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ABSTRACT

In this paper, we present a new formulation for the longitudinal
coherent dipole motion, where a quadrature response of the environ-
mental impedance is shown to be the effective longitudinal impedance
for the beam instability. The Robinson-Pedersen formulation for the
longitudinal dipole motion is also presented, the difference of the two
approaches is discussed in the comparison. The results by using the
Sacherer integral equation for the coherent dipole motion can generate
the same results as by using the other two approaches, except for a
scaling difference. The formulation is further generalized to the rigid
bunch motion using signal analysis method, where a form factor shows
up naturally. Finally, the formulation is applied to solve the coupled
bunch instabilities. Examples of the AGS Booster and the AGS coupled
?unch instabilities are used to illustrate the applications of the formu-
ation.



I. Introduction

In this paper, we present a new formulation for the longitudinal coherent dipole motion.
The formulation is based on the idealized condition of the synchrotron oscillation modulated
by the RF frequency. We will show that for the longitudinal coherent motion, the quadrature
response of the environmental impedance to the beam signal represents an effective longitudinal
impedance. The Robinson-Pedersen approach to the same problem is also presented, and the
comparison shows the difference of the two approaches, the results however are the identical. In
Sacherer integral equation, the Vlasov equation is used to consider the particle density evolu-
tion in the phase space, the results of the coherent dipole instabilities are shown to be different

by a scaling factor from other two approaches.

By considering the rigid bunch beam signal and the associated impedance, the formula-
tion will be further generalized to the rigid bunch motion. A form factor under this condition
will be developed. Finally, the coupled bunch instability is studied as a special case of the long-
itudinal coherent motion, and the application of the presented formulation gives rise to several

results. Two examples at the AGS Booster and the AGS will be presented to illustrate the

application of the formulation.

. The New Formulation

In this section, we present a formulation for the bunched beam coherent dipole motion. In
the longitudinal motion, the beam performs a synchrotron oscillation. This oscillation is modu-
lated by the RF carrier. The induced voltage through the longitudinal impedance, for instance
the RF cavities, may affect the synchrotron oscillation and cause the beam instability. A
model of the beam dynamics based on the longitudinal impedance will be proposed. It will be
shown that under the RF frequency modulation and demodulation, a quadrature response of
the longitudinal impedance with respect to the RF carrier will be the dominant impedance and

therefore to contribute to the beam instability.



2.1. Beam Dynamic Model

In Fig.1, a dipole motion model is shown, where each block represents a transfer func-
tion between two variables, and s is the Laplace operator. wy and wgp are the revolution
and RF frequencies, respectively. Let A be the harmonic number, we have wpp=hwy. 8 is
the ratio of the particle velocity and the light velocity, and E is the total energy of the par-
ticle. Throughout this paper, only the situation below transition is considered, therefore the
frequency slip factor n is negative. V and ¢g are the RF voltage amplitude and the syn-
chronous phase, respectively. We use ¢, AE and AV to denote the phase, energy and the
equivalent voltage deviations from the equilibrium state. AVjp is the equivalent RF gap vol-
tage deviation caused by the beam motion itself, and AV4y caused by the cavity voltage
variation, Ig is the beam current amplitude of the fundamental frequency, i.e., the RF fre-
quency. Finally, Zy(s) represents the longitudinal impedance, where the subscript M

denotes that the impedance is not a conventional one but under the consideration of RF

modulation and demodulation.

In the block diagram, the upper loop represents the synchrotron oscillation, where the

following relations are used [15],

_ ewp Veosds
AF = 7 (] (2-1)
and
WRFN
= 2-2
¢ ﬂ2 Es ( )
Since we have
] WO
AE = Tne AV (2-3)
it follows,
AVp = Vcosdg ¢ (2-4)

which indicates that under the linearization, if ¢g=0, then 1 rad of beam phase deviation

will be equivalent to the RF cavity voltage variation with full RF voltage amplitude V.
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The lower loop represents the effects of the beam current to the cavity voltage through
the longitudinal impedance. Note that under the linearization the transmission relation

between ¢ and the beam current variation Alg is Iz. Now what remains to solve is the

impedance Zy(s).

2.2. Impedance

In the beam dynamic diagram represented by the transfer functions, e.g., in Fig.1, the
Laplace transform is used. To discuss the impedance where the modulation and demodulation
are involved, the Fourier transform is convenient. In this article, both transforms will be used.
For instance, an impedance in the Laplace form can be Z(s+jwgr), and its counterpart in the

Fourier form is written as Z(w+wgy), where we used s=jw.

In this section, we will show that the impedance Zy(s) in Fig.1 is,

Zu(s) = 5= ( Zlow+iwpp) = Z(o—jwr) ) (2:5)

Consider a general situation of modulated input and output. Let the input signal of a sys-

tem be f(¢) and the output be g(¢). The input signal is assumed to be a low frequency signal
S1(t) modulated by an RF frequency, say coswppt, i.e., we can write,

J(t) = f1(t) coswppt (2-6)
If we use f(¢)—F(w) and f,(t)—Fy(w) to denote the Fourier pairs, then we have,

F(w) = 3 ( Fy(w+ops) + Fy(o—ugs) ) (27
Also if,
S1(t) = fL(¢t) sinwgpt (2-8)
then we have,
Fyw) = -}J- ( Fy(w+wpe) — Fi(w—wgr) ) (2-9)

Under the modulation of the frequency wgp, the in-phase and quadrature responses due

to the impedance Z(w) with respect to the RF carrier are defined by (8],



and

Za(w) = 5= ( Zlurkwpr) = Zw=upr)) (2-11)
respectively. We also define

Gp(w) = Fp(w)Zp(w) (2-12)
and

Gq(w) = F(w)Zq(w) (2-13)
If the Fourier pairs gp(t)—Gp(w) and gq(t)=—+Gq(w) are used, the total response through the

impedance Z(w) for the modulated signal F(w) in (2-7) can be written as,

g(t) = gp(t) coswprt + gQ(t) sianFt (2-14)
which implies that the total response of the impedance Z(w) for the signal f(¢) in (2-6) con-
sists of the in-phase response, modulated by coswppé, and the quadrature response, modulated
by sinwggpt.

To prove (2-14), we only need to show that it is equivalent to,

G(w) = F(w)Z(w) (2-15)
By using (2-12), (2-13), and (2-7), (2-9), the right hand side of (2-14) has the following

Fourier form,

G(w) = 5 ( Galwtugr) + Gp(w—ugr) ) + 5= ( Galwtupr) = Go(uw—wsr) )
= ';' ( Fi(wtwrp)Zp(wtwpr) + Fi(w—wpp)Zp(w—wpr) )
+ ?11_ ( Fr(wwpr)Zg(wtwrr) — Fi(w—wprr)Zq(w—wrr) ) (2-16)
Substituting (2-10), (2-11) into (2-16), we have
G(w).= 3 ( Fy(wwpr)Z(w) + Fi(w—wpr) Z(«) ) (2-17)

Substitutiag (2-7), the equation (2-17) becomes (2-15). Therefore this part of the proof is com-
pleted.
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When the beam passes the cavity gap, the in-phase response due to the cavity impedance,
which is modulated by cos wggpt, provides an almost constant force in the beam synchrotron
oscillation, which will not affect the synchrotron oscillation directly. In fact this force will
induce a synchronous phase shift and therefore the RF driving system can provide a compensa-
tion through the phase feedback. On the other hand, the quadrature response is modulated by
sin wppt, which is in the same fashion as that of the RF driving wave and therefore functions
as the same as that the RF driving wave does. In other words, this force generates a bucket in
the phase space, which affects the synchrotron oscillation directly. Therefore, if the instability
of the the synchrotron oscillation is concerned, the effect of the in-phase response can be
neglected, and the quadrature response becomes a dominant factor. It follows,

Zy(w) = Zg(w) - (2-18)
and therefore (2-5) is proved by substituting (2-11).

2.3. Impedance of RF cavity

In this subsection, we present the transfer function of the impedance of (2-5) for the RF

cavity.

Consider an RF cavity with the resonant frequency wp, the shunt resistance R, and the

half-bandwidth o, which can be written as,

=R -
0—20 (2-19)

where @ is the quality factor of the cavity. The transfer function of the cavity is,

20Rs
2(s) = 52, o (2-20)

We assume that

WRF S wWp >> W Ws - (2-21)

Let the cavity be detuned from wgy by an angle ¢z. We have

Wpp — W S Ut&n¢z (2-22)



We write,
. 20Rs + 2j0R wgp
Z(s+jwpp) = ——— 3 T 5 (2-23)
8° + 2jwpps — WRF + 208 + 2jowpp + Wi
In the numerator, since |s | = w << wpp , the term 20Rs can be neglected. In the denomina-

. LW . . . .
tor, since that if @ >> 1, o= -2%- << wpF, then compared with either 25 wgpps or 2jowpyp,

the term 20's can be neglected. Also, if |wi—wdr | >> 82| = «w? we have,

Wi — wip + ¥ N wi — Wiy (2-24)
Using
wi — whr & — 2wpr(wWpr — wp) = — 2wppotand; (2-25)
we get,
2]0R WrE oR
Z(s+jwpr) ™ . = . 2-26
(3+J RF) 2ijF8 + 2]0’&)RF - 2URFOta.n¢z s + 0+ Jatan¢z ( )

In a similar way we get,

cR

— [~}
Z(s—jwar) 8 + 0 — jotand;

(2-27)

Substituting (2-26) and (2-27) into (2-5), the longitudinal impedance of the RF cavity

becomes,

— Ro*angy

ZM(a) = 82 + 208 + 0'2(1 + tan%z)

(2-28)

4. Stability

To study the beam stability under the influence of the longitudinal impedance of RF cav-

ity, we can write the following equation from Fig.1,

e wo wppnVcosdg e Wo WRFN
= + Zy () 2-29
¢ 2x9°Es® ¢ 2nf°Es? u()ls ¢ (2-29)
Note that below transition, "
Wf =— ewowrprnVcosdg (2-30)

2xfE



Substituting (2-30) into (2-29), we get,

w}

3% + wif = Veoods Zy(s)lg ¢ (2-31)

Define the ratio of the beam current to the generator current as (2,9],

I Iy

Y = Tc,'-; = 77-1-2— (2-3‘2)

where Igq is the generator current without beam loading effect. Substituting (2-28), (2-32) and

omitting the variable ¢, the characteristic equation of the equation (2-31) becomes,

wiYotandz /cosdg
s? + 208 + 0*(1 + tan®¢;)

o 4wl = (2-33)

which is a fourth order dynamic system. Using Routh-Hurwitz table, it is straightforward to

find the following stability conditions (9,12],

tang, > 0 (2-34)
and

Ytangzcos’d; < cosdg (2-35)
which are called the first and second Robinson criteria, respectively. The first criterion con-
cerns just the detuning angle, and the second criterion concerns also the beam intensity, which

is represented by Y.

III. Robinson and Pedersen Approach

The stability problem for bunched beam longitudinal dipole motion was first solved by
Robinson [12], where the effect of the fundamental component of the beam phase deviation on
the cavity phase deviation is considered to give rise to the stability criteria (2-34) and (2-35).
Among later works, the Pedersen formulation [5,9] is of particular interest because where the
phase and amplitude modulations and their cross effects due to the detuned cavity are treated
separately, therefore the phase feedback and tuning control can be included in the dynamic

model of the beam loading. The stability analysis gives rise to the same results as by Robinson.
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In this section, we present the Pedersen formulation, and then it will be compared with

the model presented in the last section.

3.1. Pedersen Formulaticn

In the Robinson and Pedersen approach of longitudinal bunched beam stability analysis,
the perturbation source is the beam phase deviation. The stability is studied by finding the
equivalent RF cavity phase deviation due to the beam phase deviation. The block diagram can
be shown in Fig.2, where an inspection indicates that the upper loop is nothing more than a
rearrangement of the synchrotron oscillation loop in Fig.1, and the transfer function Z gp (s)
represents the total effect of the cavity voltage phase variation due to the beam phase devia-
tion Adp.

To find the transfer function Zg’p (s), several steps have to be followed. Since only the
fundamental beam frequency at wpp is considered, the vector diagram shown in Fig.3 can be
used, where I, Iz, and I are the generator, beam image, and the total currents, respectively.
If the cavity detuning angle ¢ is chosen properly as shown, which can be achieved by a tun-
ing loop, then the total cavity voltage Vr can be kept unchanged under the beam loading.

The Pedersen approach considers the total effect on the phase variation of the cavity vol-

tage Vp due to the variation of the phase of the beam current.
Step 1: Projection of Iz on Iy.
From Fig.3, we can write,
Ip - jIBe—H’s = Ire-i¢t (3-1)
The relation of both phase and amplitude variation on Iz and I is,

IG — j(IB+NB)e-j(¢s+A¢B) —(IT-!-NT)C—"("".A*T) (3_2)
By linearizing (3-2), subtracting (3-1) from (3-2), and -equating the real and imaginary

parts separately, we have,

sin(¢z—¢s) — cos(dz—ds)
Ip A¢a (3-3)

Ier] [c°°(¢:—¢s) sin(¢z—ds)



Step 2: Projection of I'r on Vi,

Under detuning, the impedance of the cavity can be written,

Z = Rcos¢zej¢z (3-4)
Thus, we have
Vr =Ire %77 = [ Rcosé; (3-5)
To find the static projection of It on Vi, we write,
Iy + Alp)e 2T Reospy = (Vp + AVy)e /8% (3-6)
Therefore, we get,
AVp Alp
Vpasy | = RBeosbz |08, (3-7)

Since the bandwidth of the RF cavity is narrow, the transient response must be con-

sidered. The complete projection from Iy to Vi therefore is,

AVr ] [Zaa(s) Zpa(s)][ Al ]
Vydsy | = Reostz Zap(s) Zppls)| |Ir S (3-8)

where Z44(8) is the normalized transfer function from the amplitude variation of Iy to the

amplitude variation of Vi, and so on for other transfer functions. These transfer functions are

as follows (7,9],

Z,,(a)sZ,,(a):::-L( Z(s+jwpr) , Z(s—jwgr) )

- ——— 3-9
2" Z(jwgr) Z(—j wgr) (3-6)
and,
v 1 Z(s+jwpr)  Z(s—jwer)
Zoele) = =Zap() = 57 Zame) Z(swmr) (3-10)
Using (2-26) and (2-27), we have,
. R '
Z(%jwpr) = T tands (3-11)
Substituting (2-286), (2-27), and (3-11) into (3-9) and (3-10), we get,
Zaa(s) = Zpple) m — 2t T (L 4 ta0"ds) (3-12)

83 + 208 + 0%(1 + tan?¢y)



T i gy

v - 10 -
and,

— otanégzs

Zpals) = - =
pa(s) Zap(s) 82 + 208 + 0’2(1 + ta.n2¢z)

(3-13)
Step 3: Projection of beam phase variation A¢g to V.
Assuming Alp=0, using (3-3) and (3-8), the total voltage phase variation due to the

beam phase variation can be written as,

— Igcos(dz—ds)
Ady = ng 8)Adp = %cos:ﬁz [Zap(") pr(’) ] [ IBZin(cﬁzz-—tﬁs; Adp  (3-14)

Substituting (3-12) and (3-13) into (3-14), we get,

Z5p (s) = Iy —singsos + o’cosysin(dz — 4s)(1 + tand;z)
) V/R 82 + 205 + 0%(1 + tan¢;)
_y = singsos + o*(tandzcosps — sinds) (3-15)

s +20s + 02(1 + tan2¢z)
Also from,

5 — Igcos($z—b5)
AVy = Zpq (8)A¢p = Rcosdy [Zaa(*') Zpa(’)] Ipsin(é;—s) Adp  (3-16)

we have,

— cosdgos — o2cospzcos(dz — bs)(1 + tandz)
8% 4 208 + 01 + tan%$;)
— cospg0s — o*(tandzsinds + cosds)
8% + 208 + 01 + tan’¢;)
Step 4: Total equivalent projection of Adp on Ady.

= RIB

(3-17)

In order.to develop the total projection of &4y on Ady, including the contribution of
voltage amplitude variation AV, the equivalent phase deviation of the RF voltage due to AV
is needed. Note that the total particle energy gain due to the RF voltage amplitude and phase

variation is proportional to

(V + AV) sin(¢g + Ady) — Vains & (V + AV) cosps My + AVsings  (3-18)
Letting AV=0 and Ay =0, separately, and equating each gain leads to
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tandg
Vv

Therefore consider the contribution of Zga (8), the total transfer function from Adp to

A¢V iS,

Ay = AV (3-19)

Z5p(3) =25, (s) + tar;:bs z8, (s) =77 :jt:n?‘({cff:nz ) (3-20)
3.2. Stability
From Fig.2, we have
B "ok IOLIN )
Using (2-30), the equation (3-21) can be written as,
8% + wip =wiZ], (s) ¢ (3-22)

Substituting (3-20) into (3-22), and leaving off 4, we get the same characteristic equation
of that of (2-33). This shows that the two approaches are equivalent with respect to the dipole

motion instability.

3.3. Comparison

In deriving the transfer function Zy(s) in Fig.l, the in-phase and quadrature transfer
functions Zp(s) and Zg(s) are used. To determine the beam stability under beam loading, it
it shown that the quadrature transfer function plays a key role. In deriving the transfer func-
tion Z ,’,',, (#) in Fig.2, the phase to phase, amplitude to amplitude, and the phase to amplifude,
amplitude to phase transfer functions, Zpp(s), Z44(8), and Zpe(s), Zgp(s), respectively, are
used. The total equivaient fransmission from the beam phase variation to the induced cavity
voltage phase deviation, i.e., .Z,’,', (2), determines the system stability.

In Fig.4, the step responses of these transfer functions are shown, where the parameters of
the AGS upgraded RF éavity are uzed, and the detuned angle ¢ is at 40 degrees. From these

respénses, the fundamental difference between the two types of the transfer functions, and the

two appm;chu as well, can be observed.
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IV. Sacherer Integral Equation

In this section, we present the solution of the dipole coherent motion solved by using the

Sacherer integral equation.

4.1. Sacherer integral equation for dipole motion

Consider the Vlasov equation,

Y Y 31!:
—5t—+¢a +¢— 9 (4-1)

where 1 (4,4,¢) is the normalized phase space density, and ¢ is the particle phase deviation.

Using the phase space co-ordinates (¢,¢/ws), and the polar phase space co-ordinates,

¢ = rcost (4-2)
$/ws = rsind (4-3)
the equation (4-1) can be written as,
O _ B 43+ wi)dY =
o~ YS55 + (¢ + wid) ) 0 (4-4)

The phase space density can be seen as a large time independent part ¥y and a small per-

turbation part 1, which oscillates with frequency w,

W (r,0,) = Polr.0) + ¥y(r B ¥ (4-5)

We note that in (4-4), the term ¢ + wl¢ represents a first order quantity, therefore i)

can be replaced by

0% _ singd d¥p (4-6)
8& We dr
The linearized Vlasov equation therefore is,
d
junhe 9t — g SWLeTut 4 (5 + ule) ML S o (+7)

In the next, we discuss the coherent electromagnetic force represented by ¢ + wi¢. Simi-
larly to (2-31), in a time domain version, we can write,

wg [

b+ wip=— Voot Vi(4) (4-8)
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where V,(9) represents the cavity voltage induced by the perturbation term (r,6)e/“¢ in

(4-5). To determine V/(¢), we define the line density A\(¢), which is the projection of ¥,(r,f) on

the ¢ - axis,
N ,
N$) = [ (d,$/ws) dd/ws (4-9)
The line density can be Fourier expanded as,
) = in ¢
N$) = o= 3 Alpe? (+10)
p=—co
where
® —-ipé
Alp) = [ _Nd)e dé (4-11)
Using (4-10), we obtain,
Vig) = —Le’t 3 Z(p)A(p)ei?? (412)
p=—00
where Z(p) is the corresponding impedance. Substituting (4-12) into (4-8), we get,
(4-13)

8+ ulb=— 20 giut § zp)ap)e s

Veosdg p oo
We emphasize that Vy(¢) is the voltage generated by the line density M) in (4-9), which
applies only to the particles with the phase position ¢. Therefore the equation (4-13) is not 2

regular synchrotron oscillation equation, such as (2-31), and to solve it for the synchrotron

motion is not justifiable.
For dipole motion only, the perturbation distribution can be written,
. (414)

¥i(r,0) = Ry(r)e’?
where R,(r) is the radial function of dipole motion. Substituting (4-13), (4-14) into (4-7), and

leaving off 9%, we get,
= 0o sl g% $ é
J(w — wg)Ry(r)e Veosds sind —- '_E_QZ(P)A(P)G (4-15)
Multiplying both sides of (4-15) by e~ 0’ and integrating over @ from O to 27, we get,
(4-186)

—wslo dh 1 R -?-(pﬂl Ji(pr)A(p)

(W= ws)By(r) = 7 s - &+ 2
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where we have used (4-2) and the integral
2% .
[ edoreast=mling 4 = — 20 jm sy (17
with m=1.

The equation (4-16) is the Sacherer integral equation for dipole motion (3,13,17].

4.2, Stability

To determine the beam stability, the Fourier coefficient A(p) in (4-16) is needed. Using
(4-11), (4-9), (4-14), and the relation,

d¢ dd/ws = rdrd8 (4-18)

we have,

Ap) = [ N@)e=#% g = [ ([ hi(8,3/us) dbjws)e=i% dp

0 2% s x
= [ R (r) dr [ e=3(=preost) 49 = -2;”- I, Ry(r)\(pr)rdr (4-19)
Substituting (4-19) into (4-16), multiplying both sides of (4-16) by 2wsrJ\(r), integrating over

r [6,14], and picking up p= %1, we get,

SRR T

dr) -}( Z(w+wps) — Z(w—wpr) ) (4-20)

where we used

Ji(—r) == Jy(r) (4-21)
Using

Qwg(w — ws) M —wi (4-22)
the equation (4-20) becomes,

41rw}!o

o — wh = (f J3(r ) dr) -‘;( Z(w+wpp) — Z(w—wgp))  (4-23)

Substituting #=j; w, and using (2-5), (2-28), it can be written as,

8t wie= 81rw§Io (f Ji (")

dr) Zu(8) (4-24)
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which is equivalent to (2-31) and (2-33) except for a scaling difference. Note that for delta func-

tions, we have Ig = 2/,. To solve the integral in (4-24), a specific static distribution is needed.

V. Generalize the Formulatioa

In Section I, the impedance Zy(s) is derived under the consideration of the synchrotron

oscillation modulated by the RF frequency. In a real situation of rigid bunch motion, the b am

current signal contains other frequency components, and also the signal scaling has to be con-

sidered. Therefore to generalize the formulation to the rigid bunch motion, the beam current

signal needs to be analyzed. For each component in the signal, the effective impedance can be

found, which needs only a trivial modification from the results in Section II. The summation of

the effects of the impedance due to each component in the signal is the force the beam received.

In the treatment, a form factor will emerge.

5.1. Signal of rigid bunch motion

Let Tpp be the RF period, i.e.,

2r 2
Tor = e = omr

WRF

A beam longitudinal signal with N particles in a bunch can be written as,

o0
l'(t) = Ne 2 ) (t-—kTRF+ T ooswskTRp)
km—oco -
where 7 is the synchrotron oscillation amplitude in time.

The spectrum of this signal can be calculated as (16},

o 00 )
I(w) = Ne -[-oo , Z-)m é (t—kTRF"l' T coawskTRF) e—Jwt g¢

. ) . 00 .
= Ne % e_’w(kTR’—fm"kT”)=Ne 2 e"'JWkTRF 2 jMJm(wr)elmwskTRr

kw00 kon=—00 m=—00

= Newgr 3 5 j™J(wr) 6 (w—p wpp—mws)

,-—com-—eo

where the identities

(5-1)

(5-2)

(5-3)



. -16 -

ejwrcoswskTo= i LY (M_)ejmwskTo
m

(5-4)
M ==—00
and
X —~iQkT ko .
3 e = Y wpp 6(Q—p wpr) (5-5)
kra~00 p =00
are used.

We further assume that the bunches have a Gaussian distribution with an effective bunch
length 7. The reason to choose the Gaussian distribution is for convenience. For each bunch,

we have the following line density,

. 2 (2 —8¢3
With the average beam current
Ne wpp

and using the phase oscillation amplitude

r = WppT (5'8)
the equation (5-3) becomes [16],

I(w) =2l § § 3™ In(rw/ WM’)‘3_(""“’/“""”2/32 6 (w—p wpp—m wg) (5-9)

,-—oo 1 w===00

which is the spectrum of the rigid bunch motion.

5.2. Generalization

To compare the spectrum of the rigid bunch motion (5-9) with the signal used to develop

the formulation in Section II, we let an idealized RF frequency modulated synchrotron oscilla-
tion signal to be,

i1(t) = Ipr coswgt sinwgyrt (5-10)

whose spectrum can be written as,

Iy(w) =2rlgr -};,gzﬂ 5 () 8(w—purr—mus) (5-11)
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The first difference between the real rigid bunch motion signal represented by (5-9) and
the idealized signal (5-11) is that (5-9) contains not only RF frequency modulation but also RF
harmonics modulation, i.e., by the frequencies pwgp, |p |>1. To justify the corresponding
effective longitudinal impedance for these components, it is convenient to take the beam signal
as approximately a delta function series, then to consider its frequency decomposition, such as,

[+.+] Q0 . o0
3 (¢ —kTRF)=T1- Y elPenrt =—1:L-( 1+ 237 cos pwgrt) (5-12)

kwa—co RF pm—co RF pm=l

Note that all the frequency components are in cosine waveform. Furthermore, at the bunch
passing time ¢ = kTqp, these components become cos p27k, p =0,1, -, which shows
that in the decomposition, at the beam passage these cosine functions have no phase shift for
all p. Therefore concerning the effective longitudinal impedance the same argument as that in
Section II can be used for p # 1, and the conclusion is that the quadrature responses still
determine the effective longitudinal impedance for all p. Thus we have Zy(w) = Zg(w) not
only for the RF frequency modulation, but also for the RF harmonic modulation. For the car-
rier component with the frequency pwgp, the variable wgpp in (2-11) should however be
replaced by pwpgr. In the system synthesis, firstly these frequency components in the rigid
bunch motion signal should be identified, then the corresponding longitudinal impedances

siould be used to find the induced forces. The combined force is the one the beam received.

The second difference of (5-9) from (5-11) is that it contains not only dipole motion but

also Ligh mode motion, i.e., mwg, |m |>1. If only the dipole motion is concerned, this aspect

can be overlooked.

The third difference is that in (5-9), the spectrum amplitude is affected by several factors,
such as the Bessel function, the bunch distribution and the bunch length. The combined
influence of these factors can be called a form factor, which should be multiplied to the scaling
Ig in Fig.l. If the synchrotron oscillation frequency is assumed to be constant, then this

modification will change the stability margin. A detailed discussion will be presented in the fol-

lowing.
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5.3. Form factor
Consider the most important case of dipole motion with RF frequency modulation, where

p = %1 and m = 1. We write (5-9) as,

=2k % % i I (rwjwgp)e L ORISR g pp—mwg)  (5-13)
Pkl mmt

Since J,(r w/wpr) is evaluated at w = twpptwg N £wpp, and we have,

Jy(=z) = — Jy(z) (5-14)
Joy(z) = = Jy(2) (5-15)
the equation (5-13) can be written as,
W) = 8nlody(r |w|/uge)e PR IRL 5 S (<p) 6 (upupe—mus)  (5-16)

4] pail mel

Using the standard relation between the average beam current /g and the beam current at

the fundamental frequency /g, for the delta series distribution,

IB —'_-210 (5-17)

the form factor can be written as,

Foedl@ 2 lol/upe)  ~(rwforr /32 o 2100 o —(mafurrl/32 (g 10
I(w) r r

where in the simplification we consider that in this case |w| ~ wgp.

2Jy(r)
r

The factor

is plotted in Fig.5, which shows that if the phase oscillation amplitude
varies within 1 rad, the error caused by using the idealized dipole motion model is not larger
than 12 % compared to the rigid bunch dipole motion.

Consider the longitudinal dipole motion discussed in Section II again, where only the syn-

chrotron oscillation modulated by RF frequency is concerned. The form factor F' in (5-18) hes

to be multiplied to the scaling Iz in Fig.1, and therefore also to ¥ = VI7R in (2-33). Thus,

the new ratio of the beam current to the generator current

Y=FYy (5-19)
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will replace Y in the stability equation (2-35). Since F <1, the stability margin due to the

beam loading effect defined in (2-35) is extended.

VI. Coupled Bunch Instabilities

A typical coupled bunch motion is generated by the impedance of a resonator, such that
the relative phase position of the adjacent bunches is changed in phase space in a certain mode
for a period of the revolution, and therefore in the beam current signal a frequency shift can be

observed. Several consequences of this change will be discussed by using the presented formula-

tion.

6.1. Coupled bunch motion

Let there be A bunches, and let n be the coupled bunch mode number. There will be

n=0,1, .. h—=1 coupled bunch modes [4,13]. The phase difference between two adjacent

2nm

bunches in the phase space is . Since the period between the two adjacent bunches, i.e.,

the RF period, is Tgp = —,%i:—-, if one observes from a wall beam current monitor, frequency
o

components of the coupled bunch mode e;(uwo+mws )¢ will show up in the beam current sig-

nal. Corresponding to the longitudinal signal in (5-2), the signal of the coupled bunch motion
can be written as,

o0 o
i(t)=Ne 3 e™kTRr 504 kTt 7 coswskTer) (6-1)

km=0c0

If further a rigid Gaussian distribution is also consid.ered, then similar to (5-9), the spectrum of

the signal observed from the wall monitor becomes,

IW)=2rly 5 3 ™ Ju(rajwge)e /R 32 50 pupe—nwp—muws) (6-2)

P m=00 M Wm=C0

where a frequency shift of the coupled bunch mode is shown.

If the coupled bunch instability is considered, then the coupled bunch mode ej"w“‘ can
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be assumed to be a rigid wave, which is generated from the relative phase difference of the
bunches in the phase space and then its induced force is applied back to these passing bunches.
Thus for an individual bunch, which performs a synchrotron oscillation in the phase space, the
modulation effects of the beam current signal due to the coupled bunch mode is demodulated.
By the same argument as in Section II, the quadrature response represents the effective longitu-
dinal impedance. Consider the effect of the frequency shift, we therefore have the following

longitudinal impedance for the signal with RF modulation,
1
Zy(w) = -27( Z(w+nwytwpr) — Z(w+n wo—wpr) ) (6-3)

6.2. Coupled bunch instabilities

Combine the longitudinal impedance (6-3) with the consideration of the signal analysis

(6-2), several results of coupled bunch instabilities follow.

Taking an example that A =4 and n =1, the coupled bunch modes are shown in Fig.6,
where the fundamental spectrum lines of p = %1 are directly from (6-3), and others are from

the signal generalization (6-2).

If n #0, then the two spectrum lines of the same frequency modulation may be far
apart, for instance the two lines of p =1 and p = —1 in Fig.6, and therefore in general the
treatment for the resonator type impedance under the RF modulation such as that in Section
II cannot be applied, and the spectrum lines may have to be treated separately. Consider the
dipole upper sideband at Z(w-wy+wgr), and let the real part of the impedance be R. Using

8 = jw N jwg, the stability equation (2-31) can be written as,

2 21 —wglgR
rpate 1 g Gl E | —wshE
o? + wf Vcosds 24 ( +gr) 2Vcosds J 2V cospg y (6-4)
which can be written as,
2, YslaR 2 6-5
8° + TV oosds s +wi=0 (6-5)

Below transition cos@g >0, therefore the upper sideband is stable because that the coefficient of
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s is positive. It follows that the lower sideband at Z{w+wy—wpr), which has a negative sign in
(6-3), is unstable, and the opposite above transition.

It is interesting to revisit the form factor derived in Section V. We rewrite it as,

Fe 2J,(r |<,:|/pr) ¢~ (rLw/wer)?/32

(6-6)
The simplification of the form factor in (5-18) cannot be made in the case of the coupled bunch
mode, since now |w| is not close to wgp if n 7 0. Now both variables have to be considered in
the Bessel function. In general, the influence of the synchrotron phase oscillation amplitude
cannot be overlooked, such as the simplification in (5-18). Taking the AGS Booster as an exam-
ple, the form factors for different r are shown in Fig.7. At the RF frequency of 2.55 MHz as
shown both in Fig.5 and Fig.7, the influence of the variation of r is not significant. For the
higher frequency, which is often of interest in the coupled bunch instabilities, this influence
shows up. For a small variation, for instance in Fig.7 a range of r between 0.01 to 0.2, the
form factor. are approximately the same. This fact has the following implications. Once a cou-
pled bunch motion has started, the signal frequency shift by the coupled bunch mode fre-
quency can excite reactions from the longitudinal impedance at these frequencies. For each
bunch, the synchrotron oscillation may get chance to grow, and so does the phase oscillation
amplitude r appeared in the form factor (6-6). This amplitude, on the other hand, is also the
amplitude of the coupled bunch mode. The insignificant influence of the variation of r in the
process, shows the reason why we can assume that the coupled bunch mode is a rigid wave,

when we consider the instability problem.

3. Examples of the AGS Booster and the AGS

In a test, a coupled bunch instability has been excited in the AGS booster by tuning an
unused RF cavity [1]. The coupled bunch motion was observed in a long front porch, with the
revolution frequency of 850 KHz. The harmonic number of the booster is 3, and the RF fre-
quency was 2.55 MHz. In the test, the coupled bunch instability of a dipole mode was

observed at the first revolution line, i.e., at 850 KHz, which implies that n = 2. There are
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2%x10!! protons in a bunch, therefore we have Iy =0.082 A and Iz = 0.164 A. The synchrotron

oscillation frequency was about 4.3 KHz, the synchronous phase angle 5 =0, and the RF vol-

tage amplitude V' =30 KV.

The RF cavity used to excite the coupled bunch motion has a quality factor 2.5 and a
shunt resistance 3 Kf2, it was tuned at the the revolution frequency in the test. The impedance

of the cavity and also the driving RF cavity is shown in Fig.8.

To estimate the coupled bunch instability, the equation (6-5) can be used. To estimate
the resistance R which is crucial in this test, the form factor in (8-6) is used, where the Gaus-
sian distribution is still used since the associated error is not significant. The bunch length can
be measured, which is 7, ~ 130 nS. The final effective resistance B of the unused cavity is
shown in Fig.8 by dotted line, which indicate that it is 60 db, i.e., 1 K at the 850 KHz. The

growth rate calculated using (6-5) is about 27.7 mS, which is close to the test result of 30 mS.

In an AGS operation, a coupled bunch instability was observed and analyzed (10|, which
appeared at the 1.77 GeV front porch, with RF frequency of 4.18 MHz. It is a dipole motion
with a coupled bunch mode n =11, and the AGS has an RF harmonic number A = 12. To
locate the frequency of the coupled bunch mode exciting resonator, two tests were performed.
The bunch lengthes are 46 nS and 70 nS, and the beam currents are 0.089 A and 0.457 A,
respectively. The RF voltages are 260 KV and 184 KV, the synchrotron frequencies are 1.64
KHz and 1.38 KHz, respectively. The observed growth rates are 48 mS and 24 mS, respectively.
The form factors according to (6-6) are plotted in Fig.9, where a moderate r = 0.1r, is used.
To generate the observed growth rates, the required resistances in the longitudinal impedance
are plotted in Fig.10, which shows that at approximately 17.6 MHz the required resistances are
crossed, note that the closest unstable coupled bunch mode frequency is at 17.1 MHz, therefore

Fig.10 shows a possible location of the exciting resonator for the coupled bunch instability.

This result agrees to the one obtained by different approaches (10].
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Fig.3. Vector Diagram of Beam Loading.
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Fig.7. Form Factors with Different r.
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