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Abstract

° The report discusses the orientation tracking control problem for a kine-
matically redundant, autonomous manipulator moving in a three dimensional

. workspace. The orientation error is derived using the normalized quaternion
error method of Ickes [7], the Luh, Walker, and Paul error method [11], and a
method suggested here utilizing the Rodrigues parameters, all of which are ex-

pressed in terms of normalized quaternions. The analytical time derivatives of
the orientation errors are determined. The latter, along with the translational
velocity error, form a closed loop kinematic velocity model of the manipulator
using normalized quaternion and translational position feedback. An analysis
of the singularities associated with expressing the models in a form suitable for
solving the inverse kinematics problem is given. Two redundancy resolution
algorithms originally developed using an open loop kinematic velocity model
of the manipulator are extended to properly take into account the orientation
tracking control problem. This report furnishes the necessary mathematical
framework required prior to experimental implementation of the orientation
tracking control schemes on the seven axis CESARm research manipulator
[21, 36, 37, 38] or on the seven-axis Robotics Research K1207i dexterous ma-
nipulator, the latter of which is to be delivered to the Oak Ridge National
Laboratory in 1993.



1 INTRODUCTION AND MOTIVATION
ttb

The basic theory on the parameterization of orientation (attitude) of a rigid body

in a three-dimensional workspace is well established [1, 2, 3, 4, 5]. The generalized

coordinates parameterizing orientation include the XYZ, ZYZ, and ZXZ convention

Euler angles [1] (the XYZ convention is termed roll, pitch, and yaw angles by many

authors), orthogonal rotation matrix (i.e., di, ection cosine matrix) [1], Euler rotation

angle and unit vector [1, 2], Cayley-Klein parameters [1], normalized quaternions

(i.e., Euler Parameters) [1, 2, 3, 4, 5, 6], and Rodrigues parameters [2, 5]. The

application of this theory to the problem of controlling the orientation of a rigid body

to track a desired, reference trajectory in a three-dimensional workspace requires

the determination and mathematical modeling of the error between the desired and

actual orientations of the rigid body. This problem is complicated by the fact that

the Cartesian angular velocity vector, which is often used to describe the rotational

motion of a spatial rigid body [6], is not the time derivative of a vector [1] (whereas

Cartesian translational velocity is the direct time derivative of translational position).

Indeed, angular velocity is referred to as a nonholonomic vector in [1]. One cf the

earliest researchers to address this problem was Ickes [7]. It was argued in [7] that

the desired and actual normalized quaternions are an appropriate set of generalized

coordinates to form the orientation error needed for control purposes. A mathematical

model of the orientation error was derived in [7] which has served as the basis for
i

recent work on this problem in robotics [8, 9, 10]. Another approach to formulating

the error between the desired and actual end effector orientations using orthogonal

" rotation matrices or the Euler rotation angle and unit vector is suggested in [11]. It

is termed the Luh, Walker, Paul (LWP) orientation error. The previous work on the

orientation error control problem in autonomous robotics has mainly been restricted

to the resolved rate and resolved acceleration control of kinematically nonredundant

manipulators.

On the other hand, a critical view of the literature on the theory, modeling, and

control of kinematically redundant autonomous manipulators [12, 13, 14, 15, 16, 17,

18, 19, 20] reveals that the spatial orientation control problem has largely been ig-

nored. These literature resolve the redundancy based on open loop kinematic velocity

and/or acceleration models of a serial link manipulator which could conceivably be

applied to a spatial arm with N (>_ 7) joints. But the proof of principle simula-

tion examples presented in these literature mostly focus on the inverse kinematics

of redundant planar manipulators with revolute joints or as in [17], a 3 DOF planar

" manipulator with two prismatic and one revolute joint. But the orientation of a pla-

nar rigid body, e.g., the end effector of a planar revolute serial link manipulator, can

" be represented by a single Euler angle measured about an axis perpendicular to the

plane of motion. Only the component of angular velocity measured about the axis

perpendicular to the plane is nonzero and it is simply the time derivative of the Euler

1



angle measured about that axis. Thus even if feedback loops are incorporated mtc.
the model for servoing of the tracking errors, the orientation error can be formed in '"

the same way that the translational position error is formed in such a configuration.
Thus the spatial orientation problem has been avoided. In [21, 22], the LWP orienta-

tion error was formed by employing orthogonal rotation matrix feedback [11] for the
resolution of redundancy of 7 DOF and 9 DOF spatial manipulators, respectively.
But only three of the nine parameters of a rotation matrix are independent, and the

representation of the LWP error in terms of the four parameter normalized quater-
nions will be investigated here. Besides, normalized quaternions are computationally

efficient [1, 23]. The time derivative of the LWP error, which was not considered in
[11, 21, 22], will be discussed in this report.

Some comments are in order about the (6 x N) Jacobian matrix J*(q) that is
contained in the open loop kinematic velocity model upon which several researchers

base redundancy resolution schemes [12, 13, 14, 15]. The Jacobian and model are
derived by the following procedure in these literature: Let X denote a (6 x 1) task
or operational space vector. The upper three elements of X are the components

of Cartesian translational position of the end effector at its centerpoint. The lower
three elements of X are not specifically identified, but are assumed to be a set of Euler
angles la,/3, 7]T describing the orientation of the end effector, where superscript T
denotes a matrix transposition. The task vector X is expressed as a function of the

joint positions q(= [ql, q2, ..., qn] T) (N _ 7):

X = H (1) ,

where the (6 x 1) vector H(q) is a continuous function of its argument. The Jaco-
bian J* is defined to be the (6 x N) matrix (OH/Oq) in the equation obtained by
differentiating eq. (1) •

)( = (og/Oq)_l = g" _. (2)

It should be noticed that the lower three elements of X are merely the time rates

of change of _he Euler angles. Indeed, differentiating the lower three elements of
X, regardless of whatever 3-element parameterization of orientation they may be,

will never yield components of Cartesian angular velocity of the end effector, since,
as mentioned earlier, angular velocity is not the time derivative of a vector. Only
the upper three rows of J* as defined in eq. (2) constitute a joint to Cartesian space
mapping. The lower three rows of eq. (2) are in fact a mapping from one set of angular

coordinates to another. To derive the lower three rows of J* symbolically using the
above procedure, the designer must first obtain analytical expressions for the lower

three elements of H to satisfy the equation la,/3, 3,]T = [03×3, I3×3] g(q). ( Here I_×_
denotes an (r × r) identity matrix and 0,×s an (r x s) matrix of zeros ). To express
Euler angles as functions of the joint positions involves extracting the former from a

(3 x 3) orthogonal rotation matrix _/_ (q) which describes the actual orientation of the



end effector moving coordinate system (XN, ]IN, ZN ) with respect to the stationary

" base coordinate frame ( X0, Y0, Z0 ) [6]. The coordinate frames are shown in Fig. 1.
However, this procedure involves the use of the two argument arctangent function

, (due to the nonuniqueness of Euler angles) and degeneracies cannot be avoided [6, 24].
The inherent degeneracy of the extraction algorithm suggested in [6] is demonstrated
for the XYZ, ZYZ, and ZXZ Euler angle conventions in Appendix A. By simulating
planar redundant manipulators in their examples, the literature [12, 13, 14, 15] which
define J" by eqs. (1) and (2) have in fact avoided this problem.

On the other hand, the Jacobian matrix J(q) presented in this report transforms

the joint velocities to obtain the Cartesian t: .nslational and angular velocities of
the end effector in the base coordinates (J is defined mathematically in the next

section). The lower three rows of this Jacobian can be derived symbolically using a
well established algorithm described in [25, 26] which has no degeneracies.

There is a second method for determining vector [&,_, _]T as a function of the joint

velocities. It involves two steps: (i) calculate the Cartesian angular velocity of the end

effector given the lower three rows of J and t_. (ii)calculate [&,_,_]T as a function
of the angular velocity and [a, 8, 7]T. In Appendix A it is shown for the XYZ, ZYZ,
and ZXZ conventions that step (ii) has singularities and that they are identical to the
singularities found when extracting [a, 8,7] T from _P_. The procedure described in

steps (i) and (ii) results in the determination of J° as a function of J and [a, 8, 7]T
. [10], and in Appendix A it is shown that the singularities of this function are identical

to those in step (ii). It is evident that modeling the manipulator system using eq. (2)

o and introducing feedback loops to control [5, _, _]T to track a desired trajectory is
impractical and another representation of orientation should be considered.

The spatial orientation error methods presented in this report employ normalized
quaternion feedback. There are two significant advantages for using the normalized
quaternions over Euler angles. Firstly, there exists an algorithm [27] for extracting the
normalized quaternions from an orthogonal rotation matrix _P_ which is singularity
free except for the case when the Euler rotation angle 19,which is defined in Section

3, equals 5=180°. It is the opinion of the author that the singularities associated with
extracting normalized quatemions from _Rff are less restrictive than those arising
from extracting Euler angles. Secondly, and most important, is the fact that the
time derivatives of the normalized quaternions can be expressed as functions of the

Cartesian angular velocity and normalized quaternions which are singularity free. It
should be mentioned that the expressions for the orientation error derived here are

- Cartesian space vectors.
In this report the existing orientation error methods of [7, 11] and a method pro-

. posed here using the Rodrigues parameters are applied to the problem of deriving
a closed loop kinematic velocity model of an autonomous redundant manipulator.

The method of [7] is based on a four parameter representation of orientation whereas
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the method of [11] is based on nine parameters (orthogonal rotation matrix) or four

• parameters (Euler rotation angle and unit vector). The proposed method is based
on a three parameter representation of orientation. An analytical expression for the

. time derivative of each of three orientation errors is derived and combined with the

translational velocity error, to yield a distinct closed loop kinematic velocity model
for the entire system. The singularities of the error systems for the rotational kine-
matics are determined. The models form the basis for theoretical and experimental

comparisons of the three orientation error control methods. Two redundancy resolu-
tion algorithms originally developed based on an open loop kinematic velocity model
of a manipulator are extended to solve for the joint velocities using the models given
here to properly take into account the spatial orientation tracking control problem.

The report is organized as follows. First, the algebra of normalized quaternions

relevant to this report is briefly reviewed. The orientation error, its analytical time
derivative, and a closed loop system model at the velocity level for each of the three
methods is presented. The problem of resolving the kinematic redundancy based on
the models is then studied. Finally, a conclusion and recommendation for future work

are provided.



2 PROBLEM STATEMENT AND SYSTEM
" DESCRIPTION

" The problem is to determine a closed loop kinematic velocity model for an au-
tonomous, serial-link, redundant manipulator which takes into account the spatial

orientation tracking control problem. Three such models are derived here, each of
which is derived by a distinct orientation error method. The models serve as a proper
foundation for the resolution of kinematic redundancy. The manipulator has a sta-

tionary base and contains N(> 7) single DOF joints. The configuration of the
system is shown in _ig. 1.

2.1 SYSTEM VARIABLES AND COORDINATE
FRAMES

The joint positions q = [ql, q2,... ,qN] T of the manipulator are the generalized coor-
dinates describing the configuration of the system. The system variables include the
generalized coordinates and velocities, the Cartesian velocities of the rigid body end
effector, and the normalized quaternions. As shown in Fig. 1, the coordinate frame
( Xk, Yk, Zk ) is assigned to the kth link of the manipulator, where k = 0, 1,..., N.

Let p_ denote the (3 x 1) translation vector which emanates from the origin of the
. ( X0, Y0, Z0 ) coordinate frame to the origin of the ( XN, )'_, ZN ) coordinate frame.

poN is expressed in the base coordin'_tes.

2.2 KINEMATIC TRANSFORMATIONS

The kinematic transformation for a serial-link redundant manipulator which relates

the Cartesian velocities of the end effector to the generalized velocities is given by:

where the (3 x 1) vectors vN(= _i_) and _o_ are the Cartesian translational and
angular velocities of the end effector in the base coordinates. In eq. (3), J(q) is the

(6 x N) manipulator Jacobian matrix, which is assumed to possess full rank six. It
is convenient to partition J into two matrices:

J = A (4)

where Jt(q) and Jr(q) are (3 x N) matrices which transform _ to obtain the transla-
tional and angular velocities of the end effector, respectively.

In this report eq. (3) is viewed only as a kinematic transformation for expressing

the actual values of the end effector Cartesian velocities, denoted by {_vN, _wN}, as



symbolic functions of the joint space variables {q, t_}. lt is not viewed as a model
for solving the inverse kinematics, i.e., {av_, aa_, q} are given and the problem is to
determine an underspecified solution for t), where superscript d denotes the desired,
planned values of the end effector Cartesian velocities.

A brief review of the fundamentals of quaternion algebra relevant to this report
is covered in the next section.



3 REVIEW OF QUATERNION ALGEBRA
u

According to Euler's Theorem on Rigid Body Rotations [1], the orientation (atti-
. tude) of a rigid body, after having undergone a sequence of rotations, is equivalent to

a single rotation of that rigid body about an axis (unit vector) ff by an angle 0. The
superscript _ denotes that the quantity is an explicit function of the unit vectors
directed along the principal axes of the Cartesian coordinate system it is expressed
in. _7and 0 are shown in Fig. 2, where for illustrative purposes, the origins of the

base and end effector coordinate systems coincide. The components of rf, denoted

by a (3 x 1) vector n = [n_, ny, nz]T, may be expressed in any relevant Cartesian
coordinate system, but will be in terms of the (X0, Yo, Z0 ) coordinate system in
this report. Since all quantities and results are presented in a matrix/column vector

notation throughout the report, vector n is used hereinafter. In the quaternion de-
scription of the orientation of a rigid body, a (4 x 1) vector e is introduced, termed the
quaternion. It consists of a scalar component es and a (Cartesian) vector component

= . (5)
ev

3.1 DEFINITION OF THE QUATERNION

The quaternion e can be defined in terms of (n, 0) [1]:

' nsin(O/2) " (6)

e. contains the components of e_, and eq. (6) reveals that e_ is in alignment with
as illustrated in Fig. 2. It is immediately evident that the square of the Euclidean
norm of e equates to unity:

2 2 2 2 = 1. (7)(11_I1_)_ = _, + _ + _ + _
Thus, e is termed a normalized quaternion and its components are referred to as Euler

Parameters [1]. Interestingly, the constraint equation (7) shows that the absolute
value of any Euler Parameter cannot exceed unity. It is easy to see that:

. er_ = 0. (8)

Since the following relation holds'

e(n, O) = Oa×l - I3x3
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Fig. 2. Rotation of (X0, }ro, Z0) coordinate frame about unit vector -_ by angle
0 to obtain (XN, YN, ZN) coordinate frame.
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normalized quaternions, like the Euler angles, are not a unique representation of
- orientation. The physical interpretation of eq. (9) is that rotating about the axis - n

by angle -0 is the same as rotating about n by 0. Furthermore, it is straightforward
. to verify that the following relationships hold:

e(n,+360° + 0)= -e(n,_), (I0)

e(n,+360° - 0)= -e(n,-6) (11)

whichalsodemonstratethenonuniquenessofthenormalizedquaternions.However,

iftherotationisrestrictedtobe aboutthe+n axisand theEulerrotationangleis

restricted to the range (- 180° _<0 < 180°), then e_ >_ 0 and e is unique.

A scalar I and Cartesian space vector r( = [r,, ru, r, ]T) may be represented in
the quaternion convention by [ l, 01×3 and [0, rT ]T, respectively.

3.2 GENERAL PROPERTIES OF NORMALIZED

QUATERNION ALGEBRA

Let e* denote the quaternion c._njugate operation. It is quantified by:

e" = . (12)
-- e v

- Observing Fig. 2 and eq. (6) , it is easy to see that e* corresponds to rotating about
the Euler axis n by an angle -8.

" Let el and e2 denote two distinct quaternions. The quaternion addition rule is
given by:

els -_- e2s ]

ea + e2 = J . (13)ely -_- e2v

The quaternion product of el and e2, represented by el o e2, can be expressed in
a matrix-column vector notation as follows:

e, o e2 = ¢(el)e2 = _(e2)e, (14)

where (I)(e,) and _(e:) are (4 x 4) orthogonal matrices defined by [5, 28]"

" (I) = , (15)
ely els/3x3 A- E(elo)

e2s -- e2v

= . (16)
e2_ e2,13×3- E(e2v)
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In eqs. (15) and (16), E(e_,_) and E(e2_) are (3 x 3) matrices arising from expressing
o

the vector cross-product operations (_',_× _'2_)and (_'_ × _',_), respectively, in a
matrix-column vector notation:

,i

E(ei,,) = ei,_. 0 -ei,= (17)

-- £ivy eivx 0

for i -- 1,2. It can be shown that ¢(e') = _r(e) and ¢(e') - _r(e). Moreover,
__ ]T.e o e* e* o e = [1, 0,×3 The quaternion conjugate" product of e, and ez is

represented by el o e_.

3.3 SUCCESSIVE ROTATIONS AND REPRESENTA-
TIONS WITH RESPECT TO VARIOUS COORDI-

NATE SYSTEMS

Suppose the Cartesiancoordinateframe A is rotatedto obtain coordinateframe

B. Let quaternions_e<A> and ASe<°> representthe relativeorientationof B with

respectto A, expressedin the localcoordinates(XA, YA, ZA) and base coordinates

(Xo, Yo, Zo), respectively.Suppose now coordinateframe B is rotatedto obtain

coordinateframe C. The orientationof C with respectto A, expressedin terms of

the local coordinates, is determined by postmultiplying Be<A> by _e <s> [2, 3, 5, 29]"

aCe<a> -- ABe<A> o ge<B>. (18)

On the otherhand, the orientationof C with respectto A, expressedinterms of

the base coordinates,isdeterminedby premultiplyingABe<°> by ce<°> [2,3,5,29]"

ACe<O> _--.Ce<°>o ASe<°> . (19)

Through applicationofthe lattersuccessiverotationformula,itiseasy toseethat

the following relation holds:

- 0_×1 - I3×3 = ce "

Consider the time deriw_tives of quat_ernion _e <°>, the orientation of frame A with

respect to the base frame, end its conjugate _e °<°>. Applying the theory of coordinate

transformations and the relationship between the time derivative of a quaternion and

angular velocity of the Ath coordinate frame with respect to the zeroth frame, we

have [2.3.5.29]"

A_<0> __ ..I0A[_<0> O 0Ae<°> (21)
2

|I
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A -.<0> I A _*<0> _<0>. o_ = - _o_ oo_ (22)
where 0Aft<°> is a quaternion with scalar part set to zero and vector part equal to the

. (3 x 1) Cartesian angular velocity vector WoA.

For further information on normalized quaternion algebra, the reader is referred

to the detailed expositions given in [30, 31]. The derivation of the orientation errors
is discussed in the next section.

I



4 ORIENTATION ERROR ANALYSES
I

In this section the orientation error between the desired and actual orientations

of the end effector are derived using three methods. The time derivative of the
orientation error is then determined, through which a closed loop model oi' the system
is obtainad. All methods will be expressed in terms of the normalized quaternions. Let

the quaternions 0Ared<°> and 0ge_<°>(q) signify the desired and actual orientations of
the end effector coordinate frame ( XN, YN, ZN ) with respect to the base coordinate
frame ( X0, Y0, Z0 ), respectively.

4.1 APPLICATION OF ICKES ORIENTATION ERROR

TO REDUNDANT MANIPULATORS

Thismethod isbasedonthepreviousworkofIckes[7]and Lin[9].Usingthecompos-

itequaternionrotationformulagivenby eq.(19),theorientationerrorwas defined

in [7] to be the conjugate product of Ned<°> and one_<°>'

= Ned<°> o one*a<°> (23)

where one*a<°> signifies the quaternion conjugate of Nea<0> and where _ is a quater-
nion expressed in the base coordinates which consists of a scalar component _ and a
vector component _ defined by:

_s -- 0N-d<0>as Nea<0> "Jr" _,ofN-d<O>'_%JT oN-_<O>ev, (24)

_v 0N_d<0> N_a<0> N_d<0>N_a<0> "_'N d<0>, N__<0> (25)"- ev 0 Cs -- 0 Cs 0 ev -- /51,0 ev )0 Cv

in which eqs. (14) and (15) have been applied and where ptN_d<0>_x0 _. ) is defined as

is E(e_,,) in eq. (17). 8, and 8_ were termed the scalar and vector components of
the quaternion error in [7]. Interestingly, 8o = 1 and 8v = 03×1 when the desired
and actual orientations of the end effector are identical. 8, was proposed to be an

appropriate representation of the orientation error for tracking control purposes in [7]
and has been demonstrated on robotic hardware in [8, 10]. A rigorous derivation of
the orientation error leading to eq. (23) is provided in Appendix B. Noting eq. (7)
, it is apparent that the absolute value of any component of $v cannot exceed unity

and that (116v112)2 < 1.
A closed loop error system at the acceleration level for the translational and

rotational kinematics of the end effector of a six-axis serial link manipulator employing
" normalized quaternion feedback was presented in [9]. The error subsystem for the

rotational kinematics was obtained by determining the second time derivative of the

vector component of the Ickes orientation error quaternion. The procedure in [9] will
be adopted here to derive a closed loop model for a redundant manipulator at the

velocity level. The analysis in [9], however, assumed that the Jacobian matrix was

15
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square and directly invertible, which is not the case here. The first time derivative of
the vector component of the quaternion error is now considered:

N _*a Nedgv = [03×,, 13×31 (oN_a o0e + o 0N_"a) (26)

where oeN'*a is a function of {q, _}. Since ali quaternion algebra and error functions
presented throughout this report are expressed in terms of the (X o, Yo, Z0) coor-

dinate system, the superscript < 0 > is dropped from eq. (26) and hereinafter for
convenience.

Substituting eqs. (21) and (22) into the right hand side of eq. (26) gives:

1 Nea N_,a Nea N_,a= O - O O on°)
1

= _[03×1, 13×3] (_n d o _ - _i o _n a) (27)

in which eq. (23) has been used and where the normalized quaternions 0NQd and
oN_(q, t_) are defined in the same way as oA_<°> below eq. (22).

In Appendix C it is shown how the quaternion product expressions on the right
hand side of eq. (27) can be expressed in a concise matrix-column vector form:

1 (FdWNo .= - GJ, O) (28)

Our objective is to drive _ _ 03xl. To accomplish this, a proportional and

integral (PI) feedback control law is introduced:

_,_ = - (Ko_i_ + Kio/ _vdt) (29)

where Ko and Kio are (3 × 3) positive definite gain matrices.
Eqs. (28) and (29) constitute a closed loop error system for the rotational kinemat-

ics of a spatial redundant manipulator. These equations, together with the equations
constituting a closed loop error system for the translational kinematics, derived in
Appendix D, form a closed loop velocity model for the entire system:

Fdwo N 2 (Ko_ + Kio f _vdt)

= JO. (30)
03× 3 G
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To express the model in a form amenable to resolving kinematic redundancy, both

• sides of eq. (30) are premultiplied by the inverse of the (6 × 6) coefficient matrix of
the Jacobian:

in
Yick,, = J q (31)

where Y_ck,oi'_is a (6 × 1) vector defined by:

Yi_k_,= G-' F dwoN + . (32)2G-' (Ko_ + K_of _dl )

In eq.(32), i,Y,o . funCtionofthef dforw rd (dpo ,droP,
and the feedback variables (,pN(q), Ne,(q))" When solving eq. (31) for the inverse
kinematics, i,Y_ck_,and J(q) are known and _ is to be determined. This problem will
be discussed later in the report.

To arrive at eq. (31) , it has been implicitly assumed that matrix G is nonsin-
gular. The conditions under which G is invertible are now discussed. The symbolic

determinant of G is given by:

where eq. (7) has been invoked. Thus [GI - 0 when gs - 0, which corresponds to the
" Euler rotation angle taking on the values 0 = 4- 180°. In this configuration the desired

and actual orientations of the end effector are separated by the maximum rotational

" amount. It is concluded that eq. (31) realistically models the kinematic behavior of
the physical manipulator system when the Euler rotation angle is restricted to the
range 10[ < 180°.

The closed loop system proposed in [8] for the rotational kinematics of a manip-
ulator with a proportional control law is equivalent to modeling the system by the

equation dwoN -- Jr q = -Ko6,, using the notation of this report. We take issue
with the approach in [8] because _, is not the time integral of the Cartesian angu-
lar velocity error expression (dwoN - Jr il). Indeed, dwoNand "woN(q,il)(= Jr q) are

nonholonomic vectors. The nonintegrable nature of (dwoN-- Jr ii) is why the time
derivative of the vector component of the Ickes orientation error is considered in this
report. The control law in eq. (29) is logical and reasonable.

4.2 APPLICATION OF LWP ORIENTATION ERROR
TO REDUNDANT MANIPULATORS

In 1980 Luh, Walker, and Paul (LWP) conceived an orientation error between the
desired and actual end effector attitudes for application to the resolved acceleration
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control of kinematically nonredundant manipulators [11]. Their error function 1, de-
noted by _P, is related to the orientation parameters (n, O) as follows:

_'_P = n sin(0). (34)

This error function has been studied extensively in the literature [8, 24, 32, 33] and
is presently the most widely accepted method for modeling the orientation error in
robotics. What has not been considered, however, is the derivation of the analytical

time derivative of the LWP orientation error expressed in terms of normalized quater-
nions, which can be applied to determine a closed loop kinematic velocity model for

a redundant manipulator and is the goal of this section.
Eq. (34) can be expressed in an equivalent form:

_l_p = 2n sin(0/2) cos(0/2). (35)

Observing the definition of the normalized quaternion e in eq. (6) along with the
scalar and vector components of the Ickes orientation error quaternion defined by

eqs. (24) and (25) , it follows that the LWP error can be expressed in a normalized
quaternion representation:

_l_,p = 2_,. (36)

Eqs. (7) and (36) reveal that the absolute value of any component of _r cannot

exceed unity and that (11_z_"pI]2)2 _< 1.
Consider the time derivative of eq. (36):

= 2 + (37)
A symbolic solution for _t,ov is now sought which is not an explicit function of

the variables {gv, _o}. Examining the structure of the intermediate solution for 6v
in eq. (27) , it is easy to see that the time derivative of the scalar component of the
quaternion error is given by:

1

$, = _[1, 0xxz] (0nrld o $ - $ o Nn_) . (38)

In Appendix C it is shown how the two quaternion product expressions on the
right hand side of eq. (38) can be expressed in a concise matrix-column vector form:

1

_, = __T (dw_ _ J,t_) . (39)

Substituting for _ and _, in eq. (37) by their definitions in eqs. (28) and (39)
obtains"

_also discussed in [1,pg. 165, eq. (4-)5)]
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. _'_P = 6, (FdwoN -- G Jrr) - _6_ T (dw_ _ J_l) (40)

where matrices F(6) and G(5) are defined by eqs. (C.2) and (C.4) , respectively.
" A PI feedback control law is introduced to drive _'_P --, 03×1:

. . (41)
where Kt and K[o are (3 × 3) positive definite gain matrices.

Eqs. (40) and (41) constitute a closed loop error system for the rotational kinemat-
ics of a spatial redundant manipulator. These equations, together with the equations
constituting a closed loop error system for the translational kinematics, derived in
Appendix D, form a closed loop velocity model for the entire system:

• [ dv_ ] .Kpp_+Kipfp_dt+(_,r - _ _ ) _,_o_ K:_,,_+_,'_os _,w_,zt

]3:(3 03x3 ]

= g_. (42)
03X 3 5 s G - _v 5T

To express the model in a form amenable to resolving kinematic redundancy, both
sides of eq. (42) are premultiplied by the inverse of the (6 × 6) coefficient matrix of
the Jacobian:

Yl_ = J 4 (43)

where Yti_ is a (6 × 1) vector defined by:

[ d VoN

v,_ = [ (_.G- _.6r)-'(_.F- _o_r)',,o"I,,,

(_.a- _6_)-_(_'o_'_,. ir_of _,_,dt)
..

In eq. (44), Y_; is a function of the f_eafo_w_a variables (ep_, dv_ ' dw_ ' _e d)
. and the feedback variables ("p_(q), _e"(q)). When solving eq. (43) for the inverse

kinematics, Yli_; and J(q) are known and 0 is to be determined. This problem will be
discussed later in the report.
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It has been implicitly assumed that matrix (_, G - 6. 5T) is nonsingular when
arriving at eq. (43) . The conditions under which this matrix is invertible are now
presented. Noting eq. (C.4) , this matrix can be expressed as a function of the
components of _:

6oG-5.6/ = 6_6_ _ 6.,6,_ 6o2 _ 6.v2 -606,_ - 6_6,, . (45)

The determinant of eq. (45) is given by:

-2 (5,,_25,,y2 + 5,,x25,,..2 + ?i._26._)} . (46)

Squaring both sides of the normalized quaternion identity in eq. (7) with e = _i
gives:

1 = 6_4 + g,,* + g,v4 + 6,, 4 + 26_2 (6., 2 + 6,_2 + 5,2)

+2 (_i,,_26,,,__ + _i._u_i..u + 5_,25. 2) . (47)

Eliminating the term {-(6,_ 4 + 6,_4 + 5,_4)} on the right hand side of eq. (46)
using eq. (47) and simplifying give:

I = - .
Finally, eliminating the term (5_u + _,2 + 5,2) in eq. (48) using eq. (7) with
e = 6 and simplifying give:

[5oG -_,sT I -- _ou (2_2_ 1). (49)

Thus I_,G - _[ -- 0 when _o - 0 or 6, - :kV_/2, which correspond to the
Euler rotation angle taking on the values $ -- -4-180°, 4"90°, respectively. Moreover,
the square of the Euclidean norm of the LWP error in fact decreases in value from 1

to 0 when $ is increased from 90° to 180 ° ( or when $ decreases from - 90° to - 180°).
But intuitively the orientation error should increase as [01 increases. It is concluded

that eq. (43) realistically models the kinematic behavior of the physical manipulator
system when the Euler rotation angle is restricted to the range [O[ < 90°. Eq. (43)
is thought to be the proper closed loop kinematic velocity model to use for resolving
the kinematic redundancy when the orientation error is modeled by eq. (36) .

The closed loop system model proposed in [8] for the rotational kinematics based

on the LWP error given in eq. (36) with a proportional control law is equivalent to
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modeling the system by the equation aw_ - Jr tj = - 2 Kt08_ 8s using the notation
- of this report. We take issue with the approach in [8] because (28_ 80) is not the

time integral of the Cartesian angular velocity error expression (a_ _ Jr _). The
. nonholonomic, nonintegrable nature of the angular velocity error is why the time

derivative of the LWP error is considered in this report. The control law in eq. (41)

is logical and reasonable.
_twpwas also expressed in terms of the unit vectors comprising the columns of the

desired (aR_)and actual (ap_(q))rotation matrices in [11]. The second time deriva-
tive of this alternate form of _t,_pwas obtained in [33], which led to the determination

of a closed loop error subsystem describing the rotational kinematics of a six-axis ma-
nipulator at the acceleration level. A kinematic model for the entire nonredundant
system was found by combining the rotational error subsystem with the one governing
the translational acceleration error. The singularities of the feedback control scheme

in [33] are identical to those obtained below eq. (49). The derivation of the closed
loop kinematic velocity model in eq. (43) builds on the methods of section 4.1 and
exploits the inherent advantages of normalized quaternion feedback.

4.3 A NEW ERROR METHOD WITH APPLICATION

TO REDUNDANT MANIPULATORS

The minimum number of parameters required to describe the orientation of a rigid

" body is three [2]. The normalized quaternion parameterization of orientation consists
of four components, whose values are restricted by the constraint equation (7). Like-
wise, the Euler rotation angle and unit vector parameterization is comprised of four
components. On the other hand, the Rodrigues parameters are a minimal represen-

tation of orientation [2]. It is proposed to model the error between the desired and
actual orientations of the end effector of a redundant manipulator by a (3 x 1) Carte-

sian space vector _,.oa(= [,/rod p.oa _oa]T) termed the Rodrigues orientation errorL"Jx '1 ',Jy ,

function. _rod can be defined in terms of the Euler rotation angle and unit vector:

_,-oa = n tan(0/2). (50)

To apply the unified modeling procedure prescnted in the previous two sections to
derive a closed loop kinematic velocity model based on the Rodrigues error function,

the right hand side of eq. (50) is expressed in terms of normalized quaternions by
invoking eqs. (6), (24), and (25):

(5])

" The denominator on the right hand side of eq. (51) goes to zero when the Euler

rotation angle 0 = 4- 180°, thus the components of the Rodrigues error function can
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become infinite, whereas the absolute value of any component of the Ickes (`5.) and

LWP (_l_p) error functions cannot exceed unity. _rod = 03xl when the desired and
actual orientations of the end effector are identical.

To derive a closed-loop error system for the rotational kinematics of the redundant

manipulator in terms of the Rodrigues orientation error, the time derivative of eq.

(51) is now considered:

. (52)
Substituting for _ and _ in eq. (52) by their definitions in eqs. (28) and (39)

give:

_,od "- "_21 [,5. (FdWoN- GJ,.¢) + 5vS,_r (dwN -- J_0)] . (53)

A PI control law is introduced to drive _,.od _ 03x1:

where K_ and K'[o are (3 x 3) positive definite gain matrices.
Eqs. (53) and (54) constitute a closed loop error system for the rotational kinemat-

ics of a spatial redundant manipulator. These equations, together with the equations

constituting a closed loop error system for the translational kinematics, derived in
Appendix D, form a closed loop velocity model for the entire system:

(6.r+ +h'o

/3×3 03X3

= J_ (55)
03x3 `s a G -al- `sv `sv T

where, here again, matrices F and G are defined by eels. (C.2) and (C.4), respectively.
To obtain a model amenable to resolving kinematic redundancy, both sides of eq.

(55) are premultipled by the inverse of the (6 × 6) coefficient matrix of the Jacobian:

Y_'o"_= J _ (56) "

where Y_io_is a (6 x 1)vector defined by:
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,D

Y,-'_d
lt

+ +

K,,po+ K_,,yp,dt ]
+ . (57)

+ (K:ro'+ s
In eq. (57), YJ:d is a function of the feedforward variables (dpNo,dVoN, dwoN, Ned) and

the feedback variables ("pUo(q), _e°(q)).

It has been implicitly assumed that matrix (6, G + 6,,6,,T) is nonsingular when
arriving at eq. (56) . The conditions under which this matrix is invertible are now
presented. Noting eq. (C.4), this matrix can be expressed as a function of the
components of 6:

6°G + 6_6T = 6o6_ + 6_y _2 + 6_2 _6°6_ + 6_6_, .
-- 6, f,,u + 6,,,,,&,,, _5,6,= + 6,,u6_,z 6, 2 + 6vz2

(58)
- The determinant of eq. (58) is given by:

. __ _ 4

, +2 (6_26_2 + 6_26,2 + _vu26_)

+2_.'(,_,,,,'+ ,5,,,,'+_o2)}. (59)
Eliminating the expression (6,=4 + 6_u4+ 6,, 4) on the right of eq. (59) using eq. (47)
and simplifying give:

[esa "]- _v_vT[-- 6, 2 • (60)

Whu_I,_oC+ ,5,,,_,,TI = 0when,_.= O,which_or,:,_pondstother,u1_,_rot,,tion,,n-
gle taking on the values 0 = 4-180 °. As anticipated, the singularities of the matrix
(6, G + 6_6T) are identical to the singularities of the Rodrigues orientation error
function as discussed below eq. (51) . The desired and actual orientations of the end
effector are separated by the maximum rotational amount in these singular configu-
rations. It is concluded that eq. (56) realistically models the kinematic behavior of

, the physical manipulator system when the Euler rotation angle is restricted to the

range [01 < 180°. Eq. (56) is thought to be the proper closed loop kinematic velocity
model to use for resolving the kinematic redundancy when the orientation error is
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modeled by eq. (51) . The proposed Rodrigues error function given in eq. (51) is
thought to be more sensitive and responsive to orientation errors than the Ickes or
LWP error functions. The author is not aware of any previous work on modeling of
orientation error using Rodrigues parameters and thus the material in this section is
a new result.

The problem of resolving the kinematic redundancy based on the closed loop
velocity models derived in this section is discussed next.



5 REDUNDANCY RESOLUTION
m.

Iv a recent report [34], the input relegation control method was suggested ior
. ,,. resolving the kinematic redundancy of a mani?ulator based on the model defined by

q

eqs. (3) and (4), which does not take into account the translational and rotational
motion tracking control errors. Indeed, this model is open loop in nature and its
inputs are the desired, reference trajectories {tiroN,dwoN} as defined below eq. (4).
To overcome this deficiency, the method described in [34] is extended to resolve the

redundancy based on any of the three closed loop kinematic velocity models derived
here. The basic approach of input relegation control will be discussed without getting
into the details. Additionally, another open loop inverse kinematics algorithm termed

the two non-redundant step method is extended to take into acco:mt the orientation

tracking c_)ntrol problem.

5.1 INPUT RELEGATION CONTROL METHOD

The closed loop systems described by eqs. (31), (43), and (56) can be expressed in a
unified manner by a single equation:

Yi'" -- J q (61)

where Y_"(i = ickes, lwp, rod) is a (6 × 1) vector defined by one of the equationse

(32), (44), or (57) as selected by the designer.
In input relegation control, a new vector variable e = le1, e2,..., £N-6]T is intro-

" duced to resolve the kinematic redundancy. The number of scalar elements contained

in e is equal to the number of redundant DOF contained in the system, namely (N-6).
It is defined by:

e = B_. (62)

The ((N- 6) × N) matrix B(q) in eq. (62) is selected so that the composite
(N x N) matrix (jT, BT)T is nonsingular. It is convenient to partition the inverse of
(jT, BT)T into two matrices:

B = III, (63)

where II(q) is a (N x 6) matrix and _(q) a (N x (N - 6)) matrix. Eq. (63) implies

" that JII = I6x6, J_ = 0(6x(N-6)), BII = 0((N-6)x6), BZ = I((N-6)x(N-6)) and
(IIJ + 2B) = IN×N.

- Eqs. (61) and (62) can be solved for 0:

= + (64)

-_ 25
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in which eq. (63) has been invoked. In eq. (64), t_ has been expressed as a function
of the variables {Y_, e, q}. Substituting the right hand side of eq. (64) into the
kinematic velocity model (61) reveals that the expression (d E e) identically vanishes

regardless of the value of e, since (d E) = 0(6×(N-6)). Likewise, substituting the right
hand side of eq. (64) into eq. (62) reveals that the expression (B II Y_") identically

vanishes regardless of the value of y i,, since (B H) = 0((N-6)×6). Therefore the
designer can relegate separate tasks to the quantities {Yi'", e}.

When applying input relegation control to the orientation error modeling and

control framework presented here, it is assumed that the desired trajectories of the

variables {dpNo,aVoN, dWoN, Nea} have been specified by the designer and the actual
values of {_pN(q), Ne_(q)} are available via feedback loops. There is now sufficient
information available to calculate }i_"(i =ickes, lwp, rod) using one of the equations
(32), (44), or (57) as selected by the designer. It is also assumed that d(q) is known.

To calculate the generalized velocities using eq. (64), the values of {II, E, e} need to
be determined. In [34], it is assumed that the designer first selects matrix B such that
(jT, BT) T is nonsingular, which immediately leads to the determination of (II, E) by
eq. (63). Several techniques for selecting B are discussed in [34], one of which is
described later in this section. However, eq. (64) still cannot be solved for (}since e

is an unknown quantity. To solve for {e, _}, an optimization scheme was suggested
in [34] to pick e to secure a minimum Euclidean norm solution for the generalized

velocities. The solutions for these quantities based on eq. (64) are given by:

= _ n (65) .

_ -
An analytical method was presented in [34] to choose B to maximize the determi-

nant of matrix (jT, BT) T with the restriction that B is orthogonal to the rows of J,
i.e., d B T = 06×1, for manipulators with one degree of redundancy. Postmultiplying

the matrix identity II d + E B = lz×z by jT immediately leads to a symbolic solution
for II:

n = JT(JJT)-' (67)
Furthermore, d B T = 06×, implies that IIT E = 06×1 [34]. Eqs. (65) and (66)
immediately simplify to:

e = 0, (68)

ii = jT (j jT)-'yi,,_ . (69)

A numerically efficient method for calculating eq. (69) in two steps is discussed next.

|
i

, ,, ,
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5.2 TWO NON-REDUNDANT STEP METHOD

This method is based on the previous work [18] which calculated the Moore-Penrose
pseudoinverse of the Jacobian matrix in two "non-redundant" steps to yield a mini-

w

mum norm solution for _ based on the open loop model given by eq. (3) . The method
can be extended to calculate a solution for _ based on the closed loop system with
normalized quaternion feedback given by eq. (61) . In the first step, the following

equation is solved for W, a (6 x 1) vector:

g jT W = Y/". (70)

The generalized velocities are then obtained in the second step:

¢1= jT W . (71)

The explicit inversion of the (6 × 6) matrix ( J jT ) in the symbolic solution for

W - (J jT)-1 y/_ may be avoided by applying the numerical LU decomposition
method for solving systems of linear algebraic equations [35].

Interestingly, an inverse kinematics scheme based on eq. (61) can be implemented
in an open loop or closed loop manner to the physical plant, i.e., the manipulator.
In an open loop implementation, the translational position and normalized quater-
nion feedback loops are taken from the output of the redundancy resolution scheme,

- as shown in Fig. 3. This approach assumes that the lower level joint or encoder

space feedback control laws can track the commanded articulated joint or encoder
. trajectories perfectly. In Fig. 3, the superscript a means the variable is calculated

using the articulated, commanded values of the generalized coordinates available at
the output of the redundancy resolution scheme. In a closed loop implementation of
redundancy resolution, the feedback loops are taken from the output of the physical
plant, as shown in Fig. 4. In this case the algorithm resolves the redundancy based
on feedback measurements of sensors, e.g., the encoder sensors of the motors of the

CESARm research manipulator [21, 36, 37, 38]. A comparison of the performance of
the input relegation control using eq. (61) when implemented in an open or closed
loop manner to the plant is currently being investigated.
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6 CONCLUSION AND FUTURE WORK

The error between the desired and actual orientations of the end effector of a spa-
. tial kinematically redundant autonomous manipulator was modeled in a normalized

quaternion algebra framework by three different methods: (i) the vector component of
the Ickes orientation error quaternion; (ii) the Luh, Walker, Paul (LWP) method; and

(iii) a new method based on the Rodrigues parameters. It was shown that the LWP
and Rodrigues errors can be modeled as explicit functions of the scalar and vector
components of the Ickes orientation error quaternion. The time derivative of each of
the orientation errors was derived symbolically and combined with the translational

velocity error expression to yield a distinct closed loop kinematic velocity model em-
ploying normalized quaternion and translational position feedback. The singularities
of the coefficient matrix which premultiplies the (6 x N) Jacobian matrix J(q) in each
model were determined analytically, because the coefficient matrix had to be inverted
to express each model in a form suitable for solving the inverse kinematics problem.
It was found that singularities occurred when the Euler rotation angle (0) took on
the values 4-180 o when deriving closed loop models by ali three methods, with the

LWP error based method possessing additional singularities at 0 = -4-90°. It was
concluded that the Euler Rotation Angle must be restricted to the range [0[ < 180°
for the Ickes and Rodrigues error methods, and to [0[ < 90° for the LWP error
method.

" The report argued that the normalized quaternions are superior to Euler angles
for modeling the orientation error in a kinematically redundant manipulator. This
is because the time derivatives of the desired and actual normalized quaternions

{0N_d, 0N__} and their conjugates {N_.a, _._} can be expressed by singularity free
functions of the quaternions {oNed, 0Ne:(q)} and their conjugates {oNe°d, 0He'd(q)}, re-
spectively, as well as the desired and actual angular velocities {dWoN,:WNo(q,_)} using

eqs. (21) and (22).
On the other hand, inherent singularities arise when expressing the time deriva-

tives of the Euler angles as functions of the Euler angles and the Cartesian angular

velocity. It has been shown that the identical singularities arise when expressing
Jacobian J* as a function of J and the Euler angles, or when extracting the Euler
angles from an orthogonal rotation matrix for feedback control purposes. In partic-

ular, these singularities can happen when the designer uses eq. (2) to resolve the
kinematic redundancy. Likewise, eq. (3) is ruled out as a basis for inverse kinematics
of a spatial redundant manipulator where the orientation of the end effector is to be

• controlled to track a reference trajectory because the Cartesian angular velocity error

expression (dwoN -- Jr ii) is a nonholonomic, nonintegrable quantity. The modeling
" presented here is an explicit function of Jacobian J which can be calculated in a sin-

gularity free manner. We conclude that the three models presented here employing
normalized quaternion feedback are more appropriate for inverse kinematics applica-
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tions where the spatial orientation tracking control problem is to be accounted for

than the models in eqs. (2) and (3).
The report demonstrated how the input relegation control and two nonredundant

step inverse kinematic algorithms could be extended to properly take into account

the spatial orientation tracking control problem based on the modeling given in this
report. It should be mentioned that the theory presented here has been experimentally
verified on the CESARm research manipulator by the author and the results will be
published in future papers.

The research presented in this report has uncovered and identified a wealth of

open research issues that warrant future attention. To conduct an experimental
comparison of the three orientation error methods discussed in this report would be a
very worthwhile and beneficial way to ascertain their merits relative to one another.
This research could include a comparison of performances when the inverse kinematics

is implemented in open and closed loop manners to the plant, as illustrated in Figs. 3
and 4.

It would be of interest to investigate the stability of the redundant manipulator
system based on the three closed loop kinematic velocity models derived here. The

results of the stability analyses would complement those of the singularity analyses
in determining which of the three orientation tracking control schemes is superior.

Another suggested future research topic is to extend the approach given here to
derive a closed loop kinematic acceleration model employing normalized quaternion
feedback for each of the three orientation error methods. Such a model could be

combined with the equations of motion of the manipulator to optimize a dynamic
model based criteria when resolving the redundancy.
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APPENDIX A
" SINGULARITIES IN COMPUTING EULER

. ANGLES_ THEIR TIME DERIVATIVES_ AND
JACOBIAN J*(q)

In this Appendix we review the singularities associated with a well known al-

gorithm devised to extract the Euler angles {a,_,7} from an orthogonal rotation

matrix aRNo(q) [6] for the XYZ, ZYZ, and ZXZ conventions. We also review the
singularities associated with calculating the time derivatives of the Euler angles as
linear functions of the Cartesian angular velocity of the end effector "woN(q,il) with
respect to the (X0, Yo, Z0) coordinate frame [24, 26, 10]. Finally, the singularities
arising from calculating Jacobian J*(q) as a function of the Jacobian J(q) and the
Euler angles are demonstrated. To express the orientation of the end effector coordi-

nate frame ( XN, YN, ZN ) with respect to ( X0, Y0, Zo ), it is convenient to assume
that the origins of these frames coincide and to let (X', Y', Z') and (X", Y", Z")
represent intermediate coordinate systems. It is useful to define _P_ in terms of its
elements:

_P_ (AI)-- r21 r22 r23 •

r31 r32 r33

" XYZ CONVENTION EULER ANGLES

Rotate about Z0 by angle a to obtain (X', Y', Z'). Rotate about Y' by angle _ to
obtain (X" Z")., Y", Finally, rotate about X" by angle "yto obtain ( XN, YN, ZN )

_P_(a, _, 7)is given by [1, 6]:

_(Z)_(-), _(_)_(Z)_(-) - _(_)_(-), _(_)_(Z)_(-) + _(_)_(-)1
op_ = _(_)_(_),_(_)_(_)_(_)+ _(_)_(_),_(_)_(_)_(_)- _(_)_(_)i- _(_) _(_)_(_) _(_)_(_)

(A.2)
where c(.) = cos(.) and s(.) = sin(.).

The Euler angles can be extracted from eq. (A.2) [6]:

" _ "-- Atan2 (-r31 , _//r121--_ /'22;) (i.3)

or
] \

a = Atan2 (r21/c(f_), r,1/c(/3)), (A.5)

33
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_/ = Atan2(rz2 / c(_), raa / c(_)) . (A.6)
J

The above algorithm degenerates when:

c(f_) = 0, f_ = 4-90 ° . (A.7) "

It is well known that aw_ can be expressed as a function of the Euler angles and

their time derivatives [1]'

o - _(_) _(_)c(_)
O_oN= 0 _(o) _(_)_(_) _ . (A.S)

1 0 - s(_5)

i solution for [&, _, "_]can be obtained from eq. (i.8) [24, 26, 10]:

[ - _(_),(_) - _(_)_(_) - _(_)] o._0N"
= 1 s(a)c(_) -c(a)c(_) 0 (A.9)

:y _(_) - _(_) - _(_) 0
Using eqs. (2) and (3), it is straightforward to verify that the Jacobian J* can be

expressed as a function of the Jacobian J and la, f_, 7]:

13×3 03x3

J* = -c(a)s(B) -s(a)s(_) -c(jb) J. (A.10)
o_×_ _ ,(_)_(_) - _(_)_(_) oc(_)

-_(_) -_(_) 0

It is easy to see that a singularity occurs in the above two equations under the
conditions given in eq. (A.7) .

ZYZ CONVENTION EULER ANGLES

Rotate about Zo by a to obtain (X', Y', Z'). Rotate about Y' by _ to obtain

(X", Y", Z"). Finally, rotate about Z" by "yto obtain ( XN, YN, ZN ). aP_(a, _, 7)

is given by [1, 6, 39]"

-.(_).(.) + _(_)_(_)_(_),-_(_).(.) - _(Z)c(.).(_), .(Z)_(_)
_p_ = _(_)_(_)+ c(_),(_)_(_), _(_)_(_)- _(_)_(_).(_), _(_)_(_) .

-_(_)_(_) _(_)_(_) _(_) .-
(i.ll)

The Euler angles can be extracted from eq. (A.11) [6]:

= Atan2(X/r_l + r_2, raa) (A.12)

i i
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or

= Atan2(r23/s(_), rts s(/_)) , (A.14)

7 = Atan2(ra2/s(/_), -r3,/s(/_)). (A.15)

The above algorithm degenerates when:

s(B) = 0, B = 0,4-180 °. (A.16)

It is well known that °WoN can be expressed as a function of the Euler angles and
their time derivatives [1]:

[0"°'o1 c(_)

A solution for [&,/_, _] can be obtained from eq. (A.17) [24, 26, 10]:

/} = I s(a)s(B)-e(_)s(B) "wN. (A.18)
;r *(_) -c(_) -_(_) 0

J" can be expressed as a function of the J and [a, ft, 7]:

" /3X3 03X3

J" = [ c(a)c(_) s(a)c(l_) -s(_) ] J. (A.19)
o_ -'---_(_)_(_)-_(_)_(f_)0,(/_)

-_(_) -_(_) 0

ltiseasyto see thata singularityoccursin the above two equationsunder the

conditions given in eq. (A.16) .

ZXZ CONVENTION EULER ANGLES

Rotate about Z0 by a to obtain (X', Y', Z'). Rotate about X' by _ to obtain
(X", " Z")Y , . Finally, rotate about Z" by 3' to obtain ( XN, VN, ZN ). "P_(a, _, 7)

is given by [1]:

_(_)_(_)- _(_)_(_)_(_),-_(_)_(_) - c(_)_(_)_(_), ,(_)_(_) 1
_(7)s(_)+ _(_)_(_)_(7) ,(7)_(_)+ _(_)c(_)_(_) _(_)_(_)

•(_),(_) ,(_)_(_) _(_)
(A.20)
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The Euler angles can be extracted from eq. (A.20) [6]:

or

a = Atan2 (r_a / s(/3), - r2a / s(/3)), (A.23)

"y = Atan2(ral / s(/3), r32 / s(/3)) . (A.24)

The above algorithm degenerates under conditions described in eq. (A.16)
It is well known that _wN can be expressed as a function of the Euler angles and

their time derivatives [1, 39]:

0 _(_) _(_)_(Z)
"wN = 0 s(a) -c(a)s(_) /J . (A.25)

A solution for [&,/_,-_] can be obtained from eq. (A.25) [24, 26, 10]:

[__ _ [ '(_)_(_) -_(°)_(_) -_(_) oN
= -c(a)s(_) -s(a)s(_) 0 (A.26)

q "(_) -_(_) _(_) o
J" can be expressed as a function of the J and la,/_, "y]"

13.3 03×3

J'= [ s(a)c(_) -c(a)c(_) -s(_) J. (A.27)

o_ -,¢--_[ -_(_)_(_) -,(_)_(B) o-,(_) _(_) o

It is easy to see that a singularity occurs in the above two equations under the

conditions given in eq. (A.16).
It has been shown that the singularities associated with extracting Euler angles

from _P_ and calculating [&,/_, "_]as a linear function of %_ axe identical for each
of the three conventions.



APPENDIX B
" DERIVATION OF ICKES ORIENTATION
. ERROR

In this Appendix the analytical expression for the error between the desired and
actual end effector orientations proposed by Ickes is derived based on the successive

rotation formula for normalized quaternions. Let _e<°> be the quaternion represen-
tation of the error between the desired ge<°> and actual _e<°>(q) orientations of the
end effector, expressed in terms of the (Xo, Y0, Z0) coordinate system. Based on eq.

(19), it is straightforward to verify that the following relation holds:

g_<o>= o_d-<°>o _<o>. (B.1)
The problem is to solve eq. (B.1) for _d-<°>, where it is assumed that ode<°> and

ae<O>0 are known. Eq. (B.1) can be expressed in a matrix-column vector form:

o%<O>= _(_,e<o>)_,_<o> (B.2)
in which eq. (14) has been invoked. Since @(Be<°>) is an orthogonal m,_trix, we have:

ii/ a *<0> ode<O>(oe ) . (B.3)

" Eq. (B.3) can be expressed in terms of the quaternion product notation'

d_<0>__o_<o>_,_.<0>a_ o (B.4)

in which eq. (14) has been used. Applying eq. (B.4) to a redundant manipulator

yields eq. (23) .
It is of interest to derive the orientation error _e<°>, which is the actual end effector

orientation relative to desired orientation, again expressed in the base coordinates.
Applying eq. (19), the following relation holds:

_<o> = ,_<o>oge<°>
= ',,I'(ge<°>) ,_e<°> . (B.5)

" Solving eq. (B.5) yields:

i

_<o> = Wto_''d.<o>,_,_<o>}
d_,<o> (B.6)"- _}6<0> O 0{_ .
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Carrying through the multiplications in eqs. (B.4) and (B.6), it can be shown
that:

_e<°> = [ 103xl _0'x3 ]d_<O>/3x3"_ = =_d-'<°> (B.7)

as expected, where, here again, I,.×,. denotes an (r × r) identity matrix and O,.x,, an
(r x s) matrix of zeros.



APPENDIX C

" QUATERNION PRODUCT SIMPLIFICATIONS

In this Appendix two quaternion product expressions appearing in the derivations
of the time derivatives of thc orientation error are reduced to a simpler form.

Part C1

The first quaternion product expression on the right hand side of eq. (27) can be

replaced by its equivalent matrix-column vector representation"

-_7 1

] ew_ (C.1)F

in which eqs. (14) and (16) have been invoked and where oNfld - [0, (dWoN)T]T. In

eq. (C.1), F(5) is a (3 x 3) matrix defined by:

6s 6`,= - 6`,_
. F = -6`,z 6s 6`,_ . (C.2)

6`,_ - 6`,_ 6.

Part C2

The second quaternion product expression on the right hand side of eq. (27) can be
replaced by its equivalent matrix-column vector representation'

,,o 0 I
6Oo_2 =

6,, G J,.(q) dl

= A(q)il (C.3)
• G

. in which eqs. (14) and (15) have been invoked. In eq. (C.3) , oN[la(q, 0) has been
expressed as a linear function of the generalized velocities by applying eqs. (3) and

(4). The (3 x 3) matrix G(6)in eq. (C.3) is defined by:
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G = &,,, &o -&,,_ • (C.4)

_, It is easy to see that G = -F -t- 2 5o I3x3.
L

|
|

i'



APPENDIX D
" CLOSED LOOP TRANSLATIONAL ERROR
. SUBSYSTEM

A closed loop error subsystem governing the translational motion of the end effec-

tor of a serial-link, kinematically redundant manipulator is derived in this Appendix.

First consider the position tracking error p, of the end effector as defined by:

p, = dpNo -- _pno (D.1)

where dpNo and _pNo(q) are defined below eq. (4). Since a velocity model is sought,

consider the time derivative of eq. (D.1)'

_ = dvoN - ,]til. (D.2)

in which eqs. (3) and (4) have been applied.

Our objective is to drive i5_ _ 03xl. To accomplish this, a proportional and

integral feedback control law is introduced:

i5_ = -(K,p_ + K,,/p_dt) (D.3)

. where Kp and Kip are (3 x 3) positive definite gain matrices.

Eqs. (D.2) and (D.3) constitute a closed loop error system governing the transla-
tional motion of the end effector.

!
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