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ABSTRACT

When a vc'.Aclewithtwo ormore steerabledrivewheelsistravelingina circle,
themotion ofthe wheelsisconstrained.The wheeltranslationalvelocitydivided

, by the radius to the center of rotation must be the same for ali wheels. When
the drive wheels are controlled independently using position control, the motion
of the wheels may violate the constraints and the wheels may slip. Consequently,
substantial errors can occur in the orientation of the vehicle. A vehicle with N drive

wheels has (N - 1) constraints and one degree of freedom. We have developed a
new approach to the control of a vehicle with N steerable drive wheels. The novel
aspect of our approach is the use of force control. To control the vehicle, we have
one degree of freedom for the position on the circle and (N- 1) forces that can
be used to reduce errors. Recently, Kankaanranta and Koivo developed a control
architecture that allows the force and position degrees of freedom to be decoupled.
In the work of Kankaanranta and Koivo the force is an exogenous input. We have
made the force endogenous by defining the force in terms of the errors in satisfying
the rigid body kinematic constraints. We have applied the control architecture to
the HERMIES-III robot and have measured a dramatic reduction in error (more
than a factor of 20) compared to motions without force control.



1. INTRODUCTION

" A wheel is the classic textbook example of a system that must satisfy a
nonholonomic constraint. At each instant, a wheel rolling on a horizontal plane

. without slipping can move in only one direction. Motion in the orthogonal direction
requires maneuvering. The most familiar example of the maneuvering required by
a nonholonomic vehicle is parallel parking of a car. The goal is to move the car two
meters in the direction orthogonal to the wheels. The optimum path is arc-line-arc
and is accomplished by: turning the wheels to one limit, backing, straightening the
wheels, backing, turning the wheels to the other limit, backing, and straightening
the wheels (several iterations may be required by an unskillful driver).

A vehicle with steerable wheels can use the steering degrees of freedom to reduce
the maneuvering. For example, a car with four steerable wheels can parallel park
by turning the four wheels sideways and moving directly into the parking space.
In addition to moving in a line in any direction, a vehicle with steerable wheels
can move in a circle about any center of rotation. Circular motion is useful for the
working around circular objects like storage drums or tanks.

Cars are becoming more like computer controlled mobile robots. Cars are
available with four wheel drive, four wheel steering, and anti-lock braking systems.
A team from Nippondenso and the University of California at Berkeley has
developed an experimental control system for a laboratory vehicle with four

- steerable drive wheels. 5

However, when a vehicle with two or more steerable drive wheels is traveling in
. a circle, the motion of the wheels is constrained. The wheel translational velocity

divided by the radius to the center of rotation must be the same for all wheels.
When the drive wheels are controlled independently, errors occur and the wheels
will slip. Our objective is to develop a method to control constrained wheels as
a unit rather than independently. The motivation for our interest in this problem
was provided by the development of a wheel control system for the HERMIES-III
robot, s

HERMIES-III is a large (800 kg) robot designed for human scale experiments.
The chassis (1.6m x 1.3m x 1.9m) has two steerable drive wheels and four
corner caster wheels. The current wheel control system for HERMIES-III provides
independent velocity control of the rotation of the two drive wheels. During
constrained circular motion, substantial errors can occur. For example, the goal
might be a rotation of 10 degrees about the point (2,2) and the actual rotation can
be 8 degrees (an error of-20%).

A vehicle with N steerable drive wheels has N degrees of control for translation
and N degrees of control for steering. When the vehicle is moving in a circle, it

- has one degree of freedom. The instantaneous center of rotation determines the
steering angles for the N wheels. To control the vehicle motion, we introduce N
new variables: one variable for motion on the circle (the pseudovelocity) and N- 1
variables for the errors in satisfying the rigid body constraints. To control the N
new variables, we introduce N new control variables: oa for the pseudovelocity

1



2 INTRODUCTION

and N- 1 forces to reduce the errors. We must define a mapping from the N new
control variables to the N original control variables for translation.

Kankaanranta and Koivo 4 have developed a general model for the dynamics "
of constrained mechanical systems and have proposed a control architecture that
allows the force and position degrees of freedom to be decoupled. Their focus was
on the constrained motion of manipulators and several recent papers 1,7 have applied
their results (or related results) to the constrained manipulator problem. We will
apply their architecture to the constrained motion of a vehicle.

The next section will present a kinematic model of a vehicle with four steerable
drive wheels. The third section will define the pseudovelocity for a vehicle with N
drive wheels and one degree of freedom. The fourth section will apply the control
architecture of Kankaanranta and Koivo to a vehicle with N drive wheels and one

degree of freedom. The fifth section will discuss how to implement the control
architecture (we have defined the force in terms of the error) and the sixth section
will present experimental results using the HERMIES-III robot. The final section
presents our conclusions.



2. KINEMATIC MODEL OF VEHICLE

* In this section, we will discuss the equations that comprise the kinematic model
of the vehicle. The vehicle has four drive wheels that can be steered. The motion

, of each wheel is described by two variables: w_, and 0i. The variable wi is the
cumulative displacement of the wheel as it rotates about its axis. The variable Oi
is the steering angle of the wheel in the vehicle coordinates. The units for wi are
meters, while the units for Oi are radians.

Let ri be the radius from the instantaneous center of rotation (P) to a wheel
and let vi(gvi) be the translational velocity of the wheel. If f_ is the rotation rate
for the vehicle, then each wheel satisfies:

v_lr_= _ (1)

The radii (ri) axe determined by the center of rotation [P = (Pz,Py)] and by
the location of each wheel [ip = (ipx ' ipp)]. Let (xi, yi) be the x and y components
of the vector from wheel i to the center of rotation in the vehicle coordinates:

xi = Pz -ipz (2)

y_=p_-% (3)
Then, the radii and wheel steering angles satisfy:

- (_)_ + (_)2= (_)2 (4)

xi = -ri sinSi (5)

vi = r_cost_i (6)

We assume that the wheels are numbered as in Fig. 1. Furthermore, we assume
that the vectors from wheel 1 to wheel 3 and from wheel 2 to wheel 4 are parallel to
the z axis. Similarly, the vectors from wheel 1 to wheel 2 and from wheel 3 to wheel
4 are parallel to the y axis. We assume that the origin of the vehicle coordinate
system is at the midpoint of the four wheels. Thus, the coordinates of each wheel
are:

lp= (c,_d),2p = (c,d),Sp= (-c,-d), and 4p = (-c,d).

- In Fig. 1, a vehicle with four wheels rotates about a point. During rotation
the motion of the wheels must be synchronized. Using Eq. (1), the velocity of each
wheel must be proportional to the radius from the wheel to the center of rotation.

d

The four wheel velocities have one degree of freedom and must satisfy three rigid
body constraints. We will now derive the rigid body constraints.

3



4 KINEMATIC MODEL OF VEHICLE
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Fig. 1. A vehicle rotating about the Point P.

Given the center of rotation, we can calculate the four radii and the four steering
angles using Eqs. (4) to (6). Alternatively, given steering Jingles for a pair of wheels
and the distance between the wheels, we can calculate the distances from each wheel
to P. We will consider four pairs of wheels (see Fig. 1): [2, 4], [1, 3], [1, 2], and
[3, 4] and calculate four pairs of radii. For the wheels parallel to the x axis ([2, 4]
and [1, 3]):

r2 = 2c cos 84/sin (82 - ft4) (7)

_ = 2_co_0_/_in(o2-0_) (s)

r_ = 2c cos 83/sin (8_ - 83) (9)
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r3 = 2c cos 01/sin (01 -- 03) (10)

' For the wheels parallel to the y axis ([3, 4] and [1, 2]):

, ra = 2d sin 04/ sin (04 - Oa) (11)

r4 = 2d sin 0s/sin (04 - 03) (12)

rl = 2d sin 02/sin (02 - 0_) (13)

r2 = 2d sin 01/ sin (02 - 01) (14)

Using Eq. (1) and Eqs. (7) to (14), we can derive the following rigid body constraints:

vi sin 01 = v2 sin 02 ' (15)

v2 cos 02 = v4 cos 04 (16)

v4 sin 04 = va sin 0s (17)

vs cos 0s = vi cos 01 (18)
d

The physical significance of the rigid body constraints is that the velocity
components along the line connecting the centers of each pair of wheels must be
equal. Thus, the distance between wheels cannot change.

When a vehicle with four wheels is rotating about a point, the wheel velocities
have one degree of freedom and must satisfy three rigid body constraints. Although
Eqs. (15) to (18) provide four rigid body constraints, at most three of them can be
independent. Which three of the four should we use? The answer depends on the
steering angles. When the four wheels are pointed forward (0i = 0), Eqs. (15) and
(17) do not constrain the velocities. When the four wheels are pointed a.* ninety
degrees, Eqs. (16) and (18) do not constrain the velocities. If we steer the front
wheels (1 and 2) and the rear wheels are fixed in the forward position (the normal
configuration for a car), Eq. (17) does not constrain the velocities. If we steer the
rear wheels and the front wheels are fixed in the forward position (an appropriate
choice when the vehicle moves backward), Eq. (15) does not constrain the velocities.

In the special cases when the four wheels are pointed forward or at ninety
. degrees, the wheel velocities have two degrees of freedom. The wheels are paired

into two groups that must have the same speed. For forward wheels, wheels 1 and 3
have the same speed and wheels 2 and 4 have the same speed. Furthermore, wheels

d

1 and 2 can have different speeds. For wheels at 90 degrees, wheels 1 and 2 have
the same speed and wheels 3 and 4 have the same speed. For these special cases, we



6 KINEMATIC MODEL OF VEHICLE

have two sets of two wheels that each must satisfy a rigid body constraint. Thus,
we can have two wheels with one constraint or four wheels with three constraints.

In all cases, we have N wheels and one degree of freedom.



3. DEFINITION OF THE PSEUDOVELOCITY

• In the last section, we developed a kinematic model for a vehicle with four
wheels. In this section, we will consider a vehicle with N wheels and assume that it

, has one degree of freedom and K degrees of constraint (K + 1 = N). The general
nonholonomic constraint may be written:

A _ = 0 (19)

where the q are the generalized coordinates. We assume that the K x N matrix
A has full rank K. For the vehicle, we will let the q be the rotation of the four
wheels (q = w) and we assume that the steering angles are exogenous functions of
time. Naturally, the steering angles are not independent; the center of rotation (P)
determines all of the steering angles. Since the matrix A is function of the steering
angles, it is a known function of time.

Following Kan_ranta and Koivo, we introduce a scalar pseudovelocity (v):

v = B4 (20)

where B is a 1 x N matrix, chosen to make [AT BT] T nonsingular. The vehicle has
N wheels and one degree of freedom. The pseudovelocity has one degree of freedom
and determines the motion of the vehicle. The velocities of all N wheels (_) will be

. proportional to the pseudovelocity.
Kankaanranta and Koivo do not spedfy a method for choosing B. Many choices

are possible. Some authors have chosen the pseudovelocity to be a physical velocity
" (for example, the velocity of one of the wheels). One of our major contributions

to this i_roblem is that we have developed a general method for choosing B. We
choose B to be orthogonal to all of the rows of A.

Let S be the composite matrix with its first K rows from A and its last row
from B:

ali al2 ... alN
a21 a22 • • • a2N

s = ....
nK1 nK2 ... aKN
bl _ ... bN

Expanding along the last row of S, the determinant of S is:

N

. ISl= _ biANi (22)
iml

where the ANi are the cofactors of S. Since the cofactors depend on the elements
" of A, they are functions of the steering angles (Oi).



8 DEFINITION OF THE PSEUDOVELOCITY

The inverse of S is partitioned into two matrices (E and F)'

S -z = [E F] (23) "

where E is an (N x K) matrix and F is an (N) vector. The matrices A, B, E, and
F satisfy:

AE=I, AF=O, BE=O, BF=I, and EA+FB=I.

The vector F is the orthogonal complement of A and is given by:

" AN_
/kN2

1

F = _ST " (24)

.ANN

Equation (24) is a general expression for F that is valid for any choice for the B
vector. The cofactors are functions of the elements of A. The elements of the vector
B are in the determinant of S.

How shall we define the B vector? Our goal is to make the matrix S nonsingular
(to make the determinant of S nonzero). If we choose the bi to be proportional to
A Ni , the determinant of S cannot be zero unless all of the cofactors are equal to
zero. Furthermore, the B vector will be parallel to the F vector. Thus, the B vector
will be orthogonal to all of the rows of A. We choose the bi to be proportional to A Ni
and we introduce a normalization factor to make IS I = 1. Define the normalization
factor (p) by:

N

p= (25)
i--1

Thus, our choices for the elements of the B vector are:

bi =/kNi/p (26)

The vector B and the wheel velocities (_) define the pseudovelocity. In
genera/, the pseudovelocity will not be the velocity of any particular point on the
vehicle. However, the pseudovelocity determines the motion of the vehicle (the
wheel velocities are proportional to the pseudovelocity). The pseudovelocity can
be controlled to follow a reference trajectory. Given planned trajectories for the
wheel velocities and steering angles, the reference trajectory for the pseudovelocity
is determined by Eq. (20).

To illustrate our method for choosing the B vector, we will consider the example
of a vehicle that has both front and rear wheel steering. We assume that most of
the steering is with the front wheels and that the ten, wheels are normally in the
forward position, where Eq. (17) does not constrain the velocities. If we exclude
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Eq. (17) and define the rows of the A matrix by Eqs. (15), (16), and (18), the S
matrix is:

S = 0 c2 0 -c4 (27)" -cl 0 cs 0
bl b2 bs b4

where si = sin Si and ci = cos 8i. Whenever the rear wheels are in the forward
position, the S matrix will not be singular unless the front wheels are also in the
forward position.

For this example, the cofactors of S are:

A4a = s2 cs c4 (28)

A42 = 31 c3 c4 (29)

A4s=cl s2c4 (30)

A44 = sl c2 cs (31)

Given the cofactors, the elements of the B vector are determined by Eqs. (25) and
" (26).

For the case of two constrained wheels, we will introduce a norm_lization factor
- (_) for the elements of the A matrix. The rigid body constraint for a vehicle with

two wheels is Eq. (15). Using the normalization factor:

A -[/31 -/32] (32)

where _Oi= si/l_ and

U2 = (81)2 .4. (82)2 (33)

The rank of A is one unless both of the steering angles are zero (the vehicle is not
constrained). For this example, the cofac*ors are: A2a =/32 and A22 = /31. Since
(/_1)2 + (/32)2 _ 1, the normalization constant (p) is unity and bi = _2i. Thus, the
S matrix is:

[/_a -'2] (34) 'S= &

Forthiscase,theS matrixisorthogonal.



4. POSITION AND FORCE
CONTROL ARCHITECTURE

A vehicle with N steerable drive wheels has N degrees of control for translation
. and N degrees of control for steering. When the vehicle is moving in a circle, it has

one degree of freedom. The instantaneous center of rotation determines the steering
angles for the N wheels. In our previous work, 6 we planned reference trajectories for
the 2N state variables that satisfied the rigid body constraint [Eq. (19)] and had
independent control for each wheel. However, we found significant errors during
constrained motion. In this section, we make the novel proposal that force control
must be added to position control when a vehicle is moving in a circle.

We will use a kinematic model of the vehicle rather than a dynamic model. Since
most of the theory of constrained mechanical systems is based on dynamics, we will
briefly justify our choice. We have two basic lines of argument: a kinematic model is
less complex than a dynamic model and our goal is to control the kinematic variables
(position, velocity, and acceleration). A realistic dynamic model of a vehicle
would be very complex and would require a detailed map of the mass distribution.
Furthermore, the mass distribution can change with time (HERMIES-III carries
a manipulator that weighs 160 kg). We start with simple models and move to
complex models when the simple models fail. For our vehicle, a kinematic model is
sufficient. A system that has significant changes in mass distribution or moment of

" inertia might require a dynamic :__odel.

The sensors on our vehicle measure position (wheel translation and steering
. angle). We do not have any sensors that measure forces or torques on the wheels.

Thus, the appropriate variables for feedback control are the measured vexiables.
And the appropriate model is a kinematic model.

Following Goldstein, 2 the equations of motion for the constrained system are:

- r + ATA (35)

where r is a vector of acceleration inputs and )_ is a vector Lagrange multiplier with
K components. In the unconstrained case (A = 0), each wheel has an independent
acceleration that is controlled by r. In the constrained case, the accelerations are
coupled. If the acceleration is zero for ali wheels but one, all of the wheels will feel
the acceleration through the last term (ATA). Goldstein and Kankaanranta and
Koivo both say that the term (ATA) may be identified with the generalized force
of constraint acting on the system. We will refer to the elements of _ as forces
(although they are really accelerations). In our previous work, we neglected the
forces and controlled the wheels independently.

" Building on the seminal work of Hemami and Weimer, a Kankaanranta and Koivo
define the control architecture by:

i¢

r -- ATul WF u2- (E ft + F B) Fv (36)

11



12 POSITION AND FORCE CONTROL ARCHITECTURE

where ul is a vector with K components and us is a scalar. For this architecture,
f,he force and position degrees of freedom are decoupled:

Q

-_=ul _)=u2 . (37)

ul controls the force while u2 controls the position.
The vehicle has N acceleration inputs (7) that control translation. We have

introduced N new control variables (u_ and u2). Equation (36) provides a mapping
from the new contm! variables to the original control variables. One of the new
variables controls the pseudovelocity, while the remaining variables control the
forces. In the next section, we will relate the forces to errors.

While Eq. (36) is correct, the third term on the right can be simplified.
Combining Eqs. (19) az,d (20)"

° (3s)
Using Eq. (23) to solve for _:

(1-" Fv (39)

If we differentiate Eq. (39):

= F_) + ?v (40)

Kankaanranta and Koivo's expression for _ is:

= Fi_ - (Ef, t -b F,B)Fv (41)

Comparing Eqs. (40) and (41), we find:

,F'v = -(EA. 4- RB)Fv (42)

Using Eq. (42), Eq. (36) may be simplified:

r = ATul -I-Fu2 Jr ._v (43)

For some choices of the B matrix, calculation of the right side of Eq. (42)
might be easier than the calculation of the left side. However for our choice for
the B matrix, the derivative of F is less complex than the derivative of B and
Eq. (43) requires fewer calculations than Eq. (36). To demonstrate the advantages
of Eq. (43), we winderive expressions for/} and E. Equation (26) may be written:

B = FT/p (44)

The derivative of Eq. (44) is:

,B _ FT/p_ FT(Hp2) (45)
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Since EA _ FB = I,

,, EAA T _ FBA T "- A T (46)

Since BA T = O, the second term on the left side is zero. Since AA T is positive
. definite, it is nonsingular and Eq. (46) can be solved for E:

E = AT(AAT) -1 (47)



5. POSITION AND FORCE
CONTROL - IMPLEMENTATION

o

Kankaanrauta and Koivo define a control architecture that decouples the force
. and position degrees of freedom. However, they did not specify the force. In this

section, we will define an error vector (e) and define the force in terms of the error.
The feedbacks from the vehicle are the encoder readings for wheel rotation and

steering angle (wi and Oi). Given two measurements of wheel rotation for a wheel
and the time between the measurements, we can calculate a measured average
velocity (_) for each wheel. Using Eq. (20), we can calculate the pseudovelocity (v).
Either the measured values or the target values of the steering angles can be used
to calculate the matrices A, B, and F (we do not need to calculate the E matrix).
In the experimental results (reported in the next section), we have used the target
values.

The kinematic model of the vehicle has a system of general nonholonumic
constraints [Eq. (19)]. Hov_ver, the measured average velocities may not satisfy
the constraints. We will dexine an error vector with K components by:

= A _ (48)

where the initial condition is ei(0) = 0. We will use the force vector (ul) to drive
the error to zero:

Uli = kli ei + k2i ei for i = 1 to K (49)

" In Eq. (49), we have defined the force vector using measurements from the wheel
encoders. We have not needed to use force sensors to provide force feedback. Thus,
we have not needed to add expensive force sensors to implement force control of the
vehicle.

To control the pseudovelocity (v), we assume that v is tracking a target (va).
We will define the velocity error (e) by:

= va - v (50)

where the initial condition is e(0) = 0. We will use the pseudovelocity (u2) control
to drive the velocity error to zero:

u2 = k3t + k4e (51)

The target for the pseudovelocity is determined by the targets for the wheels:

v a = B4 a (52)
P

At the end of an experiment, the vehicle stops moving but the forces will not
be zero unless the cumulative errors (e) are zero. To avoid jerk when power is

¢

removed from the vehicle, the forces should gracefully decay to zero at the end of
an experiment. To implement this policy, the cumulative errors exponentially decay

15



16 POSITION AND FORCE CONTROL. IMPLEMENTATION

whenever the pseudovelocity target is zero. Thus, when v° --- 0, an extra term is
added to Eq. (48)"

= A _ - _ e (53)

where a is a positive constant (for our experimental results, c_ = 10).



6. EXPERIMENTAL RESULTS

* To perform experiments, we modified the existing wheel control system for the
HERMIES-III robot. 6 The modifications were to two modules: Wheel Driver and

. Motor Driver. The Wheel Driver reads a Wheel Target and a Wheel Control from
shared memory and sends a Setpoint and a Rate to the Motor Driver. The Motor

Driver sends the torque signals to the motors and returns encoder readings to the
Wheel Driver. The Wheel Target values are the translational velocities and steering
angles of the two wheels (vi and 0i). The Wheel Control values are the rotational
accelerations and steering velocities.

The Wheel Driver performs calculations at about 20 Hertz. The Wheel Driver

calculations can use floating point numbers and physical units (meters, radim_.s, and
seconds). The Motor Driver is guaranteed to perform calculations at 100 Hertz; it
cannot use floating point numbers but must use integers (the floating point registers
are not saved by the interrupt service routine). The units for the Motor Driver are
encoder clicks and clock ticks (0.01 second).

The modified inputs to the Motor Driver are three two dimensional arrays of
data: sp, sp._dot, and sine. The setpoint (sp) is the next target for the variable.
The units for sp are encoder clicks per tick for wheel rotation and clicks for wheel
steering. The array spdot is the rate of change in the setpoint allowed in a tick.
The array sine is the only new variable that we have introduced to control two

, constrained wheels. When the wheels are unconstrained, sine[i] = 0. When the
wheels are constrained, sine[ii = 8192 • _i [where _i is defined after Eq. (32)].

. What is the reason for the factor 8192? Since _i is a floating point number
that is less than (or equal to) 1.0 and sine is an integer, a scale factor is required.
Integers have 32 bits. To prevent overflow during multiplication of two integers, each
integer should have less than 16 bits. If we reserve one bit for sign, the maximum
scale factor would be (215- 1) = 32,767. How accurately can we measure the

steering angles? Do we need such a large scale factor? The maximum steering
angle (90 degrees) corresponds to 16,384 encoder clicks. However, the increment in
encoder readings is 16. Thus, the accuracy is limited to 1024 distinct values. The

value 8192 is eight times the accuracy. The value 8192 requires 14 bits. Thus, the
scale figure provides sufficient accuracy and is a factor of four below the maximum
scale factor.

To demonstrate the benefits of the new control system for constrained wheels,
we performed two sets of experiments. The first experiment was a rotation of
120 degrees about the point (2,2) in the vehicle coordinate system. Figure 1 shows
the vehicle coordinate system for a vehicle with four wheels. The experiments use
a vehicle with two wheels and the origin of the vehicle coordinate system is midway

. between the two wheels. The second experiment was a straight movement of ten
feet with the wheels at a 30 degree angle in the vehicle coordinate system. For both
experiments, the steering angles were constant during the motion.

° To perform an experiment, we use a program that reads a data set and writes

a sequence of Wheel Targets and Wheel Controls to shared memory where they

17



18 EXPERIMENTAL RESULTS

axe read by the Wheel Driver and used to calculate the input arrays for the Motor
Driver.

The input data set for a positive (counterclockwise) ro_ation of 120 degrees
about the point (2 meters, 2 meters) is displayed in Table 1. The first three rows
of Table 1 contain five values: time (measured in seconds), targets for the wheel .
velocities (vi and v2), and targets for thesteering angles (81 and 62). The units
of the wheel velocities axe meters/second and the units of the steering angles axe
radians.

Table 1. Input data for a positive rotation of 120 degrees
about (2 meters, 2 meters)

Time vi v2 Oi 62

2.50 0.0 0.0 -0.6985 -0.8905
,,. ,

14.47 0.45 0.3723 -0.6985 -0.8905

5.15 0.0 0.0 -0.6985 -0.8905

,q

The distance between the two wheels is 0.7632 meters (to avoid roundoff error,
we will display results to four figures). The steering angles axe given by:

tan 01 = -2/(2 + 0.3816) (54)

tan 82 = -2/(2 - 0.3816) . (55)

The rad:i to the center of rotation (rl and r2) are determined by:

(rl)2 = 22 + (2 + 0.3816) 2 (56)

(r2) 2 = 22 + (2 - 0.3816) 2 (57)

Thus,

= 3.1100 (58)
"4

r2 = 2.5728 (59)

The ratios of the wheel velocities axe given by Eq. (15):

(vi / v2 ) = sin 82 / sin 81 = 1.2088 (60)
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The velocity target for the right wheel is 0.45 meters per second. The velocity target
for the left wheel (0.3723 meters per second) is determined by dividing 0.45 by the

, velocity ratio. The acceleration rate for the left wheel (0.1735 meters per second 2)
is determined by dividing the acceleration rate for the right wheel (0.2097 meters
per second 2) by the velocity ratio.

During the first segment of the experiment, the wheels are steered while the
vehicle is at rest. At the steering velocities for the vehicle (1.0546 radians per
second), the steering motion should take less than one second. However, the length
of the first segment is 2.5 seconds. The extra time allows the steering motion to be
completed before the wheels begin to rotate.

During the second segment of the experiment, the wheels accelerate to maximum
velocity. During the rotation motion, the right wheel will travel 6.51 meters. The
time required to reach maximum speed is 2.15 seconds. During that time, the right
wheel will travel 0.48 meters. The right wheel will ramp up for 0.48 meters, travel
at full speed for 5.55 meters, and ramp down for 0.48 meters. The right wheel
requires 12.32 seconds to travel 5.55 meters. Thus, the velocity target for the right
wheel should be 0.45 meters/second for 14.47 seconds (the sum of 2.15 and 12.32)
and should be 0.0 for 2.15 seconds. We have added 3 seconds to the final segment
to allow the force to decay.

The input data set for a forward movement of 10 feet at a 30 degree angle
" is displayed in Table 2. The steering angles for the two wheels are the same

(30 degrees = 0.5236 radians). The rampup time and distance are the same as
. in the first experiment. Each wheel will travel 3.05 meters (10 feet). Each wheel

will ramp up for 0.48 meters, travel at full speed for 2.08 meters, and ramp down
for 0.48 meters. Each wheel requires 4.62 seconds to travel 2.08 meters. Thus,
the velocity target for the wheels should be 0.45 meters/second for 6.77 seconds
(the sum of 2.15 and 4.62). The initial and final segments are similar to the first
experiment.

Table 2. Input data for a forward movement
of 10 feet at 30 degrees

......

Time v2 vi 82 01

,,, , ,,,,,,

3.00 0.0 0.0 0.5236 0.5236
,, ,., ,.,

. 6.77 0.45 0.45 0.5236 0.5236
, ,, ,,

5.14 0.0 0.0 0.5236 0.5236
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When the experiments are performed, detailed records of the values of the key
variables are stored in data sets. Both experiments were performed four times. The
results of the two experiments are summarized in Table 3.

Table 3. Summary of the results for two experiments

Exp. Case Direction Force, Ratio Error (%)

1 1 Positive No 1.1424 -5.49

1 2 Negative No 1.1409 -5.61

1 3 Positive Yes 1.2064 -0.20
,... ,.,

1 4 Negative Yes 1.2068 -0.17

2 5 Backward No 1.0822 8.22

2 6 Forward No 1.0898 8.98
zt

2 7 Backward Yes 1.0009 0.09

2 8 Forward Yes I 1.0015 0.15
!

The four cases for the first experiment are numbered: Case 1 to Case 4. The
direction of the rotation alternates between positive and negative. For Cases 1 and
2, the force control was turned off by setting the gain parameters to zero. For
Cases 3 and 4, the force control was active. The ratio of the total movement of the
right wheel to the total movement of the left wheel (wl/w2) should be equal to the
ratio of the velocities (vl/v2 = 1.2088). Without force control, the errors are about
5.5%. With force control, the error is reduced by more than a factor of 20 to about
0.2%.

The four cases for the second experiment are numbered: Case 5 to Case 8. The
force control was off for Cases 5 and 6 and on for Cases 7 and 8. For this experiment,
the rotation ratio should be 1.0. Without force control, the errors are more than
8%. With force control, the error is reduced by more than a factor of 40 to less
than 0.2%.

The rotation ratios for the two experiments are displayed in Figs. 2 and 3. After
the initial transient, the rotation ratio rapidly approaches a constant value for all
eight cases.
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Fig. 2. The rotation ratio for the flr=t experiment (the goal is 1.2088).
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Fig. 3. The rotation ratio for the =econd experiment (the goal ii 1.0).
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The control signals (ul and u2) are displayed in Fig. 4 for Case 3. The control
signals in the figure are dimensionless integers that have been divided by 10,000.

, The control signal for position and pseudovelocity (u2) is large and positive during
the initial startup and large and negative during the final rampdown. During the
constrict velocity phase of the motion, u2 is much smaller. The control signal for

" force and error reduction (u l) becomes large during the startup phase, remains at
a high level during the middle phase, and becomes very large during the rampdown
phase. At the end of the experiment, the control signals (and resultant forces)
exponentially decay to zero [the decay is the result of Eq. (53)].

_1 i iii ia ! !

0 6 12 18 24

time
R

Fig. 4. The control signals (ul and u=) for Case 3.
m



24 EXPERIMENTAL RESULTS

The output torque values are displayed in Fig. 5 for Case 3. In the notation of
Fig. 5: rl - t R and rs = t L. The torque values in the figure are dimensionless
integers that have been divided by 10,000. To prevent damage to the motors, the
magnitude of the torque values is required to be less than 32,768. For a short initial
period, both torque values are positive. Soon, the right values are positive and the
left values are negative. Thus, during most of the motion the two wheels are pulling
against each other.

ii ii ii i i

° tLO" 0 " tRa..

0
I--

-2

-4 l l ' " , ' .............
0 6 12 18 24

time

Fig. 5. The output torque values (_ = t R and _ = t L) for Case 3.



7. CONCLUSIONS

When a vehicle with two or more steerable drive wheels is traveling in a circle,
the motion of the wheels is constrained. When the drive wheels are controlled

. independently, errors may occur and the wheels may slip. A vehicle with N drive
wheels hes (N- 1) rigid b_iy constraints and one degree of freedom. To control
the vehicle, we have one degre:; of freedom for the position on the circle and (N- 1)
forces that can be used to reduce errors. Kankaanranta and Koivo have developed
a control architecture that allows the force and position degrees of freedom to be
decoupled.

Kankaanranta and Koivo did not define a method for choosing the B matrix that
determines the pseudovelocity. We have developed a general method for choosing B
for a system with N velocities and N- 1 constraints. We choose B to be orthogonal
to all of the rows of the constraint matrix (A). Furthermore, our choice produces a
simple ._malytical expression for the orthogonal complement of A.

In addition to defining the B matrix, we have made several modifications to the
work of K_mkaanranta and Koivo. We have used a kinematic model of the vehicle

rather than a dynamic model. We have simplified the expression for the control
architecture. We have used the constraint matrix to define an error vector and have

defined _he forces i_ terms of the errors. At the end of an experiment, the vehicle
stops moving but the forces will not be zero unless the cumulative errors are zero.

. To have the forces gracefully decay to zero, the cumulative errors exponentially
decay whenever the pseudovelocity target is zero.

We have implemented the control architecture on the HERMIES-III robot and
have performed two sets of experiments. The implementation of force control is
based on measurements from wheel encoders and does not require force sensors.
The first experiment was a rotation of 120 degrees about the point (2 meters,
2 meters). The second experiment was a movement of ten feet at a 30 degree angle.
For both experiments, the reference values for the steering angles were constant

: during the motion. We have measured a dramatic reduction in error (more than
a factor of 20 for the first experiment and more than a factor of 40 for the second
experiment) compared to motions without force control.
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