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ABSTRACT

An in situ x-ray microprobe analysis of Type 316 stainless steel artificial
pits has been carried out with bromide/chloride solution. A high intensity 8
pum diameter polychromatic x-ray beam was scanned across the
steel/solution interface within the artificial pit. The resulting x-ray
fluorescence was analyzed using an energy dispersive x-ray detector. In
contrast to the light Cl atom, Br could be detected, making it possible to
monitor the behavior of halides in the artificial pits and in the salt layer at the
interface. It was found that Br was more active than Cl. At high potentials,
elemental Br was produced as an oxidation product, whereas without added
bromide, chloride only formed a salt layer. Br also concentrated at the
salt/steel interface at potentials below where it was oxidized.

INTRODUCTION

Major changes in solution composition occurs when pits and pores are produced. It is
the purpose of this paper is to describe an in situ x-ray fluorescence technique for solution
analysis that has been used to measure changes taking place during pitting of stainless
steels.(1,2) The technique has many similarities to scanning electron microprobe analysis,
but uses x-rays rather than electrons, to excite the elements. The particular advantage of the
technique was the in situ electrochemical control maintained during measurements. The
technique offers a method for determining, in detail, the concentration or depletion of

elements at the metal/solution interface with a sensitivity difficult to achieve using other
techniques.

X-ray fluorescence has been used for many decades. (3,4) With the advent of light
sources and high intensity x-rays, collimated beams, micrometers in size, have been
developed for the spatial resolution of elemental distributions.(5) In this electrochemical
study of artificial pits, bromide is introduced to test if it could be used to trace the behavior
of chloride ions. Clis a relatively light element with a low x-ray florescence energy that is
too weak to penetrate about 0.25 mm of plastic used for windows in the cell construction.
(1,2) This work demonstrated that there were limitations in attempting to substitute Br for
Cl under conditions associated with pitting.

19980407 021

There have been few direct investigations of the solution in pits and cracks mainly
owing to difficulties in analyzing the small volumes of solution involved (1,2,6-9).
Consequently, few models take into consideration the importance of the solution chemistry
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in pitting. Local changes in solution composition are the dominant factors in the initiation
and propagation of pits in stainless steels (10-15). In contrast, many theories have been
proposed for the breakdown of passivity but these are usually developed only up to the
point where passivity is disrupted and assume that corrosion will continue because of active
dissolution.(14-17) However, in most solutions under conditions where pitting can
develop, surfaces generally repassivate following mechanical removal of the passive film.
This indicates that disruption of passivity is not a sufficient requirement for localized
corrosion to begin.

EXPERIMENTAL

In situ x-ray microprobe measurements of concentration gradients of species in artificial
one-dimensional pits were made using foil electrodes about 0.015 mm thick (1,2). Fig. 1
shows a schematic of the electrochemical cells used to study effects of chemistry changes in
pit solutions and at pit surfaces during metal dissolution in restricted geometries. The
figure represents an artificial pit produced by dissolving back the cross section of a foil
mounted between plastic sheets. The dissolving surface was under potentiostatic control.
The original edge of the upward facing foil was in contact with a bulk solution in which a
counter and saturated calomel reference electrode were placed. He bubbling stirred the bulk
solution to maintain a zero dissolved metal ion concentration at the pit mouth. The foil/pit
solution region was analyzed using x-ray fluorescence. High intensity polychromatic x-
rays from beamline X26A at the National Synchrotron Light Source were collimated to
produce a beam about 0.008 mm diameter. The intensity of the beam was generally
attenuated by 0.150 mm Al foil. This was to reduce the formation of bubbles, probably
hydrogen, when the beam passed over the metal/salt interface.

The x-ray beam was incident at 45° to the cell face. The energy dispersive detector
was positioned at 45° to the sample surface and 900 to the incident beam. Ko fluorescence
was counted to determine relative concentrations. The incident beam was scanned across
the metal/solution interface by stepping the position of the cell in 0.001 mm steps. A live
time of 5 s was used to acquire the x-ray data with real times ranging down from 6.6 to 5.7
s on stepping from over the steel to over the solution. Each scan took about 200 s. Fig. 2
is an example of an x-ray spectrum from a pit solution just above an Fe alloy with 20 Ni,
12 Cr, and 5 Mo with a bulk solution of 1M LiBr. The x-ray intensity for an element was
taken as the area under the peak associated with that element.

The results presented were obtained with a IM LiQl, ,Br, ,s bulk solution. The Type
316 stainless steel foil had a weight per cent composition of 0.028 P, 0.001 S, 16.41 Cr,
10.13 Ni, and 2.10 Mo.

RESULTS

When the steel surface was covered by a salt layer a potential step only gave a
corresponding small perturbations in the current. The current soon attained its previous
value and then continued its steady decrease with time as the pit deepened. Fig. 3 shows a
plot of the potential changes and currents after the experiment had run for 7900 s. The pit
depth was about 0.7 mm. When the potential was stepped from 2.2 to 2.6 V (all potential
are referenced to a saturated calomel electrode) the current showed the expected small
perturbations. However, on stepping to 3.0 V there was a significant change in behavior.
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The current stopped its steady decrease and began to increase. On increasing the potential
to 3.4 V a major step in the current occurred and it became unpredictable. The increase in
the current was associated with the formation of Br,. Under the microscope Br, was first
seen as red/brown semicircles radiating from sites on the metal surface. It then covered the
dissolving edge of the steel surface and the adjacent pit solution. The changes at the
interface were studied using x-ray microprobe.

The measured x-ray intensity was the convolution of the beam shape and a product of
the “matrix effect” and the element concentration. The matrix effect depends on many
factors, in particular, the atomic number, the concentration of each element, filters on the
incoming beam, and filters on the detector.(2-4) The matrix effect changes with differences
in chemical composition of the sample and incorporates interelement absorption and
secondary fluorescence.(4)

The symbols in Fig. 4a are examples of measured intensity variations of Fe, Cr, and Br
across the steel/solution interface and the ratio of the Fe/Cr intensities. The measurements
were made when the applied potential was 2.6 V. The highest intensity was for Fe over the
steel. The intensity decreased as the beam traversed the interface. In contrast to the results
for Fe, the intensity of Cr, showed a smooth transition as the beam passed from the metal
to the solution. In Fig. 4a a maximum, close to the interface, is observed in the Br results
and occurs nearer to the metal surface than the maximum in the Fe/Cr ratio. The intensities
have been deconvoluted using the variation in the Cr results across the metal interface to
determine the shape of the x-ray beam. Fig. 4b shows the product of the concentration and
the matrix effect. Future calculations are required to separate these two factors but the
figure clearly shows the position of elements in the different phases. The fits of the
calculated intensity were obtained by convolution of the beam shape and a model of the
interface (Fig 4b). These are shown by the full lines in Fig. 4a. In addition, a component
of these fits due to layers of materials adjacent to the metal surface, i.e. Fey, r and Brg, 1,
are of particular interest and are therefore also presented in Fig. 4a. Similar procedures
were adopted in Fig. 5.

The results in Fig. 4 show maxima for Br and the Fe/Cr ratio. The maximum for Fe/Cr
ratio is further from the steel surface than the maximum in the Br results. The maximum for
Fe/Cr ratio corresponded to the position of the knee in the Fe results. In Fig. 4b the step in
the model of the interface is taken to correspond to Fe in the salt layer and spans 8 pm from
the steel surface. Br at the steel interface spans 3 pm within the range of the iron in the salt
layer indicating that Br has concentrated at the metal/salt interface. This is also shown by
the convoluted Brg,,; curve that was closer to the metal and was not as wide as the Feg, ¢
curve.

At a higher potential of 3.0 V, Fig 5a, a greater separation in the positions the maxima
for the Br and Fe/Cr curves of about 3 jum was observed. In addition, a distinct maximum
was observed in the Fe results in Fig. 5a. The presence of the dip in the Fe before the
maximum was the important observation. It was a clear indication of a deficiency of Fe
between the salt layer and the metal. No Ni, Mo, or Cr, the other major alloying elements
in the steel showed any build-up in concentrations in this region and therefore, had not
substituted for the Fe. The only corresponding increase was in Br.




DISCUSSION

It was expected that bromide, when added to chloride, would assist in the measurement
of the salt at the interface including its thickness dependence on potential. An object of this
study was also to determine how Br would substitute for Cl in the salt layer on the steel.
High concentrations of halide, well above that in the bulk solution, are present in the pit
because of high dissolution rates of the steel, transport of halide into the pit and a high
solubility of metal halide salts. Some differences in the CI/Br ratio from the bulk solution
would be expected based on differences in the mobilities of the Cl and Br. Assuming that
Br simply substitutes in direct proportion to its concentration in the saturated solution and
the salt layer, the presence of Br in the salt would be detectable because of the higher
density of the salt than the adjacent saturated solution. However, the observed behavior
was found to be more complicated.

In experiments where breakdown did not occur, i.e. below 3 V, the current response
was similar to that expected in chloride solutions. After a potential step the current showed
a small transient but then returned to its value before the potential change. The presence of
elevated amounts of Br at the metal/salt interface were predicted and were intended to offer
delineation of the salt layer. It was previously shown that very low concentrations of Cr
were present at the metal interface and the thickness of the Cr deficient layer increased with
potential. (1,2) It was assumed that the thickness of the depleted layer represented the
thickness of the salt layer. The distinct maximum in the ratio of Fe to Cr intensity at the
metal/solution interface is again seen in Figs. 4a and 5a. In Fig. 4a a maximum is also
observed in the Br curve close to the interface. The maximum occurs at a position slightly
closer to the metal than the maximum in the curve of the Fe/Cr ratio. The difference in the
maximum positions was about 2 pm. In general, for similar experiments with different
stainless steels and bromide to chloride additions, a maximum in Br occurs closer to the
interface than the maximum in the Fe/Cr ratio. These results indicate the salt layer on the
steel is non-uniform. At the metal surface the Fe/Cr ratio is similar to the steel and there is
a high Br concentration. On the saturated solution side of the salt layer, a Cr depleted
region is formed with a Br concentration similar to the solution. It is possible that Br was
the cause of the non-uniformity, but impedance studies with chloride alone, are consistent
with a salt layer having an outer porous and inner compact layer. (18)

In previous experiments with only chloride present and high applied voltages of 4.0 V,
(1) thick salt layers were formed without changes in the electrochemical behavior. Step
increases in potential produced only transitory increases in current as the salt layer
thickened (19- 21). From a purely thermodynamic viewpoint, the high electronegativity
elements are predicted to form O,, Cl, and Br, at potentials above about 1 V at a pH=0 (22)
expected in these pits. In practice, however, the oxidation does not take place within pits
when only chloride solutions are used. This was the expected behavior because the
potential drop across the salt layer increased linearly with potential leaving a fixed but low
potential at the salt/steel interface.(21) From thermodynamic data Br, formation is expected
at a potential only about 0.1 V less positive than oxidation to form C1,.(22) Hence, a
similar behavior at high voltages appeared possible with bromide present. However, Br,
formation did occur when the potential was raised above 3 V. Under these conditions rapid
metal dissolution would be expected suggesting another surface film, possibly a conducting
oxide, had formed that did not inhibited Br, production. A somewhat similar behavior has
been observed with Ti in bromide solutions. (23)




Measurements at 3.0 V showed distinct changes from those observed at lower voltages
were taking place. There was a distinct decrease in the Fe component at the interface and an
increase in Br as shown in Figure 5a. A similar behavior of Fe has not been observed in
only choride solutions. The decrease in the Fe was not compensated by any increase in Ni,
Cr or Mo. This behavior suggested that a Br, phase had formed separating the metal and
the salt. Deconvolution of the results in Fig. 5b are consistent with the separation.

CONCLUSIONS

1. In situ x-ray microprobe techniques enable detailed measurements to be made
within pits and pores to explore changes in solution composition and processes taking place
at electrode surfaces.

2. Within artificial pits where saturated solutions of dissolving stainless steel and salt
layers develop, Br, forms at elevated potentials in bromide containing solutions. This
contrasts with bromide free chloride solutions where no reaction, other than salt formation
was observed.

3. At intermediate potentials the salt is replaced by small amounts of Br,. At higher
potentials copious amounts of Br, are continuously produced undermining the salt layer.

4. Br, being a heavier element acts as an x-ray marker for Cl, but only under limited
conditions, as Br produces reactions not observed in the presence of chlorides alone.
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Figure 1. Schematic of the cell forming an artificial pit by dissolving back a stainless steel
foil in a halide bulk solution.
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Figure 2 X-ray fluorescence spectrum from solution 20im above an Fe alloy with 20%
Ni, 12% Cr, and 5% Mo in a bromide containing solution.
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Figure 3. Variation of the potential and current with time for the Type 316 stainless steel
artificial pit electrode approximately 0.7 mm deep during dissolution with a bulk
solution of 1.0 M LiCl, ,Br, ,5. '
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Figure 4. (a) Variations in fluorescence intensity with distance across a Type 316
stainless steel interface in an artificial pit in contact with saturated pit solution at 2.6
V.- The points are observed results. The broken line shows the variations in the Fe/Cr
intensity ratio. (b) A deconvolution of the results in (a) for Fe, Cr and Br. The full
lines in (a) are the convolution of the model of the interface in (b) and the shape of the
x-ray beam.
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Figure 5. (a) Variations in fluorescence intensity with distance across a Type 316
stainless steel interface in an artificial pit in contact with saturated pit solution at 3.0
V,.. The points are observed results. The broken line shows the variations in the Fe/Cr
intensity ratio. (b) A deconvolution of the results in (a) for Fe, Cr and Br. The full
lines in (a) are the convolution of the model of the interface in (b) and the shape of the
x-ray beam.
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