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ABSTRACT

In this paper, we present a new formulation for the longitudinal
coherent dipole motion, where a quadrature response of the environ-
mental impedance is shown to be the effective longitudinal impedance
for the beam instability. The Robinson-Pedemen formulation for the
longitudinal dipole motion is also presented, the difference of the two
approaches is discussed in the comparison. The results by using the
Sacherer integral equation for the coherent dipole motion cen generzte
the came results as by using the other two approaches, except for a
scaling difference. The formulation is further generalized to the rigid
bunch motion using 8ignalLanalysis method, where a form factor shows
up naturMly. Finally, the formulation is spplied to solve the coupled
bunch instabilities. Examples of the AGS Booster and the AGS coupled
bunch instabilities ere used to illustrate the applications of the formu-
lation.
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I. Introduction

In this paper, we present a new formulation for the longitudinal coherent dipole motion.

The formulation is based on the idealized condition of the synchrotron oscillation modulated

by the RF frequency. We will show that for the longitudinal coherent motion, the quadrature

response of the environmental impedance to the beam signal represents an effective longitudinal

impedance. The Robinson-Pedersen approach to the same problem is also presented, and the

comparison shows the difference of the two approaches, the results however are the identical. In

Sacherer integral equation, the Vlasov equation is used to consider the particle density evolu-

tion in the phase space, the results of the coherent dipole instabilities are shown to be different

by a scaling factor from other two approaches.

By considering the rigid bunch beam signal and the associated impedance, the formula-

tion will be further generalized _o the rigid bunch motion. A form factor under this condition

will be developed. Finally, the coupled bunch instability is studied as a special case of the long-

itudinal coherent motion, and the application of the presented formulation gives rise to several

results. Two examples at the AGS Booster and the AGS will be presented to illustrate the

application of the formulation.

H. The New Formulation

In this section, we present a formulation for the bunched beam coherent dipole motion. In

the longitudinal motion, the beam performs a synchrotron oscillation. This oscillation is modu-

lated by the RF carrier. The induced voltage through the longitudinal impedance, for instance

the RF cavities, may a_ect the synchrotron oscillation and cause the beam instability. A

model of the beam dynamics based on the longitudinal impedance will be proposed. It will be

shown that under the RF frequency modulation and demodulation, a quadrature response of

the longitudinal impedance with respect to the RF carrier will be the dominant impedance and

therefore to contribute to the beam instability.
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2.1. Beam Dynamic Model

In Fig.l, a dipole motion model is shown, where each block represents a transfer func-

tion between two variables, and s is the Laplaze operator, w o and ¢ZRF are the revolution

and RF frequencies, respectively. Let h be the harmonic number, we have O3Rf-- h cdO. _ "IS

the ratio of the particle velocity and the light velocity, and E is the total energy of the par-

ticle. Throughout this paper, only the situation below transition is considered, therefore the

frequency slip factor 17is negative. V and Cs are the RF voltage amplitude and the syn-

chronous phase, respectively. We use ¢, _xE and AV to denote the phase, energy and the

equivalent voltage deviations from the equilibrium state. /kVB is the equivalent RF gap vol-

tage deviation caused by the beam motion itself, and AVcA v caused by the cavity voltage

variation. IB is the beam current amplitude of the fundamental frequency, i.e., the RF fre-

quency. Finally, ZM(S ) represents the longitudinal impedance, where the subscript M

denotes that the impedance is not a conventional one but under the consideration of RF

modulation and demodulation.

In the block diagram, the upper loop represents the synchrotron oscillation, where the

following relations are used [15],

eWo VcosCs

-- 2_'s _ (2-1)

and

¢01_#'_ AE (2-2)

Sincewe have

• (d0- ---- ,',v (2-3)
2_a

itfollows,

AV a = Vcos_s _b (2-4)

which indicatesthatunder thelinesrization,if_bs=0,then 1 rad of beam phase deviation

willbe equivMenttotheRF cavityvoltagevariationwithfullRF voltageamplitudeV.
.:

. •
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The lower loop represents the effects of the beam current to the cavity voltage through

the longitudinal impedance. Note that under the linearization the transmission relation

between ¢ and the beam current variation _k/s is IB. Now what remains to solve is the

im ped an ce Z M(s).

2.2. Impedance

In the beam dynamic diagram represented by the transfer functions, e.g., in Fig.l, the

Laplace transform is used. To discuss the impedance where the modulation and demodulation

are involved, the Fourier transform is convenient. In this article, both transforms will be used.

For instance, an impedance in the Laplace form can be Z(S'.t-jWRF), and its counterpart in the

Fourier form is written as Z(w-t-wRF), where we used s-jw.

In this section, we will show that the impedance ZM(S) in Fig.1 is,

1

ZMC_)ffi_ (zC_+i_RF)-- zC_--i_RF)) (2-5)
Consider a general situation of modulated input and output. Let the input signal of a sys-

tem be f (t) and the output be g(t). The input signal is assumed to be a low frequency signal

]'l, Ct) modulated by an RF frequency, say coswnFt, i.e., we can write,

f (t) = f l,(t) coswlWt (2-6)

If we use f (t)-+F(w) and fn(t)-"_Fl,(w) to denote the Fourier pairs, then we have,

1

F(w) ffi ._ ( FLCe_,'.I-o2RF) H- FL(_--_RF ) ) (2-7)

Also if,

f l(t ) =ffif/. (_) sinwR., t (2-8)

then we have,

1

F,(_)- _-f ( _%(o,+_R,)- F_(_--_eF)) (2-0)
Under the modulation of the frequency 0_BF, the in-phue and quadrature responses due

to the impedance Z(w) with respect to the RF carrier are defined by [8],
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1
zp(_)= _.-(z(_+_Rr)+ Z(_--_RF)) (2-10)

and

1

zq(_,)ffi_( zC_+_RF)-zC_--_RF)) (2-11)

respectively. We also define

Gp(w) = FL(_)Zp(_ ) (2-12)

and

GQCw) _ FLCw)ZQ(w) (2-13)

If the Fourier pairs gp(t)-,Gp(w) and gQ(t).._GQ(w) are used, the total response through the

impedance Z(w) for the modulated signal F(w) in (2-7) can be written as,

g(t) --- gp(t) coswRFt + gee(t)sinwRFt (2-14)

which implies that the total response of the impedance Z(w) for the signal f (t) in (2-6) con-

sists of the in-phase response, modulated by coswRF$, and the quadrature response, modulated

by sinwRFt.

To prove (2-14), we only need to show that it is equivalent to,

G(w) = F(w)Z(w) (2-15)

By using (2-12), (2-13), and (2-7), (2-9), the right hand side of (2-14) has the following

Fourier form,

1 1
a(_,)= ¥ (C_,(o.H-_Rv)+ Op(w--oJRv)) + _ (Oq(o,H-_Rv)- oq(o,'--_Rv))

= L (FL(__)Zp(w'_RF) + F_(_Rv)Zp(_'_RV) )2
1

+ _- ( _'L(_R,)Zq (__) --FL(__)Zq(_R,) ) (2.10)
Substituting (2-10), (2-11) into (2-16), we have

1
. o((,,)_-T (FL(_-o,sr)Z(o,)+ F,.(_-,,,_.)Z((,,)) (2.17)

Substituting (2.7), the equation (2.17) becomm (2-15). Therefore this part of the proof is com-

pleted.
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When the beam passes the cavity gap, the in-phase response due to the cavity impedance,

which is modulated by cos WRFt, provides an almost constant force in the beam synchrotron

oscillation, which will not affect the synchrotron oscillation directly. In fact this force will

induce a synchronous phase shift and therefore the RF driving system can provide a compensa-

tion through the phase feedback. On the other hand, the quadrature response is modulated by

sin WRFt, which is in the same fashion as that of the RF driving wave and therefore functions

as the same as that the RF driving wave does. In other words, this force generates a bucket in

the phase space, which affects the synchrotron oscillation directly. Therefore, if the instability

of the the synchrotron oscillation is concerned, the effect of the in-phase response can be

neglected, and the quadrature response becomes a dominant factor. It follows,

ZM(W) -- ZQ(¢_) • (2-18)

and therefore (2-5) is proved by substituting (2-11).

2.3. Impedance of RF cavity

In this subsection, we present the transfer function of the impedance of (2-5) for the RF

cavity.

Consider an RF cavity with the resonant frequency wR, the shunt resistance R, and the

half-bandwidth a, which can be written as,

_R

o'- 2"'Q" (2-19)

where Q is the quality factor of the cavity. The transfer function of the cavity is,

2aR, (2-20)
z(a) = + 2a° +

We assume that

Let the cavity be detuned from wlw by an _ugle _$. We have

- atffia z (2-22)



We write,

2_Rs + 2j crR oJRF

Z(n+JoJRF) = , 2 + 2jOJRF, -- O_F + 20"S + 2ja_RF + _ (2-23)

In the numerator, since [, ] -- oj << WRF , the term 2o'R, can be neglected. In the denomina-

yR._
tor, since that ii' Q >> 1, _r- 2Q << °JRF' then compared with either 2j_RF* or 2j_roJRF ,

the term 2.s can be neglected. Also, if ]_R2--_RF2I >> ].2] ffi _2, we have,

0J_ -- W_F + S2 _ _ -- _F (2-24)

Using

_] - _, _ - 2_RF(_RF--_R)= --2_R_t_¢Z (2-25)
we get,

2j aR _RF crR

Z(s+JOJRF) _ 2jWRFS + 2jcrO_RF-- 2OJRF_tan$ z ffi s + o' + jo'tan_b z (2-26)

In a similar way we get,

Z(a_jOjRF) _ eR (2-27)
s +.--jatanSz

Substituting (2-26) and (2-27) into (2-5), the longitudinal impedance of the RF cavity

becomes,

-- R _tan_b_

Zm(s)- s2+ 2o"s +o_(1 + tan_b,) (2-28)

4. Stability

To study the beam stability under the influence of the longitudinal impedance of RF cav-

ity, we can write the following equation from Fig.l,

. eOJoOJzw,TVcce#s e_ooWRr,l
2_Es2 .+ 2_Eas zu(s)is . (_-20)

Note that below transition,

o_J- ec_oO_srrlVco_#s- _,r_ (2-_o)
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Substituting (2-30) into (2-29), we get,

s2_+ _s2_= vcos_s ZM(s)rB_ (2-31)

Define the ratio of the beam current to the generator current ms [2,9],

Is Is
r = ira---';= v/--W (2-3'2.)

where/ao is the generator current without beam loading effect. Substituting (2=28), (2-32) and

omitting the variable $, the characteristic equation of the equation (2-31) becomes,

_aJY0.2tan_z/cOSts

s 2 4" _ -- s2 4"2#s 4"o'2(1 4- tan2_bZ) (2-33)

which is a fourth order dynamic system. Using Routh=Hurwitz table, it is straightforward to

find the following stability conditions [9,12],

tan_bz _ 0 (2-34)

and

rtan_bzcos2_bz<= cos_bs (2-35)

which are calledthe firstand secondRobinsoncriteria,respectively.The firstcriterioncon-

cernsjustthedetunin$angle,and thesecondcriterionconcernsalsothebeam intensity,which

isrepresentedby Y.

HI. Robinson and Pedersen Approach

The stability problem for bunched beam longitudinal dipole motion was first solved by

Robinson [121, where the effect of the fundamental component of the beam phase deviation on

the cavity phase deviation b considered to give rise to the stability criteria (2-34) and (2-35).

Among later works, the Pedersen formulation [5,9] is of particular interest because where the

phase and amplitude modulations and their cro_ effects due to the detuned cavity- are treated

separately, therefore the phase feedback and tuning control can be included in the dynamic

model of the beam loading. The stability analysis gives rise to the same results as by Robinson.
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In this section, we present the Pedersen formulation, and then it will be compared with

the model presented in the last section.

3.1. Pedersen Formulation

In theRobinson and Pedersenapproachof longitudinalbunched beam stabilityanalysis,

the perturbationsourceisthe beam phase deviation.The stabilityisstudiedby findingthe

equivalentRF cavityphase deviationdue tothebeam phasedeviation.The blockdiagramcan

be shown in Fig.2,where an in3pectionindicatesthatthe upperloopisnothingmore than a

rearrangementof the synchrotronoscillationloopinFig.l,and the transferfunctiong_'p(s)

representsthe totaleffectof thecavityvoltagephasevariationdue to thebeam phasedevia-

tionA_ B .

To findthe transferfunctionZ_'p(a),severalstepshave to be followed.Sinceonlythe

fundamental beam frequencyat CgRFisconsidered,thevectordiagram shown inFig.3can be

used,where/'o,IB, and IT arethe generator,beam image,and thetotalcurrents,respectively.

Ifthe cavitydetuningangle_z ischosenproperlyas shown,which can be achievedby a tun-

ingloop,then thetotalcavityvoltageV T canbe keptunchangedunder thebeam loading.

The Pedersenapproachconsidersthe totaleffecton the phasevariationof thecavityvol-

tageV r due to thevariationof thephaseofthebeam current.

Step 1:ProjectionofIB on IT.

From Fig.3, we can write,

Io -- jibe -/.s = Ire -i.: (3-1)

The relation of both phase _nd amplitude vaziation on Is ead IT is,

la --/(la4-A/a)e -y(.s+A.a) - (lr+A/r)e -i(.x+A.r) (3-2)

By linearising (3-2), subtra__ting (3-1) from (3-2), and equating the read sad imaginary

parts separately, we have,

" j



Step 2: Projection of I r on Vr.

Under detuning, the impedance of the cavity can be written,

Z = RcosCz ey_z (3-4)

Thus, we have

V r = Ire-J@ZZ = lrRcosC_z (3-5)

To find the static projection of IT on Vr, we write,

(IT -I-_tlT)e--JA_TRcos_z--(Vr -t-AVT)e -jatr (3-6)

Therefore, we get,

grA¢ v = Rcos_z lr_ r (3-7)

Since the bandwidth of the RF cavity is narrow, the transient response must be con-

sidered. The complete projection from I r to Vr therefore is,

.V.TA¢_v = Rcos4_z[Zae(, ) Z_(, IrACr (3-8)

where Zaa(s) is the normalized transfer function from the amplitude variation of IT to the

amplitude variation of Vr, and so on for other transfer functions. These transfer functions are

as follows [7,9],

1 Z(a+j_R_) z(a-/_Rr)
z,,(,) = z_e(,) = T ( Z(/_RF) + Z(--i_RF) ) (3-0)

and,

• : Z(' +Y_e_) Z(s--Y _e_) ) (3-10)
zp.(,) = -z=_(,) = _- ( z(j_nt) "- z(-j_R.)

Using (2-26) and (2-27), we have,

R (_1)
Z(_'_sr) - 1 ±/tan_z

Substituting (2-2e), (2-2_), =hd(3-11) into (3-9) and (3-10), we get,

o.m+o=(: + t,,n=.x) (3..12)
z..o,) - zl,eO,)- .= + 2¢. + o.=(1+ t,,n=.z)



and,

- atan_zs

Zpa(a) = - ZaP(s) = a 2 + 2as + _(1 + tzn2_bz) (3-13)

Step3:Projectionofbeam phasevariation_B to VT.

Assuming A/B--0, using(3-3)and (3-8),the totalvoltagephase variationdue to the

beam phase variationcan be writtenas,

, R [- Iac°s(C_z-¢s) 1

Substituting(3-12)and (3-13)into(3-14),we get,

IB -- sin_saa + a2cos_bzsin(_bz -- #hS)(1 + tan2_bz)

z_p(a)= V/R a_+ 2aa+ _(Z+ t_n2_z)
--sin4saa + o_(tan_bzCOS_bs- sin#s)

= Y (3-15)
s2 + 2as + a2(1 + tan2_bZ)

Alsofrom,

we have,

- coe_s_a- aS_zc_(_z - _s)(1+ tan2_z)
Z_a (a) = Ria 82 + 2aa + a2(1 + tma_@z)

ffi RIa a' + _a + o_1 + tma'_:) (3-17)

Step 4:Totalequivalentprojectionof_s on _v.

In order,to developthe totalprojectionof _-_n on _v, includingthe contributionof

volt_4_eamplitudevsxi_tion£_V, theequivalentphmm deviationoi'theRF volt_gedue to AV

is needed. Note that the total particle energy gain due to the RF voltage amplitude sad phsne

v_riztion is proportional to -

(v + _v) sm(.s+ z_v) - v_in.s_(v + _v)_oe.s_v + _vsin.s (_-ze)

Letting AV--0 madA¢v-" O, separately, sad equatin$ each gain leads to
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tan_bs _V (3-10)A_v= V ....

Therefore consider the contribution of Z_a (a), the total transfer function from A_bB to

A_ v is,

• Ya_tan_z Icos_s
tan_s Z_. (a)= (3-20)

3.2. Stability

From Fig.2, we have

--'_ e°JO(gRFrlVc°s_$ e_oOJaFrlVcos_ $
2_._2Es2 _b-- 2_._2Ea2 Z_p (a) _b (3-21)

Using (2-30), the equation (3-21) can be written as,

----_§Zpp (a) _b (3-22)

Substituting (3-20) into (3-22), and leaving off _b,we get the same characteristic equation

of that of (2-33). This shows that the two approaches are equivalent with respect to the dipole

motion instability.

3.3. Comparison

In d_riving the transfer function ZM(s) in Fig.l, the in-ph_e sad quadrature transfer

functions Zp(a) and ZQ(s) are used. To determine the besm stability under beam loading, it

it shown that the quadrature transfer function plays a key role. In deriving the transfer func-

tion Z_p (s) in Fi$.2, the phase to phase, amplitude to amplitude, and the phue to amplitude,

amplitude to phase transfer functions, Zpp(e), Zu(a), and Zp=(s), Zap(s), respectively, are

used. The total equivalent _;raaemiuion from the beam phase variation to the induced cavity

voltage phase deviation, i.e., ._'_'p(a), determines the system stability.

In Fi8.4, the step responses of these transfer functions are shown, where the parameters of _

the AGS upgraded RF cavity are u.*-_d,and the detuned angle _bz is at 40 degrees. From these

responses, the fundamental difference between the two types of the transfer functions, aud the
..

t.wo approsches as weil, can be observed.
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IV. Sacherer Integral Equation

In this section, we present the solution of the dipole coherent motion solved by using the

Sacherer integral equation.

4.1. Sacherer integral equation for dipole motion

Consider the Vlasov equation,

aC aC • aC
--_-+ _- + _- =0 (.i)

where ¢ (_b,_,t)isthe normalizedphasespacedensity,and _bistheparticlephase deviation.

Using thephasespaceco-ordinates(_b,_/ws),and thepolarphasespaceco-ordinates,

_b= rcosO (4-2)

_lo_s= _i.o (4-z)

the equation (4-1) can be written as,

0¢-Ws000"7-_- + (_ -t- co_¢)_- = 0 (4-4)

The phasespacedensitycan be seenasa largetimeindependentpartC0 and a smallper-

turbationpart_I,which oscillateswithfrequencyw,

_b(r,O,t) ----¢0(r,O) 4- ¢l(r,O)e3'wt (4-5)

We note thatin (4-4),theterm _ + ws_brepresentsa firstorderquantity,therefore0_.._._
a_

can be replacedby

8¢o sinO dCb
---= (4-s)
O$ ws dr

The linearized Vlasov equation therefore is,

• 0¢_ei_t + (_ + _$_) sm0 dto
jcoOle j_t -- _s'_ cos dr "mO (4-7)

In the next, we discuss the coherent electromagnetic force represented by _ + co_b. Simi-

larly to (2-31), in a time domain version, we esa write,

COsg ,
:#+ _ = - vco..:7v_(_) (4-s)
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where VI(_) represents the cavity voltage induced by the perturbation term _l(r,0)eY_t in

(4-5). To determine Vl(_b), we define the line density X(_), which is the projection of _z(r,0) on

the _b- axis,

oo

The line density can be Fourier expanded as,

oo

I _ A(p)ejp. (4-10)
=

where

A(p) --- f_:x(_b)e -jp_b d_b (4-11)

Using (4-10), we obtain,

co

vz(_)--[0e/_t _ Z(p)A(p)eJ p@ (4-12)
p ----00

where Z(p ) is the corresponding impedance. Substituting (4-12) into (4-8), we get,

_Io joJt oo
+_s2_b - Vcos_bs e _ Z(p)A(p)e jp_ (4-13)p ----OO

We emphasize that Vl(_b) is the voltage generated by the line density ),(_b) in (4-9), which

applies only to the particles with the phase position _. Therefore the equation (4-13) is not a

regular synchrotron oscillation equation, such as (2-31), and to solve it for the synchrotron

motion is not justifiable.

For dipole motion only, the perturbation distribution can be written,

_bl(r,0) _ffiRi(r)eJO (4-14)

where Rl(r ) is the radial function of dipole motion. Substituting (4-13), (4-14) into (4-7), and

leaving off"• jo_t, we get,

00

o_slo d_o E Z(p)A(p)eJe. (4-15)
j(o_- o_s)Bl(r)eYeffi Vcos.s einO dr-.--e..._

Multiplying both sides of (4-15) by e -je, and integrating over 0 from 0 to 2_r, we get,

-- Wslo d_o 1 _ _ ?,(pr)A(p) (4-16)
(0o--_,s)Bl(r)- v'eo6.s dr r p-.oo p
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where we have used(4-2)and the integral

2, 2_/_ j_(p_) (4-17)
f0 eJ(prc°s0-mS)sin0 dO- pr

with m -1.

The equation (4-16) is the Sacherer integral equation for dipole motion [3,13,17].

4.2. Stability

To determine the besm stability, the Fourier coefficient A(p) in (4-16) is needed. Using

(4-xx),(4-9),(4-x4),_ndtherelation,

dr_ d_/o: s = rdrdO (4-18)

we have,

f__ _

-- fo .R_(.)dr "e-_'(O-P'_°) dO=---,2_fo R_(,)J_(p.I_d_ (4-19)I

Substituting (4-19) into (4-.16), multiplying both sides of (4-16) by 2_osrJl(r ), integrating over

r [6,14], g.nd picking up p--- 4-1, we get,

- 4_s 2Io _ _ 12W$(0J--" 0J$) = VCOS_$ ......(fo J_(r) dr) 7 (Z(c_'_RF) -- Z(°J'-_RF) ) (4-20)

where we used

Jl(--r) =- J'l(r) (4-21)

Using

2_s(_- _'s)_ '_ - _s2 (4-s2)
the equztion (4-20) becomes,

Substituting a=*j cn, and using (2-5), (2-28), it em be written u,

81rw_lo
(fo**J_(,)_ dr) Zu(,) (4-24)a_1"4"W_,t V'cm,_$
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which is equivalent to (2-31) and (2-33) except for a scaling difference. Note that for delta fuac.

tions, we have Is - 2I 0. To solve the integral in (4-24), a specific static distribution is needed.

V. Generalize the Formulation

In Section II, the impedance ZM(S) is derived under the consideration of the synchrotron

oscillation modulated by the RF frequency. In a real situation of rigid bunch motion, the b _m

current signal contains other frequency components, and also the signal scaling has to be con-

sidered. Therefore to generalize the formulation to the rigid bunch motion, the beam current

signal needs to be analyzed. For each component in the signal, the effective impedance can be

found, which needs only a trivial modification from the results in Section II. The summation of

the effects of the impedance due to each component in the signal is the force the beam received.

In the treatment, a form factor will emerge.

5.1. Signal of rigid bunch motion

Let :/'RF be the RF period, i.e.,

TRF= h o_o oJRF

A beam longitudinal signal with N particles in a bunch can be written as,

O0

i(t) -- Ne E 6(t-kTRF+ r cos_skTRF) (5-2)
k =.-oo .

where r is the synchrotron oscillation amplitude in time.

The spectrum of this signal can be calculated as [16],

GO

l(w) ==Ne Lee _ 6 (t--kTltF+ r cosc_StTRF) e -ywt dt
k --.oo

= -i_(trsr-r eo_skrsr) . • o_
: ffi Ne Y] e ffi Ne _ e -3wkTsr _ jmjm(wr)eim_skTsr

k m--O0 k m"OO Ol m-'¢O

O0 oo

= E E (5-3)
p----OOm m_-O0

where the identities
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eye, cO_skToffi _ /_ jm(_)eYm_skTo (5-4)
171m--O0

snd

e-jnkT_= _ _R_6(n-p_Rv) C5-5)
k,m--c_ p m--O0

sre used.

We further assume that the bunches have a Gaussian distribution with an effective bunch

length r/,. The reason to choose the Gaussian distribution is for convenience. For each bunch,

we have the following line density,

2 2 x/2
io(t) = _ (_) e-st_/_ (5-e)

With the average beam current

Ne wRF
I0 ffi (5-7)2_r

and using the phase oscillation amplitude

r ffio_RFr (5-8)

the equation (5-3) becomes [16],

co co

l(w) = 2_'Io E _ jm j'm(r_lojBF)e-CrLwlwsr)2132 6(__pWRr_m_$) (5-9)
p ----O0 m----O0

which is the spectrum of the rigid bunch motion.

5.2. Generalization

To compare the 8pectrum of the rigid bunch motion (5-0) with the signal used to develop

the formu!ttion in Section II, we let m idee_ed RF frequency modulated synchrotron meiU_-

tion signal to be,

ii(t)- Isr eo_st ein_srt (_.1o)
whoee epectrum can be written u,

1
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The firstdifferencebetween therealrigidbunch motion signalrepresentedby (5-9)and

the idealizedsignal(5-11)isthat(5-9)containsnotonlyRF frequencymodulationbut alsoRF

harmonicsmodulation,i.e.,by the frequenciespwRF, lP I_I. To justifythe corresponding

effectivelongitudinalimpedanceforthesecomponents,itisconvenienttotake the beam signal

as approximatelya deltafunctionseries,thentoconsideritsfrequencydecomposition,such as,

OO

co ao ]'pt#R_.t_ 1 ( 1+ 2 _ cos po_pFt ) (5-12)(t - kTRv)= 1---!-- e fRF -xk---oo _RF p--oo p

Note that ali the frequency components are in cosine waveform. Furthermore, at the bunch

passing time t -kTRF, these components become cos p2_rk, p -0, 1,..., which shows

that in the decomposition, at the beam passage these cosine functions have no phase shift for

ali p. Therefore concerning the effective longitudinal impedance the same argument as that in

Section II can be used for p _ 1, and the conclusion is that the quadrature responses still

determine the effective longitudinal impedance for ali p. Thus we have ZM(c_) ffi ZQ(_) not

only for the RF frequency modulation, but also for the RF harmonic modulation. For the car-

rier component with the frequency p oJRF, the variable 0JRF in (2-11) should however be

replaced by p oJRF. In the system synthesis, firstly these frequency components in the rigid

bunch motion signal should be identified, then the corresponding longitudinal impedances

should be used to find the induced forces. The combined force is the one the beam received.

The second difference of (5-9) from (5-11) is that it contains not only dipole motion but

also l_iKhmode motion, i.e., 'rows, lm I_1. If only the dipole motion is concerned, this aspect

can be overlooked.

The third difference is that in (5-9), the spectrum amplitude is affected by several factors,

such as the Bessel function, the bunch distribution and the bunch length. The combined

influence of these factors can be called a form factor, which should be multiplied to the scaling

[B in Fig.1. If the synchrotron oscillation frequency is assumed to be-constant, then this

modification will change the stability margin. A detailed discussion will be presented in the fol-

lowing.
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5.3. Form factor

Consider the most important case of dipole motion with RF frequency modulation, where

p = +1 and m = 4-1. We write (5-9) as,

I(03) =2_rl 0 _ _ jmd'm(rOJ/_RF)e--(rLWlWRF)2/32 _(w--PWRF--rrlw$) (5-13)
p-.t.l m--:t:l

Since Jm(rw/wRr ) is evaluated at w = 4-wRF4-w$ _ -l-uRr, and we huve,

a_.C-_)=- ai(_) (5-1,',)
a__.C_)=- alCx) (5-15)

the equation (5-13) can be written as,

IC,_)=S_Z0JiCrI_l/0:Rr)e-(_/_)_/s2! Z Z C-P)_C_-P_RF-m_s) (S-18)
4j p=±1 = =_l

Using the sta_adard relation between the average beam current I0 and the beam current at

the fundamental frequency Is, for the delta series distribution,

Is ----2Io (5-17)

the form factor can be written as,

= 2dlCr) e-(r'o/w"r)V32 (5-18)f = r(_) 2]_(_I_I/_RF) e-(,_l_)V32 _-----__

where inthesimplificationwe considerthatinthiscase [w[ _ WRF.

The factor2Jt(r-----_)isplottedinFig.5,which shows thatifthephaseoscillationamplitude
r

varieswithin1 rad,theerrorcausedby usingtheidealizeddipolemotion model isnot larger

than 12 °'/6compared to therigidbunch dipolemotion.

Considerthelongitudinaldipolemotion discumedinSectionIIagain,whereonly thesyn-

chrotronoscillationmodulatedby RF frequencyisconcerned.The form factorF in(5-18)has

Is
to be multipliedto thescalingIs inFig.l,and therefore_alsoto Y ,= V/R in (2-33).Thus,

thenew ratioofthebeam currenttothegeneratorcurrent

F = FY (_19)
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will replace Y in the stability equation (2-35). Since F<I, the stability margin due to the

beam loading effect defined in (2-35) is extended.

VI. Coupled Bunch Instabilities

A typical coupled bunch motion is generated by the impedance of a resonator, such that

the relative phase position of the adjacent bunches is changed in phase space in a certain mode

for a period of the revolution, and therefore in the beam current signal a frequency shift can be

observed. Several consequences of this change will be discussed by using the presented formula-

tion.

6.1. Coupled bunch motion

Let therebe h bunches,and letn be thecoupledbunch mode number. There willbe

n ffi0,I,...,h-1 coupledbunch modes {4,13].The phase differencel_etweentwo adjacent

2n_r

bunches in the phase spaceis--_. Sincetheperiodbetweenth'etwo adjacentbunches,i.e.,

211" ifone observesfrom a wallbeam currentmonitor,frequency
the RF period,is T_F--'--hw 0,

components of thecoupledbunch mode eJ'(n_°+m_s}twillshow up in thebeam currentsig-

nal. Correspondingtothe longitudinalsignalin(5-2),thesignalof thecoupledbunch motion

can be written as,

*

i(t) ----"Ne _ f3n_otrsr 6(t-krsF+ r coswskrsF ) (6-1)
h,---sO

If further a rigid Gaussian distribution is Moo considered, then similar to (5-9), the spectrum of

the signal observed from the wall monitor becomes,

es Oo

xCw)= 2 I0 r. 5" e-('Ll R')g/s2 6 (6-2)
p .---00 Ytm-*.-¢0

where a frequency shift of the coupled bunch mode is shown.

If the coupled bunch instability is considered, then the coupled bunch mode e in_°t can



be assumed to be a rigidwave, which isgeneratedfrom the relativephase differenceof the

bunchesin thephasespaceand then itsinducedforceisappliedback tothesepassingbunches.

Thus foran individualbunch, which performsa synchrotronoscillationinthe phasespace,the

modulationeffectsof the beam currentsignaldue to thecoupledbunch mode isdemodulated.

By thesame argument as inSectionII,thequadratureresponserepresentstheeffectivelongitu-

dinalimpedance.Considerthe effectof the frequencyshift,we thereforehave the following

longitudinalimpedanceforthe signalwithRF modulation,

1

ZM( )= ) (S-S)

6.2.Coupled bunch instabilities

Combine the longitudinalimpedance(6-3)with the considerationof the signalanalysis

(6-2),severalresultsof coupledbunch instabilitiesfollow.

Taking an example that h = 4 and n = I,thecoupledbunch modes areshown in Fig.6,

where the fundamentalspectrum linesofp = :1:1aredirectlyfrom (6-3),and othersare from

thesignalgeneralization(6-2).

If n # O, then the two spectrum linesof the same frequencymodulation may be far

apart,forinstancethe two linesof p = 1 and p =-1 in Fig.6,and thereforein generalthe

treatmentforthe resonatortype impedanceundertheRF modulationsuch as that inSection

II cannot be applied, and the spectrum fines may have to be treated separately. Consider the
mm.

dipole upper sideband at Z(_'_o'_RF), and let the real part of the impedance be R. Using

s ----jt#_ jws, thestabilityequation(2-31)can be writtenas,

8_ +w_ .- _°_I8 1 w_Is _ --w$1s_-- 2 Vco6_s 3 2 VoOS.s

which can be written as,

+ •+ =0 (s-5)
2Vcce_s

Below transition cos_bs _0, therefore the upper sideband is stable because that the coefficient of



s is positive, lt follows that the lower sidebsnd at Z(c_-I-_0-_oar), which has a negative sign in

(6-3), is unstable, and the opposite above transition.

It is interesting to revisit the form factor derived in Section V. We rewrite it as,

r- 2J (, I l/ Rr) (8.8)
r

The simplification of the form factor in (5-18) cannot be made in the case of the coupled bunch

mode, since now [col is not close to _R_' if n _ 0. Now both variables have to be considered in

the Bessel function. In general, the influence of the synchrotron phase oscillation amplitude

cannot be overlooked, such as the simplification in (5-18). Taking the AGS Booster as an exam-

ple, the form factors for different r are shown in Fig.7. At the RF frequency of 2.55 M_z as

shown both in Fig.5 and Fig.7, the influence of the variation of r is not significant. For the

higher frequency, which is often of interest in the coupled bunch instabilities, this influence

shows up. For a small variation, for instance in Fig.7 a range of r between 0.01 to 0.2, the

form factm, are approximately the same. This fact has the following implications. Once a cou-

pled bunch motion has started, the signal frequency shift by the coupled bunch mode fre-

quency can excite reactions from the longitudinal impedance at these frequencies. For each

bunch, the synchrotron oscillation may get chance to grow, and so does the phase oscillation

amplitude r appeared in the form factor (6-6). This amplitude, on the other hand, is also the

amplitude of the coupled bunch mode. The insignificant influence of the variation of r in the

process, shows the reason why we can assume that the coupled bunch mode is a rigid wave,

when we consider the instability problem.

3. Examplea of the AGS Booster and the AGS

In a test, a coupled bunch instability has been excited in the AGS booster by tuning an

unused RF cavity [1]. The coupled bunch motion was observed in a long front porch, with the

revolution frequency of 850 KHz. The harmonic number of the boester is 3, and the RF fre-

quency was 2.55 MHz. In the test, the coupled bunch instability of a dipole mode was

observed at the first revolution line, i.e., at 850 KHz, which implies that n _ 2. There are



2×I011protonsin a bunch,thereforewe haveI0- 0.082A and IB - 0.164A. The synchrotron

oscillationfrequencywas about4.3KHz, thesynchronousphaseangle_s - 0,and theRF vol-

tageamplitudeV = 30 KV.

The RF cavityused to excitethe coupledbunch motion has a qualityfactor2.5 and a

shunt resistance3 I{n,itwas tunedat thetherevolutionfrequencyinthetest.The impedance

of thecavityand alsothedrivingRF cavityisshown inFig.8.

To estimatethe coupledbunch instability,theequation(6-5)can be used. To estimate

the resistanceR" which iscrucialin thistest,theform factorin (6-6)isused,where the Gaus-

siandistributionisstillusedsincetheassociatederrorisnotsignificant.The bunch lengthcan

be measured,which isrl,_-,130 nS. The finaleffectiveresistanceR" of the unused cavityis

shown in Fig.8by dottedline,which indicatethatitis60 db, i.e.,I Kft at the850 KHz. The

growth ratecalculatedusing(6-5)isabout27.7mS, which isclosetothetestresultof30 mS.

In an AGS operation,a coupledbunch instabilitywas observedand analyzed[10],which

appearedat the 1.77GeV frontporch,withRF frequencyof 4.18MHz. ltisa dipolemotion

with a coupledbunch mode n - 11,and theAGS has sn RF harmonicnumber/_ - 12.To

locatethe frequencyof the coupledbunch mode excitingresonator,two testswere performed.

The bunch lengthesare 48 nS and 70 nS, and thebeam currentsare0.089A and 0.457A,

respectively.The RF voltagesare 260 KV and 184 KV, thesynchrotronfrequenciesaxe 1.64

KHz and 1.38 KHz, respectively. The observed growth rates are 48 mS and 24 mS, respectively.

The form factors according to (6-6) are plotted in Fig.9, where a moderate r = 0.1rL is used.

To generate the observed growth rates, the required resistances in the longitudinal impedance

are plotted in Fig.10, which shows that at approximately 17.6 MHz the required resistances are

croseed, note that the closest unstable coupled bunch mode frequency is at 17.1 MHz, therefore

Fig.lO shows a possible location of the exciting resonator for the coupled bunch instability.

This result agrees to the one obtained by different approaches [10].
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Fig.1. Beam Dynamic Model for Longitudinal Coherent Dipole Motion.
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Fig.2. Beam Dynamic Model for Pedemen Formulation.
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