. . 67(/74/f; ?ﬁ()'j 5}% r‘//

Nonlinear Explicit Transient Finite Element Analysis on the Intel Delta

Edward J. Plaskacz,f Martin R. Ramirez{ and Sanjeev Gupta}
fArgonne National Laboratory, Argonne, IL 60439, U.S.A.
{Department of Civil Engineering, The Johns Hopkins University,
Baltimore, MD 21218, U.S.A.

ANL/CTD/CP--78758
ABSTRACT DE93 009561

Many large scale finite element problems are intractable on current generation production su-
percomputers. High-performance computer architectures offer effective avenues to bridge the
gap between computational needs and the power of computational hardware. The biggest chal-
lenge lies in the substitution of the key algorithms in an application program with redesigned
algorithms which exploit the new architectures and use better or more appropriate numerical
techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous
distributed processing network is discussed. The method can also be extended to heterogeneous
networks comprised of different machine architectures provided that they have a mutual commu-
nication interface. This unique feature has greatly facilitated the port of the code to the 8-node
Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decom-
posed serially in a preprocessor. Separate input files are written for each subdomain. These
files are read in by local copies of the program executable operating in parallel. Communication
between processors is addressed utilizing asynchronous and synchronous message passing. The
basic kernel of message passing is the internal force exchange which is analogous to the com-
puted interactions between sections of physical bodies in static stress analysis. Benchmarks for
the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two
large-scale finite element meshes are presented.

1. INTRODUCTION

Finite element analysis is the dominant tool in the numerical solution of the partial differen-
tial equations governing the nonlinear transient analysis of structural or continuum problems
and in a variety of other areas as well. Applications range from stress analysis and aerody-
namics of aircraft, automotive, and ship structures; steel and reinforced-concrete bridges and
buildings; earthquake response of multistory structures and reservoir-dam systems; fracture me-
chanics; dynamics of semi-submerged offshore structures; fibrous composites; fluid mechanics;
sonar transducers; acoustic and electromagnetic fields; magnet design; plasma flows; nuclear
reactor flux computation; geomechanics; seepage and groundwater flow; oil- and gas-reservoir
engineering; biomechanics; pollutant dispersion in the atmosphere, lakes, and tidal estuaries;
surface waves; ignition and combustion.

Widespread application of the technique as a design tool for linear static analysis has been
prevalent for thirty years. The treatment of dynamic and nonlinear problems entails an increase
in the number of numerical operations. The widespread availability of high-speed digital com-
puters during the 1970’s extended the range of applications to dynamic and nonlinear analyses.

RARAC
1 MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

v i nooy

The 1980’s witnessed the introduction of vector and coarse grained parallel supercomputers.
Although the speed of the computational hardware has increased dramatically over the past
thirty years, it is still insufficient for many important engineering applications. Many produc-
tion engineering decisions must be made on the basis of crude computational models because
the computational hardware to conduct full-scale simulations is not readily available.

For example, in studies of crashworthiness, impact and penetration, it is not unusual for an
analysis to require 100 hours of CPU time on current supercomputers despite the simplicity of
the models being studied. The computational requirements for a single Belytschko-Tsay shell
element (used extensively in finite element analysis) with five integration points through the
thickness are on the order of 3500 floating point operations per time-step and 600 words of
memory {Plaskacz (1990)). Crashworthiness modzls currently consist of approximately to 5000
to 100,000 shell elements and run for about 100,000 time steps. Incorporation of detailed passen-
ger compartment, air-bag, and occupant models can easily double or triple these requirements.
The difficulty in obtaining blocks of time this large in a production environment severely impairs
the role of such simulations in engineering decisions. Attention has focused on high-performance
computer architectures as an effective avenue to bridge the gap between computational needs
and the power of computational hardware. With these powerful tools at their disposal, engineers
will be able to tackle sophisticated simulations which are currently intractable without the use
of empirical data and without resorting to the separate modeling of each region so as to break
up the simulation into components which are manageable.

The performance of the currently dominant sequential Von Neumann computer architecture is
asymptotically approaching a peak speed prescribed on the underlying hardware by manufactur-
ing and fundamental physical limits. One such a is the speed of light (3x 108 m/sec in a vacuum)
which results in a signal transmission speed for silicon of at most 3 x 10" m/sec (DeCegama
(1989)). Hence, a 3 cm diameter chip can propagate a signal in 107% seconds. The maximum
power of a computer built with such chips is at most 10° floating-point operations per second (1
GFLOPS). A similar limit can be estimated for other materials such as gallium arsenide, which
has a lower signal propagation time. Since the speed of light is the ultimate barrier, sequential
processors will reach the maximum speed physically possible in the near future. It is clear that
computer architectures other than the classical serial Von Neumann model must be exploited
to realize significant improvements in computational speeds.

Another reason for considering parallel machines is their cost effectiveness. The relationship
between incremental cost and processor performance enhancement follows a law of diminish-
ing return. As the underlying physical limit is approached, the incremental cost for a given
incremental increase in processor computational power rises dramatically. Processors having a
comparatively low speed are available at a very low cost. A parallel machine comprised of many
such processors not only has more speed than a uniprocessor supercomputer but is also less
expensive (Dongarra and Duff (1992)).

Parallel architectures require changes in the algorithms and the underlying code. The pro-
grammer must consider details of the computer architecture to a degree unprecedented in the
SISD era. The computer architecture also dictates the type of algorithm which is most ap-
propriate. For example, an order-of-magnitude increase in the computational speed over a
conventional supercomputer has been attained in research conducted at Argonne for an explicit
transient program for the three-dimensional nonlinear analysis of shell structures on a single-
instruction multiple-data (SIMD) supercomputer, the Cornection Machine. This speedup was

&

difficult to obtain, requiring substantial redesign of the algorithm and underlying data struc-
tures, described in Belytschko, Plaskacz, Kennedy, and Greenwell (1990) and Belytschko and
Plaskacz (1992). The salient feature of the “Exchange” algorithm is the minimization of inter-
processor communication at the expense of redundant computations and storage. Because the
computational capabilities of the Connection Machine far exceed its communication abilities,
the Exchange algorithm is much faster on the Connection Machine-2 than alternate schemes in
spite of the redundancies.

Single-Instruction Multiple-Data fine-grained massively-parallel computers such as the Con-
nection Machine-2 favor an element-per-processor data structure; interelement communication
and interprocessor communication become equivalent. On any parallel platform with a coarser
granularity, larger subdomains are necessary and interdomain communication becomes more
complicated. In previous work, the combination of the Exchange algorithm and the Argonne-
developed P4 primitives has provided a powerful approach for the adaptation of an explicit
transient finite element program for use on a wide range of parallel platforms. The Fortran-
callable P4 primitives allow the programmer to pass data (scalar, array, or common block) among
cooperating processes through Berkeley UNIX 4.3BSD interprocess communication sockets.

Once the algorithm is restructured as a set of processes communicating through messages, the
program can run on systems as diverse as a uniprocessor workstation, multiprocessors with and
without shared memory, a group of workstations that communicate over a local area network, or
any combination of the above. However, careful attention must be paid to the minimization of
communication and synchronization costs. The basic concepts were first tested on a network of
workstations described in ASDAC PR-2 (1991). The extension of this work to an Intel hypercube
architecture is described in Plaskacz, Ramirez, and Gupta (1992). Benchmarks for networks

of workstations and shared and distributed memory MIMD multiprocessors were presented in
ASDAC PR-5 (1992) and Plaskacz (1993).

In this paper, the performance of the code will be tested in a computationally more demanding
setting, large-scale finite element meshes on the 512-processor Intel Touchstone Delta MIMD
supercomputer. The Intel Touchstone Delta system is jointly owned by Argonne National Lab-
oratory and 12 other members of the Concurrent Supercomputing Consortium. The system
supports various types of processing nodes (numeric, mass storage, gateway and service). Nu-
meric nodes form the computational core of the system. Mass storage nodes enable the numeric
nodes to access the tape and disk drives in the mass storage system. Gateway nodes provide
access to the system over LAN lines. The service nodes handle resource management, such as
enabling the user to log into the system from the network and to obtain and release a collec-
tion of numeric nodes. The Delta consists of 528 processing nodes, each with 16 megabytes of
local memory and a RISC processor, the i860, giving total peak theoretical performance of 32
billion floating point operations per second. The nodes are interconnected as a two-dimensional
mesh. Interprocessor communication is handled by mesh router chips. One mesh router chip is
installed to the routing plane for each node in the mesh. The Delta has an aggregate memory
capacity of more than 8 gigabytes, and secondary (disk) storage of 90 gigabytes.

An outline of this paper is as follows: The finite element formulation is presented in Section 2.
Section 3 presents an overview of distributed parallel computing in the context of nonlinear ex-
plicit transient finite element analysis via message passing. Both synchronous and asynchronous
algorithms are presented. Section 4 presents benchmarks comparing the performance of the
Intel Delta versus a vector supercomputer. Section 5 defines performance metrics and an ex-

tension of Amdahl’s law to distributed parallel computing. Section 6 presents a description of
a partially asynchronous algorithm. A detailed tabulation of execution times for various phases
of the finite element code is examined to determine why the asynchronous algorithm performed
below expectations. Section 7 summarizes and draws conclusions from all tests performed.

2. EXPLICIT NONLINEAR
FINITE ELEMENT ALGORITHM

After a spatial semi-discretization is performed, the governing equations of motion for the finite
element model are

Mia(t) = (1) (1)
£(t) = femt(t) — fime(t) (2)
Since the equation of motion must be satisfied at each time step, we have
Ma* = " (3)
= fo, —fh (4)

for time step n. Equation 3 is integrated in time. The central difference algorithm implemented
in the program proceeds through six steps.

Step 1, Initial conditions: The solution of a second-order ordinary differential equation requires
two initial conditions i.e. u(0),%(0). Define

uw’ = 11(0),1’11/2 =u(0),n=t=0 (5)
Step 2, Loop over elements:
utl = Lou™t! (6)
et = Beu:“ (M)
ol = of 4 Ao, = f(e, &) (8)
it = [Blortiin (9)
1 Qe
Step 3, Assembly:
it = LI (10)
4 = DLIf. (11)
€
Ty (12)
Step 4, New accelerations:
it = Mot (13)
Step 5, New velocities:
arte? = gt g At (14)
4

Step 6, New displacements:
utl = " 4 Atantl/2 (15)
t—t+At;n—n+1; goto?2

In the above

= mass matrix;

number of time step;

time;

nodal displacements, velocities and accelerations,

respectively at t = nAt;

" fo, fh; = resultant, external and internal nodal forces,
respectively at t = nAt;

I

1l

C;esﬁ g
Il

€",0™ = strain and stress tensors of element e at t = nAt;
B. = strain-displacement matrix of element e;
L. = Boolean connectivity matrix of element e.

If M is a lumped mass matrix then there is no solution of simultaneous equations and the
method is explicit. The shell element used in this study is described in Belytschko, Lin, and Tsay
(1984). It is a four-node element using standard bilinear isoparametric shape functions. This
element is widely used in explicit programs for nonlinear transient analysis primarily because
of its speed. The speed results mainly from the use of a single stack of quadrature points in
each element; for an elastic element, only one quadrature point is used. Thus, the element is
typically four times as fast as fully integrated elements in explicit programs. Since one point
quadrature element is rank deficient, it gives rise to spurious singular modes. Suppression of
these spurious singular modes is given in Belytschko, Lin, and Tsay (1984) and Belytschko, Ong,
Liu, and Kennedy (1984). The element is shown in Figure 1.

3. DISTRIBUTED PARALLEL COMPUTING

3.1 Domain Decomposition

A preprocessing utility is used which reads nodal coordinate, element connectivity, boundary
condition, and loading data from an input deck, decomposes the mesh into subdomains, records
subdomain adjacencies and generates an input deck for each processor describing its subdomain.
This preprocessing program is based on algorithms and code described in Farhat (1988) and Al-
Nasra and Nguyen (1990).

At each time step, subdomain computations proceed independently in parallel in accordance
with the serial finite element algorithm given in Section 2. First, the element internal forces
are computed (Step 2), followed by nodal force-vector assembly, and for parallel computations,
an exchange of element internal forces for nodes at subdomain interfaces (Step 3). Finally,
the equations of motion are integrated (Step 4, 5, and 6). The need for synchronization of
processes arises from the fact that not all the steps of the algorithm can be run in parallel
independently. At some point during each time step, messages must be exchanged to update

5

various arrays. The exchange of internal forces pertaining to interface nodes is required because,
in Step 3 (Eqn. 10), contributions from elements in neighboring subdomains are not added in
f;nt. No kinematic quantities i.e. displacements, velocities, accelerations are exchanged. The
equations of motion for the interface nodes are integrated redundantly. Each subdomain is in
itself a complete finite element mesh. Thus, in addition to requiring minimal communication,
the exchange algorithm has the advantage of allowing analysts to use the same post-processing
software for each subdomain as they would normally do for a job executing on a single processor
machine.

3.2 Message Passing Paradigm

For a distributed network of workstations, the Argonne-developed P4 package described by
Boyle et. al. (1987) and Butler and Lusk (1992) can be used for interprocessor communication.
For the Intel mesh, the Intel message-passing routines are used; the code is portable as the
message-passing libraries are identical in function and differ only in semantics. A processor
sends a message by calling a send subroutine which reads the data from a buffer and transmits
it to the receiving processor. A processor receives a message by calling a receive subroutine which
takes the incoming message and stores the data in a buffer. These message passing calls can be
synchronous or asynchronous in nature. A synchronous call blocks the calling process while an
asynchronous call does not block the calling process but returns a message ID that is used later
to determine when the call completes so that the buffer can be reused. It is important to note
that the number of message IDs is limited, and an error occurs when no message IDs are available
for a requested asynchronous send or receive. Therefore, message IDs need to be released as
soon as possible by calling the system calls msgwait(), msgdone(), or msgcancel(). Details
of these subroutines are given in Delta system references (ANL/MCS-TM-152 (June 1991)).

A synchronous algorithm for exchanging internal forces during each time step is presented
in Table 1. Since all the message passing calls are synchronous, the requirements for buffer
space are minimal. However, the price paid for low memory is high processor idle time since
a processor must wait for the send subroutine to complete transmission before being able to
proceed.

In Table 2 an algorithm is presented which uses an asynchronous send and a synchronous
receive. An asynchronous send is useful only if the algorithm is designed so that it does not
attempt to change the buffer being sent before it is completely sent. The basic idea exploited
here is a fact inherent in the nature of the problem. Let us consider two neighboring subdomains
z and y which need to exchange the forces at the interface nodes at each time step. z cannot
execute the ith time step unless the isend() call of y is completed at the (i — 1)** step. This
is because before going to the it* step, z will be waiting at crecv() to get the message from y
which belongs to (i — 1)* step. Similarly y can not execute (¢ — 1) step unless the isend() call
of z is completed at the (¢ —2)t* step. In other words, if is executing i** step, the isend() calls
of z pertaining to (i — 2)** step are complete. Hence the buffer can be used again in alternate
time steps. For, various numerical studies presented later, the algorithm presented in Table 2
has been used.

Table 1: Message passing algorithm with csend() and crecv()

1. Time step i=1.
2. Calculate internal forces at all the nodes.
3. Exchange forces (send); Loop over all the neighboring subdomains.
a. Copy identity of current subdomain in buffer fintez(1).
b. Copy forces pertaining to the interface nodes in the next
6 x N elements of buffer.
c. Call csend() to send buffer to the neighboring subdomain.
d. Use finter again for the next neighboring subdomain.
End sending forces.
4. Exchange forces (receive); Loop over all the neighboring subdomains.
a. Call crecv() to receive a message and store it in buffer fintez.
b. Get the identity of the sending processor.
c. Identify the interface nodes.
d. Update the internal forces.
e. Use finter again for the next neighboring subdomain.
End receiving forces.
5.1 « i+1; Go to 2.

3.3 Notion of Host and Node

Unlike other Intel machines such as the Gamma, the Delta does not support the host-node
paradigm. One way to run a host-node program on the Delta is to write the code such that one
processor of the mesh partition acts as a host while the remainder work as nodes. The difficulty
with this procedure is that the resources of one processor are totally wasted as most of the
time it is waiting for the other processors running the node code to complete. An alternative
is to have one processor be the host as well as a node. However, this introduces unnecessary
complications and causes extra work for one processor which may have an adverse effect on the
overall performance.

In order to circumvent these problems, a strategy has been adopted which does not require
a host program. A shell script is run which allocates a Delta partition, and loads node code
directly on the processors of that mesh partition. Each node immediately starts working on
its respective subdomain and communicates with other nodes for synchronization. All nodes
terminate their execution as they reach the end of the program. The mesh partition is released
when all the nodes finish their execution. The code is portable to other machines with minimal
changes. For example, on the Intel Touchstone Gamma hypercube, the allocation of a cube,

loading of node program along with waitcube, and release of the cube can all be done from the
shell.

4. NUMERICAL STUDIES

Table 2: Message passing algorithm with isend() and crecv()

1. Time step i=1.
2. Calculate internal forces at all the nodes.
3. Exchange forces (send); Loop over all the neighboring subdomains.

U
a.

b.

c.

d.

se buffer afint and bfint for odd and even time steps respectively.
Copy identity of current subdomain in next element of buffer.
Store this location in flag.

Copy forces pertaining to the interface nodes in the next

6 x N elements of buffer.

If time step is not 1 or 2 release the id, assigned by the isend()
call for (i — 2)** time step, by calling msgdone().

Call isend() to send buffer from location flag to the neighboring
subdomain and store the id assigned by isend() in aid for odd
time steps or in bid for even time steps.

End sending forces.
4. Exchange forces (receive); Loop over all the neighboring subdomains.

a
b
c
d

e

. Call crecv() to receive a message and store it in buffer fintexz.
. Get the identity of the sending processor.

. Identify the interface nodes.

. Update the internal forces.

. Use fintex again for the next neighboring subdomain.

End receiving forces.

5.1 «

i+1; Go to 2.

1

4.1 Impulsively Loaded Cylindrical Panel

Since closed form solutions are not available for nonlinear transient problems, solutions obtained
by finite elements are typically compared to experimental results. The cylindrical panel problem
shown in Figure 2 has been used as a benchmark for many nonlinear transient programs. The
material properties of the panel are summarized in Table 3. An initial velocity of 5650 in/sec.
is applied to the 3.08 in. x 10.205 in. area indicated in Figure 2. The panel is simply supported
at its ends and clamped at the sides.

Table 3: Material Properties and Parameters for Cylindrical Panel

Density p = 25x107%1b. sec.?/int
Young’s Modulus E = 1.05x 107 psi.
Poisson’s Ratio v = 033

Yield Stress oy = 4.4 x10% psi.

Plastic Modulus Ep = 0.0

Initial Velocity v, = 5650 in./sec.
Quadrature Points Alongez | n, = §

Because of symmetry, only half the panel is modelled in the computations. Experimental
results have been obtained for this shell by Morino, Leech, and Witmer (1971). Timings for
an impulsively loaded cylindrical panel are given in Table 4. Three levels of discretization are
presented: 1024 nonlinear shell elements, 8192 elements, and 16384 elements. A von Mises
elastic-plastic material model with five integration points through the thickness was used. For
all three cases, the timings include complete output of nodal coordinates, element connectivities,
initial conditions and boundary conditions for each subdomain. In order to compute the Delta
megaflop rate, the problem was also run on a CRAY X-MP/18. The timings recorded in Table 4
are wall-clock times for the Delta. Cray timings are CPU times measured from the vectorized
code described in ASDAC PR-1 (1990).

For 1024 elements, substantial speedups were attained even though the data set was small.
The problem was run for 1600 time steps. Nodal deflections for 31 nodes were output every eight
time steps. Each processor read and wrote data to a unique pair of files. Thus, for interface
nodes, the deflections were output redundantly.

The 67.3 CPU seconds measured on the Cray X-MP /18 corresponds to 68.28 MFLOPS. Hence
the execution time of 21.2 seconds on 128 Delta nodes is about 3.17 times faster than Cray X-
MP/18 and corresponds to 217 MFLOPS. It may be noted here that since Delta timings are
wall-clock times, this rating of Delta is a lower-bound on performance. Further, timings reported
here are for a very small data set. For the 128 node Delta run, there are only 8 elements per
processor. If the problem is run on 512 nodes of the Delta, there will be only 2 elements per
processor. This reduces the computation to communication time ratio considerably. Better
performance was attained on the Delta with larger data sets.

The 8192 element mesh was run for 5000 time steps with nodal deflections for 2 nodes being
output every hundred time steps. Figure 3 shows the mesh divided into 128 subdomains, each
with 64 elements. The 1470 CPU seconds measured on the Cray X-MP/18 corresponds to 77.2

9

.

Table 4: Performance of cylindrical panel nonlinear shell problem on Delta: execution time
(seconds) and speedup relative to a single processor

Elem- Number of nodes
ents 1 2 4 8 16 32 64 128 256 512
1024 1354.3 688.7 355.3 186.1 98.4 55.1 30.3 21.2 22.1
(1.0) (1.97) (3.81) (7.28) (18.77) (24.56) (44.67) (63.88) (61.26)
8192 || 33445.7* * * 4468.6 2300.7 1176.5 622.9 340.4 192.1 116.6
(1.0) (7.48) (14.54) (28.43) (53.69) (98.25) (174.11) (286.84)
16884 || 68927.7* * * * 4510.8 2317.4 1208.8 624.2 362.6 206.9
(1.0) (15.28) (29.74) (57.02) (110.48) (190.09) ($33.15)

* Problem could not be run because of memory limitations/execution time very large.

One node timings are extrapolated from CRAY X-MP/18 as

Tdetta(z) = TC'};(:):(%gfr?;igzgﬁ?{;g’;gﬁou) where z is 8192 or 16384 elements problem

MFLOPS. Hence execution time of 116.6 seconds on 512 Delta nodes is about 12.61 times faster
than Cray X-MP/18 and corresponds to 973 MFLOPS.

The 16384 element mesh, was also run for 5000 time steps with results for 2 nodes being output
every hundred time steps. The 3010 CPU seconds measured on the Cray X-MP/18 corresponds
to 77.7 MFLOPS. Hence execution time of 206.9 seconds on 512 Delta nodes is about 14.55
times faster than Cray X-MP/18 and corresponds to 1130 MFLOPS or 1.13 GFLOPS.

4.2 Automobile Body

Preliminary benchmarks were also obtained for the large-scale mesh of an automocbile body
shown in Figure 4. The model is comprised of 45087 nodes and 48268 elements. On 64 Delta
processors, 2721.527 seconds were required for 5000 time steps. Figure 5 illustrates the domain
decomposition for this run. The same simulation on 128 Delta processors required 1428.461
seconds. To minimize the effect of I/O on the timing, a third run was made with 128 Delta
processors and 25000 time steps. The execution time of 5703.832 seconds corresponds to 4.7
usec/element-cycle. In Plaskacz (1990) and Belytschko and Plaskacz (1992) an element-cycle
times of 42 usec/element-cycle and 21 usec/element-cycle were reported for the CRAY XMP/14
and 16K processor Connection Machine Model 2, respectively.

5. EFFECTIVE PARALLELIZATION

The performance measurement in terms of MFLOPS is usually appropriate for a serial algorithm
where it is compared with the maximum speed of the machine. It is also applied to measure
the overall performance of parallel algorithms but is not very appropriate. This is because
(1) extra work is done by a parallel computer in the background and (2) synchronization and
communication overhead costs are not reflected in FLOPS. It also does not give any indication
about how effectively the code has been parallelized.

10

The performance of parallel algorithms is most commonly measured in terms of speedup.
Speedup of an algorithm executed using N processors is defined as

Ty
S = — 16
TN (16)
where
S = speedup
Ty = execution time using one processor
Ty = execution time using N processors

Ideally, T3 should be the execution time for the best serial algorithm on a single processor. Since,
the serial version of an algorithm is not developed along with the parallel version, Ty can be
very closely approximated by executing the parallel version using only one processor.

Amdahl’s law (Amdahl (1962)) puts a limit on the speedup that can be achieved using parallel

processing. If & (Amdahl’s fraction) is the fraction of the sequential algorithm that can not be
parallelized and must be run sequentially, then

v = aT1+(1—-a)-’§/.l (17)
N
- - 18
d 1+ (N -1)a (18)
for large N,
Smaezr = lim § = lim 1 (19)
mas N—oo N—*oo%-}—(l——}lv-)a o

Hence, according to Amdahl’s law, speedup approaches asymptotically to a number governed
by the fraction of the sequential algorithm that can not be parallelized.

In Amdahl’s law, it is assumed implicitly that the Amdahl’s fraction « is a constant and
depends only on the algorithm. In most engineering problems, a depends upon not only the
algorithm but also the problem size. In an effective parallel algorithm, « tends to zero as problem
size becomes large. This is because the execution time of parallel portion of the program, e.g.
time integration, increases almost linearly with problem size while initial setup costs do not
increase that rapidly. Hence, performance of a parallel machine is not limited and for a very
large problem a speedup very near to the ideal speedup (N) can be achieved.

However, Amdahl’s law is not directly applicable to distributed parallel processing. Here all
processors execute their own program and work on a part of the problem. There is no part of the
program which is not parallelized. It is not possible to differentiate various tasks as sequential
or parallel. On the other hand, substructuring the problem may not necessarily divide all the
tasks. Initial setup, opening and closing of files, input/output pertaining to the overall problem,
etc. are the tasks which are not divided irrespective of the number of processors. As discussed
later, there are tasks such as opening of files, where execution time increases with number
of processors. Further overhead gets induced into a parallel algorithm due to interprocessor
communication, synchronization delays, duplication of work at interface boundaries, etc.

Because of overhead, the speedup of a parallel algorithm is always lower than the ideal speedup.
Based on this speedup, an equivalent Amdahl’s fraction a can be calculated from Eqn. 18 as a

11

measure of fractional overhead as
-1
N -1

Note that this a represents overhead losses as if this fraction of the code was running serially.
Efficiency of a parallel program is defined as

a =

(20)

S
€ = -]\7 (21)

From equation 20 and 21,

N1 (22)

Hence, defining effective parallelization of the algorithm p as the fraction of the code that can
be completely parallelized, we have

(23)
Defining,
Tee = Thn-— (24)

as excess time spent by a processor over and above the time required due to ideal speedup, from
equation 16, 21 and 24,

T, = Tn(l-e¢) (25)

We introduce the notion of equivalent Amdahl’s fraction as we are using « in a slightly
different context for distributed computation because of the reasons discussed above. Although
breaking up the tasks is not possible as Amdahl had assumed, we can still use o and p to get an
overall idea about the code. Once we have the execution time of parallel code, @ and p can be
calculated from above equations. Then o represents the fraction of the code as if it runs in serial,
in Amdahl’s terms, and p represents the fraction of the code as if it is perfectly parallelized.
There are no more overhead costs. In other words, we are transforming all overhead costs, due
to communication, duplication of work, load imbalance etc., to equivalent fractions a and p.

Detailed performance analysis of two cases of the cylindrical panel problem is presented in
Table 5. It is a common belief that the overhead costs increase with an increase in the number
of processors. This would imply an increase in the equivalent Amdahl’s fraction . However,
for both the small as well as large data set, it is observed that in general o decreases as the
number of processors is increased. For 1024 elements, o decreased from 1.70 % to .69 % as
number of processors working on the problem were increased from 2 to 64. A further increase in
N caused the amount of work per processor to be very small and consequently « started rising.
A maximum parallelization of 99.31 % in the code was attained even though the dataset was so
small. For 8192 elements, a keeps decreasing from .98 % to .15 % as N is changed from 8 to 512.
The corresponding effective parallelization of the code, p increases from 99.02 % to 99.85 %. For
16384 element problem, maximum parallelization of 99.89 % was attained for 512 processors.

12

i

Table 5: Detailed Performance Analysis on Intel Delta for nonlinear shell problems: execution
time T (seconds), speedup S relative to a single processor, efficiency e, equivalent Amdahl’s
fraction a, effective parallelization p, and excess time spent T, (seconds)

Data Elem- | Time || No. of

Set ents Steps PEs T S e ! P Tex
Cylind- | 1024 | 1600 1| 1354.3

rical 2 688.7 1.971.983 | .0170 | .9830 | 11.5
Panel 4 355.3 3.811.953 | .0165 | .9835 | 16.8

8 186.1 7.28 1 .910 | .0142 | .9858 | 16.8
16 98.4 | 1277 1.860 | .0108 | .9892 | 13.8
32 55.1 | 24.56 | .768 | .0098 | .9902 | 12.8
64 30.3 | 44.67] .698 | .0069 | .9931 9.1

128 21.2] 63.88] .499 | .0079 | .9921 | 10.6 “
256 22.1| 61.26 | .239 | .0125 | .9875 | 16.8

Cylind- | 8192 | 5000 1| 33445.7
rical 8| 4468.6 7.48 | .936 | .0098 | .9902 | 287.9
Panel 16 | 2300.7 | 14.54] .909 | .0067 | .9933 | 210.4

32 1176.5| 28.43 | .888 | .0041 | .9959 | 131.3
64 622.9 | 53.69 | .839 | .0030 | .9970 | 100.3
128 340.4 | 98.25(.768 | .0024 | .9976 | 79.1
256 192.1 | 174.11 | .680 | .0018 | .9982 | 61.5
512 116.6 | 286.84 | .560 | .0015 | .9985 | 51.3

a2 -

13

1" - " . Lo . il

6. PERFORMANCE OF THE ASYNCHRONOUS ALGORITHM

6.1 Implementation of the Asynchronous Algorithm

Table 5 clearly demonstrates that speedup increases as the problem size increases. For a suf-
ficiently large problem, speedup increases as more processors are added but the efficiency or
processor utilization decreases. This suggests that as more processors are used in a simulation,
mere time is spent working on something that is absent during the serial execution of the code.
Although as shown earlier, excess time T, decreases as N increases, the total excess time spent
by all the proc :ssors increases with N. For example, for 8192 elements and 8 Delta processors,
287.9 extra seconds are spent due to parallel execution of the code. This is equivalent to about
38 minutes on a single processor. For 8192 elements and 512 processors, the extra time spent is
only 51.3 seconds but this corresponds to about 7.3 hours on a single processor. This time loss
can be attributed to various tasks such as communication requirements, load imbalance etc.

One shortcoming posed by a synchronous communication scheme is that a barrier exists at
the end of each time step. Time is lost while processors wait for the last processor to finish.
This barrier is artificial and not necessary. Even though the computations across the entire
finite element mesh have not been completed for the current time step, processors can start
and complete the next time step, so long as their subdomains do not share interface nodes with
subdomains still being worked on. Furthermore, even those processors allocated to subdomains
sharing interface nodes with subdomains still being worked on, can begin the next time step for
non-interface nodes and those elements not containing interface nodes. Therefore, it is reasonable
to expect that a fully-asynchronous algorithm would perform better than the algorithm used in
the present study (Table 2). Currently, during a time step, a processor sends forces to all its
neighboring processors and then immediately waits for their corresponding messages by calling
crecv(). This waiting time can be broken into two parts. (1) From the time crecv() is issued
to the time the message actually arrives. This time would be zero if the message has already
arrived. (2) The time taken to actually receive the message and store in the buffer. The use of
an asynchronous receive could allow processors to begin computation for the subsequent time
step before the messages are received. Delays attributable to interprocessor communication time
would be minimized. However, conversion of crecv() to irecv() would also require protection of
buffer and later on release of IDs assigned by irecv(). This would make the code quite complex.

An intermediate, less complicated approach would be to first, sort the nodes in each subdomain
into two groups: interface nodes and non-interface nodes; next, the elements in each subdomain
are sorted into two groups: elements incident on interface nodes and elements not incident
on interface nodes. As discussed earlier, the exchange of internal forces is required (Step 3,
Section 2) to update the interface nodes. During a time step, the processor sends forces to
those processors allocated to neighboring subdomains. For elements which are not incident on
interface nodes, all necessary information is already present and Steps 2 and 3 can be computed.
For non-interface nodes, the equation of motion may be integrated (Steps 4, 5, and 6). Then
crecv() is called to receive the messages. The internal force for the remaining elements can
now be computed followed by the integration of the equations of motion for the interface nodes.
This would limit the waiting time to the second phase discussed above. If sufficient time for the
messages to arrive has been provided by rearranging computations, this approach is expected to
work almost as fast as a fully-asynchronous algorithm. However, contrary to what was expected,

14

running the code in an asynchronous manner did not produce any execution time reduction for
any problem for any number of processors.

6.2 Detailed Time Analysis

To examine why the asynchronous version of the program did not perform as expected, a detailed
timing analysis was conducted. Calls to the system function mclock() were inserted in the code
to measure the time required for the processor to complete various tasks such as opening input
and output files; reading, processing and writing mesh data; processor busy and waiting time
were also measured for each time step. The 8192 element cylindrical panel mesh was run on 28
nodes of the Delta for 55 time steps. The results of this time analysis are presented as a bar
chart in Fig. 6. The legend for Figures 6-10 is given in Table 6. The legend includes each color
used to designate a time interval followed by a description of the task being performed. Each
column in graphs 6, 8 and 9 represents the activity of one processor. Each processor opens 1
separate input file and 2 separate output files, one for regular output and one for the output of
timings.

Table 6: Legend for Figures 6-10

Figure Color Description
No.
6,7,8,9 Cyan Time to open input file.
Green Time to open first output file.
Blue Time to open second output file.
Yellow Time taken after opening files to the point
when interface nodal masses are exchanged.
Red Time when a processor is waiting.
White Time when a processor is working.

10 Green Processor 0 Activity.
Blue Processor 1 Activity.

In the first case (Fig. 6), the input files are already present in directory input however both
sets of output files must be created in directory output before they can be opened. It can be
seen that all processors spend almost 3 seconds executing only three statements which open the
files for input and output. Actual reading or writing of data starts after all the three files have
been opened by a processor.

This abnormally large amount of time prompted us to conduct a thorough analysis of the
file opening time and ways to minimize it. A small code was executed for different number
of nodes on the Delta where each processor opened 3 different (1 input, 2 output) files and
immediately closed them at the end of the program. The maximum time taken by any processor
in a particular run, is plotted in Fig. 7. In the first case, input files were present in the directory
but output files were created by each processor. In the second case, all the files were present
prior to code execution. As can be seen in Fig. 7, the file opening time increases almost linearly

15

with the number of processors, from a few milliseconds for 1 processor to a few seconds for 256
processors. It is much less when processors only have to open the files without having to create
them. The timings shown here are upper bounds since many processors complete their tasks
earlier. However, this gives a clear indication that file opening time is a task that grows as the
number of processors is increased.

In Fig. 8, results are presented for the same 8192 element mesh but now with output files
already present in the output directory. A considerable reduction in file opening time can be
noted. A reduction of about 4 seconds was observed when the problem was run on 256 Delta
processors. Since the file opening time is quite low when fewer files are opened, an effort was
made to reduce this time by combining ten input files into one file. This required a processor
to go down the file using blank read statements. In Fig. 9, results are presented for this case,
however input file opening time includes the time it takes a processor to go down the file. The
information about the number of lines to be skipped was included at the top of this consolidated
input file. The triangular distribution of the file opening time suggests that executing lot of blank
read statements is even more costly. Restructuring the code such that different processors open
their files at different time, could be very helpful in reducing this time. Further improvements
in parallel machines may also make this problem disappear. But at least, at present a good
percentage of total execution time of moderate runs is spent in just opening the files. This
time is minimized by keeping all the files being opened beforehand in the respective directories.
These files could be of zero bytes.

Coming back to Fig. 6, 8 and 9, the next different lengths of yellow color represent that
processors have different amount of work after opening files to the point where they exchange
the interface nodal masses just before the time integration starts. Although domain decompo-
sition algorithms decompose the mesh into subdomains with equal numbers of elements, they
do not consider dividing this initial work equally. This difference arises from different number
of boundary conditions, initial conditions, output requirements etc., present in different subdo-
mains. The implications of this difference are rather serious in the sense that the processor that
takes maximum time to reach the point of first exchange, causes all other processors to wait by
sending a wave of waiting time in both directions. The propagation of this wave is highlighted
by red color in Fig. 6, 8 and 9.

The wave of waiting time moves at a speed of one neighboring processor per time step.
Processors that are not neighbors of the processor which originated the wave, start their time
integration early but go in a waiting zone as soon as the wave passes them. There can be many
such waves of different amplitudes originating from different processors. When two such waves
meet, the one with less amplitude gets merged in the other and the net difference propagates.
Because of this, the total waiting time of a processor may get fragmented into many smaller
waiting periods. This can be observed in Fig 6, 8, and 9. Between two such periods, a processor
might progress by one or more time steps, but the overall, total waiting time is governed by the
processor taking maximum time to reach the point of first exchange. Hence, starting the time
integration early, for a processor that clears the point of exchange of masses before some other
processor in the problem, does not help at all in reducing the total execution time.

The same phenomenon repeats itself during each time step. Again, even though domain
decomposition algorithms assign equal number of elements to each subdomain, the actual work
load may not be the same. This could be because of presence of prescribed displacements;
different boundary conditions, loading conditions, output requirements, and total number of

16

nodes; and most important, because of elements going in and out of plastic region. The processor
which takes the maximum time to complete a particular time step, transmits a wave with this
information and all other processors must wait at one point or another to make up for the
difference.

Figure 10 illustrates the relationship between per-step execution time and processor waiting
time. Results are presented for the 8192 element cylindrical panel mesh running on 2 Delta
processors for 2500 time steps. Each color represents activity of one processor. As is clear from
Fig. 10, per-step execution time changes over time and the processor with maximum execution
time can be different at different times. The actual waiting time of a processor is also plotted in
Fig. 10. The processor taking more time to complete a step has almost zero waiting time while
the other nrocessor has waiting time almost equal to the difference of execution times. This was
found to be true for higher number of processors also.

These are the reasons which caused the failure of the asynchronous algorithm. Changing the
cude to asynchrcnous receive does not reduce the work load of the processor with maximum
per step evecution time. This processor receives all its messages almost immediately without
any wait, as all its neighboring processors have finished their work much earlier and have sent
their messages. On the other side, they have sufficient time to receive their message because as
such they are going to wait at the next time step. Proper care must be taken to ensure that
the processor with maximum per step execution time spends minimum time in communication.
It is because of this processor only that the algorithm presented in Table 2 is better than the
algorithm in Table 1. For other processors, it really does not matter as they have to either wait at
csend() or crecv(). Again it is because of this processor only that good domain decomposition
programs are required which pay extra attention to minimize communication load by minimizing
number of interface nodes as well as number of neighboring subdomains.

When more processors are used in a problem, the total number of elements decrease in a
subdomain and so the load imbalance due to different per step execution time. This reduces
the excess time T,, (Table 5) and increases the effective parallelism in the program. The actual
communication time becomes important only when (1) per step execution time becomes so
small that it is comparable to actual communication time (very small problem) or (2) there is
at least one neighboring processor with per step execution time so close to the maximum time
such that the difference of the two becomes comparable to actual communication time (very
well decomposed problem). Because of this, for a very small problem such as 1024 element
cylindrical panel problem, performance started dropping for 128 nodes when there were only 8
elements per processor.

7. CONCLUSION

The code was initially developed and tested on a distributed network of Sun SPARCstations
(ASDAC PR-2 (1991)), followed by a port to the Intel Touchstone Gamma (Plaskacz, Ramirez,
and Gupta (1992)). The major features of the present code are its medium grain parallelism
which is made possible by the exchange algorithm; the buffered message passing procedure
which provides increased performance by reducing processor idle time, and above all the code’s
portability. As is evidenced by the performance figures, the code performs fairly well even though
it is a full-scale nonlinear dynamic finite element code. Analysis of excution time in terms of
equivalent Amdahl’s fraction a and effective parallelization p, suggests that parallelism in the

code increases not only with number of elements but also with number of processors. A detailed
analysis of execution time proves that the current simplified buffering scheme works as good
as a fully asynchronous buffering scheme. FEA codes intrinsically have very complex data flow
mappings and thus for software robustness and maintainability it is desirable to minimize degree
of modifications added for parallelization. As such, the uniqueness of the present algorithm lies
not in ite complexity but in its simplicity.

The allocation of finite elements among multiprocessors introduces synchronization costs
which must be controlled to achieve maximum speedup. File opening time was identified as
a task whose execution time increases linearly with number of processors. Small load imbal-
ances were found to be the major cause of processor idle time. Since it is not possible to identi{v
the processor with maximum per step execution time before hand, and also since this proces-
sor changes from time to time, there are limitations on how well a decomposition program can
decompose a subdomain. Greedy algorithms are simple and try to balance processor computa-
tional loads by assigning equal number of elements to each subdomain. They neither minimize
the number of subdomain interface nodes (message length) nor the number of neighboring sub-
domains (number of messages). Both of these problems are aggravated in an impact-contact
simulation or by any adaptive methodology. Some results with neural network-based domain
decomposition prove to be promising (Ramirez, Brar, and Plaskacz (1992)).

Our immediate objective is the formulation of a parallel domain decomposition algorithm
with a long term objective being a dynamic domain decomposition algorithm able to alleviate
load imbalances during the course of a simulation. The job of dynamic domain decomposition
algorithm is going to be very challenging as the time we are losing i.e. the excess time Te,
reduces with number of processors. For 8192 elements on 512 processors for 5000 time steps, we
are losing only 51.3 seconds. Assuming there is no time lost in opening of files and initial setup,
this gives us about 10 milliseconds only at each time step.

8. ACKNOWLEDGEMENTS

This research was performed in part using the Intel Touchstone Delta System operated by
Caltech on behalf of the Concurrent Supercomputing Consortium. Access to this facility was
provided by Argonne National Laboratory.

The geometry for the automobile mesh was provided by Mr. Dawson Deumeyer of Cray
Research, Inc.

The support of the U.S. Department of Energy under contract W-31-109-Eng-38 for one of
the authors (EJP) is gratefully acknowledged. The support of the State of Illinois under grant
number SCCA 90-82144 for all three authors is gratefully acknowledged. The support of the
Department of Educational Programs at Argonne National Laboratory for two of the authors
(MRR and SG) is gratefully acknowledged.

References

(1] The Advanced Software Development and Commercialization (ASDAC) Project: Progress
Report PR-1, E. Gallopoulos, Ed., ANL/TM 484 & CSRD Rpt. No. 1047, Argonne, IL
60439 & Urbana, IL 61801, Sept 1990.

18

[2] The Advanced Software Development and Commercialization (ASDAC) Project: Progress
Report PR-2, T. Canfield, M. Minkoff, and E. J. Plaskacz Ed. ANL/TM 488 & CSRD Rpt.
No. 1129, Argonne, IL 60439 & Urbana, IL 61801, April 1991.

[3] The Advanced Software Development and Commercialization (ASDAC) Project: Progress
Report PR-5, E. Gallopoulos, Ed., Argonne, IL 60439 & Urbana, IL 61801, October 1992.

[4] G. Amdahl, “The Validity of the Single-Processor Approach to Achieving Large-Scale Com-
puting Capabilities,” Proceedings of the American Federation of Information Processing
Societies, 30, pp. 483-485, 1967.

[5] T. Belytschko, J. I. Lin, and C. S. Tsay, “Explicit Algorithms for the Nonlinear Dynamics of
Shells,” Computer Methods in Applied Mechanics and Engineering, 42, pp. 225-251, 1984.

[6] T. Belytschko, J. S. Ong, W. K. Liu, and J. M. Kennedy, “Hourglass Control in Linear and
Nonlinear Problems,” Computer Methods in Applied Mechanics and Engineering, 43, pp.
251-276, 1984.

[7] T. Belytschko, E. J. Plaskacz, J. M. Kennedy, and D. L. Greenwell, “Finite Element Analysis
on the CONNECTION Machine,” Computer Methods in Applied Mechanics and Engineer-
ing, 81, pp. 229-254, 1990.

(8] T. Belytschko and E. J. Plaskacz, “SIMD Implementation of a Nonlinear Transient Shell
Program with Partially Structured Meshes,” International Journal for Numerical Methods
in Engineering, 33, pp. 997-1026, 1992.

[9] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Patterson, and R.
Stevens, Portable Programs for Parallel Processors, Holt, Rinehart and Winston, New York,
1987.

[10] R. Butler and E. Lusk, User’s Guide to the p4 Programming System, Technical Report
ANL-92/17, Mathematics and Computer Science Division, October 1992.

[11] A. L. DeCegama, The Technology of Parallel Processing: Parallel Processing Architectures
and VLSI Hardware, Vol. 1, Prentice Hall, 1989.

[12] J. Dongarra and I. S. Duff, “Advance Architecture Computers,” Supercomputing in Engi-
neering Analysis, ed. H. Adeli, Marcel Dekker, 1992

[13] C. Farhat, “A Simple and Efficient Automatic FEM Domain Decomposer,” Computers &
Structures, 28, pp. 579-602, 1988.

[14] L. Morino, J. W. Leech, and E. A. Witmer, “An Improved Numerical Calculation Technique
for Large Elastic-Plastic transient Deformations of Thin Shells: Part 2 - Evaluation and
Applications,” Journal of Applied Mechanics, 38(2), pp. 429-436, 1971.

[15] M. Al-Nasra and D. T. Nguyen, “An Algorithm For Domain Decomposition In Finite
Element Analysis,” Computers & Structures, 39, pp. 277-289, 1991.

[16] E. J. Plaskacz, Efficient Allocation of Computational Resources for Finite Element Appli-
cations, PhD Dissertation, Northwestern University, Evanston, IL, June 1990.

19

[17] E. J. Plaskacz, “Parallel Finite Element Analysis Via Message Passing,” submitted for
publication.

(18] E. J. Plaskacz, M. R. Ramirez, and S. Gupta, “On Distributed Processing Applications in
Finite Element Analysis,” Proceedings of the Engineering Mechanics Division, ASCE, May
1992.

[19] M. R. Ramirez, P. S. Brar, and E. J. Plaskacz, “A Neural Network Approach for Finite
Element Domain Decomposition,” submitted for publication.

[20] Using the Intel Touchstone DELTA System, ANL/MCS-TM-152, Mathematics and Com-
puter Science Division, June 1991.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
emnployees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof,

20

DATE

