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Abstract

The report discusses the orientation tracking control problem for a kine-
matically redundant, autonomous manipulator moving in a three dimensional
workspace. The orientation error is derived using the normalized quaternion
error method of Ickes [7], the Luh, Walker, and Paul error method [11}, and a
method suggested here utilizing the Rodrigues parameters, all of which are ex-
pressed in terms of normalized quaternions. The analytical time derivatives of
the orientation errors are determined. The latter, along with the translational
velocity error, form a closed loop kinematic velocity model of the manipulator
using normalized quaternion and translational position feedback. An analysis
of the singularities associated with expressing the models in a form suitable for
solving the inverse kinematics problem is given. Two redundancy resolution
algorithms originally developed using an open loop kinematic velocity model
of the manipulator are extended to properly take into account the orientation
tracking control problem. This report furnishes the necessary mathematical
framework required prior to experimental implementation of the orientation
tracking control schemes on the seven axis CESARm research manipulator
[21, 36, 37, 38] or on the seven-axis Robotics Research K1207i dexterous ma-
nipulator, the latter of which is to be delivered to the Oak Ridge National
Laboratory in 1993.



_ .

1 INTRODUCTION AND MOTIVATION

The basic theory on the parameterization of orientation (attitude) of a rigid body
in a three-dimensional workspace is well established [1, 2, 3, 4, 5]. The generalized
coordinates parameterizing orientation include the XYZ , ZYZ , and ZXZ convention
Euler angles [1] (the XYZ convention is termed roll, pitch, and yaw angles by many
authors), orthogonal rotation matrix (i.e., di:ection cosine matrix) [1], Euler rotation
angle and unit vector [1, 2], Cayley-Klein parameters [1], normalized quaternions
(i.e., Euler Parameters) [1, 2, 3, 4, 5, 6], and Rodrigues parameters [2, 5]. The
application of this theory to the problem of controlling the orientation of a rigid body
to track a desired, reference trajectory in a three-dimensional workspace requires
the determination and mathematical modeling of the error between the desired and
actual orientations of the rigid body. This problem is complicated by the fact that
the Cartesian angular velocity vector, which is often used to describe the rotational
motion of a spatial rigid body [6], is not the time derivative of a vector [1] (whereas
Cartesian translational velocity is the direct time derivative of translational position).
Indeed, angular velocity is referred to as a nonholonomic vector in [1]. One of the
earliest researchers to address this problem was Ickes [7]. It was argued in [7] that
the desired and actual normalized quaternions are an appropriate set of generalized
coordinates to form the orientation error needed for control purposes. A mathematical
model of the orientation error was derived in [7] which has served as the basis for
recent work on this problem in robotics [8, 9, 10]. Another approach to formulating
the error between the desired and actual end effector orientations using orthogonal
rotation matrices or the Euler rotation angle and unit vector is suggested in {11]. It
is termed the Luh, Walker, Pau! (LWP) orientation error. The previous work on the
orientation error control problem in autonomous robotics has mainly been restricted
to the resolved rate and resolved acceleration control of kinematically nonredundant
manipulators.

On the other hand, a critical view of the literature on the theory, modeling, and
control of kinematically redundant autonomous manipulators [12, 13, 14, 15, 16, 17,
18, 19, 20] reveals that the spatial orientation control problem has largely been ig-
nored. These literature resolve the redundancy based on open loop kinematic velocity
and/or acceleration models of a serial link manipulator which could conceivably be
applied to a spatial arm with N (> 7) joints. But the proof of principle simula-
tion examples presented in these literature mostly focus on the inverse kinematics
of redundant planar manipulators with revolute joints or as in {17], a 3 DOF planar
manipulator with two prismatic and one revolute joint. But the orientation of a pla-
nar rigid body, e.g., the end effector of a planar revolute serial link manipulator, can
be represented by a single Euler angle measured about an axis perpendicular to the
plane of motion. Only the component of angular velocity measured about the axis
perpendicular to the plane is nonzero and it is simply the time derivative of the Euler



angle measured about that axis. Thus even if feedback loops are incorporated nitc
the model for servoing of the tracking errors, the orientation error can be formed in
the same way that the translational position error is formed in such a configuration.
Thus the spatial orientation problem has been avoided. In [21, 22], the LWP orienta-
tion error was formed by employing orthogonal rotation matrix feedback [11] for the
resolution of redundancy of 7 DOF and 9 DOF spatial manipulators, respectively.
But only three of the nine parameters of a rotation matrix are independent, and the
representation of the LWP error in terms of the four parameter normalized quater-
nions will be investigated here. Besides, normalized quaternions are computationally
efficient [1, 23]. The time derivative of the LWP error, which was not considered in
[11, 21, 22], will be discussed in this report.

Some comments are in order about the (6 x N) Jacobian matrix J*(g) that is
contained in the open loop kinematic velocity model upon which several researchers
base redundancy resolution schemes [12, 13, 14, 15]. The Jacobian and model are
derived by the following procedure in these literature: Let X denote a (6 x 1) task
or operational space vector. The upper three elements of X are the components
of Cartesian translational position of the end effector at its centerpoint. The lower
three elements of X are not specifically identified, but are assumed to be a set of Euler
angles [e, B, 7]T describing the orientation of the end effector, where superscript T
denotes a matrix transposition. The task vector X is expressed as a function of the
joint positions ¢ (= [g1, gz - .., an]7) (N > 7):

X =H (1)

where the (6 x 1) vector H(q) is a continuous function of its argument. The Jaco-
bian J* is defined to be the (6 x N) matrix (0H/0q) in the equation obtained by
differentiating eq. (1) : '

X = (0H/bgq) ¢ = J"q. (2)

It should be noticed that the lower three elements of X are merely the time rates
of change of the Euler angles. Indeed, differentiating the lower three elements of
X, regardless of whatever 3-element parameterization of orientation they may be,
will never yield components of Cartesian angular velocity of the end effector, since,
as mentioned earlier, angular velocity is not the time derivative of a vector. Only
the upper three rows of J* as defined in eq. (2) constitute a joint to Cartesian space
mapping. The lower three rows of eq. (2) are in fact a mapping from one set of angular
coordinates to another. To derive the lower three rows of J* symbolically using the
above procedure, the designer must first obtain analytical expressions for the lower
three elements of H to satisfy the equation [a, S, 'y]T = [03x3, I3x3] H(q). ( Here I, 4,
denotes an (r x r) identity matrix and 0,4, an (r x s) matrix of zeros ). To express
Euler angles as functions of the joint positions involves extracting the former from a
(3 x3) orthogonal rotation matrix ® R) (¢) which describes the actual orientation of the



end effector moving coordinate system ( Xn, Yn, Zn ) with respect to the stationary
base coordinate frame ( Xo, Yo, Zo) [6]. The coordinate frames are shown in Fig. 1.
However, this procedure involves the use of the two argument arctangent function
(due to the nonuniqueness of Euler angles) and degeneracies cannot be avoided [6, 24].
The inherent degeneracy of the extraction algorithm suggested in [6] is demonstrated
for the XYZ, ZYZ, and ZXZ Euler angle conventions in Appendix A. By simulating
planar redundant manipulators in their examples, the literature [12, 13, 14, 15) which
define J* by egs. (1) and (2) have in fact avoided this problem.

On the other hand, the Jacobian matrix J(q) presented in this report transforms
the joint velocities to obtain the Cartesian t: nslational and angular velocities of
the end effector in the base coordinates (J is defined mathematically in the next
section). The lower three rows of this Jaucobian can be derived symbolically using a
well established algorithm described in [25, 26] which has no degeneracies.

There is a second method for determining vector (&, B, ~'y]T as a function of the joint
velocities. It involves two steps: (i) calculate the Cartesian angular velocity of the end
effector given the lower three rows of J and ¢. (ii) calculate [&, B, "/]T as a function
of the angular velocity and [a, ﬂ,~/]T. In Appendix A it is shown for the XYZ, ZYZ,
and ZXZ conventions that step (ii) has singularities and that they are identical to the
singularities found when extracting [, 3, ~)T from *RY. The procedure described in
steps (i) and (ii) results in the determination of J* as a function of J and [e, 3, 3T
[10], and in Appendix A it is shown that the singularities of this function are identical
to those in step (ii). It is evident that modeling the manipulator system using eq. (2)
and introducing feedback loops to control [c'v,ﬂ',"y]T to track a desired trajectory is
impractical and another representation of orientation should be considered.

The spatial orientation error methods presented in this report employ normalized
quaternion feedback. There are two significant advantages for using the normalized
quaternions over Euler angles. Firstly, there exists an algorithm [27] for extracting the
normalized quaternions from an orthogonal rotation matrix ® R}’ which is singularity
free except for the case when the Euler rotation angle 8, which is defined in Section
3, equals & 180°. It is the opinion of the author that the singularities associated with
extracting normalized quaternions from *R} are less restrictive than those arising
from extracting Euler angles. Secondly, and most important, is the fact that the
time derivatives of the normalized quaternions can be expressed as functions of the
Cartesian angular velocity and normalized quaternions which are singularity free. It
should be mentioned that the expressions for the orientation error derived here are
Cartesian space vectors.

In this report the existing orientation error methods of {7, 11} and a method pro-
posed here using the Rodrigues parameters are applied to the problem of deriving
a closed loop kinematic velocity model of an autonomous redundant manipulator.
The method of [7] is based on a four parameter representation of orientation whereas
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the method of [11] is based on nine parameters (orthogonal rotation matrix) or four
parameters (Euler rotation angle and unit vector). The proposed method is based
on a three parameter representation of orientation. An analytical expression for the
time derivative of each of three orientation errors is derived and combined with the
translational velocity error, to yield a distinct closed loop kinematic velocity model
for the entire system. The singularities of the error systems for the rotational kine-
matics are determined. The models form the basis for theoretical and experirnental
comparisons of the three orientation error control methods. Two redundancy resolu-
tion algorithms originally developed based on an open loop kinematic velocity model
of a manipulator are extended to solve for the joint velocities using the models given
here to properly take into account the spatial orientation tracking control problem.

The report is organized as follows. First, the algebra of normalized quaternions
relevant to this report is briefly reviewed. The orientation error, its analytical time
derivative, and a closed loop system model at the velocity level for each of the three
methods is presented. The problem of resolving the kinematic redundancy based on
the models is then studied. Finally, a conclusion and recommendation for future work
are provided.



2 PROBLEM STATEMENT AND SYSTEM
DESCRIPTION

The problem is to determine a closed loop kinematic velocity mode! for an au-
tonomous, serial-link, redundant manipulator which takes into account the spatial
orientation tracking control problem. Three such models are derived here, each of
which is derived by a distinct orientation error method. The models serve as a proper
foundation for the resolution of kinematic redundancy. The manipulator has a sta-
tionary base and contains N(> 7) single DOF joints. The configuration of the
system is shown in Tig. 1.

2.1 SYSTEM VARIABLES AND COORDINATE
FRAMES

The joint positions ¢ = [q1, g2,...,qn]7 of the manipulator are the generalized coor-
dinates describing the configuration of the system. The system variables include the
generalized coordinates and velocities, the Cartesian velocities of the rigid body end
effector, and the normalized quaternions. As shown in Fig. 1, the coordinate frame
( Xk, Yr, Zi ) is assigned to the ky link of the manipulator, where £ = 0,1,..., N.
Let p) denote the (3 x 1) translation vector which emanates from the origin of the
( Xo, Yo, Zo ) coordinate frame to the origin of the ( Xy, Yy, Zn ) coordinate frame.

pY is expressed in the base coordinntes.

2.2 KINEMATIC TRANSFORMATIONS

The kinematic transformation for a serial-link redundant manipulator which relates
the Cartesian velocities of the end effector to the generalized velocities is given by:

w ] _ Ja
[ Wl ] = Jgq 3)
where the (3 x 1) vectors v)(= p)) and w) are the Cartesian translational and
angular velocities of the end effector in the base coordinates. In eq. (3), J(q) is the
(6 x N) manipulator Jacobian matrix, which is assumed to possess full rank six. It
is convenient to partition J into two matrices:

1= |7] (1)
where Ji(¢) and J.(g) are (3 x N) matrices which transform ¢ to obtain the transla-
tional and angular velocities of the end effector, respectively.

In this report eq. (3) is viewed only as a kinematic transformation for expressing
the actual values of the end effector Cartesian velocities, denoted by {*vy’, *w{'}, as



symbolic functions of the joint space variables {g, ¢}. It is not viewed as a model
for solving the inverse kinematics, i.e., {?v{’, “w}, ¢} are given and the problem is to
determine an underspecified solution for ¢, where superscript d denotes the desired,
planned values of the end effector Cartesian velocities.

A brief review of the fundamentals of quaternion algebra relevant to this report
is covered in the next section.



3 REVIEW OF QUATERNION ALGEBRA

According to Euler’s Theorem on Rigid Body Rotations (1], the orientation (atti-
tude) of a rigid body, after having undergone a sequence of rotations, is equivalent to
a single rotation of that rigid body about an axis (unit vector) # by an angle . The
superscript — denotes that the quantity is an explicit function of the unit vectors
directed along the principal axes of the Cartesian coordinate system it is expressed
in. 77 and @ are shown in Fig. 2, where for illustrative purposes, the origins of the
base and end effector coordinate systems coincide. The components of 7, denoted
by a (3 x 1) vector n = [ng, ny, n,]T, may be expressed in any relevant Cartesian
coordinate system, but will be in terms of the ( Xy, Yy, Zo) coordinate system in
this report. Since all quantities and results are presented in a matrix/column vector
notation throughout the report, vector n is used hereinafter. In the quaternion de-
scription of the orientation of a rigid body, a (4 x 1) vector e is introduced, termed the
quaternion. It consists of a scalar component e, and a (Cartesian) vector component

€y (= [euxa €uys €uz ]T):
¢ = [ c ] . (5)

3.1 DEFINITION OF THE QUATERNION

The quaternion e can be defined in terms of (n, 8) [1]:

_ cos(0/ 2)
e(n, 0) = [ nsin(f/2) ] ' (6)
e, contains the components of €,, and eq. (6) reveals that €, is in alignment with 7
as illustrated in Fig. 2. It is immediately evident that the square of the Euclidean
norm of e equates to unity:

(lell,)? = € + €%, + €2, + €2, = 1. (7)

Thus, e is termed a normalized quaternion and its components are referred to as Euler
Parameters [1]. Interestingly, the constraint equation (7) shows that the absolute
value of any Euler Parameter cannot exceed unity. It is easy to see that:

Since the following relation holds:

1 O1x3
Oaxl - sta

e(n, 0) = [ ] e(n, —0) = e(—n, —0) (9)
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Fig. 2. Rotation of (Xo, Yy, Zy) coordinate frame about unit vector 7’ by angle
0 to obtain (Xn, Yy, Zn) coordinate frame.
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normalized quaternions, like the Euler angles, are not a unique representation of
orientation. The physical interpretation of eq. (9) is that rotating about the axis —n
by angle — 8 is the same as rotating about n by 8. Furthermore, it is straightforward
to verify that the following relationships hold:

e(n, £360° + 0) = —e(n, §), (10)
e(n, £360° — ) = —e(n, —0) (11)

which also demonstrate the nonuniqueness of the normalized quaternions. However,
if the rotation is restricted to be about the +n axis and the Euler rotation angle is
restricted to the range (—180° < 6 < 180°), then e, > 0 and e is unique.

A scalar [ and Cartesian space vector r(= [rg, 1y, T; ]T) may be represented in
the quaternion convention by [/, 0;x3]” and [0, rT]", respectively.

3.2 GENERAL PROPERTIES OF NORMALIZED
QUATERNION ALGEBRA

Let e* denote the quaternion conjugate operation. It is quantified by:

e = [ e’]. (12)

_eu

Observing Fig. 2 and eq. (6) , it is easy to see that e* corresponds to rotating about
the Euler axis n by an angle — 6.

Let e; and e; denote two distinct quaternions. The quaternion addition rule is
given by:

(13)

The quaternion product of e; and e;, represented by e; o e;, can be expressed in
a matrix-column vector notation as follows:

€1 0 € = @(61)62 = \I’(eg) €1 (14)
where ®(e;) and ¥(ep) are (4 x 4) orthogonal matrices defined by [5, 28):
e T -
| €1 €15 faxa + Eery) |
- €24 —eg'v -
U= (16)
| e €2, l3x3 — Elez) |
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In egs. (15) and (16), E(e1,) and E(ey,) are (3 x 3) matrices arising from expressing
the vector cross-product operations (€, X €3,) and (€2, X €,), respectively, in a
matrix-column vector notation:

0 — €ivz €ivy
E(eiv) = Civz 0 = €ivz (17)
— Cjuy €iuz 0

for i = 1,2. It can be shown that ®(e*) = ®7(e) and ¥(e*) = ¥T(e). Moreover,
eoe =¢€ oe=][l, 01x3]T. The quaternion ”conjugate” product of e; and ey is
represented by e; o ej.

3.3 SUCCESSIVE ROTATIONS AND REPRESENTA-
TIONS WITH RESPECT TO VARIOUS COORDI-
NATE SYSTEMS

Suppose the Cartesian coordinate frame A is rotated to obtain coordinate frame
B. Let quaternions £e<#> and Be<% represent the relative orientation of B with
respect to A, expressed in the local coordinates (X4, Y4, Z4) and base coordinates
(Xo, Yo, Zo), respectively. Suppose now coordinate frame B is rotated to obtain
coordinate frame C. The orientation of C' with respect to A, expressed in terms of
the local coordinates, is determined by postmultiplying §e<4> by Ge<B> [2, 3, 5, 29]:
Ce<A> = Be<A> o Ce<B>, (18)
On the other hand, the orientation of C with respect to A, expressed in terms of
the base coordinates, is determined by premultiplying Be<?> by §e<® [2, 3, 5, 29):
ie<o> — ge<0> o §e<°>, (19)
Through application of the latter successive rotation formula, it is easy to see that
the following relation holds:

Ce<0> [01 _(-]1Ix3 ] Ag<0> _ Agn<o> (20)
ax1 3x3

Consider the time derivatives of quaternion #¢<%>, the orientation of frame A with
respect to the base frame, and its conjugate §¢*<°>. Applying the theory of coordinate
transformations and the relationship between the time derivative of a quaternion and

angular velocity of the Ath coordinate frame with respect to the zeroth frame, we
have [2, 3, 5, 29]:

1
A 0> __ - AQO<0> A_<0>



1
gé-<0> = — 5646-<0> o 610<0> (22)
where #0<°> is a quaternion with scalar part set to zero and vector part equal to the
. (3 x 1) Cartesian angular velocity vector wg'.

For further information on normalized quaternion algebra, the reader is referred
to the detailed expositions given in [30, 31]. The derivation of the orientation errors
is discussed in the next section.

T T




4 ORIENTATION ERROR ANALYSES

In this section the orientation error between the desired and actual orientations
of the end effector are derived using three methods. The time derivative of the
orientation error is then determined, through which a closed loop model of the system
is obtain<d. All methods will be expressed in terms of the normalized quaternions. Let
the quaternions e?<%> and )e*<%>(q) signify the desired and actual orientations of
the end effector coordinate frame ( Xn, Yn, Zn ) with respect to the base coordinate

frame ( Xo, Yo, Zo ), respectively.

4.1 APPLICATION OF ICKES ORIENTATION ERROR
TO REDUNDANT MANIPULATORS

This method is based on the previous work of Ickes [7] and Lin [9]. Using the compos-
ite quaternion rotation formula given by eq. (19), the orientation error was defined
in [7] to be the conjugate product of Je?<%> and )e2<%>:

§ = éved<°> o Q’e"'“<°> (23)

where ) e*2<®> signifies the quaternion conjugate of ) e2<%> and where § is a quater-
nion expressed in the base coordinates which consists of a scalar component é, and a
vector component 6, defined by:

T
—. N _d<0> N _a<0> N _d<0> N _a<0>
6 = o€ 06 + (0 €y ) 0 (24)
— N _d<0> N _a<0> N _d<0> N _a<0> N _d<0>\ N _a<0>
6" = 0 €y 0¢s — 06, 0 €y - E(O €y )Oeu (25)

in which eqs. (14) and (15) have been applied and where E()e4<°>) is defined as
is E(e;y) in eq. (17). 6, and 6, were termed the scalar and vector components of
the quaternion error in [7]. Interestingly, §; = 1 and 6, = 03x; when the desired
and actual orientations of the end effector are identical. §, was proposed to be an
appropriate representation of the orientation error for tracking control purposes in [7]
and has been demonstrated on robotic hardware in [8, 10]. A rigorous derivation of
the orientation error leading to eq. (23) is provided in Appendix B. Noting eq. (7)
, it is apparent that the absolute value of any component of 6, cannot exceed unity
and that (|| 6, ||,)* < 1.

A closed loop error system at the acceleration level for the translational and
rotational kinematics of the end effector of a six-axis serial link manipulator employing
normalized quaternion feedback was presented in [9]. The error subsystem for the
rotational kinematics was obtained by determining the second time derivative of the
vector component of the Ickes orientation error quaternion. The procedure in [9] will
be adopted here to derive a closed loop model for a redundant manipulator at the
velocity level. The analysis in [9], however, assumed that the Jacobian matrix was

15
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square and directly invertible, which is not the case here. The first time derivative of
the vector component of the quaternion error is now considered:

6." = [03)(1’ ng3] ((I)véd (o} 3’6‘0 + (I,Ved (e} (I)Vé-a) (26)

where Yé*@ is a function of {q, §}. Since all quaternion algebra and error functions
presented throughout this report are expressed in terms of the ( Xy, Yy, Zo) coor-
dinate system, the superscript < 0 > is dropped from eq. (26) and hereinafter for
convenience.

Substituting eqs. (21) and (22) into the right hand side of eq. (26) gives:

! 1 *a *a a
6, = §[O3x1,13x3]({)vﬂdof,vedoéve — Ned o Ne o{,VQ)
1
= §[Oax1,I3x3](Q’Qdoé——éo(’,vﬂ“) (27)

in which eq. (23) has been used and where the normalized quaternions Q¢ and
&'Q4(q, ¢) are defined in the same way as $2<°> below eq. (22).

In Appendix C it is shown how the quaternion product expressions on the right
hand side of eq. (27) can be expressed in a concise matrix-column vector form:

1

bs 5 (Fiwf - GJq) . (28)

Our objective is to drive §, — 03;. To accomplish this, a proportional and
integral (PI) feedback control law is introduced:

§, = — (Ko b, + Ko [ 6, dt) (29)

where K, and K;, are (3 x 3) positive definite gain matrices.

Egs. (28) and (29) constitute a closed loop error system for the rotational kinemat-
ics of a spatial redundant manipulator. These equations, together with the equations
constituting a closed loop error system for the translational kinematics, derived in
Appendix D, form a closed loop velocity model for the entire system:

dv())v [ Kppc + I{ipfpe dt
+
F il | 2 (K, 6, + K, [ 6,dt)

[ Inxs  Oaxs
- Jq. (30)
| O3xs G
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To express the model in a form amenable to resolving kinematic redundancy, both
sides of eq. (30) are premultiplied by the inverse of the (6 x 6) coefficient matrix of
the Jacobian:

ij:?cea = Jq (31)
where Y7, is a (6 x 1) vector defined by:

. d'v(l)v Kppe + Kip [ pe dt
i'c’IZea =

+ (32)

G-1 Fwl 261 (K, 6, + Kiy [ 6, dt)

In eq. (32) , Y., is a function of the feedforward variables (‘pY, dvl, dwl, Ved)

and the feedback variables (°p)(q), Ye®(g)). When solving eq. (31) for the inverse
kinematics, Y1,, and J(q) are known and ¢ is to be determined. This problem will
be discussed later in the report.

To arrive at eq. (31) , it has been implicitly assumed that matrix G is nonsin-
gular. The conditions under which G is invertible are now discussed. The symbolic
determinant of G is given by:

Gl = &, (8.2 + 6 + 6,7 + 6.27) = 6, (33)

where eq. (7) has been invoked. Thus |G| = 0 when §, = 0, which corresponds to the
Euler rotation angle taking on the values § = +180°. In this configuration the desired
and actual orientations of the end effector are separated by the maximum rotational
amount. It is concluded that eq. (31) realistically models the kinematic behavior of
the physical manipulator system when the Euler rotation angle is restricted to the
range |6] < 180°.

The closed loop system proposed in [8] for the rotational kinematics of a manip-
ulator with a proportional control law is equivalent to modeling the system by the
equation dw(’,V — J;¢ = —=K,éb, using the notation of this report. We take issue
with the approach in [8] because 6, is not the time integral of the Cartesian angu-
lar velocity error expression (‘wy — J.¢). Indeed, ‘w and °w{'(q,q) (= J.q) are
nonholonomic vectors. The nonintegrable nature of (“w) — J, ¢) is why the time
derivative of the vector component of the Ickes orientation error is considered in this
report. The control law in eq. (29) is logical and reasonable.

4.2 APPLICATION OF LWP ORIENTATION ERROR
TO REDUNDANT MANIPULATORS

In 1980 Luh, Walker, and Paul (LWP) conceived an orientation error between the
desired and actual end effector attitudes for application to the resolved acceleration
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control of kinematically nonredundant manipulators [11]. Their error function!, de-
noted by £'“?, is related to the orientation parameters (n, 8) as follows:

P = nsin(9). (34)

This error function has been studied extensively in the literature [8, 24, 32, 33] and
is presently the most widely accepted method for modeling the orientation error in
robotics. What has not been considered, however, is the derivation of the analytical
time derivative of the LWP orientation error expressed in terms of normalized quater-
nions, which can be applied to determine a closed loop kinematic velocity model for
a redundant manipulator and is the goal of this section.

Eq. (34) can be expressed in an equivalent form:

£"P = 2n sin(0/2) cos(8/2). (35)

Observing the definition of the normalized quaternion e in eq. (6) along with the
scalar and vector components of the Ickes orientation error quaternion defined by
egs. (24) and (25) , it follows that the LWP error can be expressed in a normalized
quaternion representation:

g = 26,6,. (36)

Egs. (7) and (36) reveal that the absolute value of any component of £"“? cannot
exceed unity and that (||é"*||,)* < 1.
Consider the time derivative of eq. (36):

gvr = 2 (6,6, + 6,6,) . (37)

A symbolic solution for £'vP is now sought which is not an explicit function of
the variables {6,, 6,}. Examining the structure of the intermediate solution for 4,
in eq. (27) , it is easy to see that the time derivative of the scalar component of the
quaternion error is given by:

§, = % [1, 01xa) (Y04 0 6 — 6 0 '02°) . (38)

In Appendix C it is shown how the two quaternion product expressions on the
right hand side of eq. (38) can be expressed in a concise matrix-column vector form:

b, = —587 (*wg - Jrd) - (39)

Substituting for &, and &, in eq. (37) by their definitions in eqs. (28) and (39)
obtains:

lalso discussed in [1, pg. 165, eq. (4- 45)]
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§vr = 6, (Fwl — GJrq) - 6,67 (*wb - J. ) (40)
where matrices F(6) and G(6) are defined by egs. (C.2) and (C.4) , respectively.
A PI feedback control law is introduced to drive £'“? — 034;:
for = — (Ko + KL, [ g ar) (41)

where K! and K|, are (3 x 3) positive definite gain matrices.

Eqs. (40) and (41) constitute a closed loop error system for the rotational kinemat-
ics of a spatial redundant manipulator. These equations, together with the equations
constituting a closed loop error system for the translational kinematics, derived in
Appendix D, form a closed loop velocity model for the entire system:

dv(})V [ Kype + Kip [ pe dt :l
+

Klgwr 4 KL [ g dt

ISXS 03)(3
Jq. (42)
Oaxs 6, G — 6,67

To express the model in a form amenable to resolving kinematic redundancy, both
sides of eq. (42) are premultiplied by the inverse of the (6 x 6) coeflicient matrix of
the Jacobian:

in

lwp = Jq (43)

where Y)i» is a (6 x 1) vector defined by:

dvtl)\l

in
lwp

(6,G - 6,67) (6, F - 6,87)
Kppe + Kip [ pe dt

(44)
(6,G — 6,67)7" (Kigmr 4 K, [ ¢ dt)

In eq. (44) , Yi» is a function of the feedforward variables (“py, ‘v, ‘wf, {'e?)
and the feedback variables (°p)'(q), J'e®(¢)). When solving eq. (43) for the inverse
kinematics, ,:{,‘p and J(q) are known and ¢ is to be determined. This problem will be
discussed later in the report.
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It has been implicitly assumed that matrix (6, G - 4, 63) is nonsingular when
arriving at eq. (43) . The conditions under which this matrix is invertible are now
presented. Noting eq. (C.4) , this matrix can be expressed as a function of the
components of é:

632 - 611.1:2 _63 6uz - 61:.1: 6vy ‘Sa 6vy - 61:1' 6uz
6,G = 6,67 = | 6564 — b4z by 6, — 6,7 —8y6yz — b4y by | - (45)
—63 6uy - 60.: 602 6& 51;:: - 6uy 6‘vz 6.92 - 6u22

The determinant of eq. (45) is given by:

6,G — 6,67

= 532 {684 - 6v.7:4 - 60!14 - 6"24
=2 (860" + 860" + 8,7 6..7)} . (46)

Squaring both sides of the normalized quaternion identity in eq. (7) withe = §
gives:

1 o= 8%+ 6u" + 6" + 80" + 26,2 (6,27 + 6,7 + 61.%)
+2 (8,22 60% + 6,627 + 6,26.27) - (47)

Eliminating the term {— (6,,;' + 6, + 6,,24)} on the right hand side of eq. (46)
using eq. (47) and simplifying give:

6,G — 6,67

= 8,7{26" =1 + 26,2 (60 + b® + 6u.7) } . (48)

Finally, eliminating the term (5u,2 + 6y% + 6,,,2) in eq. (48) using eq. (7) with
e = 6 and simplifying give:

§,G — 6,67

= 6,2 (26, - 1) . (49)

Thus I&,G - & 6Z| = 0 when 6, = Qor §, = :i:\/f/2, which correspond to the
Euler rotation angle taking on the values § = +180°, £90°, respectively. Moreover,
the square of the Euclidean norm of the LWP error in fact decreases in value from 1
to 0 when 0 is increased from 90° to 180° ( or when 8 decreases from — 90° to — 180°).
But intuitively the orientation error should increase as | | increases. It is concluded
that eq. (43) realistically models the kinematic behavior of the physical manipulator
system when the Euler rotation angle is restricted to the range |§] < 90°. Eq. (43)
is thought to be the proper closed loop kinematic velocity model to use for resolving
the kinematic redundancy when the orientation error is modeled by eq. (36) .

The closed loop system model proposed in (8] for the rotational kinematics based
on the LWP error given in eq. (36) with a proportional control law is equivalent to



21

modeling the system by the equation ‘w) — J,¢ = —2 K}, 6, using the notation
of this report. We take issue with the approach in [8] because (26, 6,) is not the
time integral of the Cartesian angular velocity error expression (“wy — J.q). The
nonholonomic, nonintegrable nature of the angular velocity error is why the time
derivative of the LWP error is considered in this report. The control law in eq. (41)
is logical and reasonable.

€' was also expressed in terms of the unit vectors comprising the columns of the
desired (“RY) and actual (®RY (¢)) rotation matrices in [11). The second time deriva-
tive of this alternate form of £"“? was obtained in [33], which led to the determination
of a closed loop error subsystem describing the rotational kinematics of a six-axis ma-
nipulator at the acceleration level. A kinematic model for the entire nonredundant
system was found by combining the rotational error subsystem with the one governing
the translational acceleration error. The singularities of the feedback control scheme
in [33] are identical to those obtained below eq. (49) . The derivation of the closed
loop kinematic velocity model in eq. (43) builds on the methods of section 4.1 and
exploits the inherent advantages of normalized quaternion feedback.

4.3 A NEW ERROR METHOD WITH APPLICATION
TO REDUNDANT MANIPULATORS

The minimum number of parameters required to describe the orientation of a rigid
body is three [2]. The normalized quaternion parameterization of orientation consists
of four components, whose values are restricted by the constraint equation (7). Like-
wise, the Euler rotation angle and unit vector parameterization is comprised of four
components. On the other hand, the Rodrigues parameters are a minimal represen-
tation of orientation [2]. It is proposed to model the error between the desired and
actual orientations of the end effector of a redundant manipulator by a (3 x 1) Carte-
sian space vector £7%(= [€1°%, €74, f:"d]T) termed the Rodrigues orientation error
function. £7°? can be defined in terms of the Euler rotation angle and unit vector:

£ = ntan(6/2). (50)

To apply the unified modeling procedure prescated in the previous two sections to
derive a closed loop kinematic velocity model based on the Rodrigues error function,

the right hand side of eq. (50) is expressed in terms of normalized quaternions by
invoking eqgs. (6), (24), and (25):

)

rod _ v
6 - 6, . (51)
The denominator on the right hand side of eq. (51) goes to zero when the Euler
rotation angle § = 4 180°, thus the components of the Rodrigues error function can
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become infinite, whereas the absolute value of any component of the Ickes (6,) and
LWP (¢'*?) error functions cannot exceed unity. £ = 03x; when the desired and
actual orientations of the end effector are identical.

To derive a closed-loop error system for the rotational kinematics of the redundant
manipulator in terms of the Rodrigues orientation error, the time derivative of eq.
(51) is now considered:

6,6, — 6,6,
62 '

3

érod = (52)

Substituting for é, and §, in eq. (52) by their definitions in egs. (28) and (39)
give:

1
26,°

A PI control law is introduced to drive é”d — 031t

grod = (6. (FUwl - GJ,q) + 6,67 (i ~ +4)] - (53)

grod = _ (K; ot 4 KT / Eroddt) (54)

where K and K], are (3 x 3) positive definite gain matrices.

Eqgs. (53) and (54) constitute a closed loop error system for the rotational kinemat-
ics of a spatial redundant manipulator. These equations, together with the equations
constituting a closed loop error system for the translational kinematics, derived in
Appendix D, form a closed loop velocity model for the entire system:

ug’ Kype + Kip [ pe dt

+
(6, F + 6,6,7) 4wl 26,7 (K¢ + K, [ €4 dt)

Izx3 03x3
= Jq (55)

03x3 53 G + 60 6vT

where, here again, matrices F and G are defined by egs. (C.2) and (C.4) , respectively.

To obtain a model amenable to resolving kinematic redundancy, both sides of eq.
(55) are premultipled by the inverse of the (6 x 6) coefficient matrix of the Jacobian:
o= Jg (56)

rod

where Y., is a (6 x 1) vector defined by:
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dvg/

in
rod

(6.G + 6,67)7 (6 F + 6,6,7) “wlf

Kype + Kip [ pe dt
+ . (87)
262(6,G +6,867) (K€ + K, [ ¢¢dt)
In eq. (57) , Y™, is a function of the feedforward variables (?pY, *vf, W, N¥e?) and
the feedback variables (*p} (q), e?(q)).

It has been implicitly assumed that matrix (6, G + 6, 6,,T) is nonsingular when
arriving at eq. (56) . The conditions under which this matrix is invertible are now
presented. Noting eq. (C.4), this matrix can be expressed as a function of the
components of é:

6.92 + 6\;1:2 _63 6uz + 6u.1: 6uy 6.1 6vy + 6u:z: 6vz
53G + 51.' 6vT = 63 6vz + 601: 6vy 632 + 6vy2 _63 6ua: + 6uy 6uz
_63 6uy + 61::: 5uz 5.1 61::: + 5vy 602 632 + 61::2
(58)
The determinant of eq. (58) is given by:
5,G + 6,67 = 62{6*+ 62" + 6,* + 6,.°
+2 (8027 60y® + bus? b® + 6,2 6.5°)
+26,% (60" + 65" + 60.7)} - (59)

Eliminating the expression (8,,* + 6y,* + 6,.*) on the right of eq. (59) using eq. (47)
and simplifying give:

8, G + 6,6,7

=62, (60)

Thus |6, G + 6, 61,7‘] = 0 when 6, = 0, which corresponds to the Euler rotation an-
gle taking on the values § = +180°. As anticipated, the singularities of the matrix
(6,G + 6,6,7) are identical to the singularities of the Rodrigues orientation error
function as discussed below eq. (51) . The desired and actual orientations of the end
effector are separated by the maximum rotational amount in these singular configu-
rations. It is concluded that eq. (56) realistically models the kinematic behavior of
the physical manipulator system when the Euler rotation angle is restricted to the
range |§] < 180°. Eq. (56) is thought to be the proper closed loop kinematic velocity
model to use for resolving the kinematic redundancy when the orientation error is
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modeled by eq. (51) . The proposed Rodrigues error function given in eq. (51) is
thought to be more sensitive and responsive to orientation errors than the Ickes or
LWP error functions. The author is not aware of any previous work on modeling of
orientation error using Rodrigues parameters and thus the material in this section is
a new result.

The problem of resolving the kinematic redundancy based on the closed loop
velocity models derived in this section is discussed next.



5 REDUNDANCY RESOLUTION

In a recent report [34], the input relegation control method was suggested tor
resolving the kinematic redundancy of a manirulator based on the model defined by
eqgs. (3) and (4) , which does not take into account the translational and rotational
motion tracking control errors. Indeed, this model is open loop in nature and its
inputs are the desired, reference trajectories {¢v{), %w}’ } as defined below eq. (4).
To overcome this deficiency, the method described in [34] is extended to resolve the
redundancy based on any of the three closed loop kinematic velocity models derived
here. The basic approach of input relegation control will be discussed without getting
irto the details. Additionally, another open loop inverse kinematics algorithm termed
the two non-redundant step method is extended to take into account the orientation
tracking control problem.

5.1 INPUT RELEGATION CONTROL METHOD

The closed loop systems described by egs. (31), (43), and (56) can be expressed in a
unified manner by a single equation:

i = Jg (61)
where Y/"(: = ickes,lwp,rod) is a (6 x 1) vector defined by one of the equations
(32), (44), or (57) as selected by the designer.

In input relegation control. a new vector variable ¢ = [e1, €,..., en-g)7 is intro-
ducer to resolve the kinematic redundancy. The number of scalar elements contained

in ¢ is equal to the number of redundant DOF contained in the system, namely (N —6).
It is defined by:

e = Bg. (62)

The ((N —6) x N) matrix B(q) in eq. (62) is selected so that the composite
(N x N) matrix (JT, BT)T is nonsingular. It is convenient to partition the inverse of
(JT, BT)T into two matrices:

-1
J
[B] = [0, 3] (63)
where II(g) is a (N x 6) matrix and £(q) a (N x (N — 6)) matrix. Eq. (63) implies
that JII = Iexe, JE = Ox(n-6)), BIl = Oyn-gxe)y BE = I(n-6)x(v-6)) and
(HJ + ZB) = InxN-
Egs. (61) and (62) can be solved for ¢:

G =TNY™+Ze (64)

25



I N

=]

26

in which eq. (63) has been invoked. In eq. (64), ¢ has been expressed as a function
of the variables {Y;™, ¢, ¢}. Substituting the right hand side of eq. (64) into the
kinematic velocity model (61) reveals that the expression (J X €) identically vanishes
regardless of the value of ¢, since (J £) = 0(gx(n-6)). Likewise, substituting the right
hand side of eq. (64) into eq. (62) reveals that the expression (B IIY/") identically
vanishes regardless of the value of Y;'", since (BIl) = O(~-6)xe). Therefore the
designer can relegate separate tasks to the quantities {Y;™, €}.

When applying input relegation control to the orientation error modeling and
control framework presented here, it is assumed that the desired trajectories of the
variables {?pl, v, 4wl’, Ne?} have been specified by the designer and the actual
values of {®pY(q), Ye®(q)} are available via feedback loops. There is now sufficient
information available to calculate Y;™(i = ickes, lwp,rod) using one of the equations
(32), (44), or (57) as selected by the designer. It is also assumed that J(gq) is known.
To calculate the generalized velocities using eq. (64) , the values of {II, £, €} need to
be determined. In [34], it is assumed that the designer first selects matrix B such that
(JT, BT)T is nonsingular, which immediately leads to the determination of (II, £) by
eq. (63) . Several techniques for selecting B are discussed in [34], one of which is
described later in this section. However, eq. (64) still cannot be solved for ¢ since ¢
is an unknown quantity. To solve for {¢, ¢}, an optimization scheme was suggested
in [34] to pick € to secure a minimum Euclidean norm solution for the generalized
velocities. The solutions for these quantities based on eq. (64) are given by:

e= - (£78)7 £Tnyi, (65)

§ = (INxN — 5 (75)” ET) my. (66)

An analytical method was presented in [34] to choose B to maximize the determi-
nant of matrix (J7, BT)T with the restriction that B is orthogonal to the rows of J,
i.e., J BT = 0gx1, for manipulators with one degree of redundancy. Postmuitiplying
the matrix identity I J + £ B = I;7 by J7 immediately leads to a symbolic solution
for II:

m=Jr(gsn)" (67)

Furthermore, J BT = 0gy; implies that TIT L = 0gy; [34]. Eqgs. (65) and (66)
immediately simplify to:

e = 0, (68)

i = JT(II) v (69)

A numerically efficient method for calculating eq. (69) in two steps is discussed next.
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5.2 TWO NON-REDUNDANT STEP METHOD

This method is based on the previous work [18] which calculated the Moore-Penrose
pseudoinverse of the Jacobian matrix in two "non-redundant” steps to yield a mini-
mum norm solution for ¢ based on the open loop model given by eq. (3) . The method
can be extended to calculate a solution for ¢ based on the closed loop system with
normalized quaternion feedback given by eq. (61) . In the first step, the following
equation is solved for W, a (6 x 1) vector:

JITW = Y, (70)

The generalized velocities are then obtained in the second step:

g=J"W. (71)
The explicit inversion of the (6 x 6) matrix (J J7 ) in the symbolic solution for
W = (J JT)-1 Y/ may be avoided by applying the numerical LU decomposition

method for solving systems of linear algebraic equations [35].

Interestingly, an inverse kinematics scheme based on eq. (61) can be implemented
in an open loop or closed loop manner to the physical plant, i.e., the manipulator.
In an open loop implementation, the translational position and normalized quater-
nion feedback loops are taken from the output of the redundancy resolution scheme,
as shown in Fig. 3. This approach assumes that the lower level joint or encoder
space feedback control laws can track the commanded articulated joint or encoder
trajectories perfectly. In Fig. 3, the superscript a means the variable is calculated
using the articulated, commanded values of the generalized coordinates available at
the output of the redundancy resolution scheme. In a closed loop implementation of
redundancy resolution, the feedback loops are taken from the output of the physical
plant, as shown in Fig. 4. In this case the algorithm resolves the redundancy based
on feedback measurements of sensors, e.g., the encoder sensors of the motors of the
CESARmM research manipulator [21, 36, 37, 38]. A comparison of the performance of
the input relegation control using eq. (61) when implemented in an open or closed
loop manner to the plant is currently being investigated.
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6 CONCLUSION AND FUTURE WORK

The error between the desired and actual orientations of the end effector of a spa-
tial kinematically redundant autonomous manipulator was modeled in a normalized
quaternion algebra framework by three different methods: (i) the vector component of
the Ickes orientation error quaternion; (ii) the Luh, Walker, Paul (LWP) method; and
(iii) a new method based on the Rodrigues parameters. It was shown that the LWP
and Rodrigues errors can be modeled as explicit functions of the scalar and vector
components of the Ickes orientation error quaternion. The time derivative of each of
the orientation errors was derived symbolically and combined with the translational
velocity error expression to yield a distinct closed loop kinematic velocity model em-
ploying normalized quaternion and translational position feedback. The singularities
of the coefficient matrix which premultiplies the (6 x N) Jacobian matrix J(q) in each
model were determined analytically, because the coefficient matrix had to be inverted
to express each model in a form suitable for solving the inverse kinematics problem.
It was found that singularities occurred when the Euler rotation angle (€) took on
the values +180° when deriving closed loop models by all three methods, with the
LWP error based method possessing additional singularities at § = +90°. It was
concluded that the Euler Rotation Angle must be restricted to the range |6 | < 180°
for the Ickes and Rodrigues error methods, and to |6| < 90° for the LWP error
method.

The report argued that the normalized quaternions are superior to Euler angles
for modeling the orientation error in a kinematically redundant manipulator. This
is because the time derivatives of the desired and actual normalized quaternions

Ned Néel and their conjugates {)é*?, [Yé*} can be expressed by singularity free

functions of the quaternions {}e?, Ye®(q)} and their conjugates {{e*?, Ye*2(q)}, re-
spectively, as well as the desired and actual angular velocities {¢w}’, *wY (g, ¢)} using
egs. (21) and (22) .

On the other hand, inherent singularities arise when expressing the time deriva-
tives of the Euler angles as functions of the Euler angles and the Cartesian angular
velocity. It has been shown that the identical singularities arise when expressing
Jacobian J* as a function of J and the Euler angles, or when extracting the Euler
angles from an orthogonal rotation matrix for feedback control purposes. In partic-
ular, these singularities can happen when the designer uses eq. (2) to resolve the
kinematic redundancy. Likewise, eq. (3) is ruled out as a basis for inverse kinematics
of a spatial redundant manipulator where the orientation of the end effector is to be
controlled to track a reference trajectory because the Cartesian angular velocity error
expression (“w) — J,q) is a nonholonomic, nonintegrable quantity. The modeling
presented here is an explicit function of Jacobian J which can be calculated in a sin-
gularity free manner. We conclude that the three models presented here employing
normalized quaternion feedback are more appropriate for inverse kinematics applica-
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tions where the spatial orientation tracking control problem is to be accounted for
than the models in egs. (2) and (3) .

The report demonstrated how the input relegation control and two nonredundant
step inverse kinematic algorithms could be extended to properly take into account
the spatial orientation tracking control problem based on the modeling given in this
report. It should be mentioned that the theory presented here has been experimentally
verified on the CESARm research manipulator by the author and the results will be
published in future papers.

The research presented in this report has uncovered and identified a wealth of
open research issues that warrant future attention. To conduct an experimental
comparison of the three orientation error methods discussed in this report would be a
very worthwhile and beneficial way to ascertain their merits relative to one another.
This research could include a comparison of performances when the inverse kinematics
is implemented in open and closed loop manners to the plant, as illustrated in Figs. 3
and 4.

It would be of interest to investigate the stability of the redundant manipulator
system based on the three closed loop kinematic velocity models derived here. The
results of the stability analyses would complement those of the singularity analyses
in determining which of the three orientation tracking control schemes is superior.

Another suggested future research topic is to extend the approach given here to
derive a closed loop kinematic acceleration model employing normalized quaternion
feedback for each of the three orientation error methods. Such a model could be
combined with the equations of motion of the manipulator to optimize a dynamic
model based criteria when resolving the redundancy.
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APPENDIX A
SINGULARITIES IN COMPUTING EULER
ANGLES, THEIR TIME DERIVATIVES, AND
JACOBIAN J*(q)

In this Appendix we review the singularities associated with a well known al-
gorithm devised to extract the Euler angles {a, 3,7} from an orthogonal rotation
matrix ®°RY(q) [6] for the XYZ, ZYZ, and ZXZ conventions. We also review the
singularities associated with calculating the time derivatives of the Euler angles as
linear functions of the Cartesian angular velocity of the end effector *w'(q, ¢) with
respect to the ( Xo, Yo, Zo) coordinate frame [24, 26, 10]. Finally, the singularities
arising from calculating Jacobian J*(q) as a function of the Jacobian J(q) and the
Euler angles are demonstrated. To express the orientation of the end effector coordi-
nate frame ( Xy, Yn, Zn ) with respect to ( Xy, Yo, Zo ), it is convenient to assume
that the origins of these frames coincide and to let (X', Y', Z') and (X", Y", Z")
represent intermediate coordinate systems. It is useful to define ®RY in terms of its
elements:

N T Ti2 T3
a
Ro = T1 T22 T23

T3t T32 T33

(A1)

XYZ CONVENTION EULER ANGLES

Rotate about Z, by angle o to obtain (X', Y, Z'). Rotate about Y by angle 8 to
obtain (X", Y", Z"). Finally, rotate about X" by angle v to obtain ( Xn, Yn, Zn ).
“R{(a, B, ) is given by [1, 6]:

c(B) c(a), s(v)s(B)e(a) — c(v)s(a), c(v)s(B)c(a) + s(v)s(a)
Ry = C(ﬂ) s(a), s(7)s(B)s(@) + e(v)cla), c(v)s(B)s(a) — s(v)c(a)
s(8) c(8)s() c(8) c(v)

where ¢(-) = cos(-) and s(-) = sin(-).
The Euler angles can be extracted from eq. (A.2) [6]:

B = Atan2 (— a1, /i + r%l) (A.3)
ﬂ = Atan2< 7‘31, \/"'32 + 7'33 (A.4)

a = Atan2(ry [ c(B), r1 / ¢(B)) , (A.5)

or
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v = Atan2(rs; [ ¢(B), ras / c(B)) . (A.6)
The above algorithm degenerates when:
¢(B) = 0, B =+90°. (A7)

It is well known that “w)’ can be expressed as a function of the Euler angles and
their time derivatives [1}:

0 —s(a) cla)e(f) ][ 4
‘wo = |0 cla) s(a)c(B) ﬂ : (A.8)
1 0 —s(B

)
A solution for [a, 8, 4] can be obtained from eq. (A.8) [24 26, 10]:

a 1 | —da)s(B) —s(a)s(B) —c(B)
| =-— m s(a)e(B) —c(a)e(p) 0 "w(’,v . (A.9)
v - c(a) - s(a) 0

Using eqs. (2) and (3) , it is straightforward to verify that the Jacobian J* can be
expressed as a function of the Jacobian J and [a, 3, v]:

]éx3 03x3

J: {—C(G)S(ﬂ) —s(a)s(B) —C(ﬂ)} J. (A0
()

s(@)e(B) —cla)e(B) O
—c(a) —s(e) 0

03x3

It is easy to see that a singularity occurs in the above two equations under the
conditions given in eq. (A.7) .

ZYZ CONVENTION EULER ANGLES

Rotate about Z, by a to obtain (X', Y’, Z'). Rotate about Y’ by B to obtain
(X", Y", Z"). Finally, rotate about Z" by ~ to obtain ( Xy, Yn, Zn ). *RY(a, 3, 7)
is given by [1, 6, 39]:

—s(y)s(a) + e(B)c(a)c(y), —c(v)s(a) — c(B)c(a)s(y), s(B)c(a)
RN = | s()cle) + c(B)s(a)e(r),  e(x)e(a) — c(B)s(a)s(r), s(B)s(a)
—c(v) s(8) s(v) s(8) c(8)
(A.11)
The Euler angles can be extracted from eq. (A.11) [6]:

B = atan2 (Vi + &y, s (A12)
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or
B = Atan2 (\/rfa + r3,, r33) , (A.13)
a = Atan2(ry /[ s(B), r1a/ s(B)) , (A.14)
v = Atan2(rs; / s(B), —ra1/ s(B)) . (A.15)
The above algorithm degenerates when:

s(B) = 0, B=0,+180°. (A.16)

It is well known that “w)’ can be expressed as a function of the Euler angles and
their time derivatives [1]:

0 -s(a) ca)s(8) ] [ &
Wl =0 ¢la) s(a)s(B) B | . (A.17)
O 1) S I
A solution for [&, B, 4] can be obtained from eq. (A.17) [24, 26, 10]):

a ;[ de)eB) s(@)e(B) —s(B)
Bl = =30 s(a)s(B) —c(a)s(B) 0 |°wf. (A.18)
g —c(a) - 8(a) 0

J* can be expressed as a function of the J and [a, 8, 7):

I3xa 0O3x3
J' = c(a)e(B) s(a)e(B) —s(B) J. (A.19)
03x3 - ,—(157 s(a)s(B) —c(a)s(B) 0
—c(a) - s(a) 0

It 1s easy to see that a singularity occurs in the above two equations under the
conditions given in eq. (A.16) .

ZXZ CONVENTION EULER ANGLES

Rotate about Zo by a to obtain (X', Y’, Z'). Rotate about X' by B to obtain
(X", Y", Z"). Finally, rotate about Z" by 4 to obtain ( Xn, Yy, Zn ). *RY(a, 8, 7)
is given by [1]:

c(7) e(a) = c(B) s(a)s(v), —s(v)e(e) — c(B)s(a)ely), s(B)s(e)
Ry = | c(7)s(a) + c(B)c(a)s(7), —s(v)s(e) + c(B)e(a)c(v), —3(B)c(a)
s(8) s(7) s(B) ¢(7) c(B)

(A.20)
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The Euler angles can be extracted from eq. (A.20) [6):

B = Atan2 (\/1‘3, + r,, r33) (A.21)
B = Atan2 (\/1@3 + r3,, ra;;) , (A.22)

a = Atan2(ria/ s(8), —ra/s(B)) , (A.23)
v = Atan2(ra; [/ s(B), ra2 [/ (B)) . (A.24)

The above algorithm degenerates under conditions described in eq. (A.16)
It is well known that °w)’ can be expressed as a function of the Euler angles and
their time derivatives [1, 39):

or

0 c(e) s(a)s(B) a
“wy' = | 0 s(a) —cla)s(B) | | B |- (A.25)
10 c(8) g

A solution for [é&, A, 4] can be obtained from eq. (A.25) [24, 26, 10]:

a 1 s(a)c(B) —c(a)e(B) —s(B)
Bl = ) ~c(a)s(B) —s(a)s(B) 0 |°w . (A.26)
g - 8(a) c(a) 0

J* can be expressed as a function of the J and [a, 8, 4]

Izxs O3x3
J* = s(a)e(B) —cla)e(B) —s(B) J (A.27)
Os  — | —ce)s(B) —s(@)s(B) O
- s(a) c(a) 0

It is easy to see that a singularity occurs in the above two equations under the
conditions given in eq. (A.16) .

It has been shown that the singularities associated with extracting Euler angles
from °RY and calculating [&, B, 4] as a linear function of wY are identical for each
of the three conventions. '



APPENDIX B
DERIVATION OF ICKES ORIENTATION
ERROR

In this Appendix the analytical expression for the error between the desired and
actual end effector orientations proposed by Ickes is derived based on the successive
rotation formula for normalized quaternions. Let 9e<®> be the quaternion represen-
tation of the error between the desired 3e<°> and actual 3e<°>(q) orientations of the
end effector, expressed in terms of the ( Xy, Yy, Zp) coordinate system. Based on eq.
(19), it is straightforward to verify that the following relation holds:

d,<0> _ d,<0> [ a,<0>
o€ = Je o g€ (B.1)

The problem is to solve eq. (B.1) for 4¢<%>, where it is assumed that $e<%> and
2e<%> are known. Eq. (B.1) can be expressed in a matrix-column vector form:

d <0> — \IJ(“e<0>)d <0> (B?)

in which eq. (14) has been invoked. Since ¥(3e<°>) is an orthogonal macrix, we have:

T
dg<0> (\Il(ge<°>)) dg<0>
= P(Ge"<0>)de<0> (B.3)
Eq. (B.3) can be expressed in terms of the quaternion product notation:

d_<0> _ d,<0> _ a_=<0>
e = ge o g€ (B.4)

in which eq. (14) has been used. Applying eq. (B.4) to a redundant manipulator
yields eq. (23) .

It is of interest to derive the orientation error §¢<%>, which is the actual end effector
orientation relative to desired orientation, again expressed in the base coordinates.
Applying eq. (19), the following relation holds:

8e<°> = §e<°> o ge<o>
= W(3e<®>)3e<®>, (B.5)
Solving eq. (B.5) yields:
;e<0> — \I’(d -<0>)ae<0>
= 86<0> o g *<0> (BG)
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Carrying through the multiplications in eqs. (B.4) and (B.6), it can be shown
that:

1 0
a,<0> _ 1x3 | d_<0> _ d_«<0>
d° - [ 03x1 — I3xa ] o a® (B-7)

as expected, where, here again, I.«, denotes an (r x r) identity matrix and 0,4, an
(r x 8) matrix of zeros.



APPENDIX C
QUATERNION PRODUCT SIMPLIFICATIONS

In this Appendix two quaternion product expressions appearing in the derivations
of the time derivatives of the orientation error are reduced to a simpler form.

Part C1

The first quaternion product expression on the right hand side of eq. (27) can be
replaced by its equivalent matrix-column vector representation:

[ 6, =6, 0
Mlos =
b, F N
r -—607'
= ol (C.1)
F

in which eqgs. (14) and (16) have been invoked and where JQ¢ = [0, (dw{,\')T]T. In
eq. (C.1) , F(6) is a (3 x 3) matrix defined by:

65 6uz - 50y
F=|-6: 6 b (C.2)
61;1/ - 6v:r: 65

Part C2

The second quaternion product expression on the right hand side of eq. (27) can be
replaced by its equivalent matrix-column vector representation:

i
J:(9) g

Jr(9) g (C.3)

65, — 6T
§olae =

5, ¢

- 6T

| G

in which eqs. (14) and (15) have been invoked. In eq. (C.3) , HQ°(g, ¢) has been
expressed as a linear function of the generalized velocities by applying egs. (3) and

(4) . The (3 x 3) matrix G(8) in eq. (C.3) is defined by:
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6; - 6uz 6uy

G=1 6 6 =6 |. (C.4)
- 6uy 611: 63

It is easy to see that G = — F + 26, Isxa.

ddvgnly

_ o T T T




APPENDIX D
CLOSED LOOP TRANSLATIONAL ERROR
SUBSYSTEM

A closed loop error subsystem governing the translational motion of the end effec-
tor of a serial-link, kinematically redundant manipulator is derived in this Appendix.
First consider the position tracking error p. of the end effector as defined by:

p. = *pY — °pl (D.1)

where ?p) and °p}’(q) are defined below eq. (4) . Since a velocity model is sought,
consider the time derivative of eq. (D.1):

Pe = %0 — Jid (D.2)

in which egs. (3) and (4) have been applied.
Our objective is to drive p. — 03x;. To accomplish this, a proportional and
integral feedback control law is introduced:

pe = — (K,, pe + Ky / Pe dt) (D.3)

where K, and K, are (3 x 3) positive definite gain matrices.
Egs. (D.2) and (D.3) constitute a closed loop error system governing the transla-
tional motion of the end effector.
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