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Abstract

With ten-year hindsight, the scientific considerations that entered
discussions of possible changes of stratospheric ozone by large fleets
of US-type SSTs are seen to be logical and constructive. Since 1961, it
has been realized that the photochemistry of the natural ozone balance

0

cannot be explained in terms of pure oxygen species (0x = 0, O but

27 3)’
that "something else'" in the stratosphere destroys most of the ozone formed
at and below the altitude of its maximum mixing ratio. When (1965-70)

this natural ozone destruction was thought to be caused by a few ppm of
water, it was pointed out that the predicted 10 percent increase in
stratospheric water by SSTs was a matter of concern. When (1970-71) it

was found that a few ppb of nitrogen oxides (NOy = NO, N02) probably are
the major cause of natural ozone destruction, then it was pointed out

that the predicted doubling of stratospheric NOy by SSTs was a matter of
concern. These were valid statements of the need for an environmental
impact assessment. This area of science was primitive in 1970, but by 1981
it has a large body of laboratory and atmospheric measurements and
elaborate matehmatical models. During this evolution, the models have
changed their NOx-SST predictions from an ozone-column decrease (1971~
1976), to an ozone-column increase (1977-early 1980), and back again to

an ozone-column decrease (October 1980- ). Although these changes in
prediction may appear to be a "comedy of errors," what we really have is
the history of a dedicated group of scientists working out the solution

to a complex problem. I estimate that within another 10 years, scientists
of the stratosphere will be able to make firm predictions about the

effect of nitrogn oxides on stratospheric ozone.



(e Introduction

The subtitle of this symposium is "A case history in the use of
science for decision making.'" To carry out this study of a case
history, it is important to examine the nature of the science being
used.and to note its degree of maturity 10 years ago and today. This
sub-field of science might be called "stratospheric photochemistry and

dynamics,"

which cuts across several scientific disciplines. This
field is concerned with detailed aspects of atmospheric motions, strato-
spheric composition, solar and terrestrial radiation, and photochemistry.
These subjects are studied by the methods of atmospheric observations,
laboratory measurments,‘theoretical interpretations, and mathematical
models. From the start we should recognize that all four of these
methods are capable of contributing to the advancement of the science,
but also each of them is subject to error and mistakes.

I want to look at»the history of this subject from two points of
view: The first point of view concerns the important variables
involved in the balance between formation and destruction of strato-
spheric ozone. This problem is tightly coupled to observations,
involves a minimum use of mathematical models, and in the early stages
of the subject was instrumental in identifying supersonic transports
as a potential cause of ozone reduction. The second point of view is
’that of mathematical models of the atmosphere. Within their limited
frame of reference these models predict the effect of various perturba-
tions of the atmosphere, such as supersonic aircraft.

This subject has been reviewed at various stages in the past,

for example, Grobecker et al. (1974), Johnston (1975), National Research



Council (1975), Broderick (1977), Logan et al. (1978), NASA (1979)

and Luther (1979).



II. The Natural Balance of Stratospheric Ozone

Stratospheric ozone (03) is produced by breaking apart molecular

oxygen (02) by far ultraviolet solar radiation (hv)

02 + hv (A < 242 om) 0O+ 0 (1)
M .
(0 + 02 ————*—03) Twice (2)

net: 3 02 + hv > 2 O3

The photochemical break—down of ozone to 02 + 0 usually does not lead
to ozone destruction, because with rare exception it is followed by
reformation of ozone by reaction (2). Occasionally, ozone photolysis

is followed by ozone destruction through the chemical steps

-

0, + hv (visible, UV) >0, + 0 (3)

0+0,+0,+0, (4)

net: 2 O3+hv—>3 O2

Chapman (1930) proposed that the photochemical reactions, (1), (2), (3),
and (4), were responsible for the natural balance between ozone formation
and destruction in the stratosphere.

To test the adequacy of this mechanism, Chapman and his followers
in this field between 1930 and the early 1950's were forced to make
assumptions about the distribution of far ultraviolet radiation above
-the atmosphere,-and they were forced to use indirect measurements of
the rate coefficients for reactions (2) and (4). Typically they assumed
that radiation from the sun corresponded to the Planck radiation law for
6000 K. The Planck function for 6000 K gave a reasonably good fit to

visible and near ultraviolet radiation, which reaches the earth's



surface; and it was assumed to be valid at shorter, more energetic wave
lengths. Around 1950, the Chapman mechanism involving the O, family of

species, 0, O 0., appeared to explain the natural ozone balance

2.3
(Mitra, 1952).

During the 1950's rockets were sent high above the stratosphere,
and these flights were used to measure solar radiation above the
atmosphere. It was found that the distribution of solar ultraviolet
radiation above the atmosphere did not follow the Planck function for
6000 K (Johnson et al., 1954, Detwiller et al., 1961). During the
1950's several new laboratory methods (for example, shock tubes, flash
photolysis, and fast flow systems) were developed that permitted direct
observation of active spécies such as atomic oxygen and that gave new
values for the rate coefficients of atmospheric reactions (compare the
review by Kaufman, 1964). Dutsch (1961) pointed out that the theory
based on reactions (1) to (4) indicated far more ozone than that
observed. Hunt (1966a) wrote a paper entitled '""The Need for a Modified

' in which he demonstrated

Photochemical Theory of the Ozonosphere,'
that the calculated ozone profile was greater than that observed at
all altitudes, and the vertical ozone column exceeded that observed by

a factor of 3 to 4. It appeared that "something else'" besides Oy

species was very important in destroying ozone in the stratosphere.

The water reactions — In a subsequent paper, Hunt (1966b) tested

Hampson's (1964) suggestion that ozone was destroyed by catalytic cycles
based on free radicals derived from water, H, HO, and HOO, which are

collectively referred to as HOy . One such catalytic cycle is



+ +
HO + 0, > HOO + 0, (5)

HOO + + 0, +
0, > HO + 0, + 0, (6)

net: 2 O3 - 3 O2

Hunt concluded that this mechanism would give agreement with ozone
observations if the rate coefficients for reactions (5) and (6) were

k. = 5% 10+ op® g L

k6 =1 x 10-.14 cm3 s—l

During the period 1966-71, Hunt's postulate became the working
model for the stratospihieric ozone balance even though these rate

coefficients had not been measured. Langley and McGrath (1971) reported

laboratory measurements that indicated k_ to be less than 1 x lO—16

5
cm3 s_l, that is, 5000 fold less than that required for Hampson and

Hunt's mechanism. This result suddenly demolished Hunt's model, but

later experiments (1973-79) showed Langley and McGrath's result to be

quite wrong. The apparent value of the rate coefficient k5 as a

function of time between 1965 and 1980 is shown by Fig. 1. Recent
experiments (1973-79) show that both kS and k6 are about a factor of

10 lower than required by Hunt (Baulch et al., 1980; NASA, 1979).

The NO, mechanism — From a balloon, Murcray and co-workers (1968)

observed nitric acid (HNOB) and probably nitrogen dioxide (N02) at a
few parts per billion in the lower to middle stratosphere. In reflect-
ing on these observations, Crutzen (1970) recognized that the oxides

of nitrogen are capable of destroying ozone in a catalytic cycle



NO + 0, > No, + 0, (7

+
N02 0"NO+O2

net: O3 + 0 > O2 + O2

The net result is ozone loss as in reaction (4), catalyzed by NO and
NOZ.‘ In the context of pure science, Crutzen postulated that NO,
(that is, NO and N02) could be responsible for maintaining the natural
ozone balance, if NOyx is present at about 10 parts per billion in the
stratosphere.

During the period 1972-1980, many observations have been made of
stratospheric NO, NO

, and HNO Noxon et al. (1979) and Noxon (1979,

2 3°

1980) observed the vertical column of NO, at many latitudes and

2
seasons. Several balloon flights have given the NO, vertical profiles

in the stratosphere (NASA, 1979). ©Noxon's observed NO2 prdfiles have
been translated by Solomon et al. (1980) into a global, three-dimensional
distribution of NOZ; and using Noxon's (1980) recalibration of his
method, it was found that NOyx destroys ozone in the '"ozone formation
region" between 15 and 45 km at about 60 percent of the rate of ozone
production over the same range. These observations (Noxon, 1979, 1980)
and calculations (Solomon et al., 1980) confirm Crutzen's (1970)
hypothesis about the amount and distribution of NOy in the stratosphere,
in contrast to the disprdof of the hypothesis by Chapman concerning

solar radiation above the atmosphere and the hypothesis of Hunt about

the values of two rate constants. Here we have the classic operation

of the scientific method; hypotheses are made, tested, and replaced

until the correct statement is found.



At present it appears that catalysis by NOx is, by far, the dominant
loss mechanism for ozone in the natural stratosphere. It also appears
that Oy, HO4, and chlorine-containing species each contribute significant
direct destruction of ozone, and these species interact in important
ways with the oxides of nitrogen. These interpretations about the
natural ozone balance are strongly anchored to observations of trace
species in the atmosphere, and they are almost independent of strato-

spheric models.

SSTs in context of our understanding of the natural ozone balance

— During the period 1965-1971, it appeared that the HOy free radicals
derived from natural water were responsible for destroying about 80
percent of the ozone produced in the "ozone formation region" of the
stratosphere, that is, below about 45 km, if two unmeasured rate
coefficients had sufficiently large values. In the period 1969-1970,
various analyses concluded that a large fleet of U.S.-type supersonic
transports would be expected to increase stratospheric water vapor by
about 10 percent on a global scale and by a larger percentage at mid-
latitudes in the flight corridors of the northern hemisphere. The
general proposition was that if natural water is the dominant cause of
ozone destruction in the natural stratosphere, then increasing strato-
spheric water vapor by 10 percent or more is a matter of legitimate
concern. This argument was a logical and constructive one, until
Langley and McGrath's (1971) reported rate coefficient contradicted
its foundation.

Meanwhile, Crutzen (1970) had found that the oxides of nitrogen

could account for the natural ozone balance, if NOy was present in the



stratosphere at more or less 10 parts per billion. At a meeting in
Boulder, Colorado of the SST Environmental Research Panel of the U.S.
Department of Commerce Technical Advisory Board, Park and London (1971)
presented a reasonable natural distribution of stratospheric NOy on
the basis of observed NOy in the mesosphere, observed NO, in the tropo-
sphere, and with continuity through the stratosphere. They inferred
an average stratospheric NOx column that was five parts per billion,
which was in reasonable agreement with Crutzen's expectations. Park
and London also deduced the "maximum credible" distribution of NOy from
the exhausts gases of a large fleet of supersonic transports operating
at 20 km altitude, and this input increased the stratospheric NOx load
to 27 parts per billion; which is an increase by more than a factor of
five. This factor of five includes a large '"corridor effect,'" and the
indications were that on a global scale a large fleet of SST's would
more or less double stratospheric NOx.

In the years after the meeting of the SST Environmental Research
Panel in Boulder, Colorado, March 1971, it is sometimes forgotten
what the issues were at that time. The primary concern at that meeting
was the effect of water vapor on ozoné. Park and London added their
discussion of nitrogen oxides as an afterthought to their paper on
water vapor. McElroy (1971) explored the possibility that NOy from
-SSTs might be transported into the D-region of the ionosphere, provide
an additional source of ions, and possibily have an effect on radio
propagation; one member of the Panel a year later cited this effect
as the most serious issue so far as SST nitrogen oxides were concerned.

The SCEP report (1970) said "... in stratospheric photochemistry

10



11

NOX ... may be neglected." At that meeting, I proposed a formal motion
to the SST Environmental Research Panel: "We recommend that the oxides
of nitrogen be regarded as potentially an important variable in problems
concerning stratospheric photochemistry." After a discussion and a vote,
the SST Research Panel rejected this motion. These examples illustrate
the primitive nature of our understanding of NOyx photochemistry in the
stratosphere in 1971.

During 1971 and 1972 the following argument was stated on several
occasions: If natural NO, is the dominant cause of ozone destruction
in the natural stratosphere, then more or less doubling stratospheric
NOy by supersonic transports is a matter of legitimate concern, and it
may not be neglected. The proponents of the proposed U.S. supersonic
transports, which to a large extent was the U.S. Government, were under
obligation to assess the environmental impact of large increases in NO.
This obligation has been recognized and is being met by the Climatic
Impact Assessment Program (1971-1975), by the High Altitude Pollution

Program, by NASA, and by other on-going programs.
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ITI. Mathematical Models of the Atmosphere

Models typically employ computer programs, use simplified expressions
for atmospheric motions, take laboratory measurements as input data, and
take atmospheric observations as boundary values. These models calculate
the species profiles in the natural atmosphere, and thev calculate how
these profiles change for assumed perturbations of the stratosphere.

The ideal model would include the global atmosphere with motions in
three dimensions, it would include a complete set of atmospheric species
and photochemical reactions, and it would include all forms of solar and
thermal radiation. Such a model is too complex for 1981 resources.

It has been necessary for scientists working in this field to construct
simplified models that explore certain aspects of the real world. Some
models include three-dimensional motions and a small amount of chemistry
(Mahlman et al., 1980). Several models include only the global-average
vertical component of motion but have extensive sets of chemical
reactions (Chang and Duewer, 1979).

In particular, models have calculated natural ozone profiles and
ozone profiles after the long-term operation of large fleets of super-
sonic transports. Some of the history of these calculations over the

past 10 years will be reviewed.

SST's and the water reactions — During the period (1969-1971),

when water vapor was regarded as the major source of natural ozone
destruction, some model calculations were made of changes in the ozone
column subject to large increases in water vapor from supersonic

transports. The Boeing Research Laboratory gets the credit for



13

pioneering work in this field; Harrison (1970) of the Boeing Laboratory
published a model calculation giving a 3.8 percent reduction of ozone

by water from a large fleet of SSTs. Of course these predictions were
made in the context of the knowledge of the time; and when it appeared
that the HOy-ozone rate coefficients were low, these model calculations

were superseded.

SST's and NO, reactions — The first model calculation of ozone

reduction by SST-produced nitrogen oxides appears to have been made by
Park and London (1971). They deduced an NOyx background that averaged
five parts per billion, they concluded that the large fleets of SSTs

proposed in 1971 might increase stratospheric NOyx by about a factor of
five, and they calculated a 1.8 percent reduction of the ozone column.

It was at this point that I got into the field of stratospheric
photochemistry. I would like to comment on my personal role in 1971 and
again in 1974.

Park and London calculated only a 1.8 percent reduction in ozone
for a large increase in stratospheric NOy. I spotted the fact that, by
mistake, they had used a value for a well-known rate coefficient that
was too large by a factor of 10,000, and in that case, the oxides of

nitrogen very powerfully produce ozone by the catalytic cycle

>
2 NO + 0, 2 NO, (9)
No, + hv = NO + O (10)
M twice
e o3 (2)

rlet:302+h\)‘>203
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When I repeated Park and London's calculation with the correct value of

k9 and with Langley and McGrath's (1971) value of k5’

tion gave a 49 percent reduction of ozone. (The details of this episode

the model calcula-

are given by Johnston, 1974.)

I went on to make other similar model calculations for a wide
variety of assumed NOy background profiles and for a wide variety of
NOy perturbations (Johnston, 1971a,b). 1In one series of cases, I showed
that for a given background NOx profile and for a given mass of NOy
perturbation, one could calculate ozone reductions anywhere between

3 percent and 50 percent depending on the distribution of the NOy in the

stratosphere, and all of these distributions appeared reasonable within
the context of current discussions of atmospheric motions (Danielson,
1971). Although I, like Park and London, used an extremely simple
model, it established — at least to my satisfaction — that the effect
of added NOy on ozone depended strongly on three features: (i) the
natural NO, background, (ii) the magnitude of the NOy perturbation,

and (iii) the distribution of the NOyx perturbation.

During 1971, at least two other authors made model calculations
indicating that NO, from large fleets of supersonic transports might
significantly reduce stratospheric ozone (Westenberg, 1971; Crutzen,
1971).

In 1974 a co-worker and I (Johnston and Quitevis, 1975) pointed out
another three-fold aspect of the effect of NO, on ozone: (i) In photo-
chemical smog in the lower troposphere, added NO, produces ozone;

(ii) in the middle and upper stratosphere, added NOyx reduces the local

concentration of ozone, and (iii) therefore, there must be some altitude
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at which these effects cross such that local ozone is unaffected by
added NO,. Model calculations were carried out including HOyx, NO,

and methane reactions as they were understood to be at the time. The
cross—over point between ozone production by the NOy-methane smog
reaction and ozone destruction by reactions (7) and (8) appeared to be
about 13 km, Fig. 2. An airplane flying at some altitude would send some
of its NOx up into the region where NOyx destroys ozone and some of its
NOyx down to the region where NOyx and methane produce ozone. The flight
altitude of zero effect on the total ozone vertical column is not the
same as the altitude of zero local effect. Even so, our simple calcu-
lation showed that the effect of aircraft on ozone also included this
additional complication‘and that at some flight altitude the NOx from
an airplane should increase the ozone vertical column.

During the period 1972-1980, the atmospheric models have increased
in physical, chemical, and mathematical sophistication. During this
period, many photochemical reactions of stratospheric significance have
been studied or reinvestigated in the laboratory; and in a number of
cases, powcrful, direct methods have been employed. A number of groups
have carried out model studies of stratospheric ozone (NASA, 1979).

In studying the history of model calculations of SST effects, the

series of calculations made at Lawrence Livermore Laboratory is espe-
cially instructive (Luther, 1979; Weubbles et al., 1981). The Livermore
group has considered one rate of NOyx injection (2000 molecules cm

s spread out over a one kilometer band at either 17 or 20 km). This
model injection is not intended to correspond to any particular SST

fleet. They have calculated the change in ozone for these perturbations
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for each of the many changes in photochemical constants and recognition
of new important species over the period 1972-1981, Fig. 3. The primitive
1972 model gave a 33 percent ozone reduction. As stratospheric science
was understood to be at the end of the Climatic Impact Assessment Progranm
in 1975, this model gave a 10 percent ozone reduction. During the

period 1976-1978, several rate coefficients were changed as improved
experimental methods were used, and most of these changes reduced the
calculated ozone reduction. During the period 1977 to mid-1980, the

model calculated a new increase in the ozone columm for NOyx injections

at 17 and at 20 kmn.

It 1s well to pause and to check how well these models predict the
natural stratosphere. figure 4 shows the vertical column of nitric acid
as a function of latitude for four seasons as calculated by a two-
dimensional model (Widhopf and Glatt, 1979), and the Livermore calcu-
lated point at 30°N latitude is included. The figure also shows the
observed vertical columns of nitric acid as obtained by several investi-
gators and by several methods (reviewed by Johnston, 1981). The 1979
models greatly overpredict the amount of nitric acid in the stratosphere.
Since most nitric acid occurs at altitudes below 30 km, this model
failure applied primarily to the lower stratosphere. There are several
other model failures in the range 15 to 30 km (NASA, 1979), and all of
these failures seem to be in the direction of too much hydroxyl radical,
HO, being calculated for the lower stratosphere.

During the summer and fall of 1980, new laboratory results were
reported (Wine et al., 1980; Sridharan et al., 1980, Littlejohn and

Johnston, 1980; Keyser, 1980) which show that HNO H 02, and HOONO

3" "2 2
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react with hydroxyl radicals much faster than previously indicated. The
net effect of these new rate coefficients is that in 1981, the Livermore
model again calculates a reduction of the ozone column by NOy injections
at 17 or 20 km, as is indicated by Fig. 3. 1In 1981 the predicted ozone
decrease by the 20 km injection is about five percent (Wuebbles et al.,

1981).
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IV. Tests of Models Against Observations

It is desirable to check model predictions against known injections
of NOy in the real atmosphere and in each of the three regions of Fig.
2. It turns out that the historical records contribute partial tests
of this kind.

(1) Ozone production in photochemical smog — Using simple, direct

methods, Haagen-Smit and co-workers (1953) showed that ozone is produced
by near ultraviolet radiation acting on almost any gas-phase organic
molecule and nitrogen dioxide. Several examples showing ozone build-up
and decay in both smog chambers and in the atmosphere were cited by
Johnston and Quitevis (1975). The effect of NOy on photochemical smog
is complex, but it is abundantly illustrated that NOy plus organic

gases plus sunlight form ozone in the lower troposphere.

(ii) Ozone destruction by NOx injection in the upper stratosphere

by the solar proton event of August 1972 — The solar proton event of

August 1972 injected a large amount of NOy into the upper polar strato-
sphere over the period of a few days. One satellite measured the
proton beam intensity above the atmosphere from which the injection of
NOx can be deduced, and another satellite measured the global ozone
distribution of ozone in the upper stratosphere before and after the
solar proton event (Crutzen et al, 1975; Heath et al., 1977). The
Nimbus 4 satellite observed a large, conspicuous ozone reduction in the
range of 35 to 50 km at 80°N, which persisted for many days. A recent
comparison between calculated and observed ozone decreases is given by

Fig. 5, using 1980 input parameters in a two—-dimensional, time-dependent



19

stratospheric model (Solomon, 1980). It appears that current photochemical

theory is fairly successful in predicting the effect of NOx on ozone in

. the upper polar stratosphere.

(iii) Atmospheric nuclear bomb tests of 1961-62 — The nuclear bomb

tests of 1961-62 injected a large, approximately known amount of NOx

into the lower stratosphere, and it has long been hoped that this
injection could be used to calibrate the effect of NOyx in the lower
stratosphere (Foley and Ruderman, 1973; Johnston et al., 1973; Goldsmith
et al., 1973). For the NOx injected by these nuclear-bomb tests, Chang
and Duewer (1973) calculated the ozcne reductions for the period 1957

to 1971. The maximum calculated effect was a four percent ozone reduction
in 1963, which became two percent by 1966 and one percent by about 1968.
When one considers the observed ozone columns at Arosa, Switzerland
between 1926 and 1970, for example, the noise in these records is so
large that an effect the size and shape of Chang and Duewer's function is
lost (Birrer, 1974). The monthly deviations of the Arosa ozone record
from the 40 year monthly means are compared with the theoretical ozone-
decrease function in Fig. 6. The natural variation of ozone is so

great that one can neither prove nor disprove the presence of an ozone
perturbation, plus or minus, like the one calculated by Chang and Duewer

(Johnston, 1981).
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V. Conclusions

The relation of supersonic transports to stratospheric ozone has a
political history as well as a scientific history, but I am not especially
going into that area. 1In this case history, I think a distinction should
be made between using scientific considerations to call for an environ-
mental impact assessment and in contending there is scientific proof for
certain effects or lack of effects. In 1970 with respect to water and
in 1971 with respect to nitrogen oxides, there were ample scientific
grounds to call for an environmental impact study concerning the effect
of large SST fleets on stratospheric ozone. When public policy decisions
on a problem involving gcience must be made at a particular time, the
decision has to be made on the basis of the scientific knowledge avail-
able at that time. For example, the U,S. Congress in 1971 mandated that
the Climatic Impact Assessment Program submit its final report by the
end of 1974; and thus the report reflected the status of the subject
in 1974, not necessarily what the community of scientists would regard
as a proven case.

If this topic is examined as a field of science, one sees a history
of many dedicated workers in the laboratory, in the atmosphere, and at
the computer. One sees the evolution of this field from its primitive
state in 1970 to that of an active, developing science in 1981. Even
now, I think, the field is not mature. We can identify features that
are unknown or are poorly characterized, especially in the 15 to 30 km
altitude range. Although much progress has been made in selecting and
studying photochemical reactions in the laboratory, more effort is

needed toward obtaining a complete list of the important atmospheric
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species and accurately measuring all appropriate rate coefficients.
One looks forward to satellite data for a global inventory of some
important trace species. One anticipates continued improvement of two
and three dimensional models of atmospheric motions.

With respect to stratospheric ozone, one could not in 1970 and
cannot at this time prove that it is safe for large fleets of supersonic
aircraft to operate in the stratosphere, and on the other hand one
could not then and cannot now prove that it is unsafe. However, the
problem appears to be a finite one, and I expect that within another
10 years scientists of the stratosphere will be able to provide a

clear-cut answer to this question.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

History of the perceived value of the rate coefficient for
reaction (5):

HO + 03 - HOO + O2

Hunt (1966); Langley and McGrath (1971)

1973-1979: A, critical reviews; O, measurements.

Comparison between the calculated local rate of ozone
destruction by the NOy catalytic cycle and ozone formation
rate from the methane-NOg-smog reactions (Johnston and

Quitevis, 1974, 1975).

History of the calculated change in the ozone vertical
column for standard nitric oxide injections at 17 and 20
km as calculated by the Lawrence Livermore Laboratory
one-dimensional model (Luther, 1979; private communication,
1981). These calculations were made with the same model
for atmospheric motions, but they vary with changed
perceptions in how to treat solar radiation, in identity
of important atmospheric species, and in values of photo-

chemical rate coefficients.



Figure 4.

Figure 5.

Figure 6.
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Observed and calculated vertical columns of nitric acid in
the stratosphere as a function of latitude and season. The
curves were calculated by Widhoff and Glatt's (1979) two-
dimensional model. The cross was calculated by the Livermore
1-D model. Aircraft observations: 0, January 1974; A, April
1974. Balloon observations: [], for different authors and

seasons as described by Johnston (1981).

Calculated and observed decrease in ozone, eight days
after the solar proton event of August 1972. The calculation
was done by Solomon (1980) using Crutzen's two-dimensional

model and photochemical coefficients as of late fall 1980.

Monthly deviations of observed ozone from the 40 year mean
of each month at Arosa, Switzerland as reported by Goldsmith
et al. (1973) in the upper panel. The calculated ozone
reduction from the nuclear bomb tests by Chang and Duewer
(1973) is given to the same scale in the small figure
between 1957 and 1970 between the two panels. The lower
panel is the same as the upper panel with the points
displaced downward according to Chang and Duewer's function.
The calculated ozone reduction is submerged by the large
natural variation so that no conclusion, one way or another,

can be drawn from this comparison.
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CALCULATED OZONE-COLUMN REDUCTION FOR STANDARD NOy
INPUT BY LIVERMORE ONE-DIMENSIONAL MODEL
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