indicates the presence of turbulent

98



flow within the bundle at higher Rayleigh numbers. However, while the results of
the staggered and aligned arrays are quite similar, there are some important
differences between the two rod configurations.
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Figure 5.12 Nusselt-Rayleigh number correlations for aligned tube bundle.
[Canaan, 1995].

Figure 5.13 shows the Nusselt-Rayleigh number results for both the aligned
and staggered arrays. There is a noticeable difference between the Nusselt numbers
for the aligned and staggered arrays, particularly for the conduction regime data. In
the conduction regime, the staggered array has a lower Nusselt number than the
aligned array. In the lower end convection regime, the staggered array has a
slightly lower Nusselt number than the aligned array. However, the slope of the
staggered array data in the convection regime is steeper than the aligned array data.
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Thus, at higher Rayleigh numbers, the Nusselt number for the staggered array
overtakes and becomes slightly greater than the aligned array Nusselt number.
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Figure 5.13 Nusselt-Rayleigh number data for both staggered and aligned bundles.

The results of Figure 5.13 are a bit surprising, because it indicates that, for
most of the lower Rayleigh number range, an aligned tube bundle has a higher

convection coefficient than a staggered tube bundle. The results of Choi and Cha
[1990] indicate that a staggered heated tube array has a Nusselt number that is about

7 to 15 percent higher than an aligned array, depending on the rod spacing to

diameter ratio. Their results were for an non-enclosed tube bundle. Warrington
and Weaver [1984] also reported slightly higher Nusselt numbers for an enclosed

staggered tube array versus an aligned array. Why then, are the heat transfer

coefficients lower for the staggered array in this experiment?
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Recall that the dominant heat transfer mechanism in the Rayleigh number
regime where the aligned Nu values are greater than the staggered Nu values is
conduction, not convection. In conduction, the only factors that affect the heat
transfer behavior of the system are the geometry of the system and the thermal
conductivities of the system pieces. The heater rods have a higher thermal
conductivity than the backfill fluid. Since the aligned array has 4 more rods than
the staggered array, the aligned array has a higher effective thermal conductivity for
heat flow through the bundle. Also, in addition to having more rods within the
enclosure, the aligned configuration may provide a better conduction path to the
cool walls than the staggered configuration. This is because the aligned array has a
greater number of rods on the sides that are the minimum distance from the cooled
wall. This possibility is considered further in sub-section 5.3.7, which looks at a
numerical conduction comparison between Canaan's aligned array and the current
staggered array.

5.3.5 Comparison of Full Array Results to Forced Convection in
Cylinder Banks

It was mentioned above that it was an unexpected result for the aligned array
Nusselt number to be higher than the staggered array Nusselt number, for a given
Rayleigh number. This is because most quoted results for convection across
cylinder banks give higher average heat transfer coefficients for staggered arrays.

In forced convection, these increased heat transfer coefficients for staggered tube
arrays result from the increased turbulence and mixing created by the fluid flow
around the alternating rows of cylinders. Conversely, an aligned array has
"preferred flow channels" that reduce the total surface area of rods that are exposed
to vigorous'flow. Figure 5.14 gives a diagram of this behavior.
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Figure 5.14 Diagram of forced convection flow for a) an aligned tube bank and b)
a staggered tube bank. [Incropera and DeWitt, 1990].

Incropera and DeWitt [1990] give heat transfer correlations for forced
convection across both aligned and staggered tube banks. They are of the form Nu
= C Reph, where Rep is the Reynolds number based on the maximum flow
velocity around the tubes and the individual tube diameter, D. The constants C and
n are tabulated for various rod pitch to diameter ratios. It is interesting to compare
the Nusselt-Reynolds number trends for forced convection across the aligned and
staggered geometries to the Nusselt-Rayleigh number trends for this experiment.
For Canaan's aligned array, the P/D ratio was 1.33. For the staggered array of this
experiment, the distance between rods on a row was 1.33 times the rod diameter,
and the distance between rows was also 1.33 times the rod diameter. Since the C
and n values were only tabulated for P/D values of 1.25 and 1.5, linear
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interpolation was used to find the C and n values for forced convection. For a
Prandtl number of 0.7, these correlations are:

aligned array: Nuayg = 0.328 Rep 0-597
Staggered array: NUavg =0.496 RCD 0.559
2,000 < Rep < 40,000 (5.6)

These correlations are plotted below in Figure 5.15. Itis clear that the
Nusselt number for the staggered array is higher than for the aligned array,
particularly at lower Reynolds numbers. At higher Reynolds numbers, the flow is
so fully turbulent that the geometric differences in the rod locations are not as
important in determining the Nusselt number.
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Figure 5.15 Nusselt vs. Reynolds number for forced convection across aligned
and staggered tube banks [Incropera & DeWitt, 1990].
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5.3.6 Comparison of Full Array Results to Other Experiments on
Natural Convection in Cylinder Banks

It is generally expected that natural convection in a staggered array will have
higher full array Nusselt numbers than in an aligned array. However, unlike forced
convection, it is not because the staggered array mixes the flow better. Rather,
augmentation of the heat transferina staggered array occurs because the buoyant
plumes from each rod can travel up farther before impinging on the bottom of the
nextrod than in an aligned array. This extra room to form a plume allows an
increased plume velocity that increases the heat transfer coefficients for each rod.
However, if the rod bundle is enclosed, the formation of these buoyant plumes is
generally inhibited, and flow tends to circulate throughout the spaces in the rod
bundle rather than rising upward from each rod. Thus, an enclosed rod bundle
ought to have a smaller difference in heat transfer between an aligned and a
staggered array than a non-enclosed bundle. This question is investigated in this
sub-section by considering other experiments in natural convection in aligned
versus staggered rod bundles.

5.3.6.1 Comparison of Results to Non-Enclosed Tube Bundles

In 1976, Tilman presented full array convection coefficients for a 4x4
aligned array and a 14-rod staggered array of heated cylinders in air at atmospheric
pressure. No radiation correction was made, and the bank of tubes was not
enclosed, but open to room temperature air. Also, it is not clear exactly what shape
of staggered array was used. He calculates full array Nusselt and Rayleigh
numbers using a characteristic length based on the rod pitch-to-diameter ratio, the
rod center-to-center spacing, the bundle-averaged temperature difference, and the
total rod power. Tilman's correlations, for Rayleigh numbers of 102 to 105, were

Nupundstaggered = 0.067 (Ra) 0.5
Nupundatigned = 0.057 (Ra) 05 (5.7)
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Thus, Tilman asserts that the Nusselt number for the staggered array is always
greater than that of the aligned array by a factor of (0.067 / 0.057), or about 1.17.
Notice that Tilman's Rayleigh number exponent is high, at about 0.5. Since he did
not subtract out radiation heat transfer, it is counted as convection, which tends to
inflate the Nusselt number dependence on Rayleigh number [Canaan, 1995].

In 1990, Choi and Cha published results from a flow visualization study of
natural convection in a non-enclosed, horizontally-oriented tube bundle. The
results were presented for two different rod pitch-to-diameter ratios, 2.0 and 4.0.
Their rectangular tube bundle consisted of hollow copper tubes through which a DC
current was passed to heat the rods. As shown in Figure 5.16, the rectangular
bundle could be rotated to produce an aligned or a staggered array. Notice that the
staggered array produced by rotating an aligned array is different than one produced
by shifting every other row over by 1/2 rod pitch. A Mach-Zehnder interferometer
was used to photograph constant temperature contour lines throughout the bundle.
Some sample interferograms from their experiments are shown in Figure 5.17.
Notice the well-defined buoyant plumes from each rod. The local, circumferential
angle-dependent Nusselt number was computed by using the pictures to compute
the temperature gradient at a distance of 1/2-rod diameter from the rod surface.
They also computed rod surface averaged Nusselt numbers, which is the type of
individual rod Nusselt number calculated in the current and the Canaan experiment.

While Choi and Cha did not compute a full array Nusselt number, they do
report that for a P/D ratio of 4, that the Nusselt number for a particular individual
rod is, on average, 7 to 9 percent higher in a staggered array than in an aligned
array. For a tighter spacing with a P/D ratio of 2, the individual Nusselt numbers
were about 14 to 18 percent higher in a staggered array. Thus, they concluded that
a smaller P/D ratio increases the difference in average heat transfer between an
aligned and a staggered array. However, it is not likely that this difference
continues to increase as the P/D ratio approaches unity, since there is very little
convection between rods at all for very low P/D ratios.
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Figure 5.16 Diagram of Choi and Cha's rod bundle, viewed from the end.
[Choi and Cha, 1990].

Figure 5.17 Interferograms from Choi and Cha's non-enclosed rod bundle.
6 =45 degrees from horizontal.
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The main differences between the UT experiment and Choi and Cha's
experiment are the enclosure (or lack thereof), the difference in rod P/D ratios, and
the difference in the staggered array shapes. The enclosure of the UT experiment
probably limited the plume formation that could cause a staggered array to have
higher Nusselt numbers. However, there was more than one significant difference
between the two experiments, and none of these differences were investigated
independently of one another. Thus, it is difficult to say just from comparing these
two experiments what the major factor is in determining the difference in natural
convection heat transfer between an aligned and a staggered array.

5.3.6.2 Comparison of UT Results to Aniother Enclosed Tube Bundle

The experiments of Warrington and Weaver are geometrically more like the
current UT experiment than were Choi and Cha's. Their experiments, like the UT
experiments, had a water-cooled enclosure, and their staggered array was the same
shape as the UT staggered array. They investigate 4x4 and 3x3 aligned cylinder
arrays and 14- and 8-cylinder staggered arrays enclosed in a cubical, water-cooled
enclosure filled with various fluids at atmospheric pressure. They also used a
tighter rod spacing, with P/D ratios of 1.45 and 1.83 (recall that the P/D ratio for
the UT experiments was 1.33). They reported that "the enclosure reduced the
expected increase in both the average and the local heat transfer coefficients caused
by changing the inner body [the cylinder bundle] from an in-line arrangement to a
staggered arrangement of comparable spacing” (emphasis added). Unfortunately,
they did not run an experiment without an enclosure with which their results could
be compared.

Warrington and Weaver had an unusual result compared to the convection
regime of the UT array results. The Rayleigh number range for their full array
correlations ranged from about 105 to 108. For a Rayleigh number of 105 and an
air backfill, their correlations give a staggered array Nusselt number that is about 11
percent higher than the aligned array Nusselt number. At a higher Rayleigh number
(about 108), the Nusselt numbers are about the same for the staggered and aligned
arrays. Recall that for the UT arrays in the convection regime, the slope of the
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staggered array Nusselt number was steeper than the aligned Nusselt number.
However, the slope of Warrington and Weaver's staggered array Nusselt number
was less steep than the aligned array slope, which is the opposite of the trend
displayed by the UT arrays. This source of this discrepancy in Nusselt number
trends is not known; however, it is possible that the short length of Warrington and
Weaver's rod bundle could be causing some three-dimensional flow effects that
would not be seen in the UT arrays. _

The main conclusion of the comparison of aligned vs. staggered full array
heat transfer for these different experiments is that having an enclosure surrounding
the rod bundle should decrease the difference in convective heat transfer between an
aligned and a staggered array. Furthermore, since the enclosure for the UT
experiments was closer to the rod bundle than it was in the Warrington and Weaver
experiment, the UT experiment ought to have the smallest difference in Nusselt
numbers between an aligned and a staggered array. However, since the Nusselt
numbers for the aligned array are 12 to 17 percent higher than the staggered array
(for low Rayleigh numbers), it is likely some other physical effect is causing the
difference in Nusselt numbers in the UT experiments. The following section
discusses this topic.

5.3.7 FIDAP Numerical Conduction Simulation

Recall that in section 5.3.4 it was noted that the regime in which the UT
staggered Nusselt numbers were lower than the aligned Nusselt numbers was the
low Rayleigh numbers, where conduction is the dominant heat transfer mechanism.
Thus, a conduction analysis could provide answers to why the aligned array has
better heat transfer in this regime.

To better understand and quantify the differences in conduction between the
two geometries, a numerical conduction simulation was performed using FIDAP, a
commercial fluid dynamics and heat transfer code from Fluid Dynamics
International. To model the staggered and aligned configurations, symmetry was
assumed about the vertical centerline of each bundle, so only half of the bundle was
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modeled. The symmetry boundary was specified to be a zero heat flux boundary,
i.e., the temperature gradients at this boundary were defined to be zero. The gas
was modeled as a solid with the same thermal conductivity as helium, ata
temperature of about 300K. Modeling the gas as a solid limited the heat transfer to
pure conduction. Since the rods are practically isothermal, the rods themselves
were not modeled, and the experimentally measured rod temperatures served as 32
boundary conditions. The CuBE was also specified as a constant temperature
boundary, set to the experimentally measured inner wall temperature. For this
simulation, the rod and CuBE temperatures used for each configuration were those
from the 1 W /rod, 0 psig, helium case. For both arrays, this state point
corresponded to the lowest Rayleigh number, and therefore this case was most like
pure conduction.

FIDAP uses finite-elements to analyze fluid dynamics and heat transfer
problems. The first step in creating this conduction model was to mesh the helium
and the rod and enclosure boundaries. Figures 5.18 and 5.19 show the mesh used
for these two configurations. The user specifies the number of nodes along the
boundaries, and then FIDAP automatically generates the mesh elements needed to
fill the geometry. Once the mesh is created, then boundary conditions are defined.
For this problem, the boundary conditions were 1) the temperature of the isothermal
enclosure, 2) the 32 individual isothermal rod surface temperatures, and 3) the zero-
flux condition at the symmetry boundary.

Figures 5.20 through 5.23 show the resulting temperature profiles from
FIDAP's solution of this problem. Figures 5.20 and 5.21 show filled color
contour plots of the temperature distribution, and Figures 5.22 and 5.23 show
monochromatic contour line plots to show the shape of the temperature curves.
Notice that the temperature contours are shifted slightly upward, which indicates
slight convection effects. However, this is not because convection was included in
the FIDAP model, but because the experimental rod temperatures, which were
slightly shifted upward due to convection, were used as boundary conditions.
Notice the similarities in wall temperatures and maximum rod temperatures between
the two configurations. The wall temperatures differ by only 0.03K, and the
maximum rod temperatures differ by only about 0.2K. Thus, the maximum rod
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temperature difference is quite similar. However, there is a significant difference in
the total heat transferred to the CuBE wall.
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Figure 5.18 Finite element mesh used for conduction analysis of Canaan's aligned

array.
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Figure 5.19 Finite element mesh used for conduction analysis of staggered array.
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Figure 5.20 Color temperature contours for Canaan's aligned array conduction

simulation.
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simulation.
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Figure 5.23 Temperature contours for the staggered array conduction simulation.
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The main difference between the two solutions is the temperature gradient at
the side CuBE wall. For the aligned array, there are 8 rods close to the wall that
cause the temperature gradient to be sharper than in the staggered array, where there
are only 4 rods close to the wall. Thus, in the staggered array, the overall heat flux,
which is proportional to the temperature gradient, is lower than in the aligned array.
Thus, in the conduction regime, the aligned array transfers heat to the CuBE better
because it has more rods very close to the cooled wall than does the staggered
array.

To quantify this difference, Nusselt numbers were calculated for these
conduction experiments, using the same definitions of Nusselt number as for the
full array correlations of section 5.3.1. This Nusselt number is given by

Nitgong = 200 (5.8)

where k is the thermal conductivity of the helium (0.152 W/m-K), Q'cond is the total
heat flow to the CuBE wall calculated by FIDAP, and ATyypq is the average
temperature of the rods minus the CuBE temperature. Table 5.2 summarizes the
results of the Nusselt number calculations, and compares these Nusselt numbers to
the experimental Nusselt number values for the aligned and staggered arrays. Table
5.2 also gives the ratio of aligned to staggered Nusselt number for both the
simulation and the experimental data.

Table 5.2 Comparison of Conduction Simulation Nusselt Numbers to

Experimental Nusselt Numbers
Aligned array Nu, FIDAP simulation 13.2
Staggered array Nu, FIDAP simulation 11.3
Aligned array Nu, experiment "15.1
Staggered array Nu, expériment 12.9
Nualigned / Nustagg , FIDAP 1.17
Nugligned / Nustago , €xperiment 1.17
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For the same rod temperature distribution, the pure conduction simulation
Nusselt numbers are about 88 percent of the experimental Nusselt numbers. Since
the experimental data actually had a small amount of convection and was not pure
conduction, one would expect the experimental Nusselt numbers to be a bit higher
than those from the pure conduction simulation. More importantly, the FIDAP
numerical conduction simulations yield the same ratio of Nusselt numbers between
the aligned and staggered arrays as the experiments do. These results support the
hypothesis that it is the conduction effects based on the difference in geometry

between the UT aligned and staggered arrays that causes the aligned Nusselt
number to be higher in the low Rayleigh number regime. While a more detailed
numerical study that included a mesh-independence analysis is necessary to fully
support this hypothesis, the results of this simple analysis seem reasonable in
explaining this unusual Nusselt number behavior.

This section has considered the full array heat transfer behavior of the
current experiment and has compared the results to other full array results from
convection in aligned and staggered arrays. The following section considers the
heat transfer behavior of each individual rod.

5.4 INDIVIDUAL ROD HEAT TRANSFER CORRELATIONS

This section presents the Nusselt-Rayleigh number data and correlations for
the 32 instrumented rods of the staggered rod bundle. First, the data and
correlations for all of the rods will be presented graphically, followed by a
tabulation of the correlations for the individual rods. The next sub-section discusses
trends in the results. The next sub-section compares the staggered array results to
selected rod results for Canaan's aligned array, and the final sub-section compares
the UT staggered results to Choi and Cha's individual rod results from their
staggered array experiment. While Warrington and Weaver's experiment was more
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similar to the UT experiment, they did not calculate individual rod Nusselt
numbers.

5.4.1 Individual Rod Nusselt-Rayleigh Number Results -- Figures
and Tables

Recall that Figure 5.4 gives a diagram of the positions of each instrumented
rod within the array. Notice that all of the rods denoted as being in "column A" or
"column D" are not a true column, since all of the rods are not directly above each
other. Figures 5.24 through 5.69 give the Nusselt-Rayleigh number data for
columns A through D, then for rows 8 through 1. That is, for each column, the
data is presented from the bottom row to the top row. Next, Tables 5.3 through
5.6 preéent the Nusselt-Rayleigh number correlations for each rod. These results
are discussed in sub-section 5.4.2. For some rods, it was not clear how best to
divide up the data into different regimes. In those cases, more than one correlation
is presented.
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Figure 5.25 Nusselt number for rod A7, correlation 1.
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Figure 5.27 Nusselt number for rod A6, correlation 1.
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Figure 5.29 Nusselt number for rod AS.
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Figure 5.31 Nusselt number for rod A3, correlation 1.
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Figure 5.33 Nusselt number for rod A2.
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Figure 5.37 Nusselt number for rod B7, correlation 1.
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Figure 5.39 Nusselt number for rod B6.
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Figure 5.41 Nusselt number for rod B4.
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Figure 5.45 Nusselt number for rod B1, correlation 1, log plot.
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Figure 5.46 Nusselt number for rod B1, correlation 2.
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Figure 5.48 Nusselt number for rod C7.
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Figure 5.50 Nusselt number for rod C6, correlation 2.
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Figure 5.52 Nusselt number for rod C5, correlation 2.
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Figure 5.54 Nusselt number for rod C3, correlation 1.

135




10.00

1.00

Nu

0.10

Rod C3 (2)

Nu = 0.004 Ra 0483
\(‘ 4
Nu= 0.195 Ra~ 0028
,_/C) {
IO QB0RWD
10! 102 103 10* 10°
Ra

108

Figure 5.55 Nusselt number for rod C3, correlation 2.
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Figure 5.57 Nusselt number for rod C1.
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Figure 5.58 Nusselt number for rod D8.
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Figure 5.61 Nusselt number for rod D6, correlation 1.
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Figure 5.62 Nusselt number for rod D6, correlation 2.
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Figure 5.64 Nusselt number for rod D5, correlation 2.
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Figure 5.66 Nusselt number for rod D4, correlation 2.
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Figure 5.68 Nusselt number for rod D2.
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Table 5.3 Individual Rod Correlations for Column A

Nu=C [Ra)
Rod ID C and n values Rayleigh number
C n range
Al not correlated -
A2 0.663 -0.046 13 -1600
6.02e-4 0.617 14,000 - 1.5e5
A3(1) 0.285 -0.020 23-2100
0.004 0.449 17,000 - 1.6 €5
A3(2) 0.285 -0.020 23-2100
0.006 0.406 3700- 1.6 €5
Ad 0.318 0.049 18- 1500
0.054 0.234 13,000 - 1.5e5
AS 0.191 0.045 26 - 570
0.033 0.309 780-1.4¢e5
A6(1) 0.281 0.126 16-1100
0.167 0.186 9600 - 1.2 e5
A6(2) 0.253 0.148 16-1.2¢e5
A7() 0.277 0.085 18 -360
_ 0.118 0.249 500-1.1e5
AT (2) 0.134 0.234 18-1.1e5
0.953 0.057 54 -120
A8 0.473 0.209 150 - 2700
4.29 -0.062 3900 - 92,000
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Table 5.5 Individual Rod Correlations for Column C

Nu=C(Ra)R
Rod ID C and n values Rayleigh number
C n range
Cl 0.634 -0.110 18 - 2200
8.17¢ -4 0.553 35,000 - 1.7 e5
C2 0.337 -0.077 27 - 2600
6.99 -4 0.611 20,000 - 1.8 €5
C3(1) 0.164 0.005 35-2700
0.003 0.512 4800-1.7 €5
C3(2) 0.195 -0.028 35-1200
0.004 0.483 1600- 1.7 €5
0.156 0.023 36- 1100
C4 0.006 0.490 1400 - 10,000
0.024 0.352 17,000 - 1.6 €5
0.117 0.074 37- 1100
C5(1) 0.006 0.512 1400 - 9300
0.031 0.339 16,000 - 1.5 e5
C5(2) 0.117 0.074 37-1100
0.010 0.447 1400-1.5¢€5
0.134 0.091 32-890
C6 (1) 0.0095 0.484 1100 - 8500
0.064 0.288 13,000 - 1.4 €5
C6(2) 0.134 0.091 32 -890
- 0.018 0.406 1100-1.4¢e5
Cc7 0.192 0.081 25-520
0.029 0.384 720-1.2¢€5
C8 0.603 0.054 19 -260
0.169 0.279 360 - 81,000
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Table 5.4 Individual Rod Correlations for Column B

Nu=C(Ra)R
Rod ID C and n values Rayleigh number
C n range
BL (D 0640 0100 |  17-2100
225e-5 0.897 16,000 - 1.6 5
B1 (2) 0.640 -0.109 17-2100
3.59e-4 0.653 34,000 - 1.6 €5
B2 0.356 -0.072 24 - 2400
2.37e-4 0.679 29,000 - 1.7 €5
B3 0.187 0.003 32-2600
0.004 0.480 4500- 1.7 €5
B4 0.148 0.057 30-2300
0.006 0.445 4000 - 1.6 €5
B5 0.158 0.060 26 - 340
0.019 0.381 430-1.3eS
B6 0.203 0.050 26 - 340
0.036 0.335 430-13¢e5
B7 (1) 0.202 0.087 23 -470
0.038 0.368 660-1.1e5
0.202 0.087 23 -470
B7 (2) 0.022 0.439 660 - 7200
_ 0.168 0.227 10,000 - 1.1 €5
B8 0.575 0.067 11-240
0.218 0.253 330 - 81,000
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Table 5.6 Individual Rod Correlations for Column D

Nu=C(Ra)R
Rod ID C and n values Rayleigh number
C n range
D1 0.659 -0.134 19 - 2300
2.53e-5 0.811 25,000 - 1.8 €5
D2 0.260 -0.066 30 - 2800
891e-4 0.581 20,000 - 1.8 €5
D3 0.175 -0.021 37 - 1200
0.005 0.459 1600 - 1.7 €5
0.130 0.030 39-1200
D4 (1) 0.006 0.472 1500 - 11,000
0.014 0.389 18,000 - 1.6 €5
D4 (2) 0.130 0.030 39 - 1200
0.006 0.463 1500 - 1.6 e5
0.111 0.077 38-110
D5 (1) 0.004 0.547 140 - 9400
0.030 0.343 16,000 - 1.5 €5
D5 () 0.111 0.077 38-110
0.009 0.455 140-1.5¢eS
0.111. 0.096 35-960
D6 (1) 0.006 0.522 1200 - 8700
0.042 0.326 14,000 - 1.4 5
D6 (2) 0.111 0.096 35-960
0.011 0.448 1200- 1.4 e5
0.186 0.085 26 - 520
D7 (1) 0.019 0.443 720 - 7700
0.106 0.257 11,000-1.2 €5
D7 (2) 0.186 0.085 26 - 520
0.034 0.365 720-1.2¢€5
D8 0.494 0.053 13-290
0.145 0.263 410 - 90,000
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5.4.2 Discussion of Individual Rod Results

The data sets for each rod were correlated using the Mofgan form,

Nu = C(Ra)". There are several interesting trends in the data to be noticed.
However, two important points need to be made in order to avoid confusion about
trends in the data.

First, recall that these Nusselt numbers are circumferentially rod-averaged
Nusselt numbers. Since temperature and heat flux were not measured as functions
of circumferential angle, this local Nusselt number cannot be calculated.

Second, it very important to keep in mind the definition of Nusselt and
Rayleigh number for these individual rods--in particular, the definition of the
characteristic temperature difference, AT. For most typical experimental heat
transfer calculations, the characteristic temperature difference is defined as the
difference between the surface temperature of the body and the local temperature of
the fluid flowing over or around the body. In this experiment, this local fluid
temperature would correspond to some average temperature of the fluid
surrounding each rod. However, since each of these local fluid temperatures is
very difficult to measure accurately, the enclosure temperature, Tc, was used as the
temperature of the heat sink. Also, as Canaan points out in his dissertation, these
correlations are not useful unless they are presented in terms of known or easily
measurable parameters. The individual local fluid temperatures are difficult to
measure, the enclosure temperature is not. However, what this means is that the
trends in the Nusselt numbers with increasing Rayleigh number do not necessarily
follow actual trends in convective heat transfer for a particular rod. This effect will
be shown for particular rods in the next few paragraphs of discussion.

There are three general areas into which the trends of the individual rod data
can be grouped. The first group consists of the rods from columns B through D,
and from rows 4 through 8. These rods loosely define the rods in the lower-middle
of the bundle. The second group is columns B through D, and rows 1 through 3.
The final group is the column A rods, which display some interesting trends in the
upper and lower corners.
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The group 1 rods display similar behavior to the trends of the full array
results. That is, they display a conduction and a convection regime, reminiscent of
the Rayleigh-Benard problem. As one goes up within the array, that is, from row 8
to row 4, the Nusselt number decreases. This is because—for tightly packed
cylinder arrays—the fluid rising from a heated rod tends not only to increase the
temperature of the fluid surrounding the upper rod, but also causes a thickening of
the boundary layer of the upper rod, which decreases the convective heat transfer
from the upper rod.

Also, notice that there is a large drop in Nusselt number from row 8 torow
7, but less of a drop from row 7 to 6, and even less fromrow 6 t0 5. This is
because row 8 is not preheated by any rods, while row 7 is preheated by row 8.
Row 6 is preheated by rows 7 and 8, but this difference is not as drastic of a change
as going from row 8 to row 7. The drop in Nusselt number for individual rods as
one goes up within the rod bundle will be compared to a similar effect seen in Choi
and Cha's experiment in sub-section 5.4.4.

Sparrow and Niethammer describe the "preheating” effect in a 1981 report.
Their experiment investigated the natural convection trends in two heated horizontal
cylinders placed one on top of the other. The cylinders were given the same heat
input and the vertical spacing of the upper rod was varied. For very small vertical
spacings (P/D < 2), they report that the upper cylinder Nusselt number is
significantly lower than the lower cylinder. However, as the spacing is increased,
the Nusselt number for the upper rod increases and actually becomes larger than the
lower cylinder. This is because of the relationship of two competing effects. The
first effect is the preheating of the ambient fluid around the upper rod by the plume
of the lower rod. The second is the increased flow velocity around the upper rod
caused by the flow from the lowerrod. At small separation distances, the lower
rod plume has no space for the heat to dissipate and the Nusselt number of the
upper rod is decreased. However, at higher separation distances, the heat from the
lower plume dissipates and the increased flow velocity on the upper rod increases
its Nusselt number. It is as if the upper cylinder is subjected to forced convection.
However, since the rods are closely packed in the UT staggered array (P/D = 1.32),
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the upper rods Nusselt numbers are only decreased. The qualitative flow patterns
described by Sparrow and Niethammer as diagrammed below in Figure 5.70.

low P/D ratio high P/D ratio

Figure 5.70 Different flow patterns for two heated cylinders of different vertical
spacing.

The preheating effect continues in the second group of rods—-rows 3, 2, and
1 and columns B, C, and D. However, the continuous decrease of Nusselt number
for rows 8 through 1 of a given column only occurs in the convective regime. In
the conduction regime, these upper rows are closer to the cooled CuBE ceiling,
which causes steeper temperature gradients around rows 1 and 2 than in rows 3
through 5. This is expected, because in pure conduction the temperature gradients
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(which are proportional to the Nusselt number) are greatest for those rods closest to
the CuBE wall, whether the rods are on the top or the bottom of the array. This
effect can be further noted by comparing the Nusselt numbers for a given row,
moving across from row A to row D, in the conduction regime. In these plots,
Nusselt number drops as one moves away from the cooled side walls of the CuBE.
This effect can be seen qualitatively by recalling Figures 5.21 and 5.23, which
show the temperature contours from the FIDAP conduction simulation. The
temperature gradients, and thus the resulting conduction-regime Nusselt numbers,
are higher nearest to the CuBE wall.

There is another surprising result seen in the data from the upper 3 rows.
Notice that in these rows, the Nusselt number decreases with increasing Rayleigh
number in the lower regime, then jumps back up as Ra increases further. Also,
notice that the Nusselt number is mostly less than 1.0. Physically, Nu = 1.0
corresponds to pure conduction; thus, a Nusselt number less than 1.0 should not
exist. Also, since a zero slope of Nu with increasing Ra indicates pure conduction,
it should also not be physically possible to obtain a negative Nusselt number slope.
Thus, how can this experimental data be correct? The answer lies in the definition
of the Nusselt and Rayleigh numbers, as mentioned above. It is in these upper row
rods that these definitions cause the most unusual trends.

The defined Nusselt and Rayleigh numbers for each rod are based on the
temperature difference between the rod surface and the enclosure surface, Tr - Tc.
The more traditional definition of the characteristic temperature difference is Tr -
Too, Where Too is the temperature of the local fluid surrounding the rod. As the rod
power and vessel pressure is increased, strengthening the buoyant flow within the
rod bundle, the hottest fluid and the maximum rod surface temperature shifts
upward from the center of the array to rows 2 and 3. Thus, the rods onrows 1, 2,
and 3 increase in temperature relative to the CuBE. Since the defined Rayleigh
number is proportional to Tr - T¢, the Rayleigh number increases. However, the
more traditional Rayleigh number based on Tr - Teo actually decreases due to the
local increase in Too around these upper row rods. Thus, ’what appears to be a
decreasing Nusselt number with increasing Rayleigh number is in fact a decreasing
Nusselt number with decreasing Rayleigh number, using the more traditional
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Rayleigh number definition. Also, the fact that some Nusselt numbers are less than
1.0 is because the Nusselt number is proportional to (Tr - T¢)-1, which is much
larger in magnitude than Tr - Teo. If the Nusselt number were based on Tr - Teo,
these Nusselt numbers would likely be greater than 1.0. Recall that this thesis used
the non-traditional characteristic temperature difference Tr - T¢ because of the
difficulty in measuring a local Teo for each rod.

Another very unusual trend is observed for rods Al and B1. These two
rods not only show decreasing Nusselt number, they even have a few negative
Nusselt numbers in the lower end of the convection regime. This seems to imply
that somehow heat is flowing in the same direction as the temperature gradient
rather than the opposite direction, which is physically impossible. The explanation
is that in this particular flow regime, the surfaces of rods Al and B1 are hotter than
the CuBE wall, thus (Tr - T¢) is positive. However, the average local fluid
temperature around these two rods is actually hotter than the rod surfaces, thus (Tr -
Too) is negative. This means that heat is actually being transferred from the fluid to
the rod and that the thermal radiation away from the rod is greater than the total
power input to the rod, even though the rod has internal heat generation. If one
defined a Nusselt number based on Tr - Teo, this Nusselt number would be
positive. However, because of the definition of AT used in this thesis, negative
Nusselt numbers are possible.

The column A rods display unusual trends-at-the-upper.and lower corners of
the bundle; that is, at rods Al and A8. The negative Nusselt number behavior of
rod A1 was mentioned above. The final trend to be noted is the unusual behavior
of rod A8. Notice that the Nusselt number for rod A8 seems to transition from a
conduction to a convection regime at mid-range Rayleigh numbers, but then as the
Rayleigh number increases further, the Nusselt number levels off and even drops
back down again. Also, as shown in Figure 5.71, the Nusselt number for rod A8
is lower than that for rod B8 in the convection regime. One would expect A8 to
always be the coldest rod in the array, and at lower Rayleigh numbers, it is.
However, at higher Rayleigh numbers, B8 becomes the coldest rod. Canaan has
also observed this behavior between rods A8 and B8, and he speculates that it is
caused by changes in the fluid flow pattern above a certain Rayleigh number that
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might cool B8 more effectively than A8. For example, if at high Rayleigh numbers
the cool downward flow along the sides of the CuBE "rounded the corner" and
impinged more forcefully on rod B8 than on rod A8, this could make the AT for
rod B8 lower than that of A8. Since Nu is proportional to 1/AT, this would imply
that B8 would have a lower Nusselt number. Canaan is currently engaged in
numerical flow simulation to characterize the flow patterns within the bundle which
predicate this behavior. Hopefully, his numerical research can shed some light on
this phenomenon. )

However, in order to give the reader a qualitative feel for the flow patterns
occurring within the staggered array, a FIDAP natural convection simulation was
run for the lowest Rayleigh number case of helium at 1W / rod and 0 psig pressure.
At higher Rayleigh numbers, the flow is turbulent and would require a more
sophisticated model. This simulation used the same mesh as for the conduction
simulation, shown in Figure 5.19. In this case, the helium was modeled as a
laminar fluid. Zero velocity was specified at the rod and CuBE surfaces, and the x-
direction velocity was set to zero at the symmetry boundary. The results of the
simulation are presented in Figures 5.72 and 5.73. The temperature contours for
this simulation are almost identical to the conduction case, and are not shown here.
Figure 5.72 shows the fluid velocity vectors, and Figure 5.73 shows the
streamlines of the flow. No buoyant plumes form from the individual rods, and all
of the fluid motion is in sort of a half-cylindrical roll pattern that circulates down the
sides of the CuBE and then back upward through the spaces between the cylinders.
The maximum fluid velocity occurs in the downward flow on the sides. This flow
solution was not subjected to a mesh-independence study and had a relatively large
convergence criterion, thus the actual velocity values likely have a high uncertainty.
However, this should give the reader a good feel for the general flow pattern of the
fluid within the enclosure.
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Figure 5.71 Comparison of Nusselt numbers for rods A8 and B8.
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5.4.3 Comparison of Individual Rod Results to Canaan's Aligned
Array Results

Since the UT staggered and Canaan aligned array experiments were
performed in exactly the same manner, with the only difference being the change in
position of roughly half of the heater rods, it is appropriate to compare the
individual rod heat transfer results of each geometry. It was found that the column
B through D rods had very similar characteristics, while the most notable contrasts
in behavior occurred in the column A rods. Figure 5.74 gives a comparison of the
geometry and rod position identities for the aligned and staggered arrays. '

In the column C and D rods, the trends and the quantitative values of the
Nusselt numbers are very similar. In fact, the only notable difference between the
behavior of these rods for the aligned and staggered arrays is for the top row rods,
rods C1 and D1. For these two rods, the conduction regime Nusselt numbers are
almost identical, but the convection regime Nusselt numbers are noticeably higher
for the staggered array. Figure 5.75 compares the Nusselt numbers of the aligned
and staggered arrays forrod C1. Since these rods are the same distance from the
cool CuBE ceiling, one would expect the conduction regime Nusselt numbers to be
the same. The higher Nusselt numbers for the staggered array in the convection
regime indicate that the fluid flows more strongly around C1 and D1 in the
staggered array.
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Figure 5.74 Diagram of rod positions for the UT aligned and staggered arrays.
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Figure 5.75 Aligned and staggered array Nusselt numbers for rod C1.

In column B, the main contrast between aligned and staggered array results
is for the rods on odd-numbered rows. Itis these rows where the rods are closer to
the CuBE wall in the aligned array. On these odd-numbered rows, the conduction
regime Nusselt number is higher for the aligned array. This is expected, since the
column B, odd-numbered row rods are closer to the CuBE wall in the aligned
array. However, in the conduction regime, the Nusselt numbers are about the
same. For the even-numbered rows, there is no significant difference between the
Nusselt numbers of each rod in the aligned and staggered arrays.

The most significant differences occur in the column A rods. For the even-
numbered rows, the conduction regime Nusselt numbers are the about the same
between the two arrays, while the convection regime Nusselt numbers are higher in
the staggered array rods. Since rods A8, 6, 4, and 2 are the same distance from the
wall in both arrays, the similarity in conduction regime Nusselt numbers is
expected. As the flow in the arrays becomes stronger, the staggered array rods are
cooled more effectively. Figure 5.76 compares a representative rod, AG6, for each
array.
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Figure 5.76 Aligned and staggered array Nusselt numbers for rod A6.

For the odd-numbered rows of column A, the aligned array has a higher
conduction regime Nusselt number. This is because rods A7, 5, 3, and 1 are much
farther from the cooled wall in the staggered array. Then, as the flow velocities
increase, these rods are cooled more effectively in the staggered configuration.
Figure 5.77 shows the Nusselt numbers of a representative rod, A7. Thereisa
slight exception for rod Al. In this rod the convection regime Nusselt number is
about the same for the staggered and aligned arrays. Figure 5.78 shows the aligned
and staggered array Nusselt numbers for rod Al
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Figure 5.77 Aligned and staggered array Nusselt numbers for rod A7.
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Figure 5.78 Aligned and staggered array Nusselt numbers for rod Al.
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5.4.4 Comparison of Individual Rod Results to Choi and Cha's
Individual Rod Results

In their 1990 flow visualization of heated, staggered tube arrays, Choi and
Cha calculated individual rod Nusselt numbers for a single column of rods near the
middle of the array. They compared the Nusselt numbers for each of the rods in the
column to the bottom rod of the column, in order to determine the effect of
preheating on each rod. They identified the bottom rod as rod 1, then numbered
each subsequently higher rod as number 2, 3, 4, and 5. Their geometry and rod
numbering system is shown in Figure 5.79. They calculated a Nusselt number
trend for rods 1 through 5 by first calculating the Nusselt number for each rod, then
dividing it by the Nusselt number for rod 1. This data is shown in Figure 5.80 for
a rod pitch to diameter ratio of 2.0. Notice that as rod number increases, the
preheating from rods below decreases the effectiveness of heat transfer from the
rod.
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Figure 5.79 Diagram of rod positions and rod numbering within Choi and Cha's
staggered array.
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Figure 5.80 Normalized Nusselt number for rods of a single column within Choi
and Cha's staggered array. P/D =2.0.

To compare this data to the UT staggered array, consider Figure 5.81,
which shows a plot of the Nusselt number for rods D8, D6, D4, and D2. Figure
5.82 shows a plot of the Nusselt number for rods D7, D5, D3, and D1. Theserods
are closest to the middle of the array and show the trends of a column of rods where
the rods are directly above one another. Rods D8, D6, D4, and D2 form a vertical
column, as do rods D7, 5, 3, and 1. In the convection regime, moving up from the
bottom to the top rod, the Nusselt number decreases. Thus, the preheating effect is
seen in both the Choi and Cha and UT staggered arrays.
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Figure 5.81 Nusselt numbers for rods D8, D6, D4, and D2.
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Figure 5.82 Nusselt numbers for rods D7, D5, D3, and D1.
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To quantitatively compare these trends to Choi and Cha's results, the same
normalized Nusselt number trend was calculated for the column D odd numbered
rods and for the column D even numbered rods. Using a Rayleigh number of
50,000, which is in the mid-to-upper convection regime for most of the rods, the
rod correlations were used to calculate Nusselt numbers. For the odd numbered
rods, rod D7 was considered to be the bottom rod (numbered as rod 1), and rods
D5, D3, and D1 were numbered as rods 2, 3, and 4, according to Choi and Cha's
convention. For the even numbered rods, rod D8 was the bottom rod, and rods
D6, D4, and D2 were labeled as rods 2, 3, and 4. The final comparison of these
trends is shown in Figure 5.83.
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Figure 5.83 Comparison of normalized Nusselt number trends for the UT
staggered and Choi and Cha staggered arrays.

The main result from this comparison is that as one moves from the bottom
rod toward the top of the array, the Nusselt number drops off much more rapidly
for the UT staggered array than for the Choi and Cha array. There are two main
reasons for this difference.
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First, the Choi and Cha array is not enclosed. This allows the plumes of
each rod to form much more freely than in an enclosure. If the plumes of lower
rods can develop freely, then they can increase the flow velocity around the upper
rods, which tends to increase the Nusselt number of the upper rods. However, a
competing effect is that the lower rods cause hotter air to flow past the upper rods,
which effectively reduces the temperature difference between the rod surface and
the local ambient fluid. For the rod spacings of the Choi and Cha and the UT
experiments, the results of Sparrow and Niethammer state that this preheating effect
is stronger, and thus the overall tendency is for the Nusselt numbers of the upper
rods to be reduced. In the UT staggered array, the enclosure impedes upward
moving fluid from increasing its velocity as it flows around the upper rods. Thus,
while the same two competing effects seen in the Choi and Cha array also exist
within the UT rod array, the preheating effect dominates in the UT array. This is
the reason why the Nusselt numbers decrease so much more in the UT staggered
array than in the Choi and Cha array.

Second, there is a major difference between the spacing of rods in the two
staggered array configurations, as seen in Figure 5.84. In the Choi and Cha array,
constructed by rotating a square array, the vertical distance between rods of a
column is the square root of 2 times 2 rod diameters, or about 2.8 diameters. The
horizontal distance between two rods on the same row is also 2.8 diameters. By
contrast, the UT staggered array has a vertical distance of 2.64 diameters between
rods directly above each other, but only a distance of 1.32 diameters between rods
on the same row. To impinge on the rod directly above it, fluid from a heated rod
must pass through a gap between the two rods diagonally above the heated rod to
get to the rod directly above it. In the UT staggered array, this gap is much smaller
than in the Choi and Cha array.
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Figure 5.84 Difference between UT staggered array spacing and Choi and Cha's
staggered array spacing.

This means that the UT staggered array has two independent differences
between itself and the Choi and Cha array that cause upward buoyant flow to be
hindered more in the UT array—-the enclosure and the tighter rod spacing. Since
hindering the flow prevents the cooling effect of forcing flow past the upper rods,
but does not hinder the preheating effect of the lower rods on the upper rods, it is
expected that the ratio Nuypper rods / Nupottom rod Wwould be much lower in the UT
staggered array.
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5.5 SUMMARY

This chapter has presented and discussed the results of the UT experimental
investigation of heat transfer in an enclosed, staggered array of heated, horizontally-
oriented cylinders. The most important results from this experiment are
summarized below.

Important general trends for the rod bundle
- For a given rod power and pressure state point, both the average and the

maximum rod temperature difference are higher for a nitrogen than fora
helium backfill. This is due to helium's higher thermal conductivity.

« For a constant rod power, increasing the pressure of the backfill gas
increases the overall full array Rayleigh number. This decreases both the
maximum rod surface temperature and the average rod surface temperature,
relative to the CuBE temperature. This change in temperature is much larger
for the nitrogen backfill than for the helium backfill. This is attributed to the
fact that most of the helium data lies in a conduction regime, while most of
the nitrogen data lies in a convection regime.

«  For a constant backfill gas pressure, increasing the rod power increases
both the maximum and average rod surface temperatures, relative to the
CuBE temperature.

 For a given rod power, increasing the system pressure decreases the percent
of total heat transferred by radiation. This change is much larger for the
nitrogen backfill. For a given system pressure, increasing the rod power
increases the percent radiation. In general, the percentage of total heat
transferred by radiation is about 14 to 16 percent for the helium backfill, and
is about 23 to 46 percent for the nitrogen backfill. However, these
percentages are dependent upon the specific temperature ranges of this
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experiment, and might not be the same for, say, a much hotter enclosure
temperature.

 The location of the hottest rod in the bundle shifts upward from row 4 to
row 3, and then again to row 2, as the full array Rayleigh number is
increased.

Important results from the full array heat transfer correlations
e The full array correlations exhibit a two-regime behavior that is similar to

the Rayleigh-Benard problem. These two regimes are characterized by a
conduction regime, in which the Nusselt number increases slightly with
increasing Rayleigh number, and a convection regime, in which the Nusselt
number increases more dramatically with increasing Rayleigh number. The
conduction regime is comprised mostly of helium backfill data, while the
convection regime is comprised mostly of nitrogen backfill data.

« The slope of the Nusselt number curve in the convection regime suggests
that flow is turbulent within the bundle.

e The Nusselt numbers for the UT staggered array are lower than Canaan’s
aligned array Nusselt numbers in the conduction regime. However, the
Nusselt number increases more sharply for the staggered array in the
convection regime, and the staggered array Nusselt number becomes greater
than the aligned array Nusselt number at high Rayleigh numbers.

_« As supported by a FIDAP numerical conduction simulation, the reason for
the staggered array having lower Nusselt numbers than the aligned array at
low Rayleigh numbers is because the aligned array has several more rods in
the array that lie very close to the cooled side wall of the enclosure. This
effect increases the temperature gradients at the side wall, and more
effectively transfers heat from these rods to the wall.
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«  One cannot automatically assume that a staggered array has higher overall
heat transfer coefficients than an aligned array for natural convection within
an enclosure. Depending on the flow regime, the rod spacing, and the
proximity of the enclosure to the rod bundle, it is possible for an aligned
array to have more effective heat transfer.

 The nature of natural convection within an enclosed rod bundle is

fundamentally different from natural convection within a non-enclosed rod
bundle. The enclosure limits formation of buoyant plumes from each rod.
Also, the flow behavior for natural convection within an enclosed rod
bundle is much different from forced convection through a rod bundle.

Important results from the individual rod heat transfer correlations
« Rods in the lower-middle of the array tend to display the same two-regime
heat transfer behavior as seen in the full array results.

«  For the convection regime, rods in the upper part of the array have lower
Nusselt numbers than rods in the lower part. This is because the lower rods
tend to preheat the fluid that surrounds the upper row rods. This effect,
coupled with the author's definition of the characteristic temperature
difference, AT, causes-some-unusual Nusselt munber trends for the upper
row rods. Most upper row rods show a Nusselt number that decreases with
increasing Rayleigh number in some regimes, and some rods (Al and B1)
even exhibit negative Nusselt numbers in a particular regime. However,
these effects do not actually indicate local flow conditions, but rather
describe the behavior of the rod temperature relative to the CuBE
temperature.

« The bottom corner rod (A8), surprisingly, was not the coldest rod in the
array at higher Rayleigh numbers. Instead, rod B8 had the lowest
temperature in the convection regime. Itis speculated that this effect is
caused by a change in the array flow pattern at higher Rayleigh numbers that
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causes the downward-moving cool fluid to drive inward and "cut the
corner," thus impinging more forcefully on rod B8.

Comparing the UT staggered array results to Canaan's aligned array shows
many similarities in the Nusselt number behavior of individual rods. In
general, rods that are in the same position in both arrays demonstrate very
similar behavior. Rods that are slightly closer to the cooled wall yield
slightly higher Nusselt numbers in the conduction regime. In the
convection regime, individual rods in the staggered array tend to have
slightly higher Nusselt numbers than in the aligned array.

The decrease in Nusselt number for the UT staggered array in the
conduction regime from the bottom row to the top row is much greater than
the similar decrease for rods in the Choi and Cha staggered array. This is
attributed to Choi and Cha's lack of a cooled enclosure around the rod
bundle and a wider rod spacing within Choi and Cha's array.
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Chapter 6 -- Conclusions and Recommendations

This thesis has presented the results of an experimental investigation of
natural convection heat transfer for a staggered array of heated cylinders, oriented
horizontally within a rectangular enclosure. While applications of this research
include electronic component cooling and jmmersion heat exchangers, the main
purpose of this research was to extend the knowledge of heat transfer within
enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage
container. This research extends Canaan's investigation of an aligned array of
heated cylinders that simulate a spent BWR fuel assembly.

The heated rod array was comprised of tubular stainless steel heater rods
with a resistance heating element running along the center of each rod. A
rectangular, water-cooled copper box supported the rods and provided an
isothermal heat sink. The rod ends were insulated to minimize axial temperature
variations and allow a two-dimensional heat transfer analysis of the rod bundle.
Detailed spatial characterization of the rod bundle was obtained by measuring the
rod surface temperature with embedded thermocouples placed within the cladding
of each rod. Thorough thermal characterization of the staggered rod array was
performed by filling the array with two different backfill gases, nitrogen and
helium, and by varying the pressure within the array from 0-to 60-psig. The heater
rod power input was about the same for each rod, and was varied between 1 and 5
watts per rod.

Nusselt and Rayleigh numbers were calculated both for each individual rod
in the array and for the full array. Calculation of these dimensionless numbers
required the calculation of the net radiative heat rate from each rod, so that the
convection correlations would be based only on the convective heat rate from the
rods. The radiative power from each rod was calculated using a finite-clement
formulation that solved the radiative transport equafion (assuming diffuse-gray
surfaces and non-participating media) for small, discretized elements on each rod.

The radiative heat rate was then subtracted from the rod power input to obtain the
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convective power. The results were presented in piecewise correlations of the form
Nu = C(Ra)®, where C and n are constants.

6.1 CONCLUSIONS

The results of this analysis showed several trends. These trends were
grouped into three types: general temperature and heat transfer trends, full array
Nusselt and Rayleigh number trends, and individual rod Nusselt and Rayleigh
numbers trends.

In general, increasing the system pressure at constant rod input power
reduced the maximum rod temperature and the bundle-averaged temperature. The
decrease in temperature was more dramatic for the nitrogen backfill than for the
helium backfill. For a given system pressure, increasing the rod input power
increased both the maximum and the average rod temperature. For a given rod
power and pressure state point, the nitrogen backfill always had a higher maximum
and average rod temperature than the helium backfill. This is because helium has a
higher thermal conductivity, which reduces the resistance to heat flow from the rods
to the cooled enclosure wall.

For a given rod power, increasing the system pressure decreased the
percentage of total heat transferred by radiation, thus increasing the heat transferred
by convection. This percentage radiation decrease was more dramatic for the.
nitrogen backfill than for the helium backfill. Also, the percentage of total heat
transferred by radiation was much higher for the nitrogen cases than for the helium
cases. For the nitrogen cases, the percent radiation varied between 23 and 46
percent, whereas this value was between 14 and 16 percent for the helium cases.
These percentages are only valid for the range of enclosure temperatures measured
for this experiment, and cannot be applied to higher enclosure temperatures.

The location of the rod with the highest temperature shifted upward from the
fourth row to the second row of rods as the system Rayleigh number was
increased. This is due to the increased buoyancy forces that occur within the rod
pundle when the rod power and the system pressure is increased.
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For the full array, the Nusselt-Rayleigh number results showed a definite
two-regime trend within the bundle, characterized by a conduction regime, which
consisted mostly of helium data, and a convection regime, which consisted mostly
of the nitrogen data. This two-regime trend is reminiscent of the results of the
Rayleigh-Benard convection problem. The dependence of Nusselt number on AT
to the one-third power suggested that the flow in the convection regime was
turbulent.

In the conduction regime, the staggered array had a lower bundle Nusselt
number than Canaan's aligned array. A numerical conduction simulation showed

that this result was due to the aligned array having a less resistant conduction path
to the cooled side walls of the enclosure than did the staggered array. In the
convection regime, the staggered array had a slightly higher bundle Nusselt
number, probably due to the staggered array's increased space for each rod to form
its buoyant plume.

In most experiments on non-enclosed rod bundles, the staggered array
always has a higher bundle Nusselt number than the aligned array. However, one
cannot assume that this is the case for an enclosed array. The flow regime of the
fluid and the geometry of the conduction path between the rods and the enclosure
must be considered before the effectiveness of heat transfer for an aligned versus a
staggered array is compared.

Natural convection in a staggered rod bundle within an enclosure is
fundamentally different from natural convection within a non-enclosed staggered
rod bundle. The enclosure limits formation of buoyant plumes from each rod,
while in an open rod bundle, buoyant plumes can more easily form from each rod.
Also, the flow behavior for natural convection within an enclosed rod bundle is
much different from forced convection flow through a rod bundle.

For the individual rods, the rods in the upper half of the array are warmed
by the upward-moving plumes from rods lower in the array. Thus, rods higher up
in the array tend to have lower Nusselt numbers than rods in the lower half of the
array. Also, the lower-row rods with higher Nusselt numbers tend to display a
two-regime conduction / convection trend that is similar to the two-regime trend
seen in the full array Nusselt-Rayleigh data.
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A couple of top row rods actually had negative Nusselt numbers in some
Rayleigh number regimes. This is because the Nusselt number's characteristic
temperature difference was defined between the rod surface and the wall
temperature, not between the rod surface and the fluid immediately surrounding the
rod. This means that these rods with negative Nusselt numbers actually had local
fluid surrounding them that was hotter than the rod surface, yet the rod surface was
still hotter than the CuBE wall. This means that, for those particular rods, the
radiative power away from the rod surfaces was greater than the power input to
those rods.

The rod in the lower corner (A8) was, surprisingly, not always the coldest
rod in the array. For higher Rayleigh numbers, the bottom row rod next to the
corner rod (B8) was the coldest rod. This effect is most likely caused by the
downward flow of cooled fluid along the enclosure side wall "rounding the corner”
and impinging more forcefully on the inner rod than on the corner rod.

6.2 RECOMMENDATIONS FOR FUTURE WORK

The effect of the enclosure position on the bundle heat transfer behavior
should be quantified. Given a specific rod bundle, a series of experiments could be-
conducted, varying the enclosure distance from the bundle. A study of this type
could quantify a threshold distance beyond which the rod bundle behaves as if it
were not enclosed. .

The effect of varying the pitch-to-diameter ratio of the rods within the
enclosure could be investigated. By studying the heat transfer within enclosed rod
bundles of various numbers and-spacings of rods, perhaps a new length scale could
be found that collapses all of the rod bundle correlations into a more universal
correlation. Since a few studies have already been done on rod bundles with fewer
rods than the UT rod arrays, perHaps more studies could be performed on rod
bundles with greater numbers of rods. For example, an experimental investigation
of a 17x17 array would allow the characterization of a typical PWR spent fuel
assembly. )
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A numerical study should be performed to investigate the flow patterns
within the rod bundle. This study could use experimentally measured temperatures
as input boundary conditions, so that radiation would not need to be modeled
within the array. However, the model should include the ability to handle turbulent
flow in the higher Rayleigh number regimes. Alternatively, a more complex
numerical study could "go all out" and model both convection with turbulence and
radiation between the surfaces. This code could model many more complex
geometries without the expense of building new rod bundles and enclosures. This
code could also be benchmarked by comparing the results for a known geometry
(say, the geometry of this thesis) to the code results.

Flow visualization studies should be performed on the enclosed rod bundle.

Some techniques that should be considered are photographic techniques such as
Mach-Zehnder interferometry, laser Doppler velocimetry, or particle image
velocimetry. It would be a challenge to perform flow visualization at above or
below atmospheric pressure, because either a transparent window is needed on the
pressure vessel or the flow visualization equipment must fit inside of the pressure
vessel. Even then, it is still difficult to effectively see into the array, because the
support plates or grids used to support the rods would obstruct the view.
However, higher rod powers could be used at atmospheric pressure to obtain the
higher Rayleigh number data at atmospheric pressure.
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Appendix -- RADERA II Code Listing

This appendix contains the listing of the FORTRAN code used to calculate
net radiative heat transfer rate of each of the 60 rods of the UT staggered array
experiment, given the geometry of the rods, the rod and enclosure surface
temperatures, and the rod and enclosure surface emissivities.

RADERA II uses the following input files:

"sysmem.blk”  This file contains the anticipated memory requirements and array
variable dimensioning commands. An example of this small file
is given below.

parameter (maxnd= 1681, maxelm= 840, maxbc= 33, maxsrf= 64)
parameter (maxnz= maxnd*maxnd)

"shdw.dat" This file (see example on following pages) contains the location
of the center of each rod in the array, as well as each rod's
radius.

"in" This file (see example on following pages) contains the all of the

rod and wall temperature data, as well as the surface emissivity
data. The size of the enclosure, as well as the number of
elements that the rods and the walls are divided up into are also
specified.

178



RADERA II produces the following output files:

un

"view.dat"

out

This file is a run-time message file that contains iteration and
solution convergence information. ;

This is the view, or configuration factor file. If a flag within the
input file "in" is set to zero, then this file is created when the
code runs. If the flag in the input file is set to 1, then this file is
read as a previously created file. Much of the running time of
the entire code goes into creating this file.

This file (see example on following pages) contains the
calculated net radiative heat rate for each rod, presented in
W/cm. This file also calculates the heat balance error for the
particular case.

Example listings of the "shdw.dat" and the input and output files are
presented for the case of a nitrogen backfill, 5 W / Tod power setting, at a vessel
pressure of 60 psig. The RADERA II code listing follows these three example

files.
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Sample file "shdw.dat"

Triangular pitch array, RADERAII input

¢ number of rods

C

32
X position
1 C
0.81000004+00
2 C
2.4300000d4+00
3 C
4,05000004+00
4 C
5.6700000d+00
5 C
0.00000004+00
6 C
1.6200000d+00
7 C
3.24000004+00
8 C
4,86000004+00
9 C
0.81000004+00
10 C
2.43000004+00
11 C
4.05000004+00
12 C
5.67000004+00
13 C
0.0000000d+00
14 C
1.62000004+00
15 C
3.24000004+00
16 C
4.86000004+00
17 C
0.81000004+00
18 C
2.43000004+00
19 C
4.05000004+00
20 C
5.6700000d4+00
21 C
0.00000004+00
22 C
1.62000004+00
23 C
3.24000004+00

y position
1.03300004+00
1.03300004+00
1.03300004+00
1.03300004+00
2.6530000d4+00
2.65300004+00
2.65300004+00
2.65300004+00
4,27300004+00
4.27300004+00
4,27300004+00
4.27300004+00
5.8930000d+00
5.89300004+00
5.89300004+00
5.89300004+00
7.5130000d+00
7.51300004+00
7.51300004+00
7.51300004+00
9.13300004+00
9.13300004+00
9.13300004+00

rod radius
.61350004+00
.61350004+00

.61350004+00

0
0
0
0.61350004+00
0.61350004+00
0.61350004+00
0.61350004+00
0.61350004+00
0.61350004+00

0.61350004+00

o

.61350006+00
. 61350006+00
. 61350000+00
. 6135000d:+00
. 6135000d:+00
. 61350000+00
.61350004:+00
.61350006+00
. 6135000+00
. 6135000d:+00
. 6135000d+00
. 61350004:+00

o O O o O O o o o o o o

.61350004+00
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24 C
4,86000004+00
25 C
0.81000004+00
26 C
2.43000004+00
27 C
4,05000004+00
28 C
5.67000004+00
29 C
0.00000004+00
30 C
1.62000004+00
31 C
3.24000004+00
32 C
4.86000004+00

9.13300004+00
1.07530004+01
1.0753000d4+01
1.07530004+01
1.07530004+01
1.23730004+01
1.23730004+01
1.23730004+01
1.2373000d4+01

0.6135000d+00
0.61350004+00
0.61350004+00
0.61350004+00
0.61350004+00
0.61350004+00
0.61350004+00

.61350004+00

o

0.61350004+00
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Sample input file "in" for nitrogen. SW / rod. 60 psig case

Input file from Eric Triplett's staggered assembly

8.00000004-01
5.67000004-12

1

20
200
13.4060004+00

33
43.6800004+00
41,3300004+00
41.1400004+00
44,4300004+00
52.7300004+00
52.3000004+00
51.3800004+00
50.4100004+00
58.6000004+00
58.640000d4+00
57.2700004+00
53.2600004+00
63.3800004+00
63.5600004+00
63.800000d+00
60.9300004+00
68.9900004+00
67.4700004+00
68.4600004+00
62.3000004+00
74.2400004+00
72.5000004+00
73.0600004+00
69.5800004+00
77.8500004+00
75.1300004+00
73.6900004+00
63.1600004+00
75.2300004+00
71.930000a+00
67.8800004+00
64.6200004+00
22.1200004+00

Uniform surface emissivity
Stefan-Boltzmann constant [w/cm~2K"4]

Shape factor file flag

Number of elements per rod (must be even)
Number of elements on walls (must be even)
Height of enclosure (cm)

Number of isothermal surfaces
rod 1 (left to right, bottom to top in deg. C)
rod 2

rod 16
rod 17
rod 18
rod 19
rod 20
rod 21
rod 22
rod 23
rod 24
rod 25
rod 26
rod 27
rod 28
rod 29
rod 30
rod 31
rod 32
Assembly walls
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Sample output file "out" for nitrogen, SW / rod, 60 psig case

Net radiative heat rate, gnet= 0.41583439518434
estimated error=  -0.13762944908109 (% of gnet) .

Surface T Heat Rate
43.68 0.70558E-02
41.33 0.29728E-02
41.14 0.54448E-02
44,43 0.22605E-01
52.73 0.20729E-02
52.30 0.38852E-02
51.38 0.40011E-02
50.41 0.14113e-01
58.60 0.17136E-02
10 58.64 0.35631E-02
11 57.27 0.86485E-02
12 53.26 0.20948E-01
13 63.38 -0.57813E-04
14 63.56 0.10024E-02
15 63.80 0.51080E-02
16 60.93 0.17023E-01
17 ' 68.99 0.24131E-02
18 67.47 0.10826E-04
19 68.46 0.15067E-01
20 62.30 0.29059E-01
21 74.24 0.29187E-02
. 22 72.50 0.18059E-02
23 73.06 0.97607E-02
24 69.58 0.25761E-01
25 77.85 0.16409E-01
26 75.13 0.13110E-01
27 73.69 0.25563E-01
28 63.16 0.31063-01
29 75.23 0.20353E-01
30 71.93 0.33177E-01
31 67.88 0.28326E-01
32 64.62 0.40593E-01
33 22.12 -0.41606E+00

woJoanubdWwhRE
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program RADERATIL
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The RADERA II program calculates the radiative exchange within an
array of isothermal rods enclosed by an isothemal, square
enclosure. The number, position, and radius of each of the rods
is specified on input.

The RADERA II program makes the following assumptions:
1) The enclosure is symmetric about the vertical mid-plane
2) All the surfaces, including the wall, have the
same emissivity
3) The emissivity is constant
4) A1l surfaces are gray and diffuse

The RADERA II program includes an internal mesh generator which

paves the rods and walls with second order (three node) bar elements.
The mesh generator ensures that all elements are constructed according
to the appropriate righ hand rule but it does not insure that the
rods are contained within the enclosure.

IT IS THE USERS RESPONSIBILITY TO INSURE THAT THE INPUT IS
CONSISTENT AND THAT ALL OF THE RODS ACTUALLY FIT WITHIN THE
CONFINES OF THE ENCLOSURE WALL!

REQUIRED FILES:

the RADERA II program requires three (3) additional data files
in order to operate correctly:

sysmem.blk - Contains the FORTRAN parameter statement which
sets the memory allocation.

shdw.dat — Contains the number, centerpoint, and radius of each
of the rods in the enclosure. It is only necessary to
specify the rods in the right hand side of the array. The
left hand side is constructed from symmetry (see
assumption 1).

in - Contains the mesh generation data, emissivity, Stefan-
Boltzmann constant, and the temperatures of each of the
rods in the array and the wall temperature.
THE WALL TEMPERATURE IS ALWAYS SPECIFIED IAST!

THE ROD TEMPERATURES MUST BE SPECIFIED IN THE SAME ORDER
AS IN THE shdw.dat FILE!
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memory allocation

maxelm - Maximum nunber of elements

maxnd - maximum nunber of nodes

maxbe - maximm nunber of surfaces

maxsrf - Maximum nunber of potentially shadowing surfaces

maxnz — Maximm number of nonzero configuration factors
maxnd**2 R

common  storage
/GLint/ - Gauss Legendre integration rule

xint (3) - master element coordinate of integration point i
w(3) - Integration weight for point i
N1l - Number of integration points

/head/ - Character neutral file tile info
title*80 - Neutral file title
date*12 - date neutral file was created
time*8 -~ Time neutral file was created
vers*12 - PATRAN version number used to create neutral file
srftp (maxsrf)*1 - Shadowing surface type, cirxcle - ‘c',
line - '1!

/icentrl/ - Integer control parameters

itp4 - Runtime message file (run)
itp5 - not used
itp6 - emissivity and temperature input file (in.dat)
itp7 - Shape factor storage file (view.dat)
itp8 — not used
itp9 - Integrated surface heat flux file (out)
itplO ~ Shadow surface data file (shdw.dat)
J.pa:cam (20) - Integer control parameters
i= 1 - Shape factor storage file flag

/mesh/ ~ Finite element mesh information

Ne (maxelm) - Number of nodes in element i

inde (maxelm, 3) - Node numbers in element i

Nnd - Nunber of nodes

Nelem — Number of elements

Nbc - Number of isothermal surfaces

Nsrf — Nunber of potentially shadowing surfaces

Nnzr - The number of nonzero viewfactors whlch are stored
ide (maxelm) — PATRAN id nmumber for element i

idn (maxnd) - PATRAN id number for node i

idbec (maxelm) — Boundary condition applied to element i
jeoef (maxnz, 2) - Index pointers for viewfactor storage

/mtrl/ -~ Material properties

emsvty ~ Uniform emissivity
sb - Stefan Boltzmann constant

/xmesh/ - Real mesh information
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c xnd (maxnd, 2) - %,y coordinates of node i
c T (maxbc) - Temperature of each surface
c Tn(maxnd) — Nodal temperatures
c srfdat (maxsrf, 4) - Shadowing surface data
c /shpfac/ - Shape factors
c Ex (maxnz), Ey(maxnz) - %, y coordinate emission configuration
c factors
c Rxx (maxnz), Rxy(maxnz), Ryx(maxnz), Ryy(maxnz) - Reflection
c tensor
c /solu/ - Principal solution
c qr(maxnd, 2) - Incident radiative flux vector components at
c node i -
c qout (maxbc) - Net integrated radiative heat flux leaving
c each surface
c err - Estimated percent error in total integrated heat flux
c gnet - Net heat flux
c /work/ - workspace
c wi (maxnd) - Workspace vectors
c
implicit double precision (a-h, 0-z)
include 'sysmem.blk'
character title*80, date*12, time*8, vers*12, srftp (maxsrf)*l
comon /head/ title, date, time, vers, srftp
common /ientrl/ itpd4, itp5, itp6, itp7, itp8, itp9, itplo,
# iparam (20)
common /mesh/ Ne (maxelm), inde(maxelm, 3), Nnd, Nelem, Nbc,
# ide (maxelm), idn(maxnd), idbc(maxelm), Nsrf,
# Nnzr, jcoef (maxnz, 2), ner, new
common /rmesh/ xnd (maxnd, 2), T(maxbc), Tn(maxnd),
# srfdat (maxsrf, 4), tol, hwall
cammon /mtrl/ emsvty, sb
common /GLint/ xint (8), w(8), Nl
common /shpfac/ Ex(maxnz), By (maxnz), Rxx(maxnz), Rxy(maxnz),
# Ryx (maxnz), Ryy (maxnz)
common /solu/ qr(maxnd, 2), gout (maxbc), err, gnet
common /work/ wl(maxnd), w2 (maxnd)
dimension xc(2)
c Initialize memory
call init
c Read emissivity and temperature data

write (itp4, *) 'Reading temperatures and emissivity'
call rprcb
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c read shadow surface data

write (itp4, *) 'Reading shadow surface description'
call rshdw

c set up mesh

call mshwl (itp4, new, hwall, nnd, nelem,

# ne, inde, xnd)
c set boundary condition flag

do 10 i= 1, nelem
10 idbc (1)= Nbc

c mesh the rods in the right side of the enclosure

do 20 i= 1, nsrf

xc(l)= srfdat (i, 1)

xc(2)= srfdat (i, 2)

r= srfdat (i, 3)

call mshrd (itp4, xc, r, ner, znd, ne, inde, nnd,
# nelem, i, idbc) ‘

20 continue
c reflect shadowing surfaces to left side of array

nnr= 0
do 30 isxf= 1, nsrf

c don't reflect rods on the centerline

if (srfdat (isxf, 1).ne.0.0004+00) then
nnr= nnr+l
srfdat (nsrf4+nnr, 1)= -srfdat (isrf, 1)
srfdat (nsrf+nnr, 2)= srfdat (isrf, 2)
srfdat (nsrf+nnr, 3)= srfdat (isrf, 3)
end if

30 continue
nsrf= nsrf + nnr

c set node and element id numbers

do 40 i= 1, nnd
40 idn(i)= i

do 50 i= 1, nelem
50 ide(i)= 41
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Evaluate shape factors
if (iparam(l).ne.l) then

write (itp4, *) 'Calculating shape factors®
call config

call store
else

write (itp4, *) 'Reading shape factors'
call store

end if
Evaluate incident radiative flux at each node

write (itp4, *) 'Evaluating incident radiative flux’
call proc

Integrate net radiative flux leaving each rod

write (itp4, *) ‘'Integrating net radiative heat flux'
call post

write results

write {itp4, *) 'Printing results’
call wres

write (itp4, *) 'Execution complete’
write (itp4, *) 'Have a nice day'

stop
end

subroutine config

Q00

Calculates the configuration factors for direct surface
emission and surface reflaction between each node in the
mesh
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10

implicit double precision (a-h, 0-z)
include 'sysmem.blk’
common /mesh/ Ne (maxelm), inde(maxelm, 3), Nnd, Nelem, Nbc,
# ide (maxelm), idn(maxnd), idbc(maxelm), Nsrf,
# Nnzr, jcoef (maxnz, 2), ner, new
common /shpfac/ Ex(maxnz), Ey(maxnz), Rxx(maxnz), Rxy(maxnz),
Ryx (maxnz), Ryy (maxnz)
dimension esir-lte(3, 2), esintr(3, 2, 2)
Nnzrx= 0
Loop through each node in the mesh
do 30 i= 1, Nnd
set pointer for Nnzr(i)
Nnzri= Nnzr + 1
loop through each element in the mesh
do 30 j= 1, Nelem
calculate elemental contribution
call sint (j, i, esinte, esintr, istore)
assenble elemental contribution if contribution is not O
if (istore.eq.l) then
do 20 jn= 1, Ne(J)
find correct storage location
ifndk= 0
do 10 k= Nnzri, Nnzr

if ((jcoef(k, 1).eq.i) .and.
# (jcoef (k, 2).eq.inde(j, jn))) then

ifndk= 1
- Ex(k)= Ex(k) + esinte(jn, 1)
Ey (k)= Ey (k) + esinte(jn, 2)
Rxx (k)= Rxx (k) + esintr(jn, 1, 1)
Rxy (k)= Rxy (k) + esintr(jn, 1, 2)
Ryx (k)= Ryx (k) + esintr(jn, 2, 1)
Ryy (k)= Ryy(k) + esintr(jn, 2, 2)
end if

continue
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20

30

if this is a new interaction, make a new location

if (ifndk.eq.0) then
Nnzr= Nnzr + 1
jeoef (Nnzr, 1)= 1
jeoef (Nnzr, 2)= inde(j, jn)
Ex (Nnzr)= esinte(jn, 1)
By (Nnzr)= esinte (jn, 2)
Rxx (Nnzx)= esintr(jn, 1, 1)
Rxy (Nnzr)= esintr(jn, 1, 2)
Ryx (Nnzr)= esintr(jn, 2, 1)
Ryy (Nnzr)= esintr(jn, 2, 2)

end if

continue
end if

continue

return
end

subroutine init

Initializes memory and Gauss integration and opens data files

implicit double precision (a-h, 0-z)
include ‘sysmem.blk'

character title*80, date*12, time*8, vers*12, srftp(maxsrf)*1

common /head/ title, date, time, vers, srftp

comwon /icntrl/ itp4, itp5, itp6, itp7, itp8, itp9, itplO,
iparam(20)

common /mesh/ Ne (maxelm), inde(maxelm, 3), Nnd, Nelem, Nbc,

ide (maxelm), idn (maxnd), idbc(maxelm), Nsrf,

Nnzr, jcoef (maxnz, 2), ner, new

common /xrmesh/ xnd(maxnd, 2), T(maxbc), Tn(maxnd),

srfdat (maxsrf, 4), tol, hwall

common /mtrl/ emsvty, sb

comon /GLint/ xint(8), w(8), NL

de ke

a4
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common /shpfac/ Ex(maxnz), By (maxnz), Rxx(maxnz), Rxy(maxnz),
Ryx (maxnz), Ryy (maxnz)
common /solu/ qr(maxnd, 2), qout (maxbc), err, gnet

itp4= 10
itp5= 11
itp6= 12
itp7= 13
itps= 14
itp%= 15
itpl0= 16

open (unit= itp4, file= 'run', status= 'unknown')
write (itp4, *) 'Initializing storage'

xint (1)= -0.9602899
xint (2)= -0.7966665
xint (3)= -0.5255324
xint (4)= -0.1834346
xint (5)= —xint (4)
xint (6)= —xint (3)
xint (7)= —xint (2)
xint (8)= -xint (1)

w(l)= 0.1012285
w(2)= 0.2223810
w(3)= 0.3137066
w(4)= 0.3626838
w(5)= w(4)
w(6)= w(3)
w(l)=w(2)
w(8)= w(l)

Nl= 8

do 10 i= 1, maxelm

Ne(i)= 0

inde(i, 1)=0
inde(i, 2)=0
inde(i, 3)=0
ide(i)= 0
idbc(i)= 0

10 continue

do 20 i= 1, maxnd

idn(i)= 0

Tn(i)= 0.0000d+00

xnd (i, 1)= 0.000000d+00

xnd (i, 2)= 0.000000d+00

gr(i, 1)= 0.000004+00

qr(i, 2)= 0.000004+00
20 continue

do 30 i= 1, maxbc

gout (i)= 0.0000d4+00
30 T(i)= 0.00000d+00
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return

subroutine mshrd (itp, xc¢, r, ner, xnd, ne, inde, nnd, nelem,
# ibe, idbe)

Paves a rod with center xc, and radius r with bar/3 elements

10

implicit double precision (a-h, o0-2)
include 'sysmem.blk’

dimension xc(2), xnd(maxnd, 2), inde (maxelm, 3), ne(maxelm),
# idbc (maxelm)

if rod is on line of symmetry go to mshhrd

if (xc(l).eq.0.000d+00) then

call mshhrd (itp, xc(2), r, ner, xnd, ne, inde, nnd, nelem,
# ibe, idbc)

return
end if

write error message if r<xc(l)
if (xc(l).lt.r) go to 901
pave rod
nnr= 2*ner
pi= dacos (~1.000d+00)
dtheta= 2.0*pi/nnr
set node positions
do 10 in= 1, nnr
nnd= nnd + 1
xnd (nnd, 1)= xc(l) + r*dcos((pi/2.0) - dtheta*(in-1))

xnd (nnd, 2)= xc(2) + r*dsin((pi/2.0) - dtheta*(in-1))
continue
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set element connectivity

do 20 ie= 1, ner - 1
nelem= nelem + 1
idbe (nelem)= ibc
ne (nelem)= 3
inde (nelem, 1)= nnd - nnr + (ie-1)*2 + 1
inde (nelem, 2)= inde(nelem, 1) + 2
inde (nelem, 3)= inde(nelem, 1) + 1
20 continue

c tie in last element

nelem= nelem + 1

idbe (nelem)= ibc

ne (nelem)= 3

inde (nelem, 1)= inde (nelem-1, 2}
inde (nelem, 2)= inde(nelem-ner+l, 1)
inde (nelem, 3)= inde(nelem, 1) + 1

return

901 write (itp, *) ' '
write (itp, *) ° > FATAL, ERROR IN MESH GENERATCR <
write (itp, *) 'rod too close to centerline’
write (itp, *) 'rods can only intersect centerline'
write (itp, *) 'if they are bisected by the centerline'
write (itp, *) 'e.g. xc=0'
write (itp, *) 'move the rod at (x, y)= ',xc(1), xc(2)
write (itp, *) 'with radius ="', r
write (itp, *) ' !
write (itp, *) '
stop

> EXECUTION TERMINATED'

end

subroutine mshhrd (itp, yc, x, ner, xnd, ne, inde, nnd, nelem,
# ibc, idbce)

Paves half rod with center at (0, yc) and radius r with bar/3 elements

implicit double precision (a-h, o0-2z)
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include 'sysmem.blk'

dimension snd(maxnd, 2), inde(maxelm, 3), ne (maxelm),

¥ idbc (maxelm)
pi= dacos(-1.000d+00)

nnr=ner + 1
dtheta= pi/ (nnr-1)

c set up nodes
do 10 in= 1, nnr
nnd=nnd + 1
snd (nnd, 1)= r*cos((pi/2.0) - dtheta*{(in-1))
xnd(nnd, 2)= yc + r*sin((pi/2.0) - dtheta*(in-1))
10 continue
c set up nodal connectivity
do 20 ie= 1, ner/2
nelem= nelem + 1
idbc (nelem)= ibc
ne (nelemj= 3
inde (nelem, 1)= nnd - nnr + (ie-1)*2 + 1
inde (nelem, 2)= inde(nelem, 1) + 2
inde (nelem, 3)= inde(nelem, 1) + 1
20 continue
return
end
c
subroutine mshwl (itp, nw, H, nnd, nelem, ne, inde, xnd)
c
c This subroutine paves the walls of the enclosure with a uniform
c grid of bar/3 elements
c H -~ The height of the enclosure
c nw — Number of elements on all walls (bottom, side, top inclusive)
c

implicit double precision (a-h, o-z)
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30

40

include 'sysmem.blk'
dimension ne (maxelm), inde (maxelm, 3), xznd(maxnd, 2)

dz= H/nw
pi= dacos (-1.0004+00)

set nodes - lower wall

do 10 i= 1, (nw/2)+1

nnd= nnd+1

xnd (nnd, 2)= 0.00000000d4+00

xnd(nnd, 1l)= (i-1)*dx

snd (nnd, 1)= H*dsin(pi*xnd(nnd, 1)/H)/2.00
continue

- side wall

do 20 i= 1, nw

nnd= nnd + 1

xnd (nnd, 1)= H/2.000004+00

xnd(nnd, 2)= i*dx

xnd(nnd, 2)= H*(1.00-dcos (pi*xnd(nnd, 2)/H))7/2.00
continue

- top wall

do 30 i= 1, nw/2
nnd= nnd+1
xnd (nnd, 2)= B
xnd (nnd, 1)= (H/2.0000d4+00) -~ i*dx
xnd(nnd, 1)= H*dsin(pi*xnd(nnd, 1)/H)/2.00
continue

Set element connectivity

do 40 i= 1, nw
nelem= nelem+l
ne(nelem)= 3
inde (nelem, 1)= nnd - (2*nw+l) + 2% (1i-1) + 1
inde (nelem, 2)= inde (nelem, 1)+2
inde (nelem, 3)= inde(nelem, 1)+1
continue

return
end

subroutine norm (itp, dpsi, xj, Ne, n)
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Calculates the outward directed norm at a given location on the
side of the element. The location is implied by the value of the
derivatives of the master element basis functions corresponding

to the side. The side of the element is specified by the coordinates of

the nodes which lie on the side (listed in CCW fasion).

dpsi(3) - The derivative of the master element basis
functions, i, corresponding to the side element (in)
x3(3, 2) - The coordinates, j, of the nodes, i, specifying the side
element (in)
Ne - The number of nodes in the side element (in)
n(3) - The coordinates, i, of the outward directed normal (out)

10

20

30

implicit double precision (a-h, o-z)

dimension dpsi(3), xj(3, 2), dxdx(2)
double precision n(2)

Initialize gradient map

do 10 i= 1, 2
n(i)= 0.00d4+00

dxdx ()= 0.000d+00

calculate gradients in global coordinates

do 20 i= 1, Ne
do 20 §=1, 2

dxdx (j)= dxdx () + xj(i, J)*dpsi(di)

Evaluate elements of the nomm vector

n(l)= dxdx(2)
n(2)= ~dxdx(1)

divide by ||nomm]|

h= dsqrt( n(1)*n(1l) + n(2)*n(2) )
if (h.eq.0.00d+00) then

write (itp, *)
write (itp, *)
write (itp, *)
write (itp, *)
do 30 i= 1, Ne

t*%x* error in subroutine norm ***?'

'linf|= h= 0*

*check for inconsistent node specification'
'node locations:'

write (itp, *) i, i, 3), =1, 2)

stop
else
n{l)=n(l)/h
n(2)=n(2)/h
end if

return
end
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subroutine obstrc (xi, x3j, xc, r, iflg, tol)

determines if the line i-j and the circle (xc, r) have any
intersections and if an intersection lies between i and j

implicit double precision (a-h, o-z)
dimension xi(2), xj(2), xc(2)

iflg= 0
tol= 0.001

find the distance between i and j

dij= dsqrt ((xj(1)-xi(1))**2 + (xj(2)—xi(2))**2)
if (dij.eq.0.00000d+00) go to 900

find equation of line Lij

2= x3j(2) - xi(2)

B= xi(1) - x3j(1)

C=xi(2)*(xj(1)-xi (1)) - xi(1)*(xj(2)-xi(2))

find distance between rod center and line Iij
decij= dabs ((A*xc(l) + B*xc(2) + C)/dij)

circle xc,r can only intersect Idij if deij<r

if (deij.gt.r) return

check to make sure intersection is between i and j

dci= dsart ((zc(l)-xj(1))**2 + (xc(2)-xj(2))**2)
dci= dsgrt ((xc(1)-xi(1))**2 + (xc(2)-xi (2))**2)

dl= dsqrt (dcj**2 - deij**2)
d2= dsqrt (dci**2 - dcij**2)

rod can only obstruct if dl+d2=dij

if ((d1+d2).gt.(dij+tol)) return
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if we get this far then the rod must obstruct Lij

iflg=1
return

write (*, *) ' > WARNING: SUBROUTINE OBSTRC <
write (*, *) 'point i and j are the same point'’
write (*, *) '(xi, yi)=',xi(1), xi(2)

write (*, *) '(xj, yi)= ',x3j1), xj(2)

write (*, *) '====> EXECUTION CONTINUES'

write (%, *) * !

return
end

subroutine obstrl (xi, xj, xa, xb, iflg, tol)

determines if the intersection of i-j and a-b lies between
the points i, j, a, and b

implicit double precision (a-h, o0-z)

dimension xi(2), x3j(2), %a(2), xb(2), xint(2)
double precision mij, mab

iflg=0
big= 1.000d+10

calculate slopes

mij= (xj(2) - xi(2)) / (zj(1) - =i (1))
mab= (xb(2) - xa(2)) / (zb(l) - xa(l))
if (xj(1) .eq.xi(l)) mij= big

if (xb(l).eq.xa(l)) mab= big
calculate intersection

xint (1)= (xa(2) - xi(2) + mij*xi (1) - mab*xa(l)) / (mij - mab)
xint (2)= mij* (xint (1) - xi(1)) + xi(2)
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calculate distances

dij= dsqrt ((xi (1)-xj(1))**2 + (xi(2)-x3(2))**2)
dab= dsqrt ((xa(1)-xb(1))**2 + (xa(2)-xb(2))**2)
dsi= dsqrt ( (xint (1) -xi(1))**2 + (xint(2)-xi(2))**2)
dsj= dsqrt ((xint (1) -xj(1))**2 + (xint(2)-xj(2))**2)
dsa= dsqrt ( (xint (1)-xa(l))**2 + (xint(2)-xa(2))**2)
dsb= dsqrt ((xint (1) -xb(1))**2 + (xint(2)-xb(2))**2)

check for intersection between i, j and a, b

if ((dsi.lt.(dij-tol)) .and. (dsj.lt.(dij-tol)) .and.
# (dsa.lt. (dab-tol)) .and. (dsb.lt.(dab-tol))) iflg=1

return
end

subroutine post

Integrates net radiative heat flux leaving each of the .
isothermal surfaces

implicit double precision (a-h, o-z)
include 'sysmem.blk'
common /mesh/ Ne (maxelm), inde(maxelm, 3), Nnd, Nelem, Nbc,
* ide (maxelm), idn(maxnd), idbc(maxelm), Nsrf,
# Nnzr, jcoef(maxnz, 2), ner, new
common /rmesh/ xnd(maxnd, 2), T(maxbc), Tn(maxnd),
# srfdat (maxsrf, 4), tol, hwall
common /mtrl/ emsvty, sb
common /GLint/ xint(8), w(8), N1
common /solu/ qr (maxnd, 2), gout (maxbc), err, gnet
dimension psi(3), dpsi(3), xj(3, 2), m(2)
loop through all of the elements in the mesh
do 40 ie= 1, Nelen
initialize integral
sum= 0.0000d+00
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c store the node locations
do 10 in= 1, Ne(ie)
do 10 j=1, 2
10 xj{in, j)= xnd(inde(ie, in), 3J)
c loop through each integration point
do 30 I=1, N1
c Evaluate basis functions, Jacobian, and normal
call shape (itp4, Ne(ie), xint(L), psi, dpsi)
call srfijch (Ne(ie), xj, dpsi, Rj)
call nom (itp4, dpsi, xj, Ne(ie), rn)
c evaluate net radiation out of surface at L

ge= 0.0000d4+00
do 20 j= 1, Ne(ie)
ge= qe + psi(j)*emsvty* (sb* (Tn(inde(ie, j))**4) -

# qr (inde (ie, J), 1)*rn(l) -
¥ qr (inde (ie, Jj), 2)*rm(2))
20 continue
c assemble integral

sum= sum + ge*Rj*w (L)
30 continue
c add element contribution onto appropriate surface
gout {(idbc (ie) )= qout (idbc(ie)) + sum
40 continue
determine the net radiative transfer and error

Remember, the integration was only done over half of the
domain

(el elNe]

gpos= 0.00000d+00
aneg= 0.0000d4+00

do 50 i= 1, Nbc
if (gout (i).ge.0.000d+00) then
qpos= gpos + qout (i)
else if (qgout(i).le.0.000d+00) then
qneg= gneg - qout (i)
end if
50 continue

gnet= (gpos + qneg) /2.0000d+00
err= 100.0*{(qpos ~ agneg) / gnet
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return

subroutine proc

c
c Tterates to find the incident radiative heat flux at each
c node
c
implicit double precision (a-h, 0-z)
include 'sysmem.blk'
common /icntrl/ itp4, itp5, itp6, itp7, itp8, itp9, itplo,
# iparam (20) .
common /mesh/ Ne (maxelm), inde(maxelm, 3), Nnd, Nelem, Nbc,
# ide (maxelm), idn(maxnd), idbc (maxelm), Nsrf,
# Nnzr, jcoef (maxnz, 2), ner, new
common /rmesh/ xnd (masnd, 2), T(maxbc), Tn(maxnd),
¥ srfdat (maxsrf, 4), tol, hwall
common /mtrl/ emsvty, sb
common /shpfac/ Ex(maxnz), Ey(maxnz), Rxx(maxnz), Rxy(maxnz),
# Ryx (maxnz), Ryy (maxnz)
common /solu/ qr(maxnd, 2), gout (maxbc), err, gnet
common /work/ wl(maxnd), w2 (maxnd)
c set nodal temperatures
do 10 i= 1, Nelem
do 10 j= 1, Ne(i)
Tn(inde(i, 3j))= T(idbc(i))
10 continue
c initialize iteration

small= 1.0000d-10
dgmax= small
maxit= 100

iter= 0
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30

40

Begin Picard iteration

do while ((dgmax.ge.small) .and. (iter.lt.maxit))

i e e o e

iter= iter + 1

dgmax= 0.000d+00
do 20 i= 1, Nnd

wl (1)= 0.0000d+00
w2 (1)= 0.00004+00

loop through each node in the mesh
do 30 k= 1, Nnzr

wl (jcoef (k, 1))= wl(jcoef(k, 1)) —
(1.00-emsvty) * (qr (Jeoef (k, 2), 1)*Rxx(k) +
ar (3eoef (k, 2), 2)*Rey(k)) -
emsvty*sb* (Tn (jeoeE (k, 2))**4)*Ex (k)
w2 (Jooef (k, 1))= w2 (jcoef(k, 1)) -
(1.00-emsvty) * (qr (Jcoef (k, 2), 1)*Ryx(k) +
ar (Jeoef (k, 2), 2)*Ryy(k)) -
emsvty*sb* (Tn (jcoef (k, 2))**4)*Ey (k)

continue

evaluate change in solution and update

do 40 i= 1, Nnd
dg= dsart((qr{i, 1) - wl(i))**2 + (gr(i, 2) - w2(i))**2)
if (dq.gt.dgmax) dgmax= dq
gr(i, 1)= wil(di)
qr(i, 2)=w2(i)
continue

print convergence information

write (itp4, *) °* ', iter, dgmax
write (*, *) ! ',iter, dgmax
end do
return
end
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subroutine rprob

Reads problem description file including surface temperatures

and emissivities

implicit double precision (a-h, o-2)
include !sysmem.blk'

common /icntxl/ itp4, itp5, itp6, itp7, itp8, itp9, itplo,
iparam (20)

common /mesh/ Ne (maxelm), inde (maxelm, 3), Nnd, Nelem, Nbc,
ide (maxelm), idn(maxnd), idbc(maxelm), Nsrf,
Nnzr, jcoef (maxnz, 2), ner, new

common /rmesh/ xnd (maxnd, 2), T(maxbc), Tn(maxnd),
srfdat (maxsrf, 4), tol, hwall

common /mtrl/ emsvty, sb

e Ak

3k

open file

open (unit= itp6, file= 'in', status= 'old')
Skip over header

read (itp6, *)

read (itp6, *)

read (itp6, *)

read emissivity and Stefan-Boltzmann number
read (itp6, 1) emsvty

read (itp6, 1) sb

read (itp6, *)

read shape factor file flag

read (itp6, 2) iparam(1)
read (itp6, *)

read mesh data

read (itp6, 2) ner

read (itp6, 2) new

read (itp6, 1) hwall

read (itp6, *)

read the number of surfaces

read (itp6, 2) Nbc
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c read surface temperatures
do 10 i= 1, Nbc
read (itp6, 1) T(i)
c convert temperatures to Kelvin
T(i)= T(i) + 273.15
10 continue
close (unit= itp6, status= 'keep')
1 format (d14.7)
2 format (il4)
return
end
c
subroutine rshdw
c
c Reads the shadow surface data file
c
implicit double precision (a-h, o0-2z)
include 'sysmem.blk’
character title*80, date*12, time*8, vers*12, srftp(maxsrf)*1l
common /head/ title, date, time, vers, srftp
common /icntrl/ itp4, itp5, itpé, itp?, itp8, itp9, itplo,
# iparam(20)
comron /mesh/ Ne (maxelm), inde (maxelm, 3), Nnd, Nelem, Nbc,
# ide (maxelm), idn(maxnd), idbc(maxelm), Nsrf,
# Nnzr, jcoef (maxnz, 2), ner, new
common /rmesh/ xnd (maxnd, 2), T(maxbc), Tn(maxnd),
¥ srfdat (maxsrf, 4), tol, hwall
open (unit= itpl0, file= 'shdw.dat’', status= 'old')
c skip header
read (itpl0, *)
read (itpl0, *)
c read number of surfaces in the right hand side

read (itplO, 1) Nsrf
read (itplO, *)
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c read all surface data

do 10 i= 1, Nsrf

read (itpl0, 2) srftp(i)
read (itpl0, 3) (srfdat(i, J), j=1, 4)

10 continue

close (unit= itpl0, status= 'keep')
1 format (i5)
2 format (7x, al)
3 format (4(1x, di4.7))

return

end
c

subroutine shadow (xi, xj, ishdw)
c
c Determines if the line segment i-j is intersected by any of
c the potentially shadowing surfaces
c xi(2) - Cartesian coordinates of node i (in)
c xj(2) - Cartesian coordinates of integration point j (in)
c ishdw -~ Flag indicating obstruction (out)
c ishdw= 1 - true, ishdw= 0 - false
c Block Memory:
c /shdsrf/ Ne, inde, Nelem
c /xmesh/ xnd
(o]

implicit double precision (a-h, o-z)
include 'sysmem.blk’
character title*80, date*12, time*8, vers*12, srftp (maxsrf)*1
common /head/ title, date, time, vers, srftp
common /mesh/ Ne (maxelm), inde(maxelm, 3), Nnd, Nelem, Nbc,
# ide (maxelm), idn(maxnd), idbc(maxelm), Nsrf,
# Nnzr, jcoef (maxnz, 2), ner, new
common /mesh/ xnd (maxnd, 2), T(maxbc), Tn(maxnd),
srfdat (maxsrf, 4), tol, hwall
dimension xi (2), xj(é), xa(2)

ishdw= 0
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c compare i-j to each surface
do 10 isrxf= 1, Nsrf
xa(1l)= srfdat (isrf, 1)
xa (2)= srfdat (isrf, 2)
call obstrc (xi, xJj, xa, srfdat(isrf, 3), ishdw, tol)
if (ishdw.eq.l) return
10 continue
return
end
C=
SUBROUTINE SHAPE (ITP, NE, X, PSI, DPSI)
C
o}
o] Evaluates elemental basis functions and derivatives on master
(o4 element (rod elements only)
o]
Cc ITP Error file unit number for error print out (I/input)
(o NE Nunber of nodes in element (I/input)
C X Coordinates of point P where basis functions are
Cc evaluated (R/input)
c -
C PSI(I) Basis functions evaluated at point P, I= 1, 9
c {R/output)
(o4 DPSI(T) Derivative of basis functions evaluated at point P,
(o] I= 1, 9 (R/M/output)
o4
C
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
DIMENSION PSI(3), DPSI(3)
o] Initialize memory
D010 J=1, 3
DPSI (J)= 0.000000d+00
PSI(J)= 0.0000000d+00
10 CONTINUE -
c set element basis functions
IF (NE.EQ.3) THEN
C Set ROD/3 basis functions.

PSI(1)= 0.5 * X * (X - 1.0)
PSI(2)= 0.5 * X * (X + 1.0)
PSI(3)=1.0 - X * X
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DPSI (1)= 0.5 * (2.0
DPSI(2)= 0.5 * (2.0

- 1.0)
. .0)
DPSI (3)= -2.0 * X

*

*X +1
RETURN

EISE IF (NE.EQ.2) THEN
Set ROD/2 basis functions

PSI(1)= 0.5 * (1.0 - X)
PSI(2)= 0.5 * (1.0 + X)

DPSI(1)= -0.5
DPSI (2)= 0.5

RETURN
ELSE
This element is not included in element library
WRITE (ITP, *) '*** Fatal Error in SHAPE ***!
WRITE (ITP, *) 'Element with ',NE,' nodes and ISHPE= ',
# ISHPE, ' is not in library®
WRITE (ITP, *) 'Translator execution is terminated by SHAPE'
STOP
END IF

END

subroutine sint (je, in, esinte, esintr, istore)

Qaa

QQ
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Calculates the elemental contribution to the reflection and
direct emission operators. Includes mirroring, assuming a mirror
plane at %= 0.

in - Global node nunber of interest (in)
je - Element over which integration is performed (in)

esinte(4, 3) - The %, y, 2z, component, j, of the surface
emission integral contributing source term at
node i (out)
esintr(4, 3, 3) - The %, y, z component, j, of the reflection
contributing to the k camponent of the
radiation flux vector at node i
istore - Flag indicating elemental contribution is shadowed
or otherwise cbstructed, istore= 0 - do not store
istore= 1 - store elemental contribution
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dot - Inner product of rn and roh (data)
dpsi(9, 3) ~ jth derivative of the ith master element basis
function evaluated at an integration point (data)
h - |ri-ro} (data) .
imirr - Flag indicating if current integration point has been
mirrored (data)
Last - lLast element to cause a shadow (data)
N1 - Number of integration points (data)
pi - What do you think it is? (data)
psi(9) - ith master element basis function evaluated at a given
integration point (data)
ri(3) - (x, y, z) coordinates of the node i (in)
Rj — The Jaccbian for this surface element at an integration point (data)
m(3) - Outward directed unit normal to the mesh at a given integration
point (data)

" ro(3) - (%, y, 2) global coordinates of a given integration point (data)

roh(3) - Unit vector (ri-ro)/|ri-ro| (data)
w(27) - Integration weight corresponding to point i (data)
x - Optical distance from ri to ro (data)
xint (27, 3) - (%, vy, z) coordinates, j, of integration
point i (data)
xj(9, 3) - The global coordinates, j, of each node, i, in the
boundary element (data)

o Block Common:

c /icntrl/ itpd

c /mesh/ Nd

c /mtrl/ prop, emsvty

c Dependencies:

c setint, shape, map, norm, srfjcb, Sn

c
implicit double precision (a-h, 0-2z)
include 'sysmem.blk’
common /icntrl/ itp4, itp5, itp6, itp7, itp8, itp9, itplo,
# iparam (20)
common /mesh/ Ne (maxelm), inde(maxelm, 3), Nnd, Nelem, Nbc,
# ide (maxelm), idn(maxnd), idbc(maxelm), Nsrf,
# Nnzr, jcoef(maxnz, 2), ner, new
common /rmesh/ xnd(maxnd, 2), T(maxbc), Tn(maxnd),
# srfdat (maxsrf, 4), tol, hwall
common /GLint/ xint(8), w(8), N1
dimension esinte (3, 2), esintr(3, 2, 2), psi(3), dpsi(3),
# Xj(3l 2), ro{2), m(2), roh{2), ri(2)

c initialize

pi= dacos(-1.000d4+00)
Last=1
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11

15

ishdw= 0
istore= 0

ri(l)= xnd(in, 1)
ri(2)= xnd(in, 2)

do 5 i= 1, Ne(je)
do53J=1, 2
xj(d, j)= zxnd(inde(je, i), 3)
initialize boundary integral
do 10 i=1, 3
do 10 §=1, 2
esinte(i, j)= 0.00d+00
do 10 k=1, 2
esintr(i, j, k)= 0.000d+00
loop through each integration point, L

do 50 1= 1, N1
imirr= 0

evaluate basis functions, Jacobian, and normal at L
call shape (itp4, Ne(je), xint(L), psi, dpsi)
call srficb (Ne(je), xj, dpsi, Rj)
call norm (itp4, dpsi, xj, Ne(je), mm)
map integration point L onto global coordinates
ro(1)= 0.0000d4+00
ro(2)= 0.00004+00
do 11 i= 1, Ne(je)
ro(l)= ro(l) + xj(i, 1)*psi(i)
ro(2)= ro(2) + xj(i, 2)*psi(i)
evaluate unit vector ri-ro, return error if |ri-ro[=0
roh(1)= ri(l) - ro(l)
roh(2)= ri(2) - ro(2)
h= dsqrt (roh(l)*roh(l) + roh(2)*roh(2))
if (h.eq.0.000d+00) go to 99

roh(1l)= roh(1l) / h
roh(2)= xroh(2) / h

evaluate inner product of rn*roh
dot= rxn (1) *roh(1l) + rn(2)*roh(2)
calculate shape factor only if element “"faces" ri

if (dot.ge.0.000d+00) go to 45
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c Is i shadowed from j?
call shadow (xri, ro, ishdw)
if (ishdw.eq.0) then
istore= 1
c evaluate boundary integral

do 40 §= 1, 2
do 40 i= 1, Ne(de)

esinte(i, j)= esinte(i, j) + psi{i)*dot*roh(j)*

# ’ Rj*w(L) / (2.000%h)
esintr(i, j, 2)= esintr(i, j, 2) + psi(i)*dot*
# roh(3j) *rn (2) *Rj*w(L) / (2.000%h)
c Don't neglect to mirror the reflection shape factor

if (imirr.eq.0) then
esintr(i, j, 1l)= esintr(i, j, 1) + psi(i)*dot*
# roh(j) *rn (1) *Rj*w(L) / (2.000%h)
else
esintr(i, j, 1)= esintr(i, j, 1) - psi(i)*dot*
# . roh(j)*rn (1)*Rj*w(L) / (2.000*h)
end if

40 continue
end if
c Evaluate contribution of mirror image

45 if (imirr.eq.0) then
ro(l)= -ro(l1)
m(l)= -rn(1)
imirr= 1
go to 15

end if
50 continue

return

99 write (itp4, *) '*** error in SINT ***!
write (itp4, *) 'h= 0'
write (itp4, *) 'i= ',in
write (itp4, *) 'Je= ', Je
write (itp4, *) 'I= ',L
write (itp4, *) 'ri= ', (ri(i), i= 1, 2)
write (itp4, *) 'ro= ', (ro(i), i= 1, 2)
write (itp4, *) 'execution is terminated'
stop

end
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subroutine srfijcb (Ne, xyz, dpsi, Rj)

c
c Evaluates the Jacobian for surface integration
c dpsi(3) - The (%, y, z) derivatives, j, of each basis
c function, i, in the element of interest (in)
c Ne - Nunber of nodes in the element of interest (in)
c xyz(3, 2) - The (%, y, z) coordinates, j, of each node, i, in
c the element of interest (in)
c Rj - The surface Jacobian (out)
c
implicit double precision (a-h, o-z)
dimension xyz(3, 2), dpsi(3)
c initialize transformation gradients
dxdu= 0.000d4+00
dydu= 0.000d+00
o] calculate the tranformation derivatives
do 10 i= 1, Ne
dxdu= dxdu + xyz (i, 1)*dpsi(i)
10 dydu= dydu + xyz(i, 2)*dpsi(i)
c calculate surface Jacobian
Rj= dsgrt ( dzxdu**2 + dydu**2 )
return
end
c

subroutine store
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Reads or writes the confiquration factors to/from an
external file

implicit double precision (a-h, o-z)

include 'sysmem.blk!

character title*80, date*12, time*8, vers*12, srftp (maxsrf)*1

common /head/ title, date, time, vers, srftp
common /icntrl/ itpd, itpS, itp6, itp7, itp8, itp9, itplo,

e

iparam(20)

common /mesh/ Ne(maxelm), inde (maxelm, 3), Nnd, Nelem, Nbc,
ide (maxelm), idn(maxnd), idbc(maxelm), Nsrf,
Nnzr, jcoef (maxnz, 2), ner, new

M ek

common /shpfac/ Ex(maxnz), Ey(maxnz), Rxx(maxnz), Rxy(maxnz),

Ryx (maxnz), Ryy (maxnz)

if (iparam(l).eq.l) go to 30

write shape factors to a file

open (unit= itp7, file= 'view.dat', status= ‘'unknown')

write
write
write

write

write
write
write
write
write

write
write

write

write
write
write
write
write

write

write
write

(itp7, *) title
(itp7, *) '
(itp7, 3) Nnd, Nelem, Nnzr

index pointers

(itp7,
(itp7,
(itp7,
(itp7,
(itp7,

(itp7,
(itp7,

1)
1)

] L}
tkkkkkkhkkkhkkkkkkkxk?
*jcoef!

1 kkkkkkkkkkkkkkhkkkkk?
LI

(jcoef (i, 1), i= 1, Nnzr)
(jcoef (i, 2), i= 1, Nnzr)

emission shape factor

(itp7,
(itp7,
(itp7,
(itp7,
(itp7,

(itp7,

(itp7,
(itp7,

Tt 0t

1 kkkkkkkkhkkhkkkkkkkk?
Byt

T kkkkkkkkkkkkkkkkkk?
| . )

(Ex(i)l i= 1, Nth)

[}
tkkkkkkkkkkkkkkkkkik?
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write (itp7, *) 'Ey’
write (itp7, *) !Fkxkkkkkkkkkkkkrik !
write (itp7, *) ' !

write (itp7, 2) (Ey(i), i= 1, Nnzr)
write reflection shape factor

write (itp7, *) ' !
write (itp7, *) tkkkkkkkkdkkikkkiokt

write (itp7, *) 'Rxx'
write (itp7, *) 'kkkkkkkkkkkkkkkkkk

write (itp7, *) ' !

write (itp7, 2) (Rxx(i), i= 1, Nnzr)
write (itp7, *) ' !

write (itp7, *) !xxxkkkxxkkxkxkkxxk!
write (itp7, *) 'Rxy'

write (itp7, *) 'Frkkkkkkkxkkkkkkxk!
write (itp7, *) ' !

write (itp7, 2) (Rxy(i), i= 1, Nnzr)
write (itp7, *) * !

write (itp7, *) '¥kkkkkkkikkkkkkikkk!
write (itp7, *) 'Ryx’

write (itp7, *) !*xkkkdkkkkikxkkkkkiks
write (itp7, *) ' °*

write (itp7, 2) (Ryx(i), i= 1, Nnzr)
write (itp7, *) ' °

write (itp7, *) 'kkkxkkkkkkkkikkkkxk!
write (itp7, *) 'Rxx'

write (itp7, *) 'hkxkkkkkkkkikxkikkk!
write (itp7, *) ' !

write (itp7, 2) (Ryy(i), i= 1, Nnzr)
close (unit= itp7, status= 'keep')
return

read shape factor data

open (unit= itp7, file= 'view.dat', status= ‘'old')
read (itp7, *)

read (itp7, *)

read (itp7, 3) nl, n2, Nnzr

trap erxrors

if ((nl.ne.Nnd) .or. (n2.ne.Nelem)) go to 99
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read index counters

read
read
read
read
read

read
read

read

read
read
read
read
read

read

read
read
read
read
read

read
read

read
read
read
read
read

read

read
read
read
read
read

read

read
read
read
read
read

read
read

(itp7,
(itp7,
(itp7,
(itp7,
(itp7,

(itp7,
(itp7,

1) (jcoef(i, 1), i= 1, Nnzr)
1) (jcoef(i, 2), i= 1, Nnzr)

emission shape factor data

(itp7,
(itp7,
(itp7,
(itp7,
(itp7,

(itp?,

(itp7,
(itp7,
(itp7,
(itp7,
(itp7,

(itp7,

2)

(EY (i), i=

= 1, Nnzr)

1, Nnzr)

reflection shape factor data

(itp7,
(itp7,
(itp7,
(itp?,
(itp7,

(itp7,

(itp7,
(itp7,
(itp7,
(itp7,
(itp7,

(itp7,

(itp7,
(itp7,
(itp7,
(itp7,
(itp7,

(itp7,

(itp7,
(itp?,

(Rex (i), i=

(Rxy (1), i=

(Ryx (i) ’ i=

1, Nnzr)

1, Nnzr)

1, Nnzr)
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TS il e e st wtetamriant o - - ke

read (itp7, *)
read (itp7, *)
read (itp7, *)

read (itp7, 2) (Ryy(i), i= 1, Nnzr)
close (unit= itp7, status= 'keep')
return

format (1615)
format (6(d12.5))
format (3i20)

write (itp4, *) '*** Fatal error in STCRE *#*'

write (itp4, *) 'view.dat is not compatible with mesh!
write (itp4, *) 'check to make sure the files are correct'
write (itp4, *) 'or set shape factor file flag to 0'
write (itp4, *) 'execution terminated'

stop

end

subroutine wres

prints results to extemal files

implicit double precision (a-h, o-z)
include 'sysmem.blk'
character title*80, date*12, time*8, vers*12, srftp(maxsrf)*1

common /head/ title, date, time, vers, srftp
common /icntrl/ itp4, itp5, itp6, itp7, itp8, itp9, itplo,
iparam(20)

common /mesh/ Ne (maxelm), inde (maxelm, 3), Nnd, Nelem, Noc,
ide (maxelm), idn(maxnd), idbc(maxelm), Nsrf,
Nnzr, jcoef(maxnz, 2), ner, new

common /rmesh/ xnd(maxnd, 2), T(maxbc), Tn(maxnd),

srfdat (maxsrf, 4), tol, hwall

common /solu/ qr(maxnd, 2), gout (maxbc), exr, gnet

A Ak

.
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c open data files

open (unit= itp8, file= 'gres', status= ‘unknown')
open (unit= itp9, file= 'out', status= 'unknown')

c make PATRAN results file

write (itp8, 1) title

write (itp8, 2) Nnd, 0, 0.0, 0, 4
write (itp8, 3) date, time

write (itp8, 4) vers

c print flux vectors and nodal locations
do 10 i= 1, Nnd
10 write (itp8, 5) idn(i), qr(i, 1)1 qr(i, 2)r Xnd(il 1)!
¥ xnd(i, 2)
c print integrated heat flux table
write (itp9, *)
write (itp9, 1) title
write (itp9, *)
write (itp9, *) 'Net radiative heat rate, gnet= ',qnet
write (itp9, *) 'estimated error= ',err, ' (% of qnet)'
write (itp9, *) '
write (itp9, 6)
do 20 i= 1, Nbc
c convert temperatures to centigrade scale
T(i)= T(i) - 273.15
20 write (itp9, 7) i, T(i), qout (i)

close (unit= itp8, status= ‘'keep!')
close f{unit= itp9, status= 'keep')

1 format (a80)
2 format (2i9, el5.6, 2i9)
3 format ('Neutral file created: ',a8, 2x, al2)
4 format ('PATRAN version: ',al2)
5 format (i8, (5el3.7))
6 format (1x, ‘'Surface', 7x, 'T', 4x, 'Heat Rate')
7 fomat (1lx, i7, 1x, £7.2, 1x, el2.5)
return
end
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