

FE-2028-14
Dist. Category UC-90d

MASTER

HYDRODENITROGENATION OF QUINOLINE AND ACRIDINE

BY

Edward Kenneth Reiff, Jr.

NOTICE **MIN ONLY**
PORTIONS OF THIS REPORT ARE ILLEGIBLE. IT
has been reproduced from the best available
copy to permit the broadest possible avail-
ability.

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Chemical Engineering.

June, 1977

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

HYDRODENITROGENATION OF QUINOLINE AND ACRIDINE

BY

Edward Kenneth Reiff, Jr.

Approved:

James R. Katzer December 13, 1976
James R. Katzer
Professor in charge of thesis on behalf of the
Advisory Committee

Approved:

Arthur B. Metzner 1/3/77
Arthur B. Metzner
Chairman of the Department of Chemical Engineering

Approved:

Virginia M. Post
Virginia M. Post
Dean of the College of Graduate Studies

TABLE OF CONTENTS

LIST OF FIGURES AND TABLES-----	vi
ABSTRACT-----	xiv
CHAPTER	
I INTRODUCTION-----	1
A. Scope of Research-----	1
B. Literature Survey-----	3
II EXPERIMENTAL APPARATUS AND PROCEDURE-----	21
A. Reactor System-----	21
B. Catalyst and Reaction Compound Properties-----	24
C. Analytical Procedures-----	29
1. Introduction-----	29
2. Off-Gas Analysis-----	29
3. Liquid Reaction Products Analysis - A Comparison of Gas Chromatography and Liquid Chromatography-----	30
4. Analysis and Identification of Nitrogen-Containing Reaction Products of Quinoline and Acridine-----	37
III RESULTS-----	45
A. Preliminary Experiments: Hydrodenitrogenation of Quinoline-----	45
1. Activity of Blank Reactor-----	45
2. Reactor Reproducibility-----	46
3. Evaluation of Mass Transfer Effects-----	52
4. Catalyst Survey-----	58
B. Hydrodenitrogenation of Acridine-----	62

CHAPTER

IV	DISCUSSION OF RESULTS-----	100
A.	Hydrodenitrogenation of Quinoline----	100
B.	Hydrodenitrogenation of Acridine-----	108
V	CONCLUSIONS AND RECOMMENDATIONS-----	116
A.	Conclusions-----	116
B.	Recommendations-----	119
BIBLIOGRAPHY-----		121

APPENDIX

A.	Detailed Mathematics for the Pseudo First-Order and Pseudo Zero-Order Kinetic Analyses-----	123
B.	Concentration Profiles for Reactor Reproducibility Experiments-----	126
C.	Effectiveness Factor Calculations---	129
D.	Concentration Profiles for Catalyst Particle Size Survey-----	134
E.	Concentration Profiles for Catalyst Survey-----	138
F.	Analytical Problems with the Gas Chromatographic Analysis of Nitrogen- Containing Acridine Reaction Products	144
G.	Extraction Procedures-----	152
H.	Mass Spectral Procedures and Problems	154
I.	Mass Spectral Fragmentation Patterns for Acridine Nitrogen-Containing Reaction Products-----	157
J.	Concentration Profiles for Acridine Experiments-----	177

LIST OF FIGURES AND TABLES

FIGURE

1. Hydrodenitrogenation Reaction Networks for Pyridine and Quinoline----- 14
2. Schematic of High-Pressure Autoclave Batch Reactor----- 22
3. Gas Chromatogram of White Oil obtained with a Flame Ionization Detector: Perkin-Elmer GC, 6 ft. OV-17 on Chromasorb Q glass column. Temperature programmed 120-280°C at 8°C/min. 0.5 μ l injected-- 33
4. Gas Chromatogram of White Oil with 1.3 wt% Technical Grade Quinoline obtained with a Flame Ionization Detector: operating conditions same as for Figure 3----- 34
5. Gas Chromatogram of White Oil with 1.3 wt% Technical Grade Quinoline obtained with a Perkin-Elmer Nitrogen Specific Detector: operating conditions same as for Figure 3----- 35
6. Gas Chromatogram of Dibenzothiophene in White Oil obtained with a Flame Ionization Detector (Curve a) and with a Sulfur Specific Detector (Curve b): Perkin-Elmer GC with a Dexsil SCOT column 0.02 in. by 50 ft., temperature programmed 150-300°C at 4°C/min----- 36
7. Liquid Chromatogram of 1.3 wt% Technical Grade Quinoline in White Oil: Perkin-Elmer Model 601 LC, ultraviolet detector, OD SIL-X-IRP column (2.54 mm by 0.5 m), 55°C isothermal, 40% MeOH in H₂O solvent- 38

FIGURE

8.	Calibration Curve for Quinoline: operating conditions given in Table XV--	40
9.	Concentration Ratio of 1,2,3,4- tetrahydroquinoline to Quinoline for the Reactor Reproducibility Experiments: Quinoline Hydrodenitrogenation at 342°C and 500 psig; Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst-----	48
10.	Pseudo First-Order Kinetic Analysis of the lumped group of Quinoline Plus 1,2,3,4-tetrahydroquinoline for the Reactor Reproducibility Experiments: Quinoline Hydrodenitrogenation at 342°C and 500 psig Ni-Mo/Al ₂ O ₃ (Ameri- can Cyanimid HDS-9A) Catalyst-----	50
11.	Pseudo First-order Kinetic Analysis of Total Nitrogen Removal for the Reactor Reproducibility Experiments: Hydrodenit- rogenation of Quinoline at 342°C and 500 psig; Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst-----	51
12.	Effect of Catalyst Particle Size on the Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline-----	54
13.	Effect of Catalyst Particle Size on the Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline-----	56
14.	Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline plus 1,2,3,4-tetrahydroquinoline for Run 1020: 342°C and 500 psig, Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst-----	63
15.	Pseudo Zero-Order Kinetic Analysis for the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline and Con- centration Profiles for Quinoline and	

FIGURE

	and for 1,2,3,4-tetrahydroquinoline: Run 1020; 342°C and 500 psig, Ni-Mo/ Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst	64
16.	Concentration Profiles for Decahydro- quinoline and for o-propylaniline: 342°C and 500 psig (Run 1020); Ni-Mo/ Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst-----	65
17.	Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1020); Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst-----	66
18.	Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1023); Ni-W/Al ₂ O ₃ (NALCO NT-550) Catalyst-----	67
19.	Pseudo Zero-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline and Con- centration Profiles for Quinoline and for 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1023); Ni-W/Al ₂ O ₃ (NALCO NT-550) catalyst-----	68
20.	Concentration Profiles for Decahydro- quinoline and for o-propylaniline: 342°C and 500 psig (Run 1023); Ni-W/Al ₂ O ₃ (NALCO NT-550) catalyst-----	69
21.	Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1023); Ni-W/Al ₂ O ₃ (NALCO NT-550) catalyst-----	70
22.	Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1022); Ni-W/Al ₂ O ₃ (Harshaw Ni4303) catalyst-----	71

FIGURE

23. Pseudo Zero-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline and Concentration Profiles for Quinoline and for 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1022); Ni-W/Al₂O₃ (Harshaw Ni4303) catalyst----- 72

24. Concentration Profiles for Decahydroquinoline and for o-propylaniline: 342°C and 500 psig (Run 1022); Ni-W/Al₂O₃ (Harshaw Ni4303) catalyst----- 73

25. Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1022); Ni-W/Al₂O₃ (Harshaw Ni4303) catalyst----- 74

26. Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1021); Ni-W/Al₂O₃-SiO₂ (Harshaw Ni4301) catalyst----- 75

27. Pseudo Zero-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline and Concentration Profiles for Quinoline and for 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1021); Ni-W/Al₂O₃-SiO₂ (Harshaw Ni4301) catalyst----- 76

28. Concentration Profiles for Decahydroquinoline and for o-propylaniline: 342°C and 500 psig (Run 1021); Ni-W/Al₂O₃-SiO₂ (Harshaw Ni4301) Catalyst----- 77

29. Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1021); Ni-W/Al₂O₃-SiO₂ (Harshaw Ni4301) Catalyst----- 78

FIGURE

30.	Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1017); Co-Mo/Al ₂ O ₃ (American Cyanimid HDS- 16A) Catalyst-----	79
31.	Pseudo Zero-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline and Con- centration Profiles for Quinoline and for 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1017); Co-Mo/Al ₂ O ₃ (American Cyanimid HDS-16A) Catalyst----	80
32.	Concentration Profiles for Decahydro- quinoline and for <u>o</u> -propylaniline: 342°C and 500 psig (Run 1017); Co-Mo/Al ₂ O ₃ (American Cyanimid HDS- 16A) Catalyst-----	81
33.	Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1017); Co-Mo/Al ₂ O ₃ (American Cyanimid HDS-16A) catalyst----	82
34.	Chromatogram of the Extracted Nitrogen- Containing Reaction Products for the Acridine Experiment Run at 353°C and 2000 psig (Run 1052); Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst-----	86
35.	Mass Spectrum for Acridine-----	88
36.	Mass Spectrum for 1,2,3,4-tetrahydro- acridine-----	89
37.	Mass Spectrum for 1,2,3,4,9,10,13,14- octahydroacridine-----	90
38.	Mass Spectrum for sym-octahydroacridine-	91
39.	Mass Spectrum for perhydroacridine-----	92

FIGURE

40.	Mass Spectrum for α -(methylenecyclohexane) aniline-----	93
41.	Chromatogram for an Acridine Reactor Sample: 353°C and 2000 psig (Run 1050 - 10 minutes); Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A) catalyst-----	94
42.	Concentration Profiles for Acridine Hydrodenitrogenation: 340°C and 500 psig (Run 1042); Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst-----	95
43.	Concentration Profiles for Acridine Hydrodenitrogenation: 353°C and 2000 psig (Run 1050); Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst-----	96
44.	Pseudo First-Order Kinetic Analysis for Total Nitrogen Removal: 353°C and 2000 psig (Run 1050); Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst-----	98
45.	Quinoline Reaction Network in the Absence of Carbon Disulfide: 342°C and 500 psig; Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst-----	104
46.	Quinoline Reaction Network in the Presence of Carbon Disulfide-----	105
47.	Preliminary Acridine Reaction Network: 353°C and 2000 psig (Run 1050); Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A) Catalyst-----	110

TABLE

I	Distribution of Nitrogen in U.S. Petroleum Fields-----	4
II	Distribution of Nitrogen in Crude Oils--	6

TABLE

III	Nitrogen Compounds in Crude Oil Distillates-----	7
IV	Nitrogen Compounds Classified According to Basicity-----	8
V	Proportion of Basic Nitrogen Compounds in Crude Oils-----	9
VI	Occurrence of Nitrogen in Coal-----	11
VII	Rate Limiting Steps in the Hydrodenitro- genation of Quinoline-----	15
VIII	Rate Constants for the Hydrodenitro- genation of a Number of Nitrogen-Con- taining Compounds-----	17
IX	Typical Properties of White Oil-----	25
X	Typical Properties for Normal-Hexadecane	26
XI	Typical Properties for Quinoline and Acridine-----	27
XII	Typical Catalyst Properties-----	28
XIII	GC Conditions for Analysis of Off-Gas Reaction Products-----	31
XIV	Relative Response Factors for Various Nitrogen-Containing Compounds-----	41
XV	Gas Chromatograph Conditions for the Analysis of Quinoline and Acridine Nitrogen-Containing Reaction Products---	42
XVI	Mass Spectrometer Conditions-----	44
XVII	Reaction Conditions for Reactor Repro- ducibility Experiments-----	47
XVIII	Reaction Conditions for Mass Transfer Effects Study-----	53

TABLE

XIX	First-Order Rate Constants for the Disappearance of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline-----	57
XX	Reaction Conditions for Catalyst Survey-----	59
XXI	Kinetic Model Analysis for Catalysts Evaluation-----	60
XXIII	Reaction Conditions for the Analyzed Acridine Experiments-----	85

ABSTRACT

The hydrodenitrogenation of quinoline and of acridine was studied in a batch autoclave reactor between 342 and 353°C and between 500 and 2000 psig. The several commercial hydrotreating catalysts examined decreased in activity in the following order for quinoline hydrodenitrogenation: Ni-Mo/Al₂O₃, Ni-W/Al₂O₃, Ni-W/SiO₂-Al₂O₃, and Co-Mo/Al₂O₃.

The total nitrogen removal rate for quinoline was slightly greater than that for acridine and both followed pseudo first-order kinetics over a conversion range of 0 to 50%. Hydrogenation and cracking steps were both kinetically limiting. Nitrogen-containing reaction products for quinoline hydrodenitrogenation were 1,2,3,4-tetrahydroquinoline, 5,6,7,8-tetrahydroquinoline, decahydroquinoline and o-propyl-aniline. At 342°C and 500 psig quinoline and 1,2,3,4-tetrahydroquinoline were in thermodynamic equilibrium, and the disappearance of the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline followed pseudo first-order kinetics. Sixteen nitrogen-containing reaction products were found for acridine hydrodenitrogenation,

including 1,2,3,4-tetrahydroacridine, 1,2,3,4,9,10, 13,14-octahydroacridine, sym-octahydroacridine, perhydroacridine, and o-(methylenecyclohexane)aniline. The hydrogenolysis step for both quinoline and acridine appears to be through hydrogenated forms of these compounds. This is supported by bond strength arguments.

CHAPTER I

INTRODUCTION

A. Scope of Research

A very promising technology for the production of clean fossil fuels is catalytic hydroprocessing of petroleum residua, coal-derived liquids and shale oil. Presently, there is limited understanding of the chemistry and engineering of existing processes for hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of petroleum. It is also uncertain how to apply or to extend the petroleum technology to liquids derived from coal and shale oil.

One approach to understanding the catalytic chemistry of the complex processes of HDS and HDN is to study the reactivity of representative sulfur and nitrogen compounds found in various natural and processed petroleum stocks. This approach has been undertaken successfully in recent years by Cox and Berg (1962), Sonnemans (1973), Goudriaan (1974), Mayer (1974) and Cocchetto (1974).

The major objective of this research was to develop the techniques for studying HDN of multi-ring nitrogen-containing compounds under high-pressure liquid-phase conditions and to establish the HDN reaction network of acridine with a preliminary kinetic analysis. This work was conducted in a batch autoclave reactor system; quinoline was used in studies to develop HDN study techniques. The reactivity of acridine was then studied in the liquid phase with a highly hydroprocessed petroleum fraction, white oil, used as a carrier solvent. The white oil was a mixture of $C_{18} - C_{36}$ naphthenic and paraffinic hydrocarbons and contained no sulfur, nitrogen or aromatic compounds. This was verified by our analysis schemes. The reaction network was studied from 300 to 400°C and a hydrogen pressure of 500 to 2000 psig over a sulfided Ni-Mo/ Al_2O_3 catalyst (American Cyanimid HDS-9A). The aromatic nitrogen compound quinoline was used instead of acridine in preliminary experiments because its HDN reaction network is well documented (Goudriaan, 1974). These preliminary experiments include establishing experimental reactor procedures and reactor reproducibility and involved a nominal screening of various commercial hydroprocessing catalysts. These

catalysts include American Cyanimid HDS-16A (Co-Mo/ Al_2O_3) and HDS-9A (Ni-Mo/ Al_2O_3), Harshaw Ni4301 (Ni-W/ Al_2O_3 - SiO_2) and Ni4303 (Ni-W/ Al_2O_3), and NALCO Nt-550 (Ni-W/ Al_2O_3). All catalysts are studied in the sulfided state. A convenient analytical scheme for quantifying organic nitrogen compounds in white oil was developed utilizing a gas chromatograph with a nitrogen-specific detector. A gas chromatograph-mass spectrometer system was used to identify the reaction products of acridine.

B. Literature Survey

The purpose of this literature survey is to indicate that aromatic nitrogen-containing compounds such as quinoline and acridine are characteristically found in heavier petroleum fractions such as residua and coal-derived liquids, and such compounds are relevant to the study of the HDN process because of their limited reactivity. Excellent literature reviews concerning the broad areas of HDN and HDS have been compiled previously by Mayer (1974), Goudriaan (1974) and Schuit and Gates (1973).

All crude oils contain some nitrogen-containing compounds. Table I presents a summary of the

TABLE I

DISTRIBUTION OF NITROGEN IN U. S. PETROLEUM FIELDS ^a

<u>Nitrogen Content, %</u>	<u>No. of Fields</u>	<u>Percentage of Fields</u>
0.05	62*	40
0.05-0.10	35	23
0.10-0.20	29	19
0.20-0.50	22**	14
0.50	6***	4

* Texas and Wyoming fields primarily

** California and Wyoming fields

*** All California fields

a Tschamber and DeRuiter, 1966

nitrogen content in various United States petroleum fields. It appears that the California fields contain more nitrogen than other U.S. fields. Table II summarizes the nitrogen distribution in crude oils, according to boiling point fractions. The nitrogen content increases with increasing boiling point fraction, and residuum contains about 50 wt% of the total nitrogen found in crude oil. Table III indicates that quinolines constitute 8 to 32 wt% of the total nitrogen content in crude oil distillates. Schultz et al. (1973) have reported that acridine is present in coal-carbonization products.

A crude classification of organic nitrogen compounds in oils is according to basicity. Basic compounds have pKa in water greater than 2; non-basic compounds have pKa in water less than 2. Table IV presents a list of nitrogen compounds classified according to basicity. Quinoline and acridine are basic compounds by this criterion. Table V presents a summary of the percentage of basic nitrogen compounds in crude oils. The ratio of basic nitrogen compounds to total nitrogen is nearly constant at 25 - 35%, regardless of the overall nitrogen content. This

TABLE II

DISTRIBUTION OF NITROGEN IN CRUDE OILS ^a

Crude Oil	1		2		3	
Boiling Range, °C	Wt. %	% of Total	Wt. %	% of Total	Wt. %	% of Total
Total	.23	100.0	.28	100.0	.16	100.0
275	.005	0.1	---	-----	.003	0.1
275-310	.026	0.4	.01	0.4	.024	0.6
310-338	.036	1.0	.02	0.4	.030	1.1
338-365	.058	1.4	.05	1.1	.059	1.9
365-393	.105	2.5	.09	1.8	.096	3.1
393-422	.144	4.0	.13	2.9	.136	6.3
Residuum	.50	91.3	.53	92.9	.44	87.5

a Tschamber and DeRuiter, 1966

TABLE III

NITROGEN COMPOUNDS IN CRUDE OIL DISTILLATES ^a

<u>Group</u>	<u>Kuwait</u> <u>152-327°C</u>	<u>California</u> <u>370-455°C</u>
Indoles	9.4	7.2**
Carbazoles	29.4	43.3***
Benzcarbazoles	----	5.6
Pyridines	44.0	8.9*
Quinolines	8.3	32.0*
Pyrroles	8.9	----
Phenanthridines	----	3.0
	100.0%	100.0%

* Contain in part both N and O heteroatoms

** About 50% n-alkyl substituted

*** About 20% n-alkyl substituted

a Tschamber and DeRuiter, 1966

TABLE IV*

NITROGEN COMPOUNDS CLASSIFIED ACCORDING TO BASICITY

<u>Compound</u>	<u>pKa (H₂O)</u>
Ammonia	9.27
Imidazol	7.03
2-Methylpyridine	6.5
Acridine	5.60
Pyridine	5.23
5,6-Benzquinoline	5.15
Isoquinoline	5.14
Dimethylaniline	5.10
6,7-Benzquinoline	5.05
Quinoline	4.94
N-methylaniline	4.78
3,4-Benzacridine	4.70
2,3-Benzacridine	4.52
1,10-Phenanthroline	4.27
7,8-Benzquinoline	4.25
2,2-Bipyridine	4.23
Quinazoline	3.51
Phthalazine	3.47
1,2-Benzacridine	3.45
Phenanthridine	3.30
4,7-Phenanthroline	3.12
1,7-Phenanthroline	3.11
Cinnoline	2.70
Pyrazole	2.53
Thiazole	2.53
Pyridazine	2.33
Benztriazole	1.6
Pyrimidine	1.30
Indazole	1.3
Phenazine	1.23
Diphenylamine	0.85
Quinoxaline	0.8
Pyrazine	0.6
Pyrrole	0.4
Indole	----
Propionitrile	-0.8
Carbazole	-1

* Richter et al. (1952)

TABLE V

PROPORTION OF BASIC NITROGEN COMPOUNDS IN CRUDE OILS ^a

<u>Source</u>	<u>Basic N, Wt. %</u>	<u>Total N, Wt. %</u>	<u>N_B/N^*T, %</u>
Kuwait	.03	.12	25
TribuPetrolea	.033	.13	25
Mid Continent Mix	.025	.10	25
East Texas	.02	.08	25
West Texas	.03	.11	27
Wilmington	.14	.50	28
Santa Maria Valley	.19	.66	29
Ventura	.13	.42	31
Kansas	.04	.12	33
Kettleman Hills	.14	.41	34

N_B designates basic nitrogen

N_T designates total nitrogen in all forms

a Tschamber and DeRuiter, 1966

implies that the types of compounds present do not vary with petroleum source.

Nitrogen is present in coal to a much greater extent than in petroleum as demonstrated in Table VI. Many nitrogen compounds can be isolated from distillation tars produced from coal. These compounds include pyrroles, pyridines, indoles, anilines, quinolines, carbazoles, and several other compound classes present in lesser amounts. It is well known that coal tar is a rich source of aromatic nitrogen compounds such that commercial separation of these is feasible. Thus, it is clear that the same types of nitrogen-containing compounds found in petroleum are likely to be present in coal-derived liquids. More importantly, information secured on the hydrodenitrogenation of the important classes of nitrogen compounds is useful in understanding nitrogen removal both from petroleum and from coal-derived liquids.

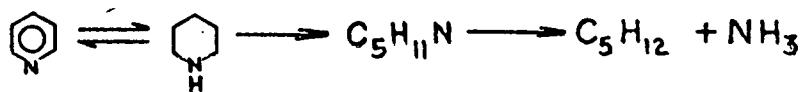
Catalytic hydroprocessing is part of the modern processing technology for removal of nitrogen from oils. Although the practice of catalytic hydrodenitrogenation (HDN) is important, the literature contains little practical information and almost no basic information about the catalytic chemistry.

TABLE VI

OCCURRENCE OF NITROGEN IN COAL a

	<u>Nitrogen Wt.%</u>
Peat	0.7-3.4
Brown Coal	0.4-2.5
Bituminous Coal	0.6-2.8
Anthracite Coal	0.2-1.5
Petroleum	0 -0.9

a Tschamber and DeRuiter, 1966


Removal of nitrogen is similar to removal of sulfur to the extent that processing severity increases strongly from light distillates to the heaviest feedstocks. Nitrogen removal should involve many of the same problems as sulfur removal especially that of catalyst deactivation since nitrogen removal is often practiced simultaneously with sulfur removal on heavy feeds.

Flinn et al. (1962) showed that HDN proceeds rapidly with low-boiling charge stocks but becomes much slower as the boiling range increases. They observed that complete nitrogen removal is difficult even at 6000 psig for heavy vacuum gas oils and residua. Haensel et al. (1963) found progressively greater nitrogen removal while extending the pressure range to 24,000 psig. The reduced rate of HDN with higher-boiling feedstocks was attributed to the presence of aromatic nitrogen compounds and to the presence of aromatic hydrocarbons which can competitively adsorb on the catalyst. Haensel et al. (1963) suggested this when they found that nitrogen removal was lower in the presence of methylnaphthalene than in white oil.

It has been suggested that nitrogen removal from aromatic compounds takes place through an initial ring saturation step followed by ring cracking and subsequent nitrogen atom removal. McIlvried (1970) and Sonnemans (1973) confirmed this for pyridine HDN, and Goudriaan (1974) reported similar results for quinoline. The HDN reaction networks for pyridine and quinoline are shown in Figure 1. Table VII presents a summary of reported research on quinoline. Proposed rate limiting steps are given. Table VII indicates that the hydrogenation step (1)* is rate limiting at low temperatures ($< 320^{\circ}\text{C}$) and thermodynamically limiting at high temperatures ($> 320^{\circ}\text{C}$). At intermediate temperatures it appears that one of the hydro- genolysis steps (2 or 3) would be rate limiting. Using mass spectroscopy, Beugling (1971) identified a quinoline reaction product with a molecular weight of 257 and a chemical formula of $\text{C}_{18}\text{H}_{27}\text{N}$. The presence of this com- pound implies the occurrence of alkyl transfer reac- tions during the HDN of quinoline.

* Refer to Figure 1.

Pyridine Reaction Network. Sonnemans (1973)

Quinoline Reaction Network. Goudriaan (1974)

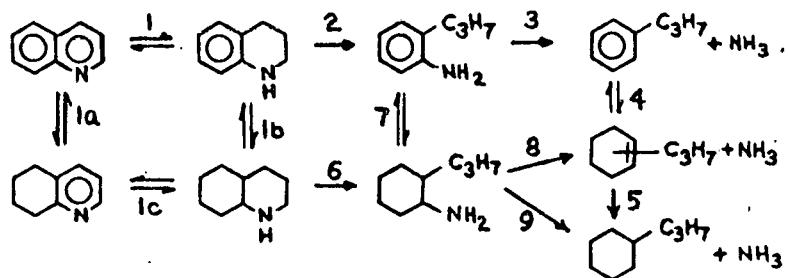


Figure 1. Hydrodenitrogenation Reaction Networks for Pyridine and Quinoline

TABLE VII*

RATE LIMITING STEPS IN THE HYDRODENITROGENATION OF QUINOLINE

<u>Reference</u>	<u>Diluent</u>	<u>% N in Feed</u>	<u>Catalyst</u>	<u>Temperature °C</u>	<u>Pressure, bar</u>	<u>Rate limited by step no^a</u>
Flinn, <u>et al.</u> (1962)	Middle Distillate	0.5	Ni-W/Al ₂ O ₃	315	70	1
Doelman & Vlugter (1963)	None	10.8	Co-Mo/Al ₂ O ₃	300 350-400 445	80 20 20-70	1 ^b 3 ^c 1 ^c
Ryffel (1960)	Refined Oil Fraction	2	Co-Mo/Al ₂ O ₃	385-400	20-70	3
Damon (1960)	Refined Oil Fraction	2	Co-Mo/Al ₂ O ₃	385-400	20-70	3
Aboul-Gheit and Abdou (1972)	Paraffin Oil	0.5	Co-Mo/Al ₂ O ₃	350-400	200	2

a) Step numbers correspond to Figure 1

* Goudriaan (1974)

Flinn et al. (1962) reported that quinoline is far more difficult to hydrodenitrogenate than aniline or n-butylamine, which are also basic, and indole, which is non-basic. Flinn et al. concluded that nitrogen compounds containing an aromatic-type heterocyclic ring are the more difficult to hydrodenitrogenate. Flinn et al. further concluded that the rate-limiting step in HDN is the saturation of aromatic-type, resonance-stabilized structures and that these structures can be present either as original components or as side-reaction products. Both quinoline and acridine fit this criterion.

There have been very few kinetic modeling studies on hydrodenitrogenation and most of these have concerned pyridine. Cox and Berg (1962) have reported that the HDN of both quinoline and acridine in toluene (and for 6-membered rings in general) follow pseudo first-order reaction kinetics. However, they found that many 5-membered ring nitrogen compounds follow second-order kinetics. Table VIII presents a summary of their results. As indicated in Table VIII, they found that the rate constants were a function of initial nitrogen compound concentration. This implies the

TABLE VIII

RATE CONSTANTS FOR THE HYDRODENITROGENATION OF A NUMBER OF NITROGEN-
CONTAINING COMPOUNDS*

<u>Compound</u>	<u>Initial Concentration</u> Weight % N	<u>K,</u> 1/HR-Weight % N	<u>95% Confidence</u> <u>Limits</u>
-----Non-linear-----			
Pyrrcle	0.335	2.82	+0.418
Pyrrcle	0.966	0.315	+0.0655
Pyrrole	2.570	9.93	+2.157
N-methyl pyrrole	0.303	63.05	+3.22
Pyrrolidine	0.3175	5.706	+0.435
Pyrrolidine	0.976	0.858	+0.00613
Pyrrolidine	2.290	25.50	+1.725
N-methyl pyrrolidine	0.306	42.63	+3.51
N-butyl pyrrolidine	0.295	2.07	None
Indole	0.290		
<u>Compound</u>	<u>Initial Concentration</u> Weight % N	<u>K,</u> 1/HR.	<u>95% Confidence</u> <u>Limits</u>
Pyrazine	0.305	13.74	+1.325
Pyridine	0.342	1.858	+0.226
Pyridine	0.980	0.576	+0.0324
Pyridine	2.210	0.214	+0.0177

TABLE VIII CONTINUED:

<u>Compound</u>	<u>Initial Concentration</u> <u>Weight % N.</u>	<u>K,</u> <u>1/HR.</u>	<u>95% Confidence</u> <u>Limits</u>
2-picoline	0.301	2.651	+0.616
3-picoline	0.319	1.040	+0.098
4-picoline	0.306	0.385	+0.081
2-ethyl pyridine	0.301	0.864	+0.093
4-ethyl pyridine	0.296	0.411	None
4-isopropyl pyridine	0.3005	0.125	None
2-benzyl pyridine	0.302	2.588	+0.162
4-benzyl pyridine	0.306	-----Non-linear-----	
2,4 lutidine	0.3045	0.272	+0.063
2,6 lutidine	0.296	1.800	+0.058
2,6 lutidine	1.000	0.718	+0.135
2,6 lutidine	2.450	0.492	+0.033
3,4 lutidine	0.291	0.0965	None
3,5 lutidine	0.291	0.279	None
3-ethyl-4-methyl pyridine	0.3655	0.114	+0.0765
2,4,6-collidine	0.307	0.512	None
Piperazine	0.307	-----Non-linear-----	
Piperidine	0.307	7.944	+1.01
2-methyl piperidine	0.302	9.56	+2.32
2,6-dimethyl piperidine	.302	6.92	+0.556
Quinoline	0.288	0.378	None
Acridine	0.2965	0.399	None

* Cox and Berg (1962)

need for inhibition terms in the kinetic model. Cox and Berg found that quinoline and acridine have similar rate constants and that these compounds are harder to hydrodenitrogenate than many others listed in Table VIII.

Flinn et al. (1963) also found that several organic nitrogen-containing compounds, including quinoline, indole, n-butylamine and aniline, followed pseudo first-order reaction kinetics. McIlvried (1970) summarized data for the hydrodenitrogenation of pyridine with a Langmuir-Hinshelwood kinetic model accounting for inhibition by ammonia and organic nitrogen-containing compounds. Sommemans et al. (1973) found that the following kinetic expression represented the rate of pyridine hydrogenation over an unsulfided cobalt-molybdenum oxide on alumina catalyst.

$$r = \frac{kp_p p_{H_2}^n}{p_{p_o}}$$

where

r = rate of pyridine hydrogenation

k = rate constant

p_{p_o} = initial pyridine partial pressure

p_p = pyridine partial pressure

p_{H_2} = hydrogen partial pressure

n = constant = 1.0 at 250°C
1.5 at 300-375°C

The above kinetic expression suggests that the strength of adsorption of pyridine and its hydrogenation products are equal. Sonnemans et al. (1973) found similar results for sulfided catalysts. However, the validity of this claim is unclear. Most industrial hydrodenitrogenation operations take place in the presence of sulfur compounds and with a presulfided catalyst.

Also, at the present time it is unclear which catalyst is best for hydrodenitrogenation operations. Many industrial operations where hydrodesulfurization and hydrodenitrogenation take place simultaneously use a cobalt-molybdenum supported on alumina catalyst. However, several commercial catalyst companies, such as American Cyanimid, have developed nickel-molybdenum and nickel-tungsten catalysts specifically for hydrodenitrogenation.

CHAPTER 2

EXPERIMENTAL APPARATUS AND PROCEDURE

A. Reactor System

This section includes a summary of the reactor system and operation. Also included is the catalyst sulfiding procedure. Both a 300 cc and a 1000 cc autoclave batch reactors were used for the hydrodenitrogenation (HDN) studies. Figure 2 presents a schematic of a reactor system. Its features include a catalyst injection system and gas sampling capabilities. Porous stainless-steel filters (0.5 μ m porosity) were used as a gas sparger and as a filter for securing liquid samples.

Operation of the unit was as follows. The solvent medium, white oil, and nitrogen-containing compound were initially placed in the reactor. In the quinoline studies quinoline was held in the loading device. The oil was purged of oxygen, pressured with hydrogen gas and heated to reaction conditions. A slurry of catalyst and white oil was kept in the load-

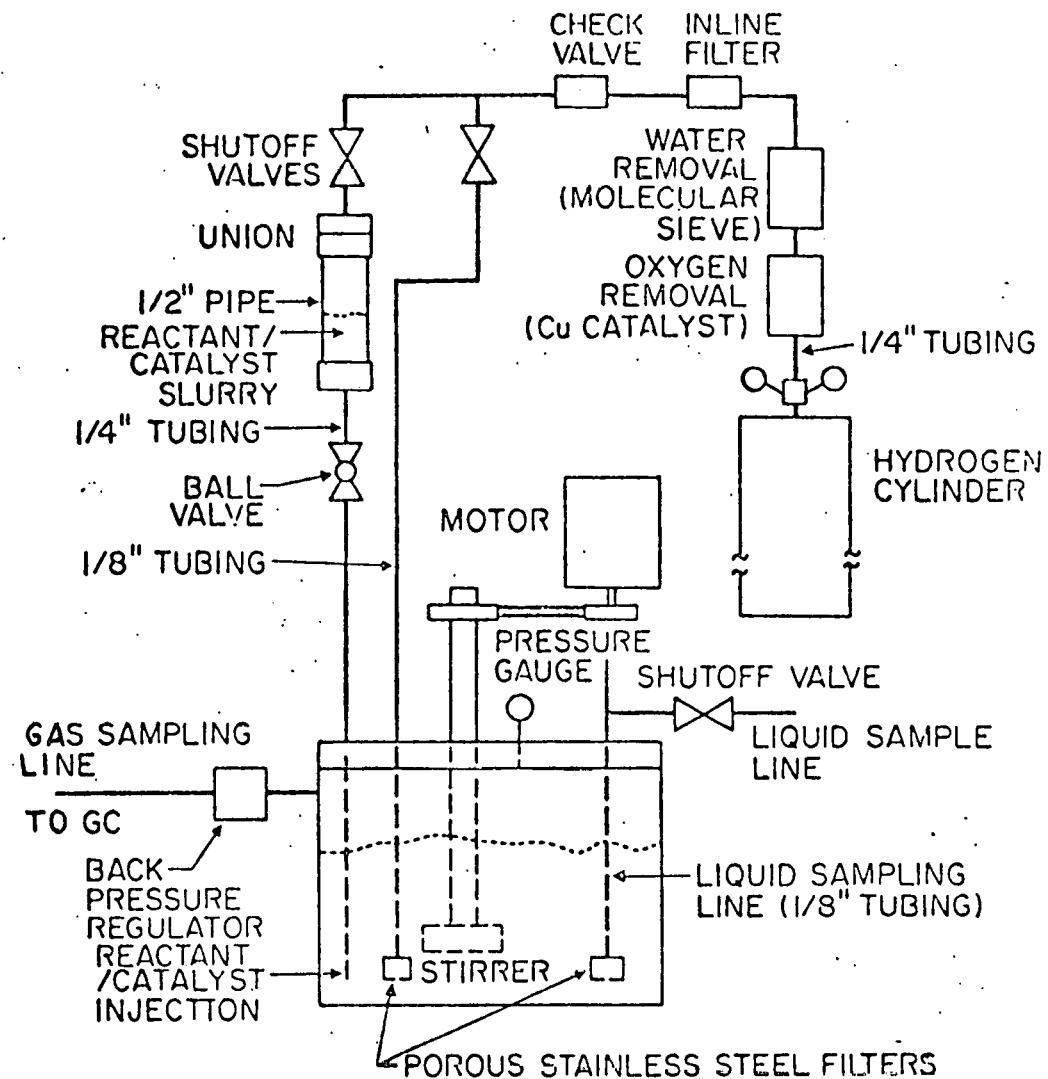


Figure 2. Schematic of High-Pressure Autoclave Batch Reactor

ing device to this point. When reaction conditions had stabilized, the slurry was injected into the reactor using hydrogen gas as a driving force. Liquid samples passed through a porous stainless steel filter, which was used to inhibit the loss of catalyst, and were collected downstream of a valve used to break pressure. The temperature was controlled and monitored using the thermowell thermocouple immersed in the reaction mixture from the autoclave bulkhead. A Thermoelectric Model 800 temperature controller was used to control the temperature.

Most commercial hydroprocessing catalysts consist of a transition metal or metals, such as cobalt and molybdenum, impregnated on an alumina support. The metals are present as oxides. It is standard procedure industrially to presulfide the catalyst before use to convert the metal oxides to sulfides. All catalysts used in this research were presulfided according to the following procedures. The catalyst was presulfided in a Pyrex glass tube for 2 hours at 325°C or 400°C. A mixture of 10% H₂S in H₂ flowed over the catalyst such that it saw approximately 10 times the stoichiometric amount of sulfur necessary for complete conversion of the metal oxides on the catalyst to the sulfidic form. The catalyst was then

cooled and placed in the reactor loading device.

B. Catalyst and Reaction Compound Properties

Either white oil or normal-hexadecane was used as a reaction solvent medium. White oil (Parol 70 TECH) is a white mineral oil obtained from Penreco. White oil is a natural stock consisting of C₁₈-C₃₆ (193-260°C) paraffinic and naphthenic hydrocarbons which have been hydrotreated and oleum treated. Typical properties are presented in Table IX. White oil contains essentially no aromatics or nitrogen and sulfur compounds. Normal-hexadecane was obtained from Columbia Organic Chemicals Company. Typical properties for normal-hexadecane are presented in Table X.

Quinoline and acridine were obtained from Columbia Organic Chemicals Company. Typical properties are shown in Table XI.

Table XII presents a summary of typical catalyst properties obtained from manufacturers' brochures.

TABLE IX

TYPICAL PROPERTIES OF WHITE OIL*

Viscosity at 100°F (37.8°C)	9.7/12.2 centipoises
Specific Gravity, 60°/60°F (15.6°C)	0.840/0.855
77°/77°F (25°C)	0.834/0.849
Flash Point, °F ASTM	330
Pour Point, °F ASTM	15
Refractive Index, n_D^{20}	1.4635
UV Adsorbance	1%
Initial Boiling Point, °C	193 minimum
Distillation End Point, °C	260 maximum
Color	colorless

* Supplied by Manufacturer

TABLE X

TYPICAL PROPERTIES FOR NORMAL-HEXADECANE*

Molecular Weight	226.45
Specific Gravity	0.774 $\frac{20^\circ}{4}$
Melting Point, °C	18.5, 16.2
Boiling Point, °C	287.5
Purity (from Manufacturer)	99%

* Dean (1973)

TABLE XI

TYPICAL PROPERTIES FOR QUINOLINE AND ACRIDINE*

	<u>Quinoline</u>	<u>Acridine</u>
Purity (from Manufacturer)	99%	99%
Molecular Weight	129.16	179.22
Melting Point, °C	-15.6	110-1
Boiling Point, °C	237.1 ^{747mm}	346
Specific Gravity	1.095 ^{20°}	-----

* Dean (1973)

TABLE XII

TYPICAL CATALYST PROPERTIES

	<u>Cyanimid</u> <u>HDS-9A</u>	<u>NALCO</u> <u>NT-550</u>	<u>Harshaw</u> <u>4303 E</u>	<u>Harshaw</u> <u>4301 E</u>	<u>Cyanimid</u> <u>HDS-16A</u>
Composition, wt %	NiO, 3.0-4.0 MoO ₃ , 17.5-18.5 Na ₂ O, 0.04 Fe, 0.05	WO ₃ , 22.0 NiO, 5.1	WO ₃ , 18 NiO, 6 Al ₂ O ₃	WO ₃ , 18 NiO, 6	MoO ₃ , 12.2 CoO, 5.7 Na ₂ O, 0.03 Fe, 0.04
Surface area, m ² /g	-----	250	152	228	-----
Pore volume, cc/g	-----	0.5	0.54	0.37	-----

C. Analytical Procedures

1. Introduction

There were two types of reaction products which required quantitative analysis. These were the reactor off-gas and liquid reaction products. The off-gas consisted of hydrogen with trace amounts of light hydrocarbons (C₁ to C₅) and of ammonia and hydrogen sulfide. The liquid reaction products consisted of organic nitrogen compounds in white oil or in normal-hexadecane. Hydrocarbon reaction products in the liquid samples were not analyzed.

While gas chromatographic technology for the analysis of the off-gas is well developed, an adequate and convenient analytical scheme needed to be developed for the analysis of the liquid products with nitrogen-containing compounds. Gas chromatography (GC) and liquid chromatography (LC) were investigated. It was found that GC with a nitrogen-specific detector provided suitable means for quantitative analysis of nitrogen-containing liquid reaction products.

2. Off-Gas Analysis

An F and M Laboratory Model 700 GC was used

for the analysis of the off-gas reaction products. Columns and conditions are given in Table XIII. The main purpose of the off-gas analysis was to ensure that the solvent was not being cracked significantly and to measure the hydrogen sulfide content of the gas phase.

3. Liquid Reaction Products Analysis - A Comparison of Gas Chromatography and Liquid Chromatography

The search for adequate and convenient quantitative analysis of liquid reaction products containing nitrogen centered on studying the feasibilities of liquid chromatography (LC) and gas chromatography (GC). Comments and suggestions were secured from various companies and organizations including Oak Ridge National Laboratory, Gulf Oil, American Cyanimid, E. I. duPont de Nemours, the Pittsburgh Energy Research Center, Hewlett-Packard, Perkin-Elmer and Tracor. After several white oil samples doped with organic sulfur or nitrogen-containing compounds were analyzed by both LC and GC, it was determined that GC with a nitrogen specific detector and a sulfur specific detector would provide suitable means for quantitative analysis of heteroatom-containing liquid reaction products.

TABLE XIII

GC CONDITIONS FOR ANALYSIS OF OFF-GAS REACTION PRODUCTS

	<u>Column A</u>	<u>Column B</u>
Compounds Analyzed (with relative retention times)		
methane	0.22	0.33
ethane	0.29	0.43
propane	0.46	0.61
butane	1.00	1.00
ammonia	-----	3.87
hydrogen sulfide	0.47	0.76
Carrier Gas		
Flowrate, cc/min	Helium 20.3	Helium 18.9
Detector	Thermal Conductivity (TC)	TC
Current, ma	205	205
Temperature, °C	204	204
Temperature, °C		
Sampling value	70	70
Column	ambient	119
Injection Port	160-165	160-165

GC: F&M Laboratory Model 700

Column A: n-Octane coated on Porasil C (Waters
Associates)Column B: Poropak T
80-100 mesh
8' X 1/8" stainless steel column

Figures 3, 4, 5 and 6 present gas chromatograms run on a Perkin-Elmer Model 3920 GC. Chromatograms in Figures 3 and 4 were run using the FID (flame ionization detector) mode. Figure 3 shows a pure white oil sample while Figure 4 shows a sample of 1.3 wt% technical grade quinoline in white oil. Figure 5 presents a gas chromatogram of 1.3 wt% quinoline in white oil run on the nitrogen specific detector mode. All of the peaks shown in Figure 5 are due to organic nitrogen-containing compounds with essentially no interference from the white oil background. A comparison of Figures 4 and 5 shows that complete baseline resolution of the complex mixture of hydrocarbons in white oil is not necessary for the quantitative analysis of nitrogen-containing compounds. Figure 6 shows a gas chromatogram of a sample of 0.25 wt% dibenzothiophene in white oil run on a Dexsil SCOT (Support coated open tubular column) column with monitoring both by the sulfur specific detector (FPD-flame photometric detector) and FID. Figure 6 indicates that there was complete baseline resolution of sulfur-containing compounds. A comparison of Figures 3 and 6 indicates that the SCOT column provides a better separation of the white oil.

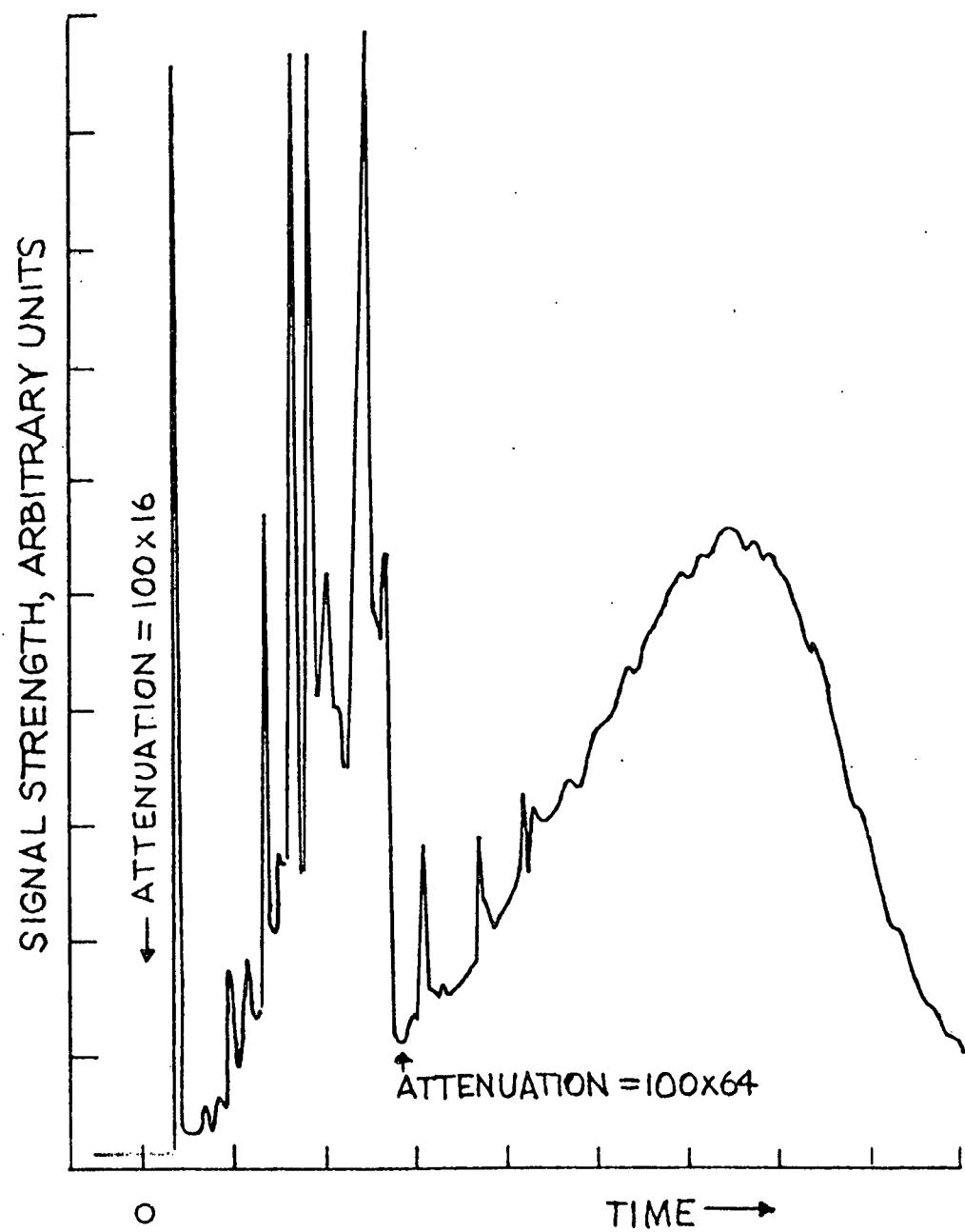


Figure 3. Gas Chromatogram of White Oil obtained with a Flame Ionization Detector: Perkin-Elmer GC, 6 ft. OV-17 on Chromasorb Q glass column. Temperature programmed 120-280°C at 8°C/min. 0.5 μ l injected.

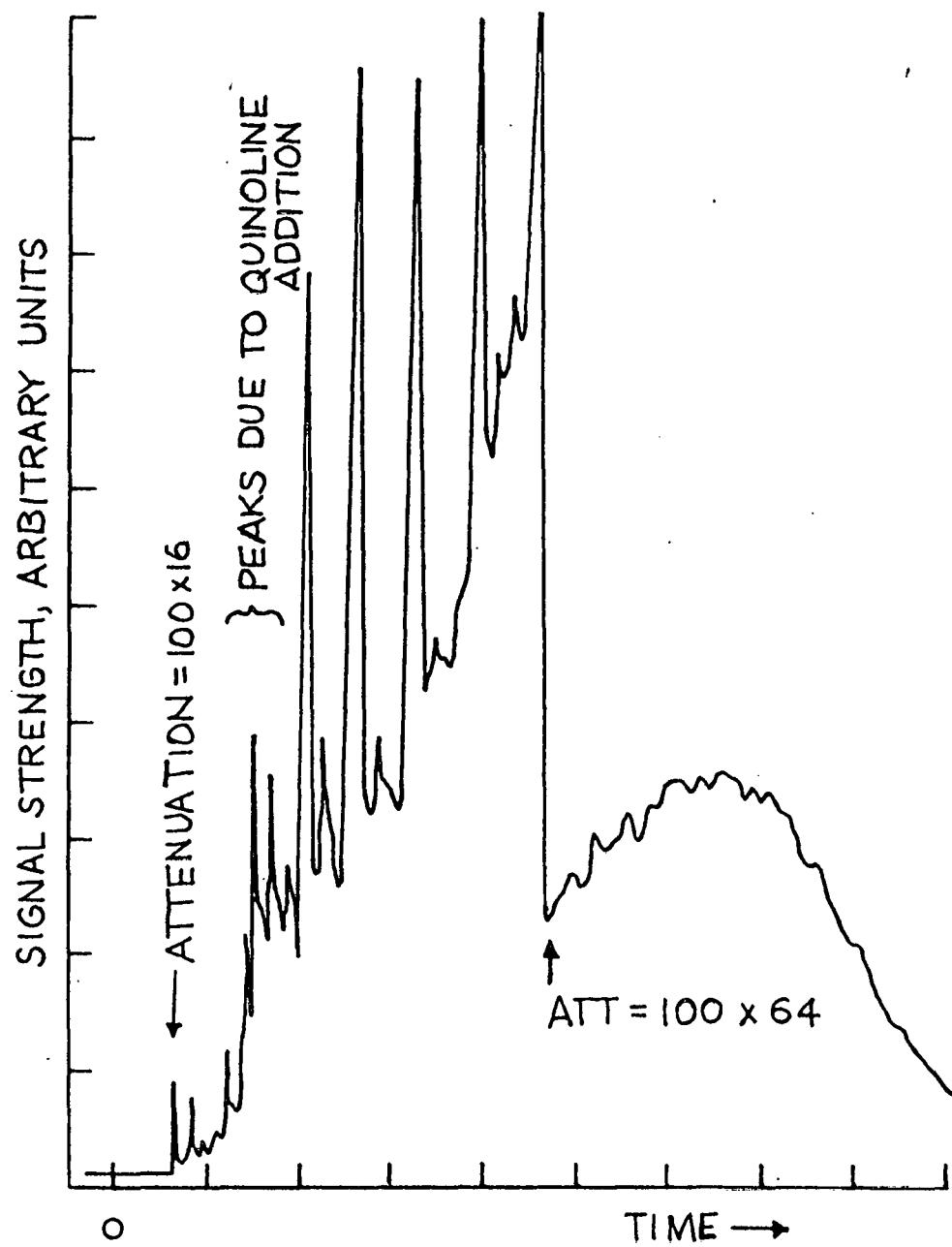


Figure 4. Gas Chromatogram of White Oil with 1.3 wt% Technical Grade Quinoline obtained with a Flame Ionization Detector: operating conditions same as for Figure 3.

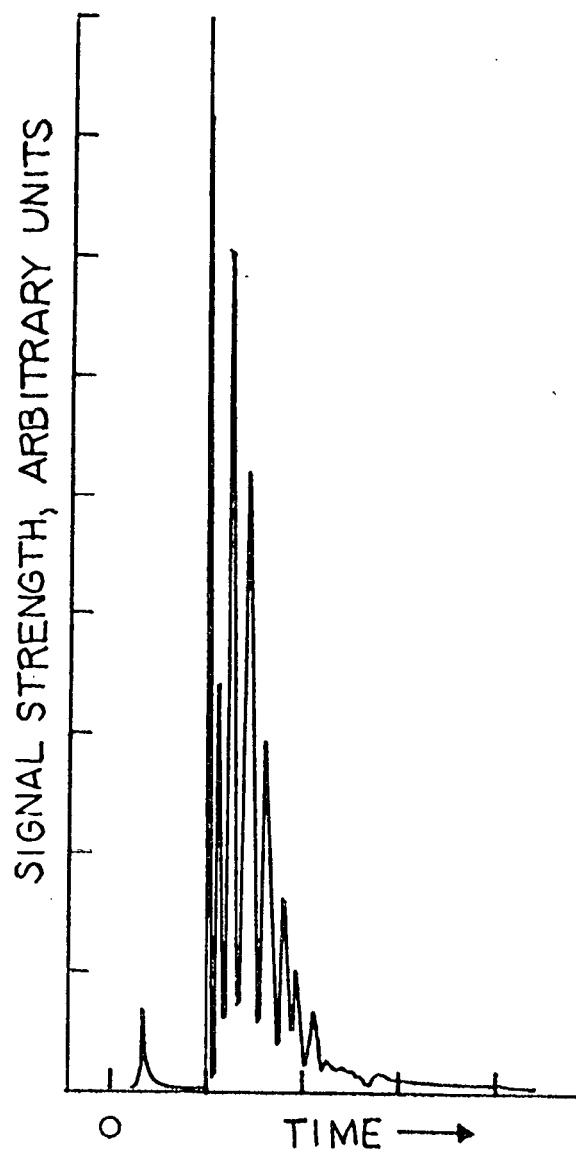


Figure 5. Gas Chromatogram of White Oil with 1.3 wt% Technical Grade Quinoline obtained with a Perkin-Elmer Nitrogen Specific Detector: operating conditions same as for Figure 3.

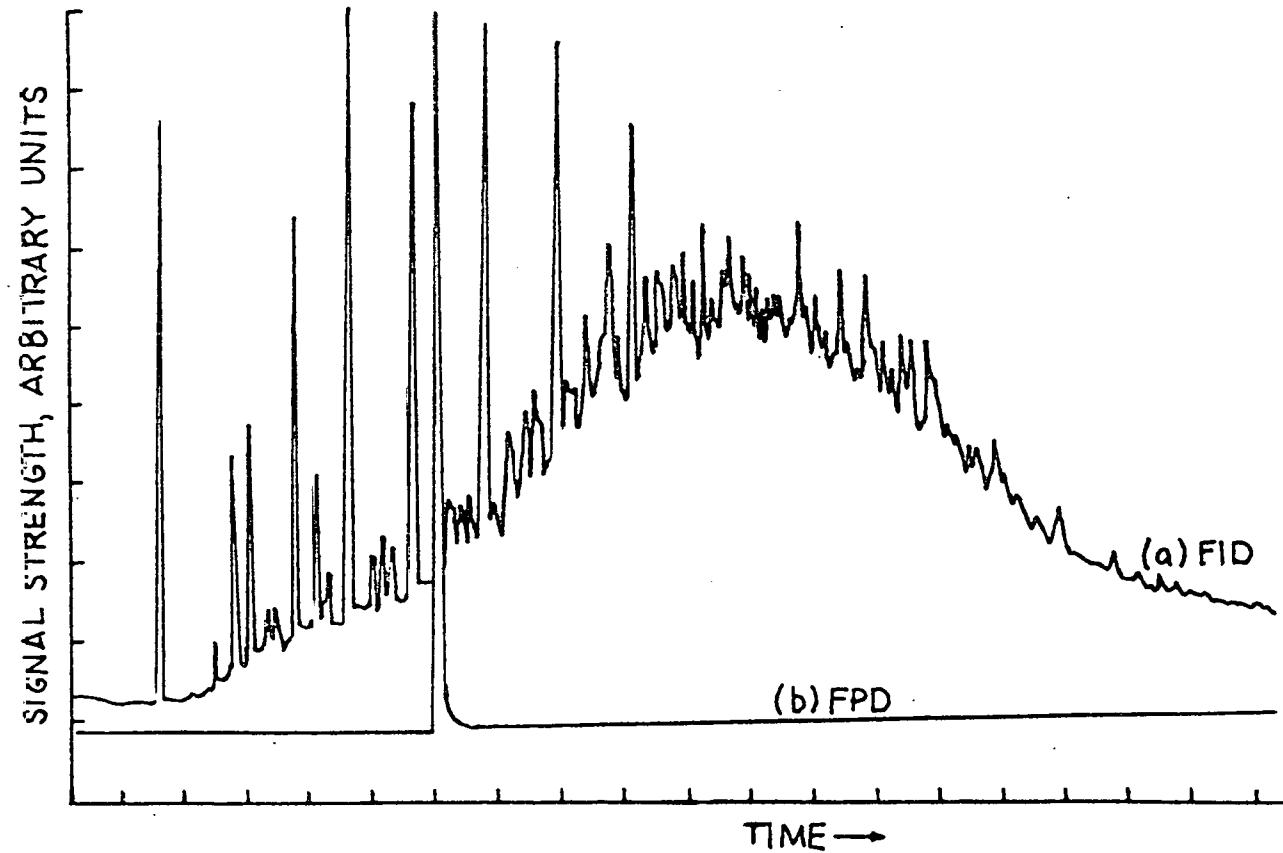


Figure 6. Gas Chromatogram of Dibenzothiophene in White Oil obtained with a Flame Ionization Detector (Curve a) and with a Sulfur Specific Detector (Curve b): Perkin-Elmer GC with a Dexsil SCOT column 0.02 in. by 50 ft., temperature programmed 150-300°C at 4°C/min.

Figure 7 presents a chromatogram of 1.3 wt% technical grade quinoline in white oil run on a Perkin-Elmer Model 601 liquid chromatograph with an UV (ultraviolet) detector. A comparison of Figures 4 and 7 indicates that the GC produced better resolution than LC. It is important to note that while the UV detector is sensitive to unsaturated compounds, it is not sensitive to saturated species. This is a definite limitation, especially to the HDN work, since it is often reported that the reaction network of aromatic nitrogen compounds involves saturation of the ring structure as the first step.

Economics were also considered in choosing LC over GC. The purchase cost of an LC is 50 to 100% higher than that of a GC. Expensive high purity solvents make the operating costs of an LC quite high. LC technology is not as far advanced as GC technology. This leads to a poorer quantity of applications literature available for the LC.

4. Analysis and Identification of Nitrogen-Containing Reaction Products of Quinoline and Acridine

A Perkin-Elmer Model 3920B gas chromatograph with a Perkin-Elmer nitrogen specific detector was used

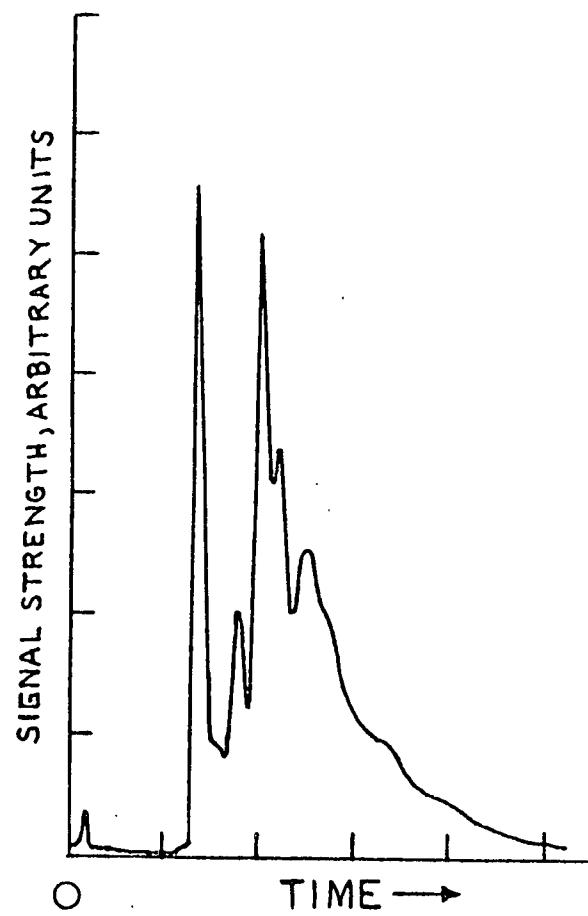


Figure 7. Liquid Chromatogram of 1.3 wt% Technical Grade Quinoline in White Oil: Perkin-Elmer Model 601 LC, ultraviolet detector, OD SIL-X-IRP column (2.54 mm by 0.5 m), 55°C isothermal, 40% MeOH in H₂O solvent.

to quantify the nitrogen-containing reaction products of quinoline and acridine. The detector response was monitored with a Columbia Scientific Industries Supergrator-2 integrator. The response of quinoline was found to be linear over the concentration range of interest as shown in Figure 8. A list of relative response factors for some nitrogen-containing compounds are shown in Table XIV. Except for aniline the response factors of the nitrogen compounds differ by no more than 25%. Since all the nitrogen-containing reaction products for quinoline or acridine were not available commercially, it was assumed that the response factors for the nitrogen-containing reaction products were the same as that for the starting nitrogen compound.

Chromatographic conditions for the analysis of quinoline products and of acridine products are given in Table XV. Many other columns and conditions were tried but were found to be unsuccessful for one or more reasons. Details are presented in Appendix F. A recurring problem throughout this research was the stability of the chromatographic system. The high molecular weight reaction medium (white oil) and possibly absorption of nitrogen-containing compounds on the column

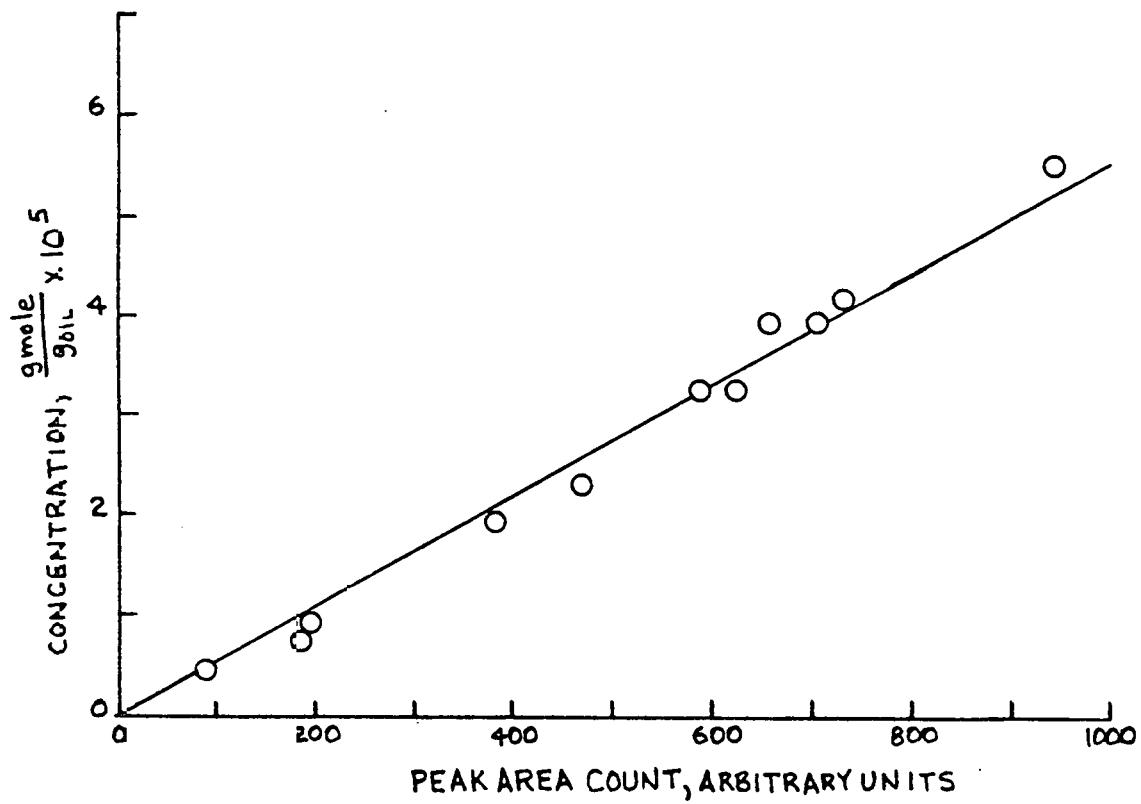


Figure 8. Calibration Curve for Quinoline: operating conditions given in Table XV.

TABLE XIV

RELATIVE RESPONSE FACTORS FOR VARIOUS NITROGEN-
CONTAINING COMPOUNDS

<u>Compound</u>	<u>Relative Response Factor</u>
Acridine	1.00
1,2,3,4-tetrahydroquinoline	0.987
sym-octahydroacridine	0.882
n-propylaniline	0.862
Quinoline	0.804
Aniline	1.364

$$\text{RELATIVE RESPONSE FACTOR} = \frac{[\text{CONCENTRATION}]_i / [\text{PEAK AREA}]_i}{[\text{CONCENTRATION}]_{\text{ACRIDINE}} / [\text{PEAK AREA}]_{\text{ACRIDINE}}}$$

CONDITIONS: PE3920B GC
Nitrogen Specific Detector

Column: 5' X 1/8" Glass Apiezon L
(2% KOH) Column, 80-100 mesh,
195°C Isothermal

Injector: 300°C
Interface: 300°C
Carrier Gas: Helium at 30 cc/min

TABLE XV

GAS CHROMATOGRAPH CONDITIONS FOR THE ANALYSIS OF QUINOLINE AND
ACRIDINE NITROGEN-CONTAINING REACTION PRODUCTS

	<u>Quinoline</u>	<u>Acridine</u>
Column	6' X 1/8" Chromosorb 103	5' X 1/8" Glass Apiezon (2% KOH)
Mesh Size	60-80	80-100
Carrier Gas	Helium	Helium
Flowrate, cc/min	12-20	30
Nitrogen Detector Settings		
Current Setting	5.0-6.0	6.0
H ₂ Pressure, psig	5.0	5.0
Air Pressure, psig	50	50
Injector Temperature, °C	250	300
Interface Temperature, °C	300	300

were blamed for this instability. It was felt that the high temperatures required to elute the white oil and the large amount of white oil which passed through the detector along with the nitrogen compounds contributed to the poor stability. Response factors changed as much as 50% on a given day and changed possibly an order of magnitude from day to day. For the quinoline and acridine experiments standards were run after every 3 to 5 samples to overcome this problem.

A mass spectrometer (HP 5930A) - gas chromatograph (HP 5750) system was used to identify the nitrogen-containing reaction products of acridine. The mass spectrometer conditions are given in Table XVI. The chromatographic column and conditions were similar to those given for acridine in Table XV. A thermal conductivity detector was used to monitor the gas chromatograph effluent. Detailed mass spectroscopic procedures are presented in Appendix H. The procedure for extracting the nitrogen-containing compounds is presented in Appendix G.

TABLE XVI

MASS SPECTROMETER CONDITIONS

Ionization Voltage	70 (ev)
Pressure	2×10^{-6} torr
Source temperature	100°C
Chromatograph-Spectrometer	
Interface Temperature	200°C

CHAPTER III

RESULTS

A. Preliminary Experiments: Hydrodenitrogenation of Quinoline

This work was performed within the ERDA Hydroprocessing Contract No. E(49-18)-2028 at the University of Delaware. Principal experimenters were the author and Dr. Stuart Shih. The hydrodenitrogenation of quinoline was studied initially to evaluate the performance of two autoclave reactor systems and to evaluate the relative catalyst activity of several commercially available hydroprocessing catalysts. In all of this quinoline work the catalysts were pre-sulfided, but no CS₂ was added to the reaction medium.

1. Activity of Blank Reactor

Two runs without catalyst were performed by Dr. Shih to analyze any intrinsic activity of the autoclave reactor system. One experiment had a feed of quinoline in white oil and another had 1,2,3,4-tetrahydroquinoline in white oil. The reaction condi-

tions were 342°C and 500 psig. These experiments showed that the rate of reaction without catalyst was very slow. The total nitrogen removal over a four hour period was less than 5%. The total nitrogen removal would be about 50% in 6 hours at these conditions if catalyst were present.

2. Reactor Reproducibility

Two quinoline in white oil experiments were made to evaluate reactor reproducibility between the 300 cc and 1000 cc autoclave reactors. These runs were made with Ni-Mo/Al₂O₃ (American Cyanimid HDS-9A) catalyst. Reaction conditions are shown in Table XVII. These runs indicated that quinoline is rapidly hydrogenated to 1,2,3,4-tetrahydroquinoline and that o-propylaniline and decahydroquinoline are also formed. Figure 9 shows the concentration ratio of tetrahydroquinoline to quinoline plotted versus time for the two experiments. The ratio lines-out at a constant value of about 7.5 indicating that the compounds are in equilibrium. An experiment starting with 1,2,3,4-tetrahydroquinoline established the same constant concentration ratio confirming equilibrium between quinoline and 1,2,3,4-tetrahydroquinoline (Shih, 1976).

TABLE XVII

REACTION CONDITIONS FOR REACTOR REPRODUCIBILITY EXPERIMENTS

Temperature	342°C
Pressure	500 psig
Reactant	0.85 wt% quinoline in white oil
Autoclave stirring speed	1250 rpm
Catalyst type	Ni-Mo/Al ₂ O ₃ (American Cyanimid HDS-9A)
Catalyst Particle size	100-140 mesh (125 μ m)
Catalyst Concentration	2g/500 cc oil
Catalyst Presulfided at	325°C
No CS ₂ added to reaction medium	

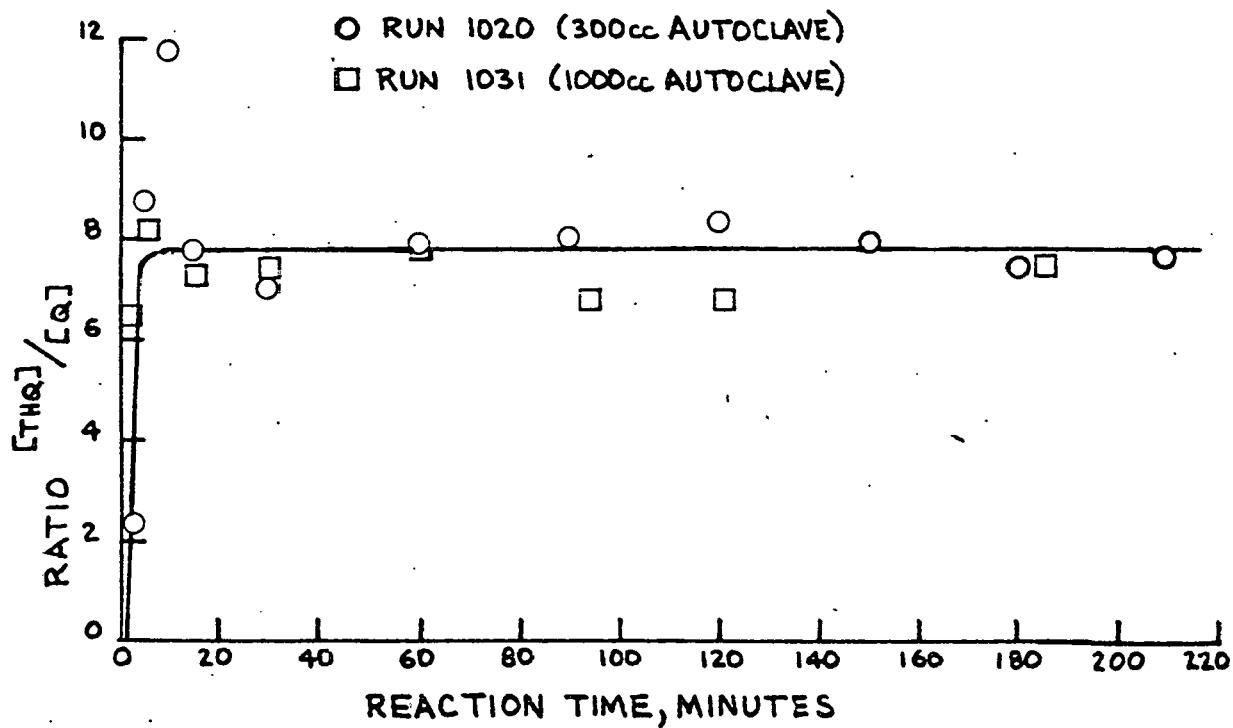


Figure 9. Concentration Ratio of 1,2,3,4-tetrahydroquinoline to Quinoline for the Reactor Reproducibility Experiments: Quinoline Hydrodenitrogenation at 342°C and 500 psig; Ni-Mo/Al₂O₃ (American Cyanimid HDS-9A) catalyst.

Reaction reproducibility was evaluated through comparison of pseudo first-order rate constants for the disappearance of the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline. Figure 10 presents a plot of the logarithm of the quinoline plus tetrahydroquinoline concentration versus time. A least squares analysis produced the rate constants and correlation coefficients* shown in Figure 10. The two sets of data produced rate constants which differed by less than 2%. Figure 11 presents a pseudo first-order kinetic analysis for total nitrogen removal for the reproducibility experiments. The rate constants agreed to two significant figures and the coefficients of correlation indicated a reasonably good fit of the data. Detailed mathematics on the kinetic analysis are presented in Appendix A, and detailed concentration profile data are given in Appendix B.

* The coefficient of correlation is the ratio of unexplained variation to the total variation. Therefore, if the data fit the model perfectly, the correlation coefficient is ± 1.0 .

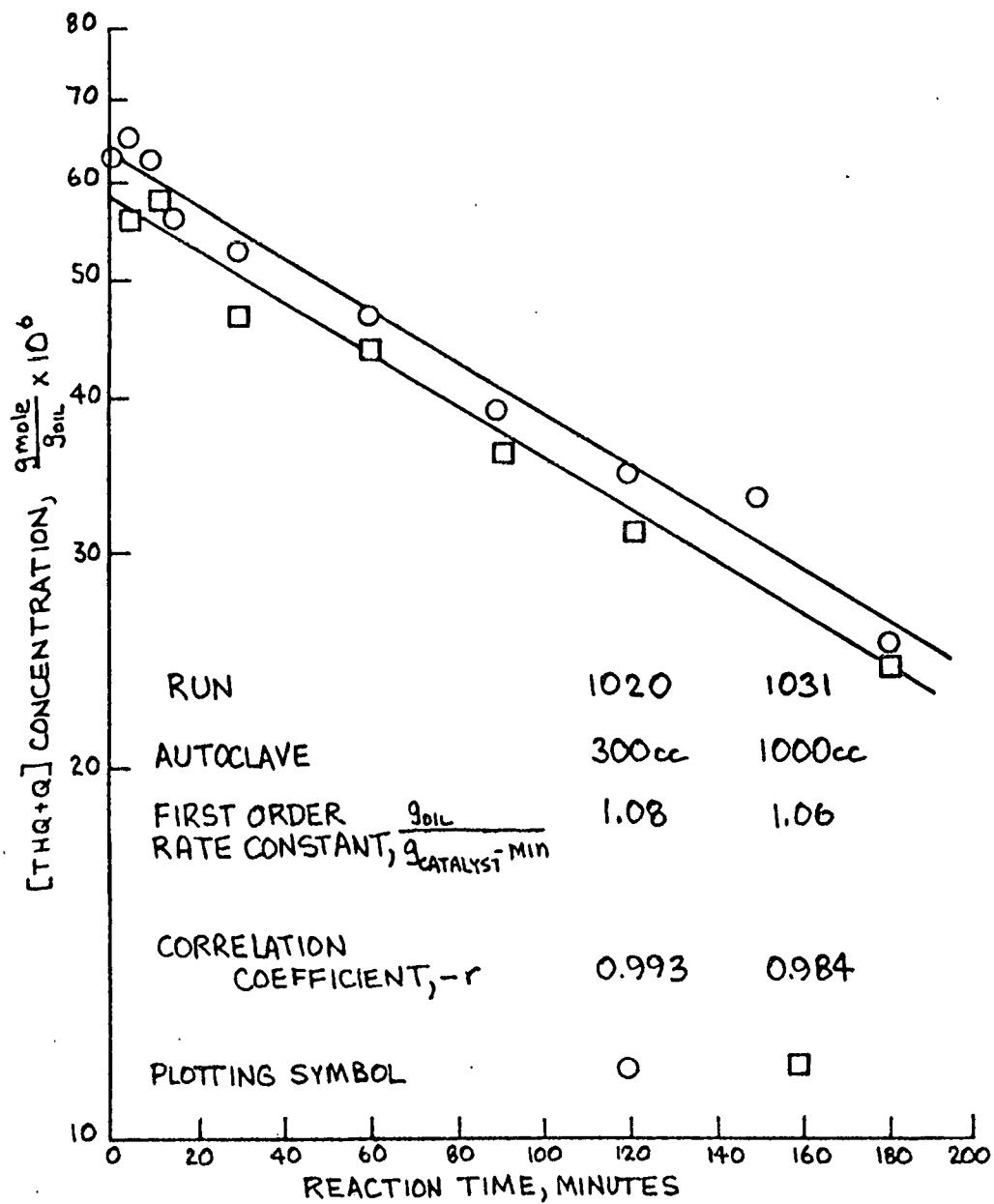


Figure 10. Pseudo First-order Kinetic Analysis of the lumped group of Quinoline plus 1,2,3,4-tetrahydroquinoline for the Reactor Reproducibility Experiments: Quinoline Hydrodenitrogenation at 342°C and 500 psig Ni-Mo/Al₂O₃ (American Cyanimid HDS-9A) Catalyst.

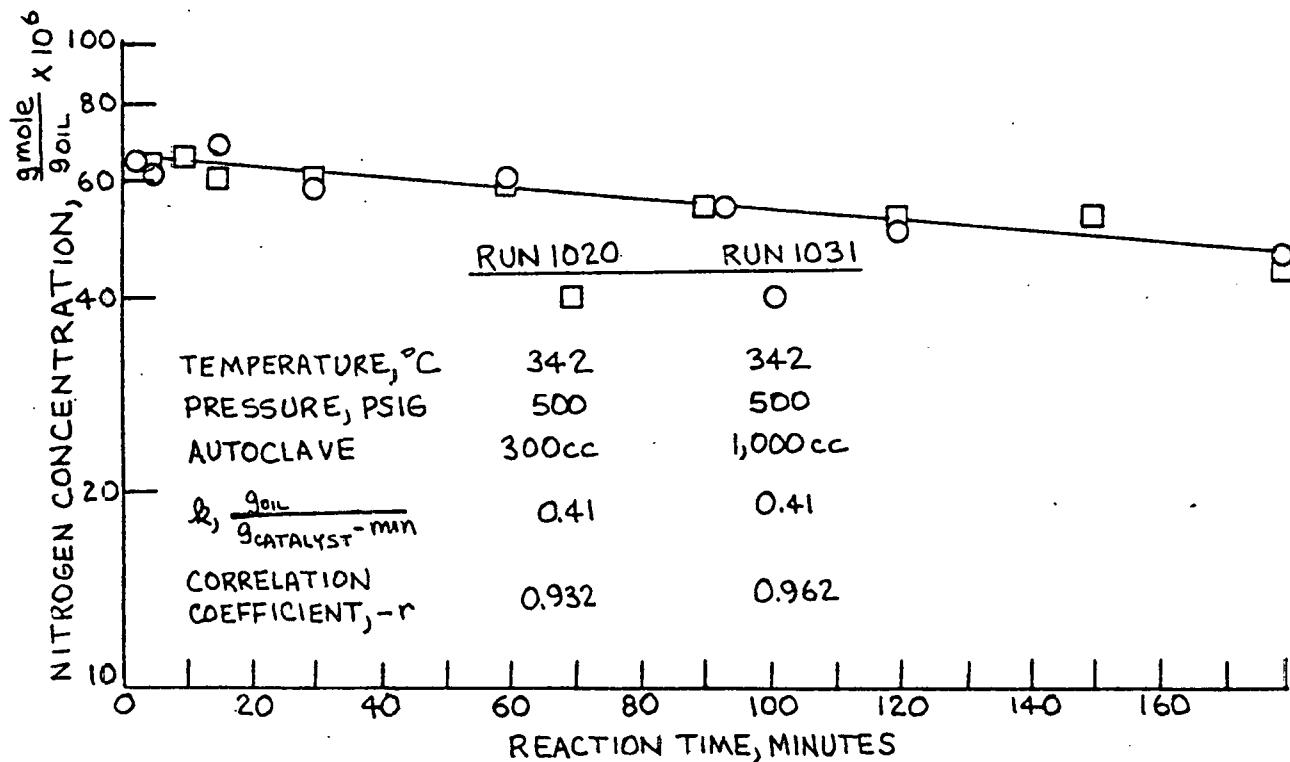


Figure 11. Pseudo First-order Kinetic Analysis of Total Nitrogen Removal for the Reactor Reproducibility Experiments: Hydrodenitrogenation of Quinoline at 342°C and 500 psig; $\text{Ni-Mo/Al}_2\text{O}_3$ (American Cyanimid HDS-9A) Catalyst.

3. Evaluation of Mass Transfer Effects

The objective of these experiments was to determine the effect of the catalyst particle size and thus illustrate the presence or absence of significant mass transfer effects on the rate of hydrodenitrogenation of quinoline in white oil at 342°C and 500 psig. Ni-Mo/Al₂O₃ (American Cyanimid HDS-16A) catalyst was used in this study, and its particle size was varied in the range of 48 to 200 mesh (275 μ m to 74 μ m). Reaction conditions are presented in Table XVIII. The rate of hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline and the rate of disappearance of the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline were used as a basis for studying the effect of catalyst particle size.

Three experiments were made with different catalyst particle sizes. Figure 12 presents the effect of catalyst particle size on the rate of hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline. Figure 12 shows that equilibrium between quinoline and 1,2,3,4-tetrahydroquinoline was more slowly attained for the larger (275 μ m) catalyst particle size (Run 1016) than for the smaller (90 μ m) catalyst.

TABLE XVIII

REACTION CONDITIONS FOR MASS TRANSFER EFFECTS STUDY

Temperature	342°C
Pressure	500 psig
Catalyst type	Co-Mo/Al ₂ O ₃ (American Cyanimid HDS-16A)
Catalyst Concentration	2g/500 cc oil
Catalyst Presulfided at 325°C	
No CS ₂ added to reaction medium	
Reactant	0.85 wt% quinoline in white oil
Catalyst Particle Size	Run 1015 100-140 mesh (125 μ m) 1016 48- 60 mesh (275 μ m) 1017 140-200 mesh (90 μ m)
Stirring Speed	Run 1015 750 rpm 1016 1250 rpm 1017 1250 rpm

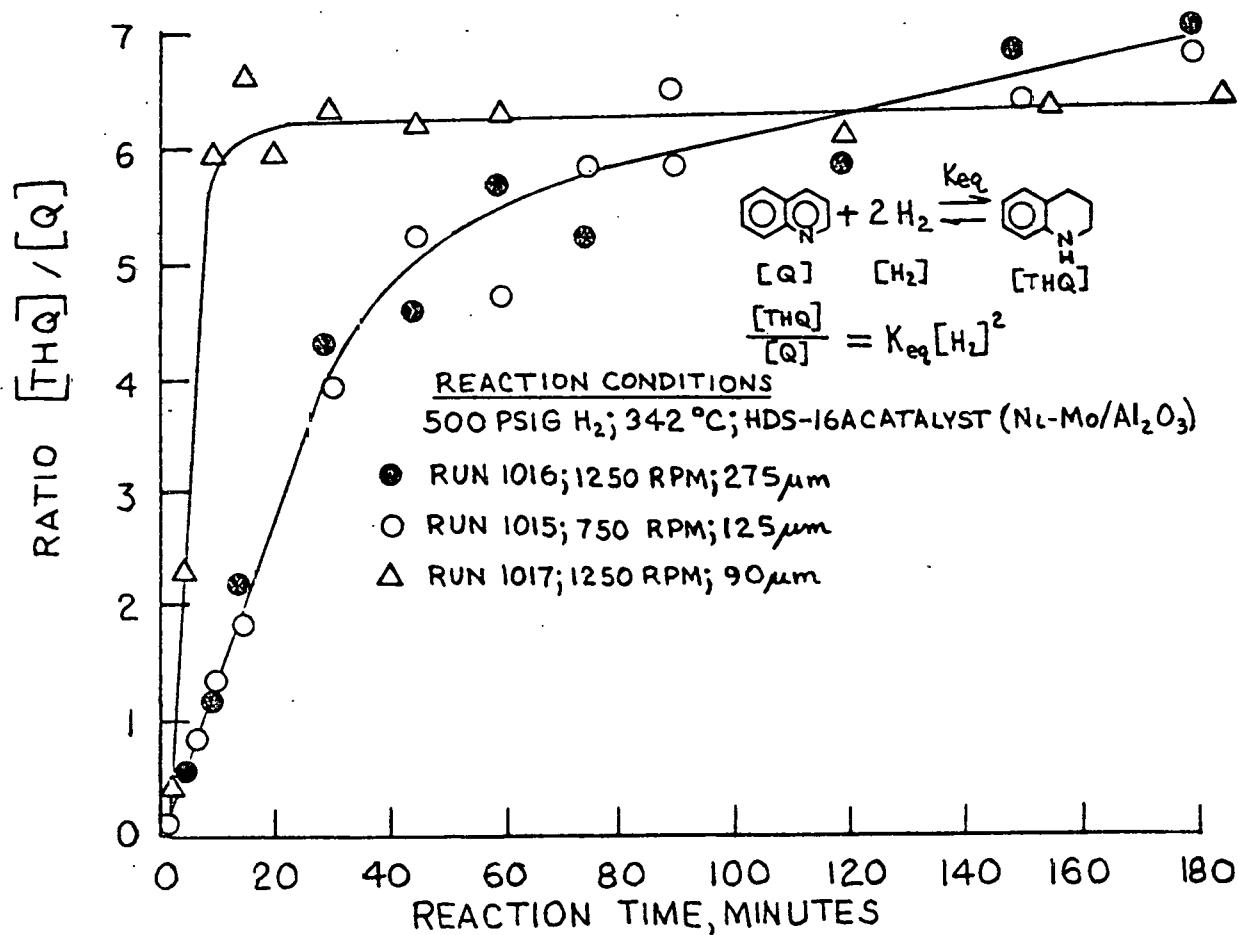


Figure 12. Effect of Catalyst Particle Size on the Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline.

particle size (Run 1017). The intermediate (125 μm) catalyst particle size (Run 1015) was run at a lower stirring speed. This experiment indicated that significant liquid mass transfer resistances are present since Figure 12 indicates that the rate of hydrogenation for Run 1015 (125 μm) was no faster than that for Run 1016 (275 μm), which had a larger catalyst particle size.

Figure 13 shows the observed pseudo first-order kinetic behavior for Runs 1016 (275 μm) and 1917 (90 μm), and Table XIX presents the first-order rate constants for all three experiments. Figure 13 indicates that pseudo first-order kinetics fit the data very well. Table XIX shows that the rate constants for Run 1016 (275 μm) and 1017 (90 μm) differ by more than 20%. Effectiveness factor calculations based on these kinetics indicate that the effectiveness factors for all three experiments were 1.0. Detailed calculations are presented in Appendix C. Detailed concentration profiles for the catalyst particle size survey are presented in Appendix D.

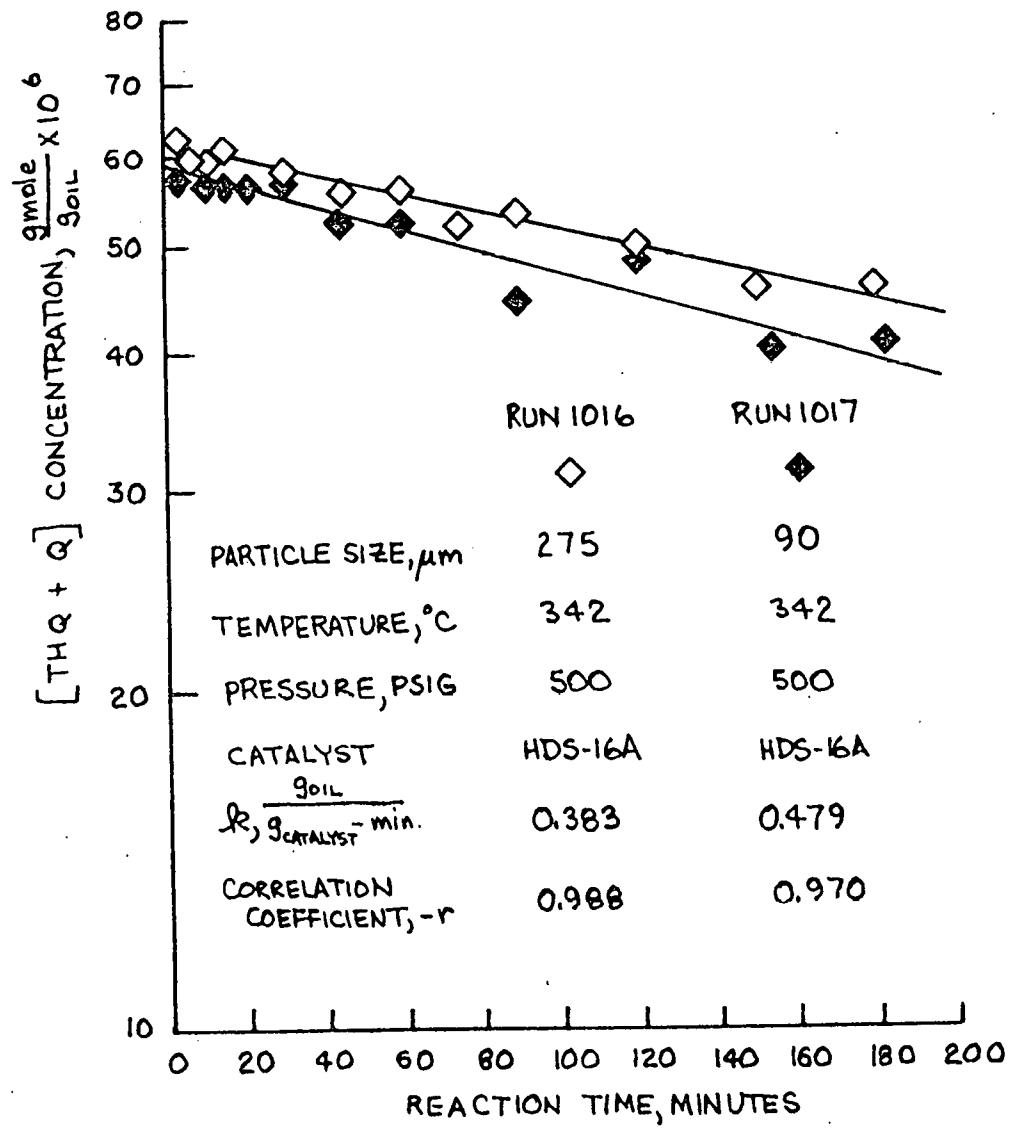


Figure 13. Effect of Catalyst Particle Size on the Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline.

TABLE XIX

FIRST-ORDER RATE CONSTANTS FOR THE DISAPPEARANCE OF THE LUMPED GROUP OF QUINOLINE PLUS 1,2,3,4-TETRAHYDROQUINOLINE

<u>Run</u>	<u>Catalyst Particle Size, μm</u>	$K_{\text{THQ} + \text{Q}}, \frac{\text{g}_{\text{oil}}}{\text{g}_{\text{catalyst}} \cdot \text{min}}$
1016	275	0.383
1015	125	0.319
1017	90	0.479

4. Catalyst Survey

The objective of this survey was to determine the relative activity of the more common commercially available hydrotreating catalysts and to choose the most active one based on the hydrodenitrogenation of quinoline in white oil at 342°C and 500 psig. The catalyst types included Co-Mo/Al₂O₃ (American Cyanimid HDS-16A), Ni-Mo/Al₂O₃ (American Cyanimid HDS-9A), Ni-W/Al₂O₃ (Harshaw Ni4303 and NALCO NT-550), and Ni-W/Al₂O₃-SiO₂ (Harshaw Ni4301). Reaction conditions are presented in Table XX.

The reaction data were analyzed on the basis of the disappearance of the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline. Pseudo zero-order and pseudo first-order kinetics were considered, and a least squares analysis was used as a basis for comparison. Table XXI presents a summary of this analysis. Table XXII presents a comparison of the predicted initial quinoline concentration by the two kinetic models versus the actual loaded quinoline concentration.

Table XXI, along with Table XXII, indicates

TABLE XX

REACTION CONDITIONS FOR CATALYST SURVEY

Temperature	342°C
Pressure	500 psig
Catalyst concentration	2g/500 cc oil
Catalyst presulfided	
No CS ₂ added to reaction medium	
Reactant	0.85 wt% quinoline in white oil
Autoclave stirring speed	1250 rpm

TABLE XXI
KINETIC MODEL ANALYSIS FOR CATALYSTS EVALUATION

60

Catalyst	$k_{\text{THQ} + Q, \frac{\text{g}_{\text{oil}}}{\text{g}_{\text{catalyst}} \cdot \text{min}}}$	$-r$	First Order	Correlation	Zero-Order	Correlation
			<u>Rate Constant,</u>	<u>Coefficient,</u>	<u>Rate Constant X 10⁵,</u>	<u>Coefficient,</u>
Run No.						
Ni-Mo/Al ₂ O ₃ (American Cyanimid HOC-9R)	1020	1.08	0.993	4.42	0.979	
Ni-M/Al ₂ O ₃ (W.L.C.O. No. 550)	1023	0.950	0.997	4.10	0.985	
Ni-M/Al ₂ O ₃ (Marshaw Ni4303)	1022	0.687	0.976	3.41	0.961	
Ni-M/SiO ₂ -Al ₂ O ₃ (Marshaw Ni4301)	1021	0.578	0.989	2.86	0.978	
Co-Mo/Al ₂ O ₃ (American Cyanimid HOC-15A)	1017	0.319	0.982	1.70	0.979	

TABLE XXII

INITIAL QUINOLINE CONCENTRATION: LOADED VERSUS PREDICTED BY
KINETIC MODELS

Catalyst	Run No.	Quinoline Concentration Loaded X 10 ⁶ g mole	Initial Quinoline Concentration 1st Order Model X 10 ⁶ g mole	Initial Quinoline Concentration Zero Order Model X 10 ⁶ g mole
		%oil	%oil	%oil
Ni-Mo/Al ₂ O ₃ (American Cyanimid HGS-9A)	1020	64.65	63.57	61.69
Ni-M/Al ₂ O ₃ (WALCO Ni-550)	1023	67.59	61.10	59.80
Ni-M/Al ₂ O ₃ (Marshaw Ni4303)	1022	68.14	66.61	65.68
Ni-M/SiO ₂ -Al ₂ O ₃ (Marshaw Ni4301)	1021	67.53	62.88	62.26
Co-Mo/Al ₂ O ₃ (American Cyanimid HGS-16A)	1017	67.74	60.83	60.62

that the pseudo first-order model fits the data better than the pseudo zero-order model; however, the zero-order model's correlation coefficients indicate that this model fits the data reasonably well. Table XXI indicates that the HDS-9A catalyst had the highest rate constants, and thus, was the most active for the hydrodenitrogenation of quinoline at these reaction conditions.

Figures 14 to 33 present graphs of the pseudo first-order kinetic analyses, pseudo zero-order kinetic analyses, rates of quinoline hydrogenation, and concentration profiles for the catalyst survey experiments. Appendix E contains detailed concentration profiles for the catalyst survey experiments.

B. Hydrodenitrogenation of Acridine

Several experiments were made to study the hydrodenitrogenation of acridine. First, a series of experiments were performed to find conditions (temperature and pressure) with which the reactivity of acridine could be studied. The range of conditions covered was 340 to 374°C and 500 to 2000 psig. These experiments were also used to identify reaction products using mass spectroscopy. Another set of experi-

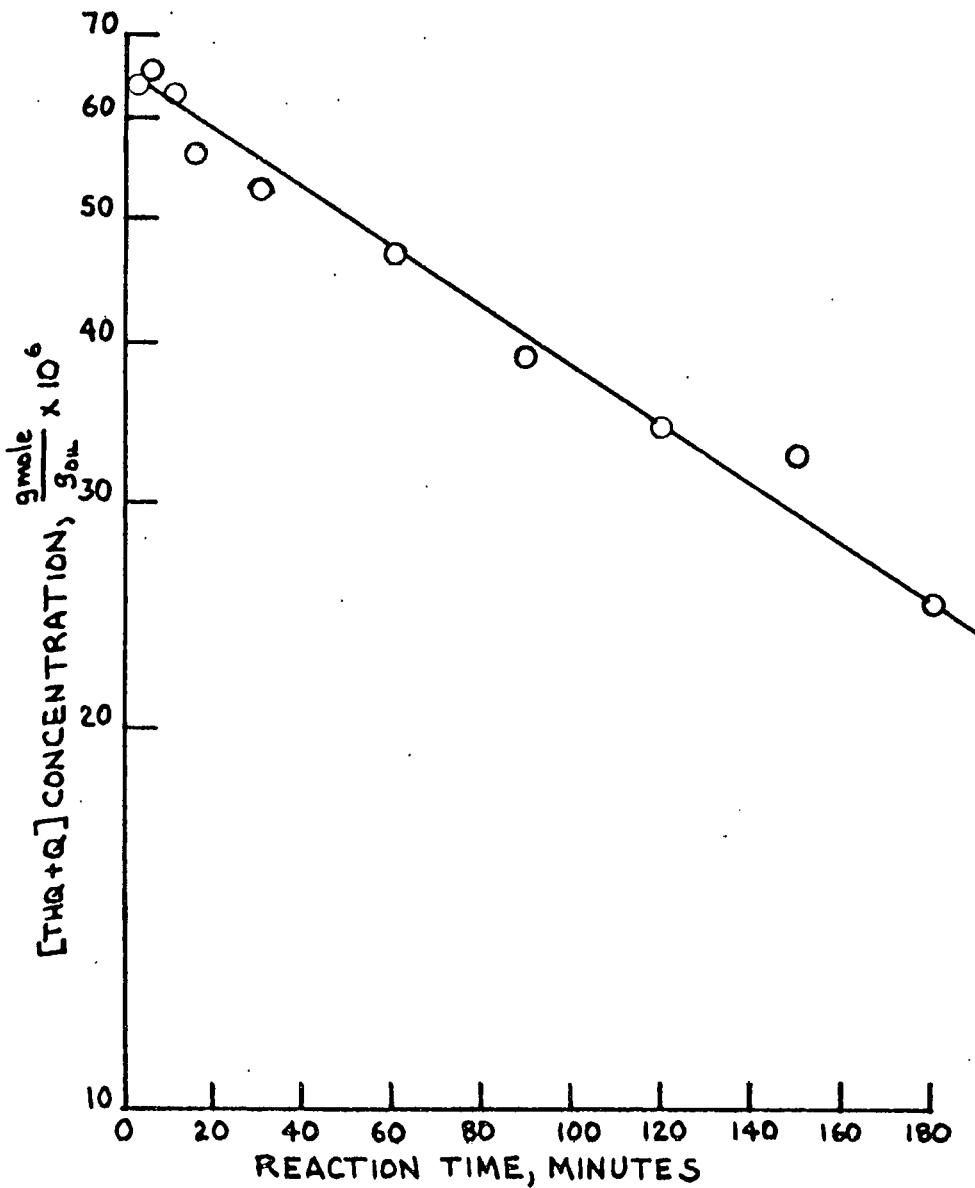


Figure 14. Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline for Run 1020: 342°C and 500 psig, Ni-Mo/Al₂O₃ (American Cyanimid HDS-9A) Catalyst.

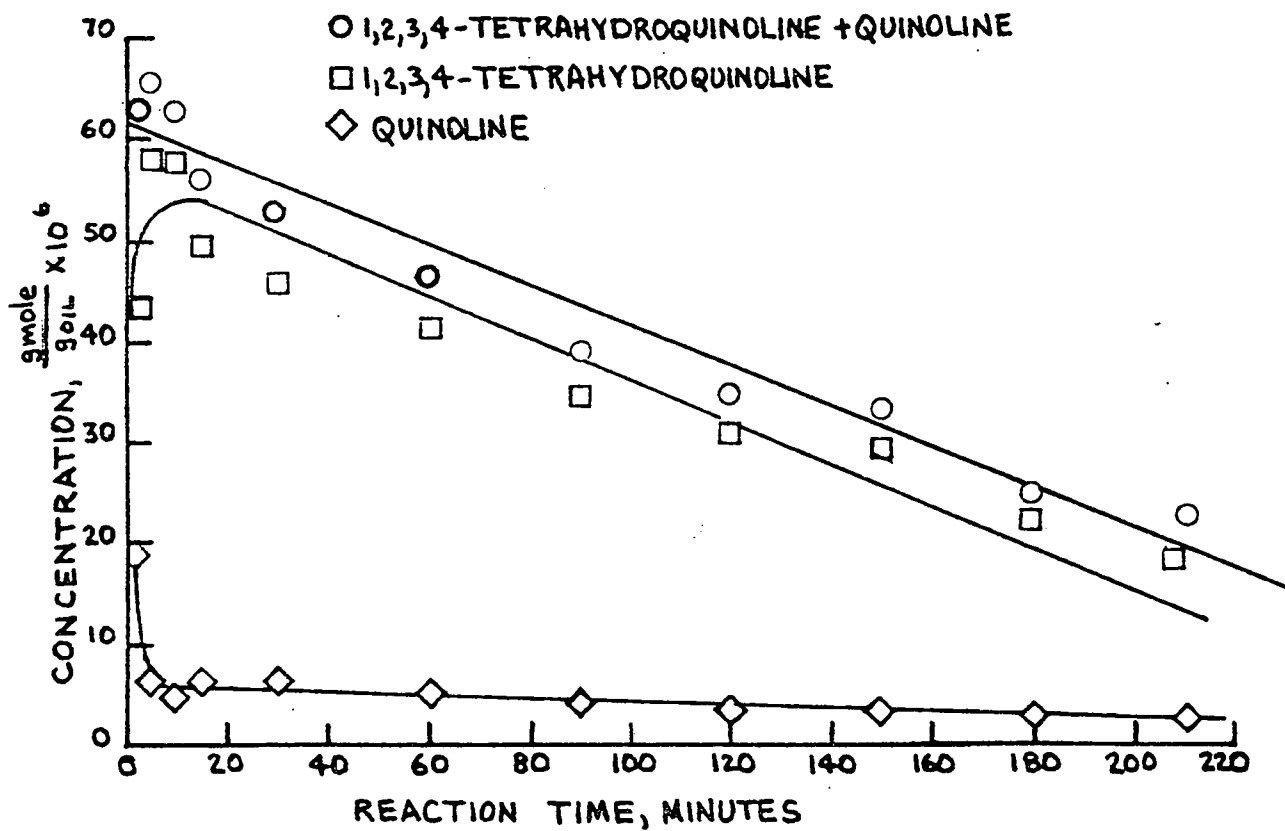


Figure 15. Pseudo Zero-Order Kinetic Analysis for the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline and Concentration Profiles for Quinoline and for 1,2,3,4-tetrahydroquinoline: Run 1020; 342°C and 500 psig, Ni-Mo/ Al_2O_3 (American Cyanimid HDS-9A) Catalyst.

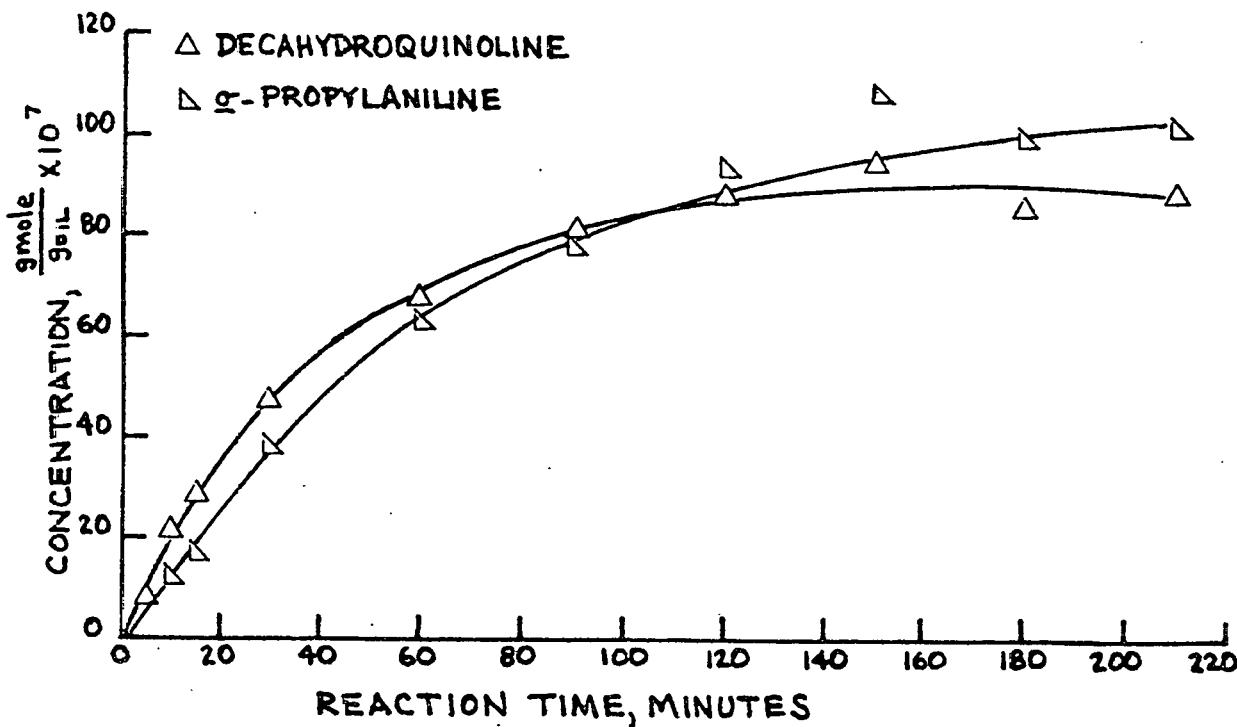


Figure 16. Concentration Profiles for Decahydroquinoline and for *o*-propylaniline: 342°C and 500 psig (Run 1020); Ni-Mo/Al₂O₃ (American Cyanimid HDS-9A) Catalyst.

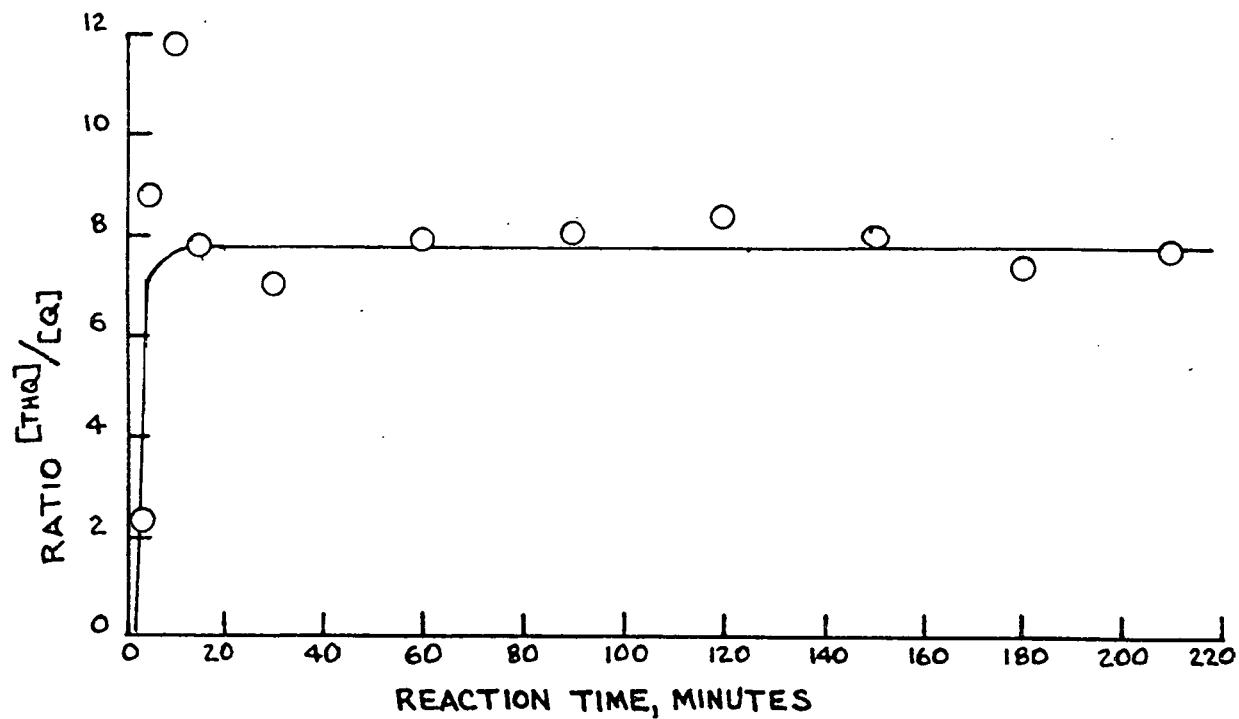


Figure 17. Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1020); Ni-Mo/ Al_2O_3 (American Cyanimid HDS-9A) Catalyst.

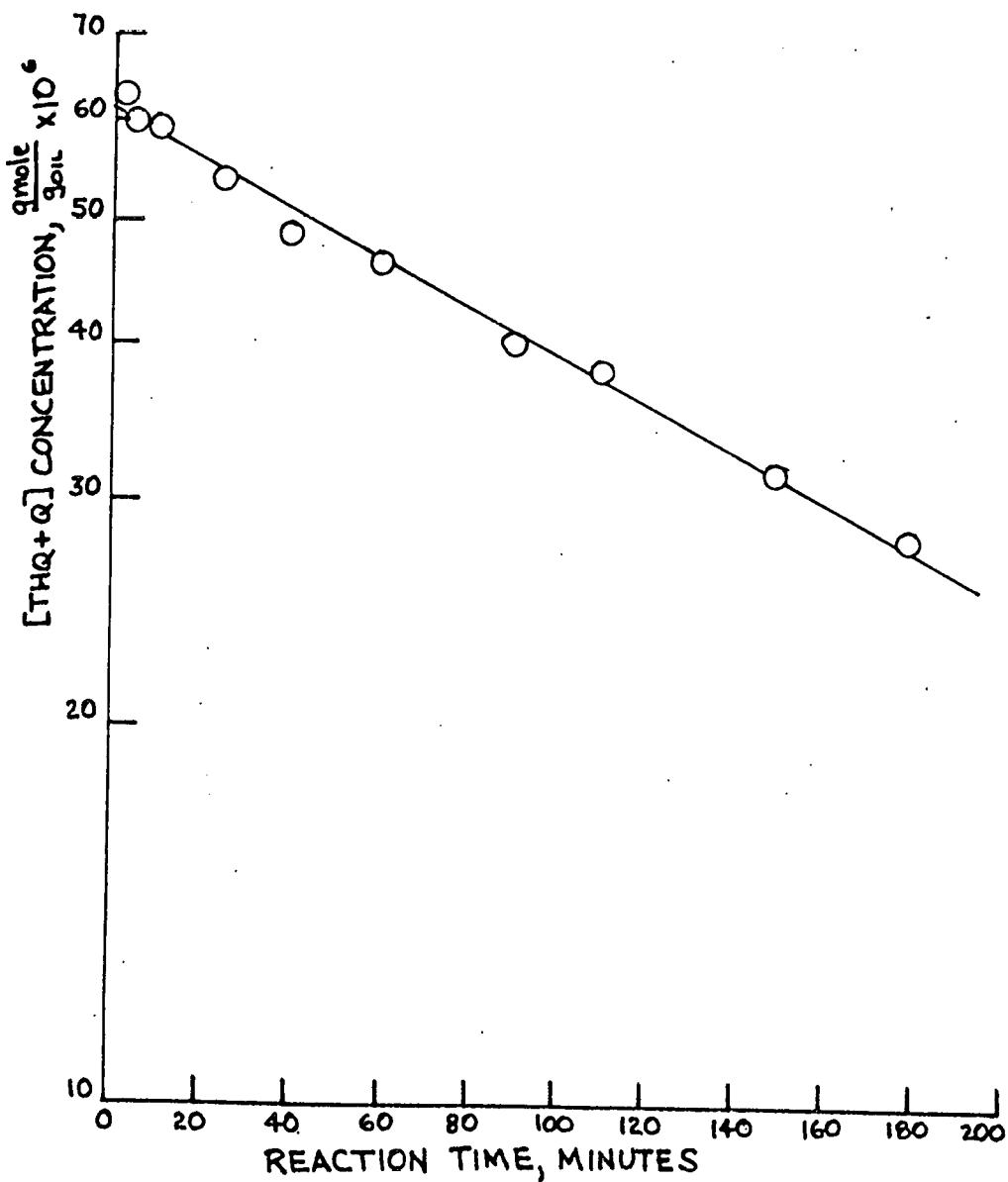


Figure 18. Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1023); Ni-W/Al₂O₃ (NALCO NT-550) Catalyst.

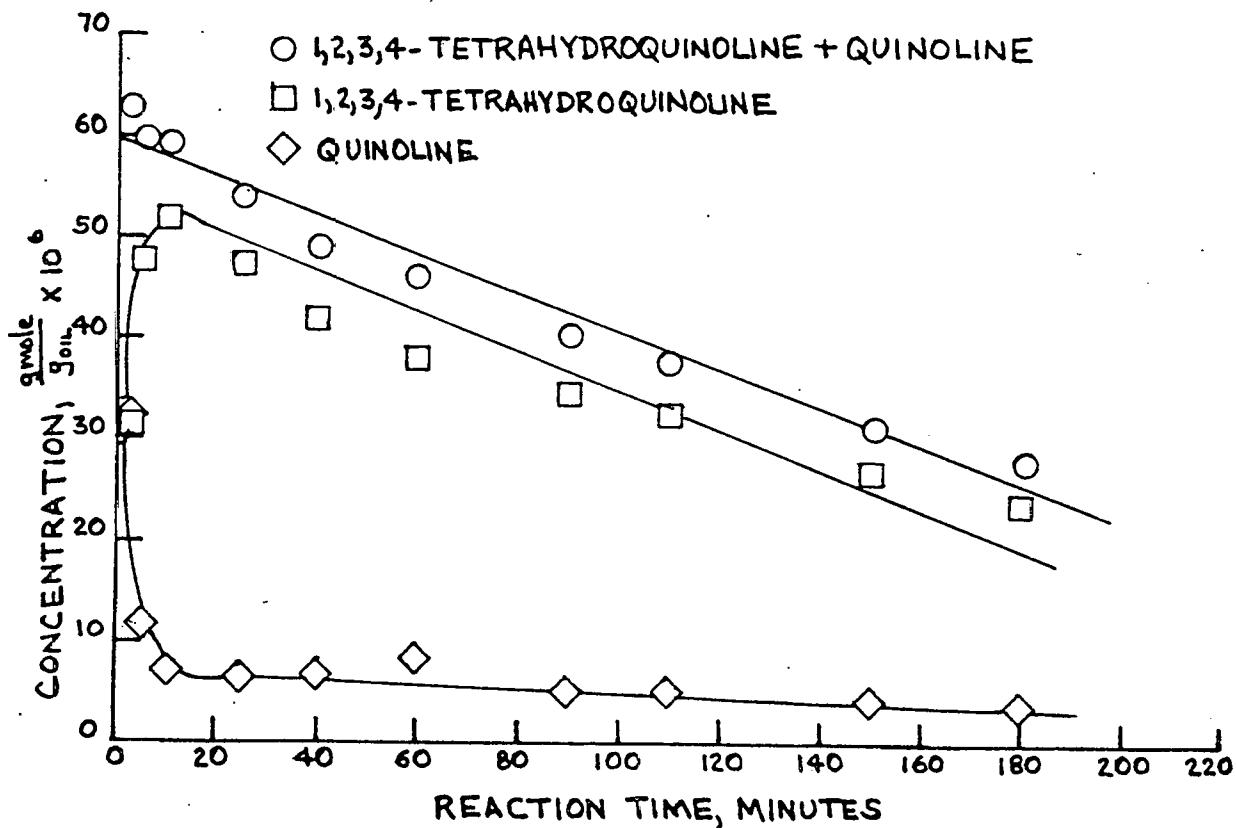


Figure 19. Pseudo Zero-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline and Concentration Profiles for Quinoline and for 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1023); Ni-W/Al₂O₃ (NALCO NT-550) Catalyst.

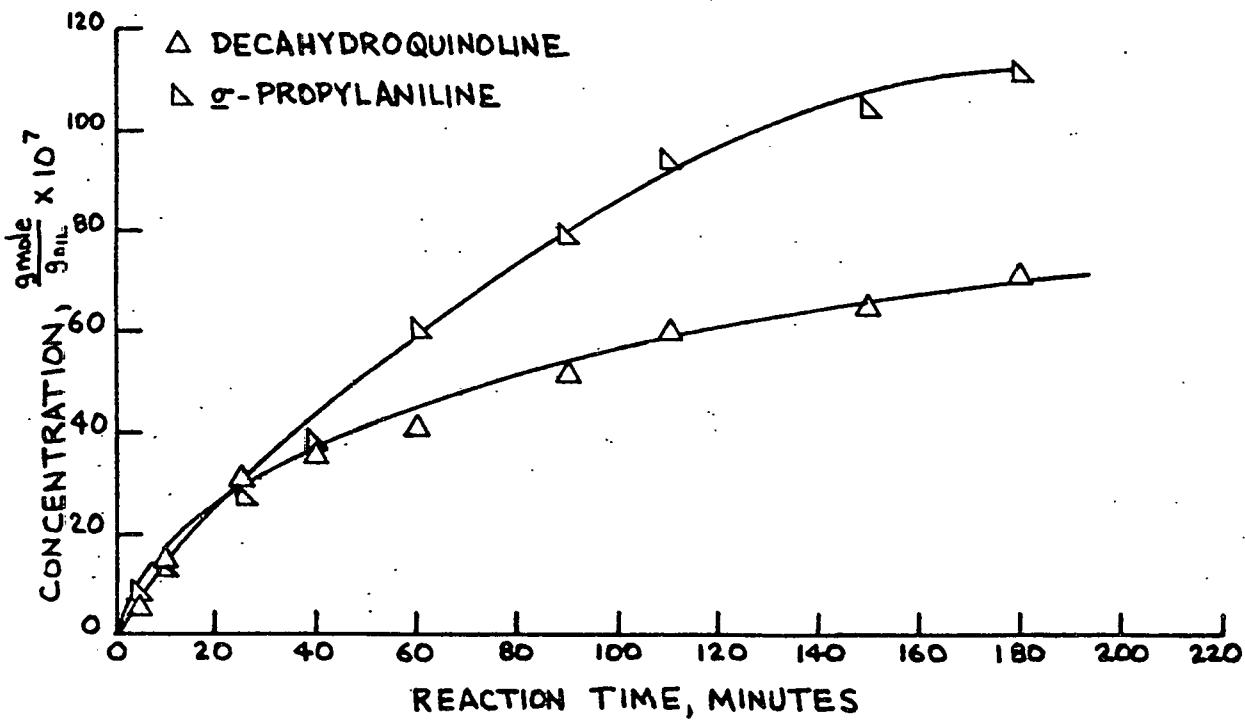


Figure 20. Concentration Profiles for Decahydroquinoline and for o-propylaniline: 342°C and 500 psig (Run 1023); Ni-W/
 Al_2O_3 (NALCO NT-550) Catalyst.

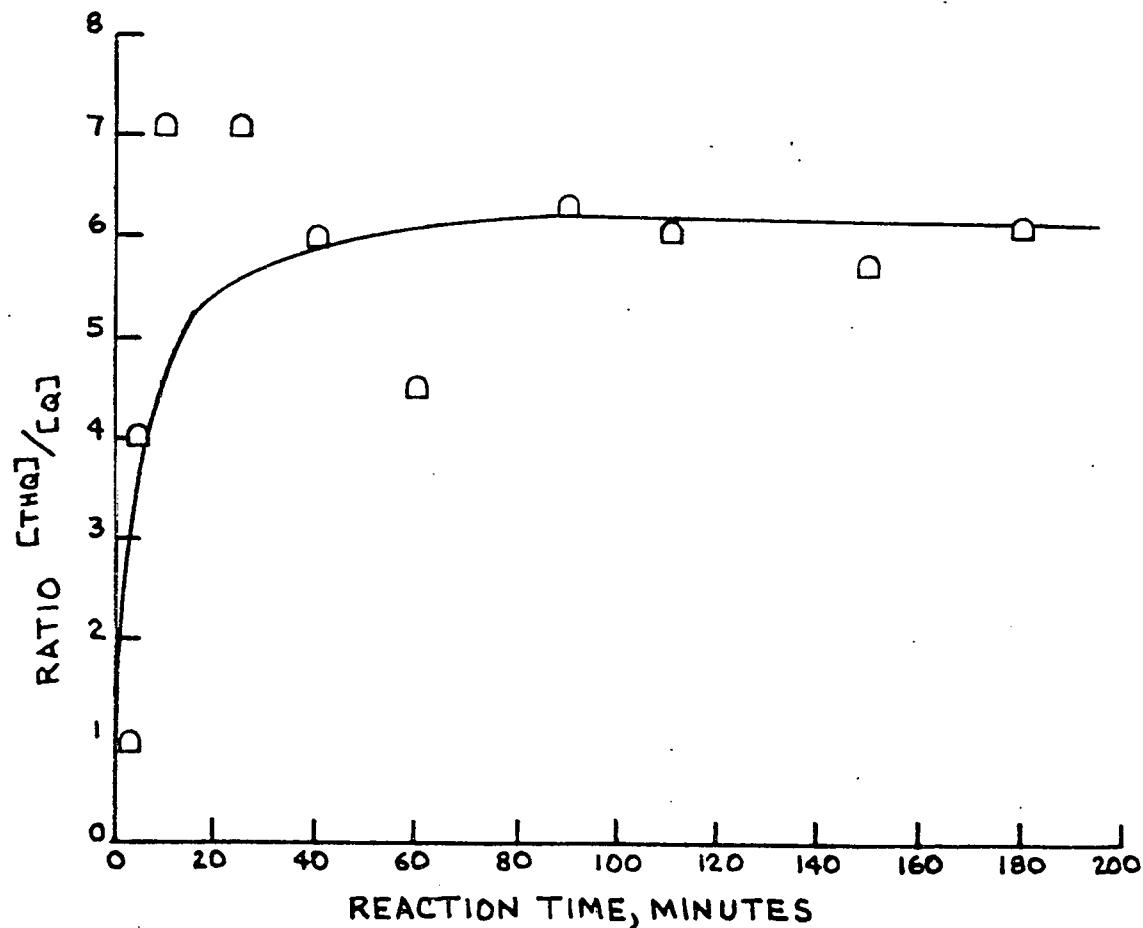


Figure 21. Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1023); $\text{Ni-W}/\text{Al}_2\text{O}_3$ (NALCO NT-550) Catalyst.

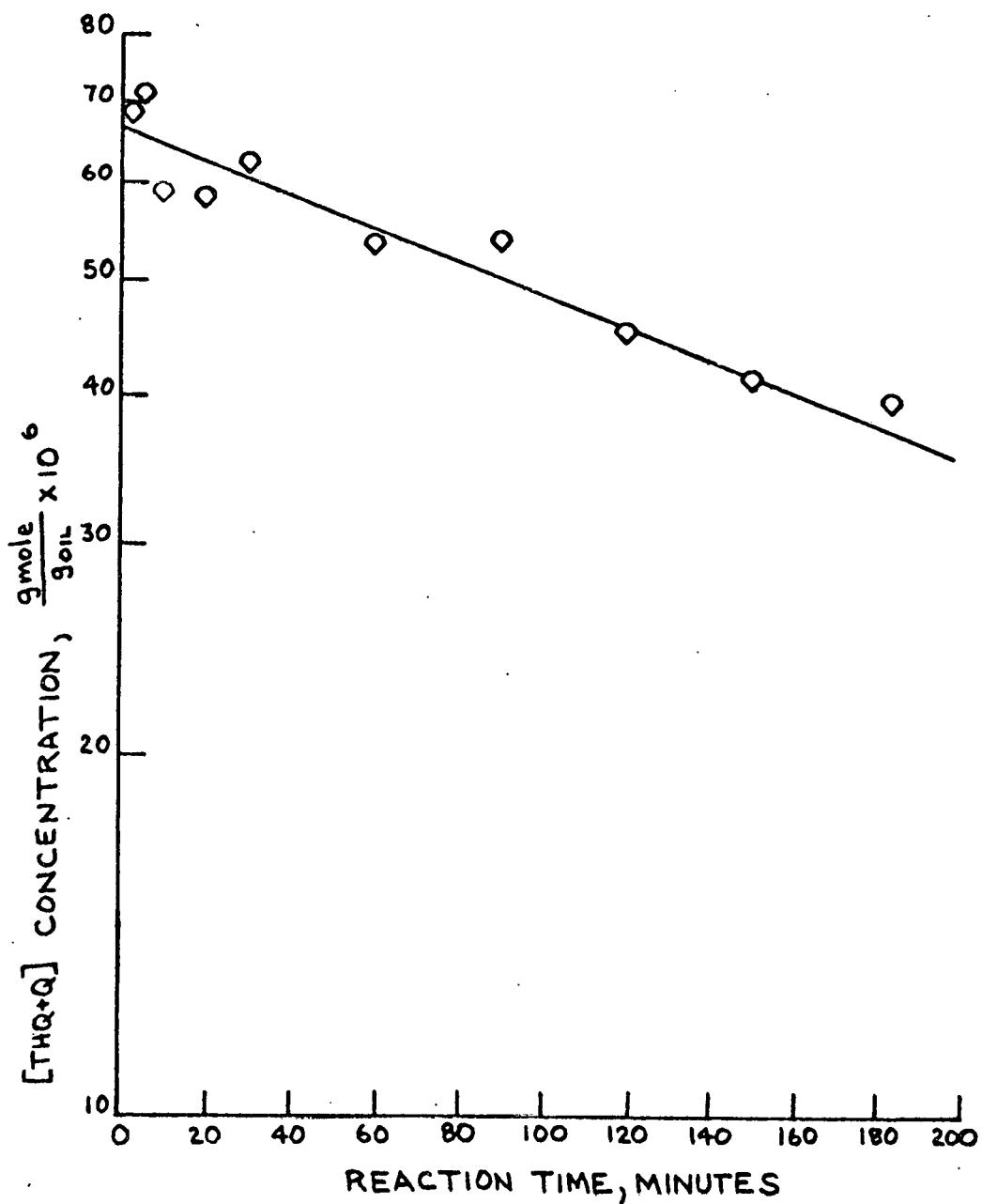


Figure 22. Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1022); Ni-W/Al₂O₃ (Harshaw Ni4303) Catalyst.

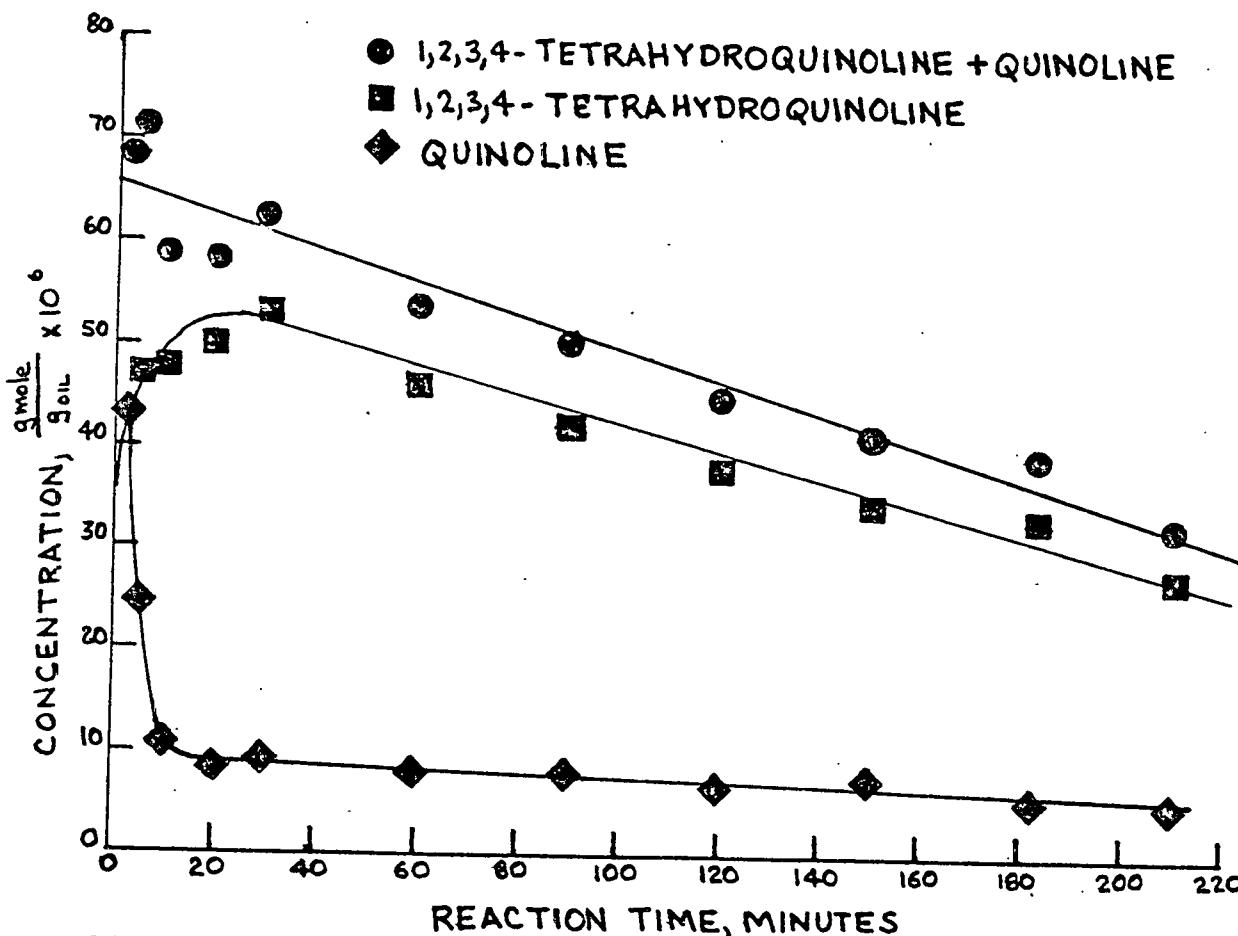


Figure 23. Pseudo Zero-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline and Concentration Profiles for Quinoline and for 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1022); Ni-W/Al₂O₃ (Harshaw Ni4303) catalyst.

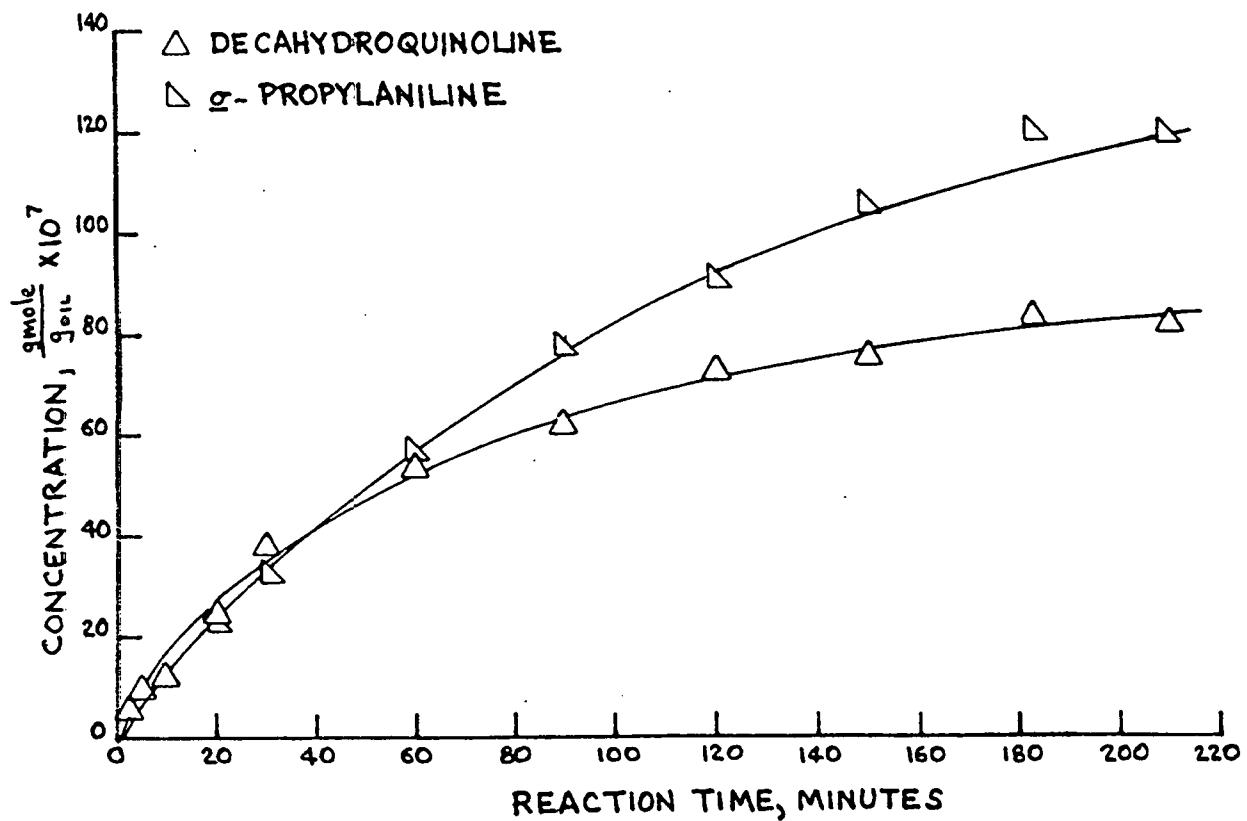


Figure 24. Concentration Profiles for Decahydroquinoline and for o-propylaniline: 342°C and 500 psig (Run 1022); Ni-W/Al₂O₃ (Harshaw Ni4303) Catalyst.

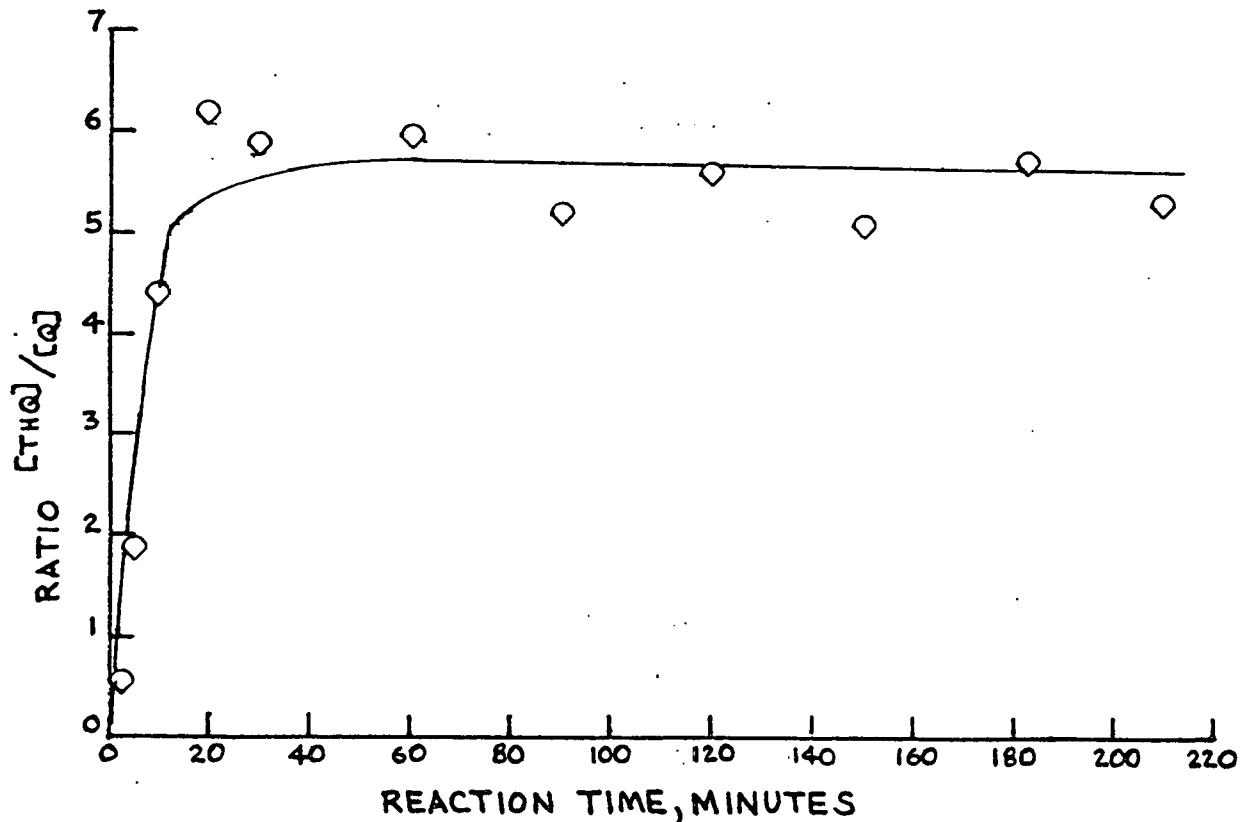


Figure 25. Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1022); Ni-W/Al₂O₃ (Harshaw Ni4303) Catalyst.

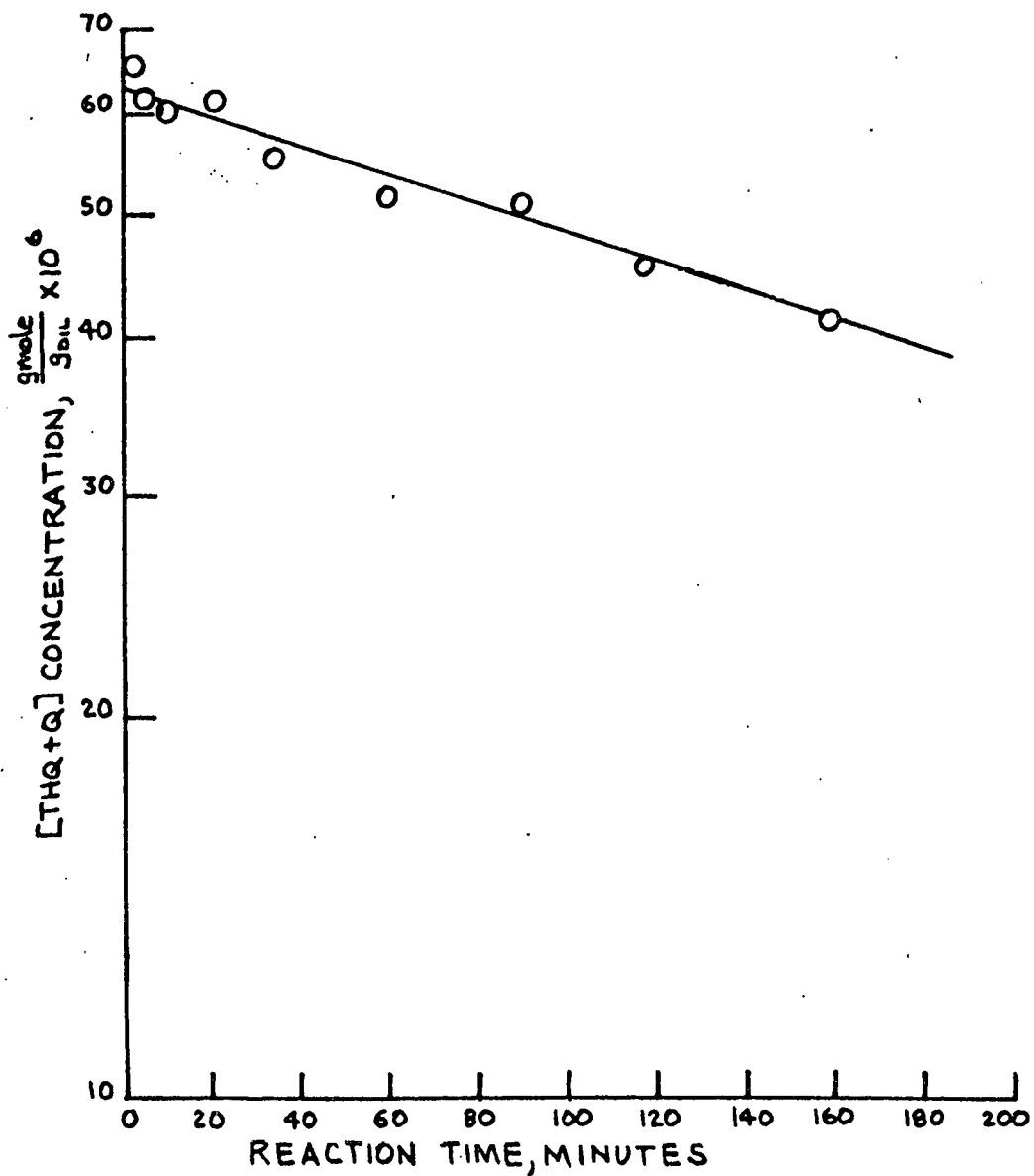


Figure 26. Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1021); Ni-W/Al₂O₃-SiO₂ (Harshaw Ni4301) Catalyst.

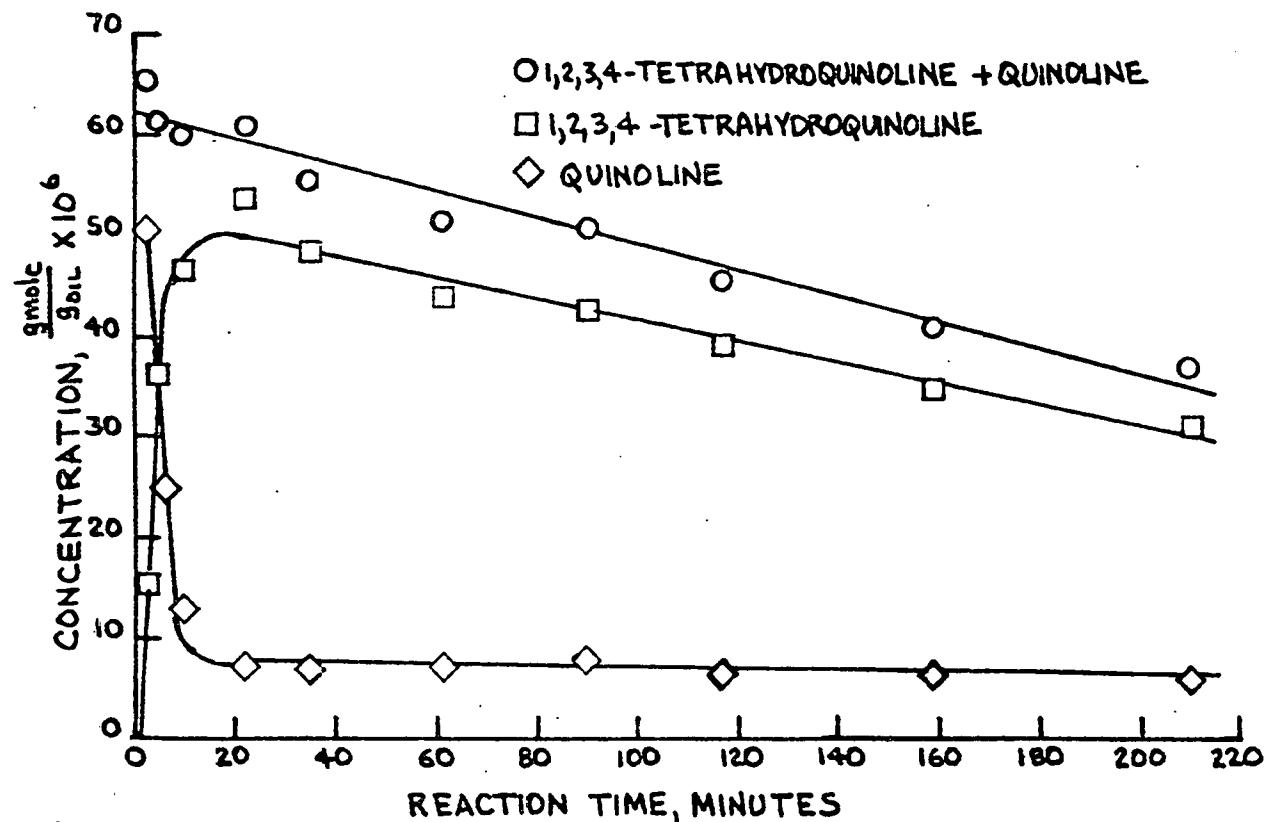


Figure 27. Pseudo Zero-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline and Concentration Profiles for Quinoline and for 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1021); Ni-W/Al₂O₃-SiO₂ (Harshaw Ni4301) Catalyst.

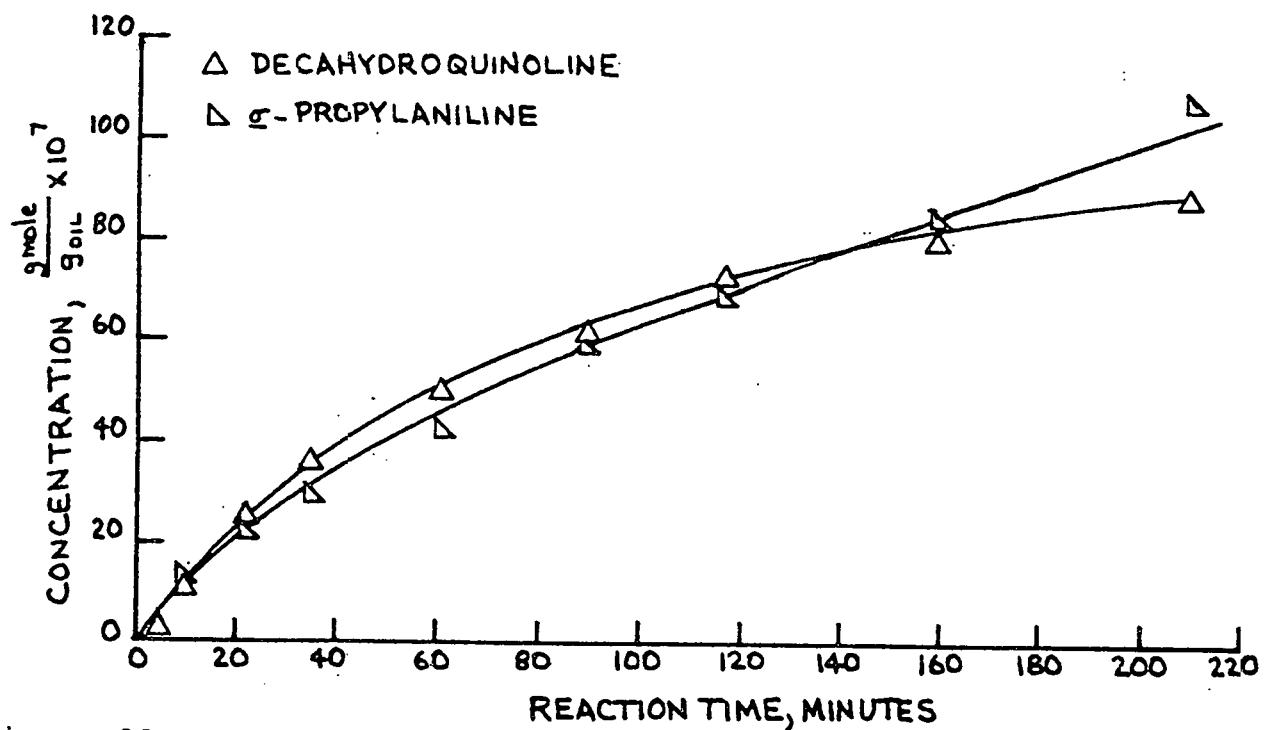


Figure 28. Concentration Profiles for Decahydroquinoline and for o-propylaniline: 342°C and 500 psig (Run 1021); Ni-W/Al₂O₃-SiO₂ (Harshaw Ni4301) Catalyst.

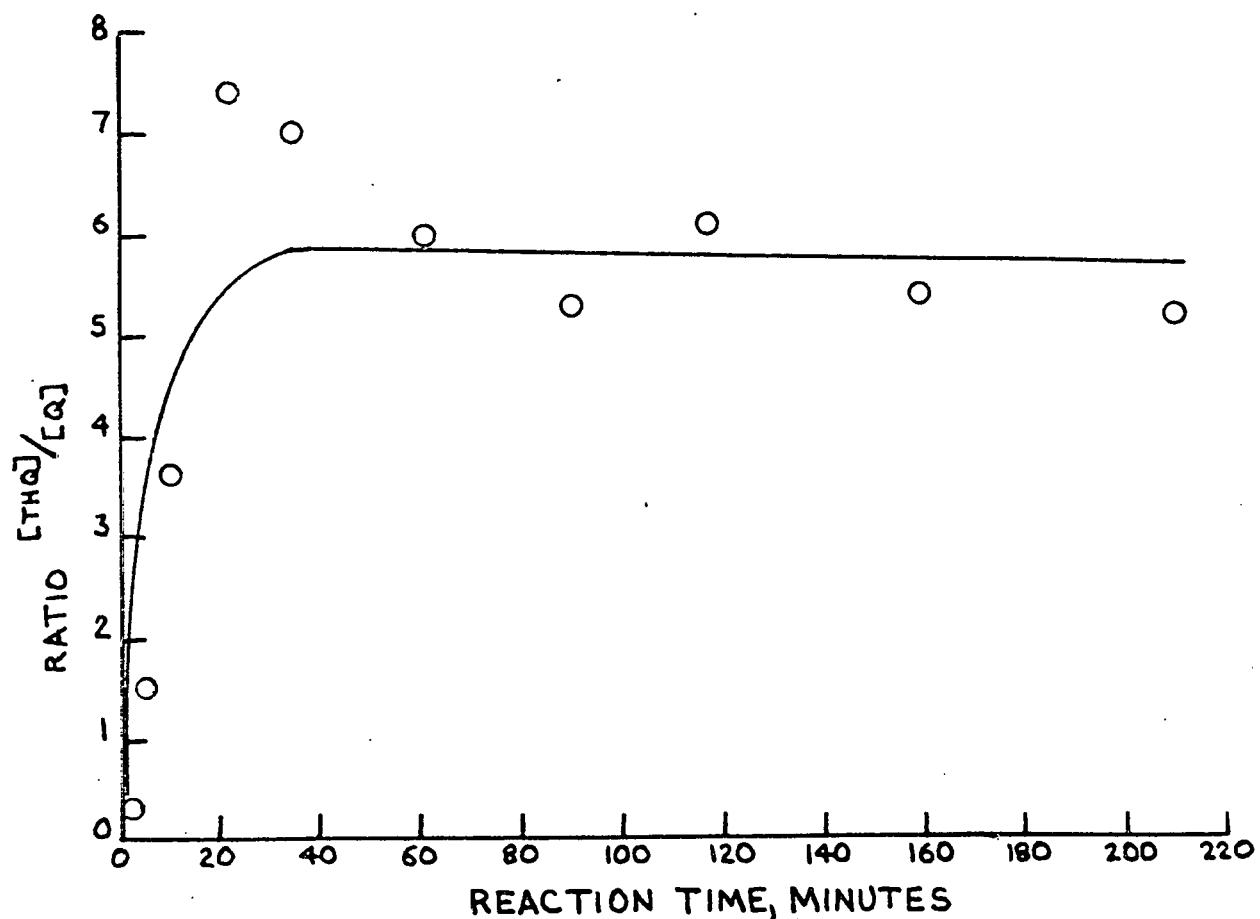


Figure 29. Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1021); Ni-W/ $\text{Al}_2\text{O}_3\text{-SiO}_2$ (Harshaw Ni4301) Catalyst.

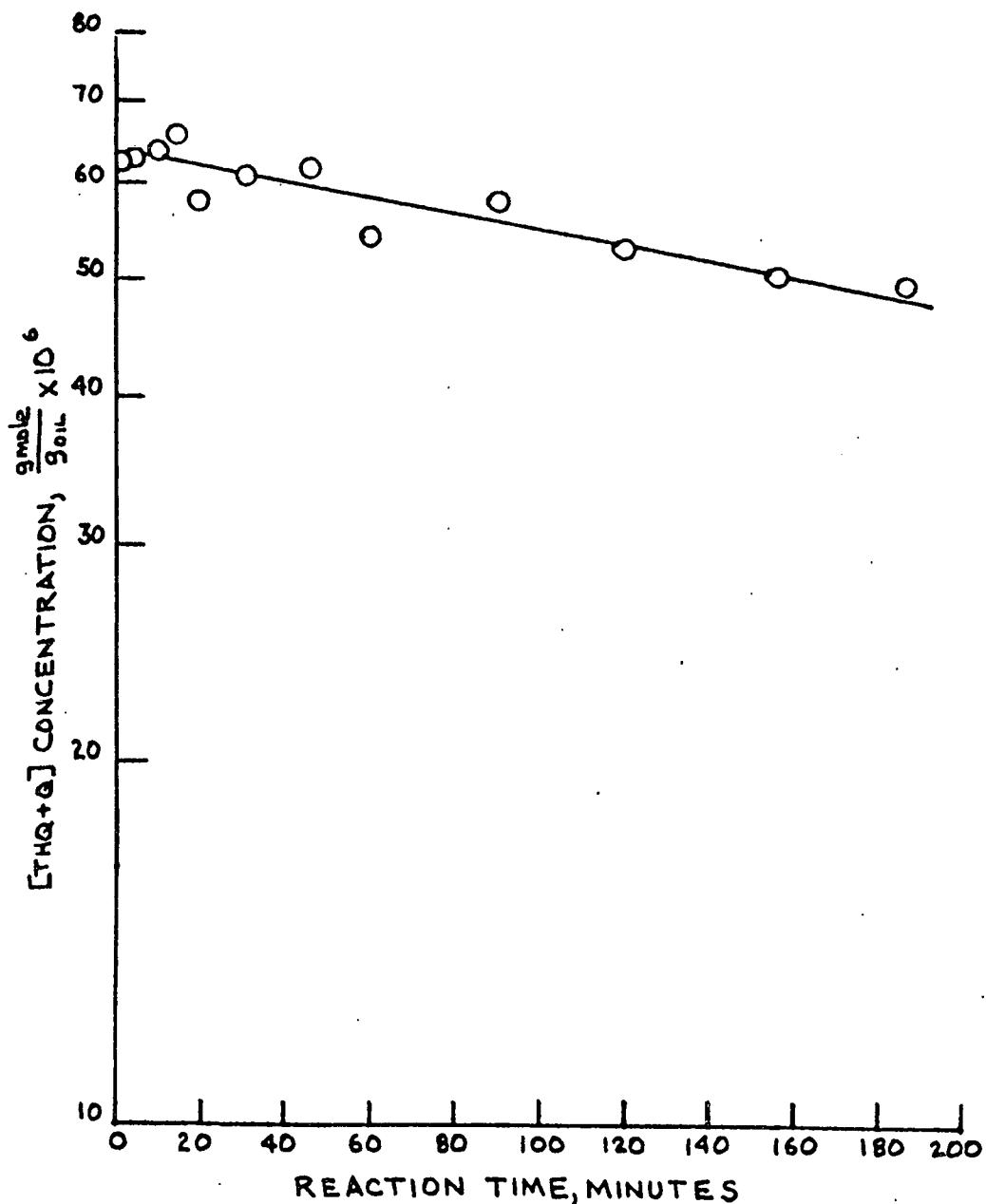


Figure 30. Pseudo First-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1017); Co-Mo/ Al_2O_3 (American Cyanimid HDS-16A) Catalyst.

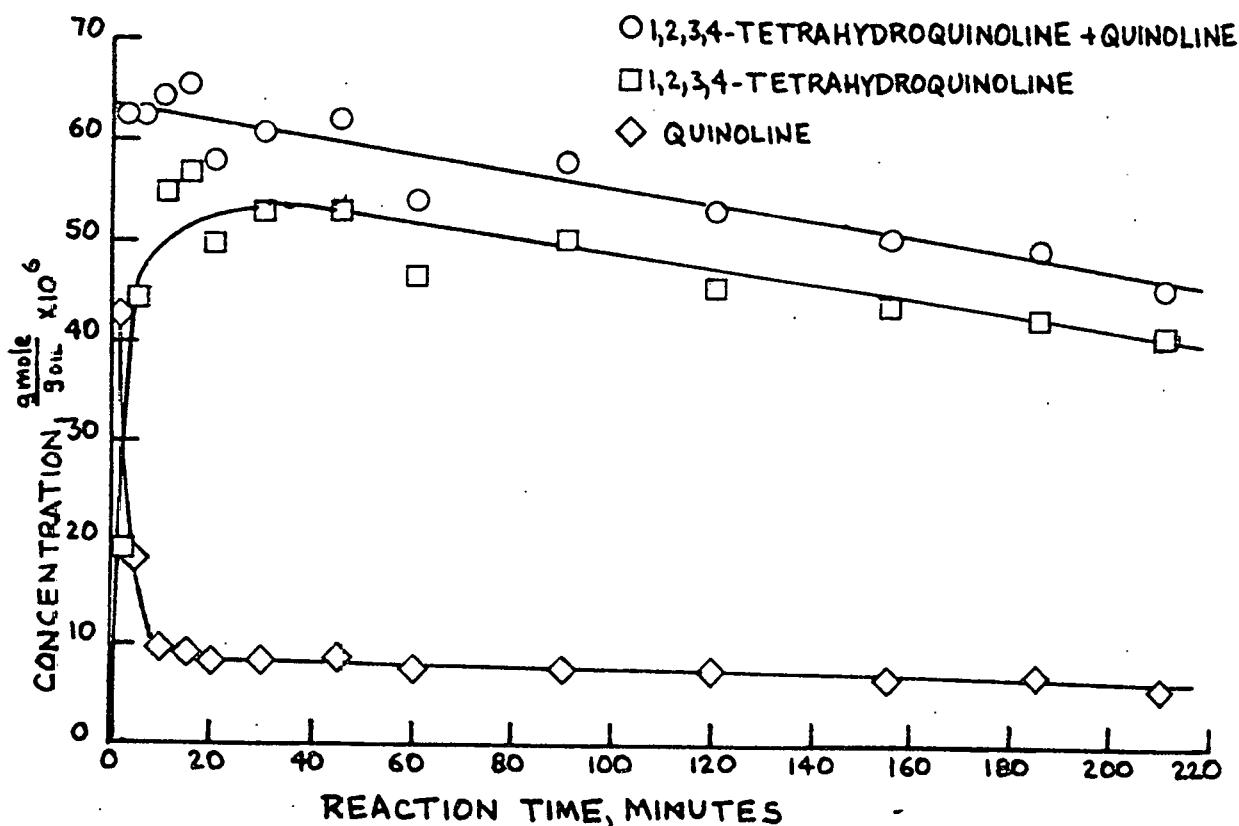


Figure 31. Pseudo Zero-Order Kinetic Analysis of the Lumped Group of Quinoline Plus 1,2,3,4-tetrahydroquinoline and Concentration Profiles for Quinoline and for 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1017); Co-Mo/ Al_2O_3 (American Cyanimid HDS-16A) Catalyst.

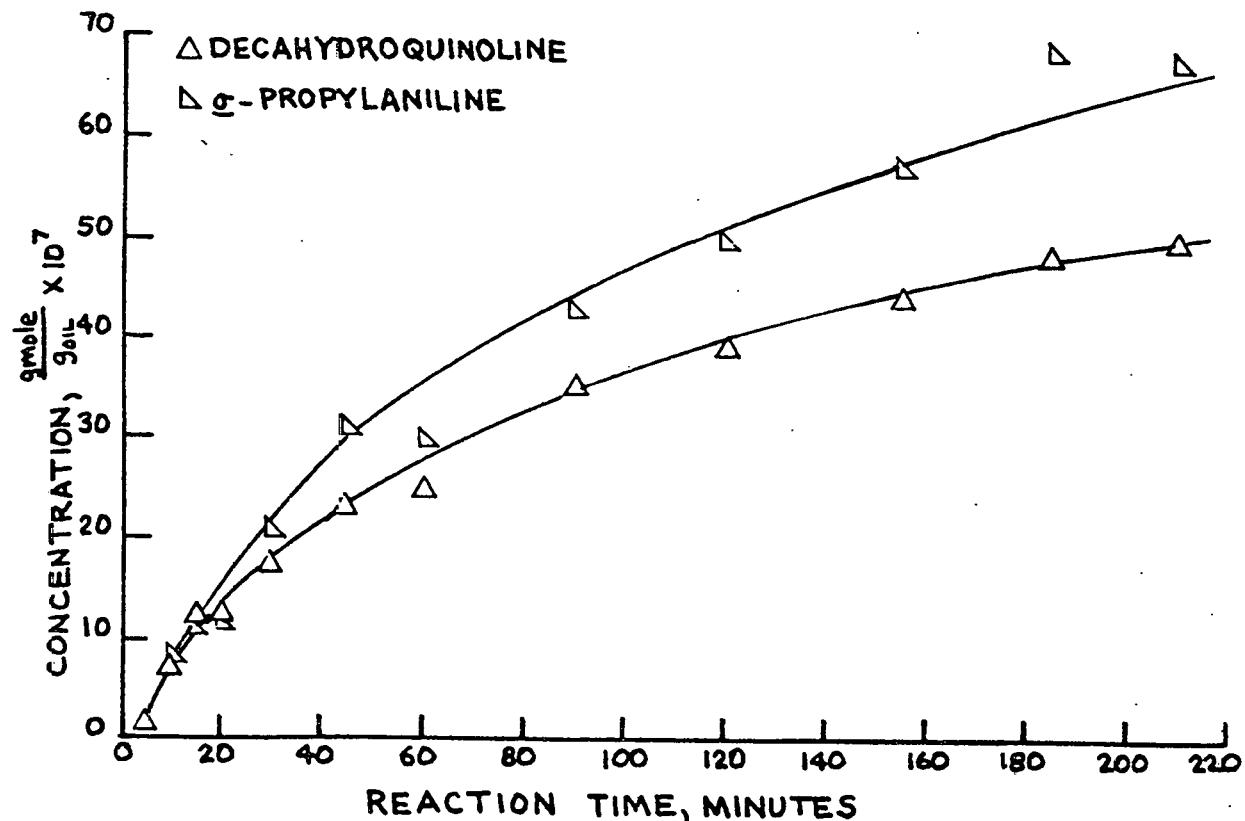


Figure 32. Concentration Profiles for Decahydroquinoline and for σ -propylaniline: 342°C and 500 psig (Run 1017); Co-Mo/ Al_2O_3 (American Cyanimid HDS-16A) Catalyst.

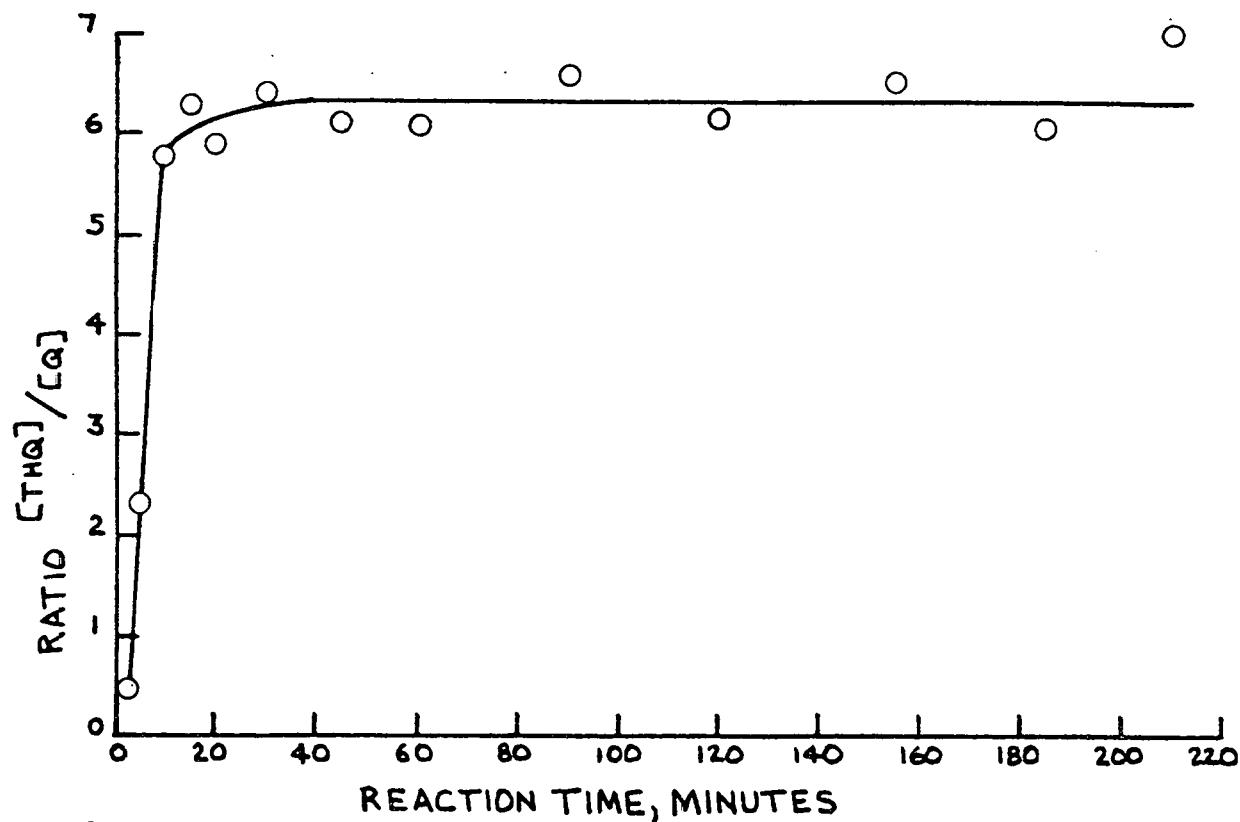


Figure 33. Rate of Quinoline Hydrogenation to 1,2,3,4-tetrahydroquinoline: 342°C and 500 psig (Run 1017); Co-Mo/ Al_2O_3 (American Cyanimid HDS-16A) Catalyst.

ments was performed to evaluate the presence of any significant mass transfer effects. An autoclave reactor stirring speed range of 500 to 1250 rpm was scanned for possible significant gas-liquid mass transfer resistances. A range of catalyst particle sizes of 90 μm to 275 μm was scanned for possible significant intraparticle mass transfer effects. All the experiments concerning the evaluation of mass transfer effects were performed at 342°C and 500 psig. Finally, a blank (no catalyst) reactor experiment was performed over a temperature range of 340 to 380°C and a pressure of 500 psig to analyze the intrinsic reactivity of acridine.

The search for a suitable chromatographic column with which to analyze the nitrogen-containing reaction products of acridine took place during the same time period that the reaction experiments were performed. A column that could resolve all the reaction products was never found. Apiezon L (2% KOH) was finally chosen so that estimates of some of the product distributions and an estimate of total nitrogen removal could be obtained from some of the experiments. Further discussion of these analytical problems

is presented in Appendix F. Since the column search took an excessively long time (about 6 months) and was not totally successful, analysis of all the acridine experiments discussed in the preceding paragraph was not possible. Analyses of only 2 experiments in the first series of experiments (reactivity conditions search) were obtained and reported in this thesis.

Reaction conditions for the two experiments for which analysis of reaction products was secured are shown in Table XXIII. The nitrogen-containing reaction products were extracted from the oil (procedure in Appendix G) and were analyzed on the gas chromatography-mass spectrometer system. There were no products in the experiment at the less severe conditions (Run 1042) that were not present in the experiment at the more severe conditions (Run 1050). Therefore, further presentation and discussion of the identification of reaction products concerns Run 1050.

A total of 16 nitrogen-containing reaction products including acridine were present in the extract. A pseudo-chromatogram of these products is shown in Figure 34. This figure is a condensation of

TABLE XXIII

REACTION CONDITIONS FOR THE ANALYZED ACRIDINE EXPERIMENTS

Run Number	1042	1050
Temperature, °C	342	353
Pressure, psig	500	2000
Reactant	0.5wt% acridine in n-hexadecane	White oil
Catalyst	[2g/500 cc oil]	
Catalyst Particle Size	[140-200 mesh (90 μ m.)]	
Catalyst Presulfided	Yes	
CS ₂ added to medium	0.05 wt%	

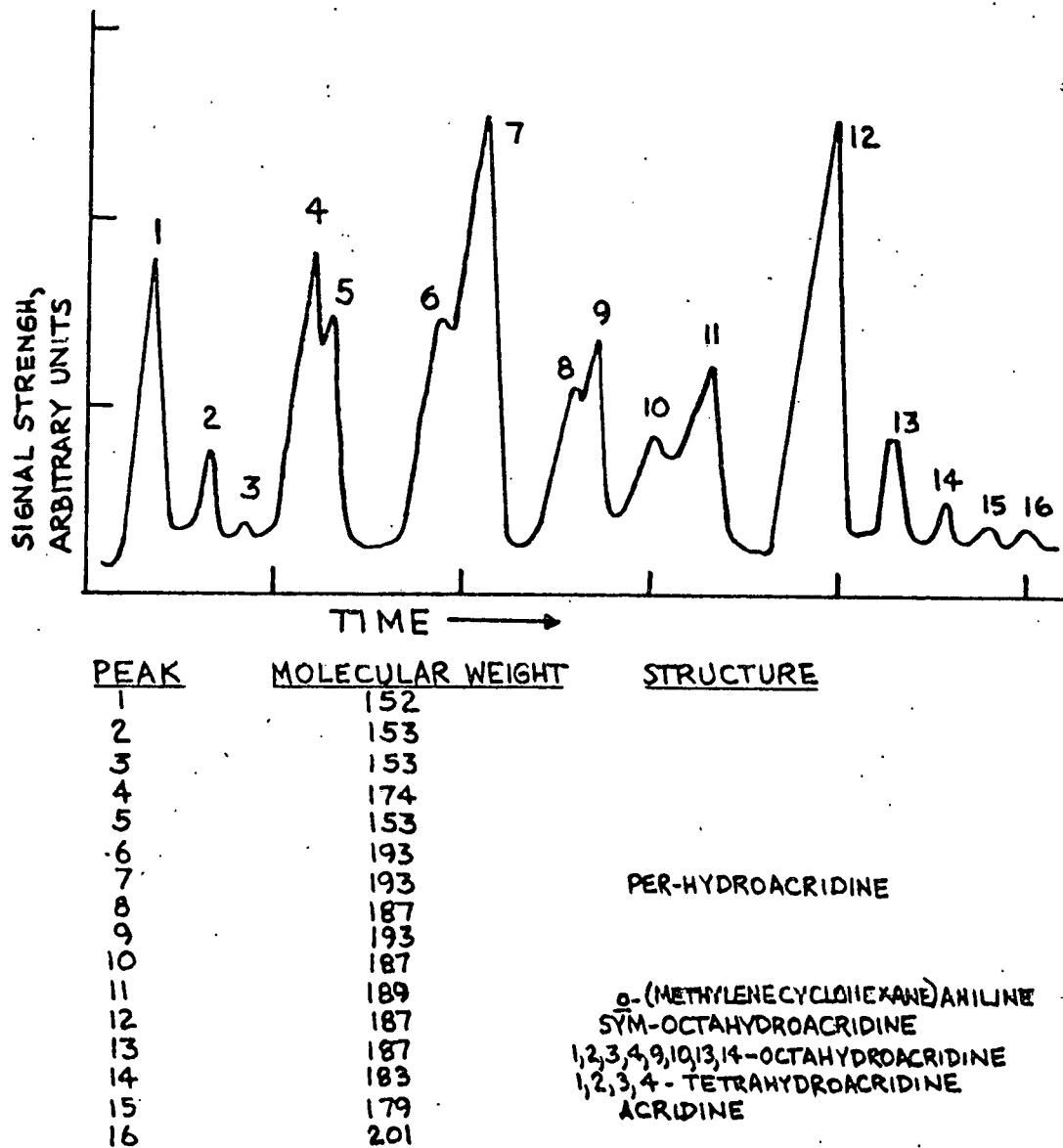


Figure 34. Chromatogram of the Extracted Nitrogen-containing Reaction Products for the Acridine Experiment Run at 353°C and 2000 psig (Run 1052); Ni-Mo/Al₂O₃ (American Cyanimid HDS-9A) Catalyst.

several chromatograms run on a 10 foot Apiezon L (2% KOH) chromatographic column at various temperatures between 120 and 200°C. The figure is representative of the relative concentrations of the compounds present and of the degree of resolution obtained. As shown in Figure 34, six compounds were identified as to molecular structure and the remaining compounds were assigned a molecular weight. The molecular structure was assigned based on mass spectral fragmentation patterns given in Appendix I. Mass spectra for the six identified compounds are shown in Figures 35 through 40. More details about the mass spectroscopic analysis and the problems incurred are presented in Appendix H. Detailed mass spectra and mass spectral fragmentation patterns are presented in Appendix I.

A chromatogram of a reactor sample for Run 1050 (353°C and 2000 psig) is shown in Figure 41.* The numbers assigned to the peaks refer to the compound assignments in Figure 34. Figures 42 and 43 present compound distributions for Run 1042 (340°C, 500 psig) and run 1050 (353°C, 2000 psig), respectively. The total nitrogen curve in Figure 42 indicates that essen-

* Chromatographic conditions are given in Table XV in Chapter II.

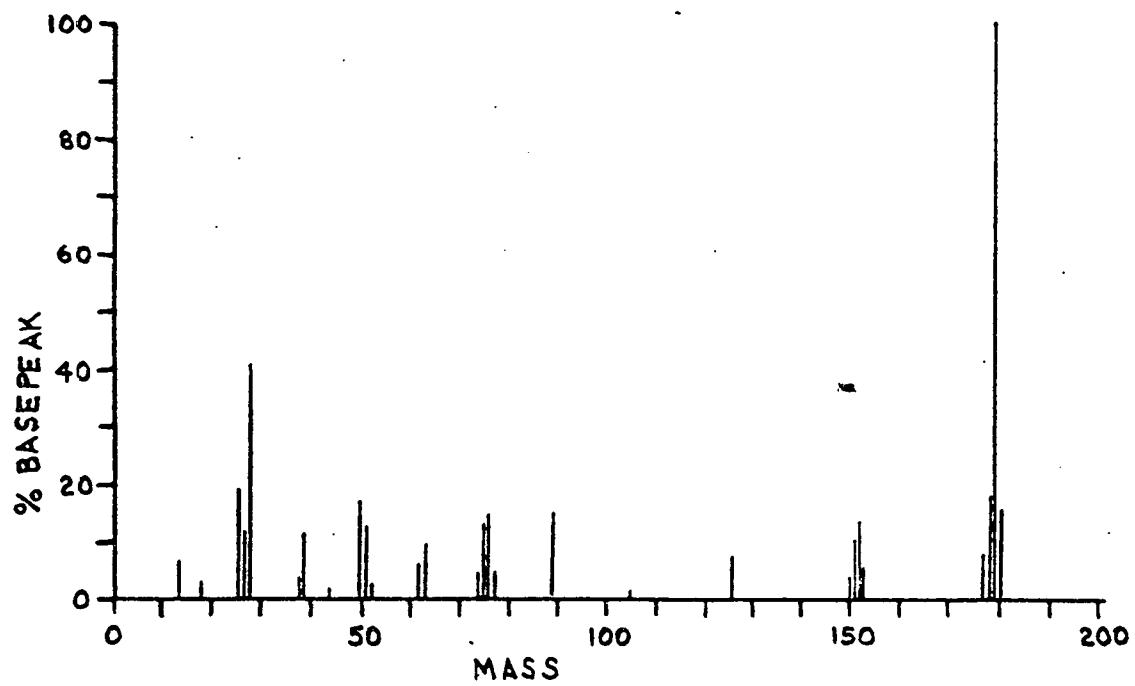
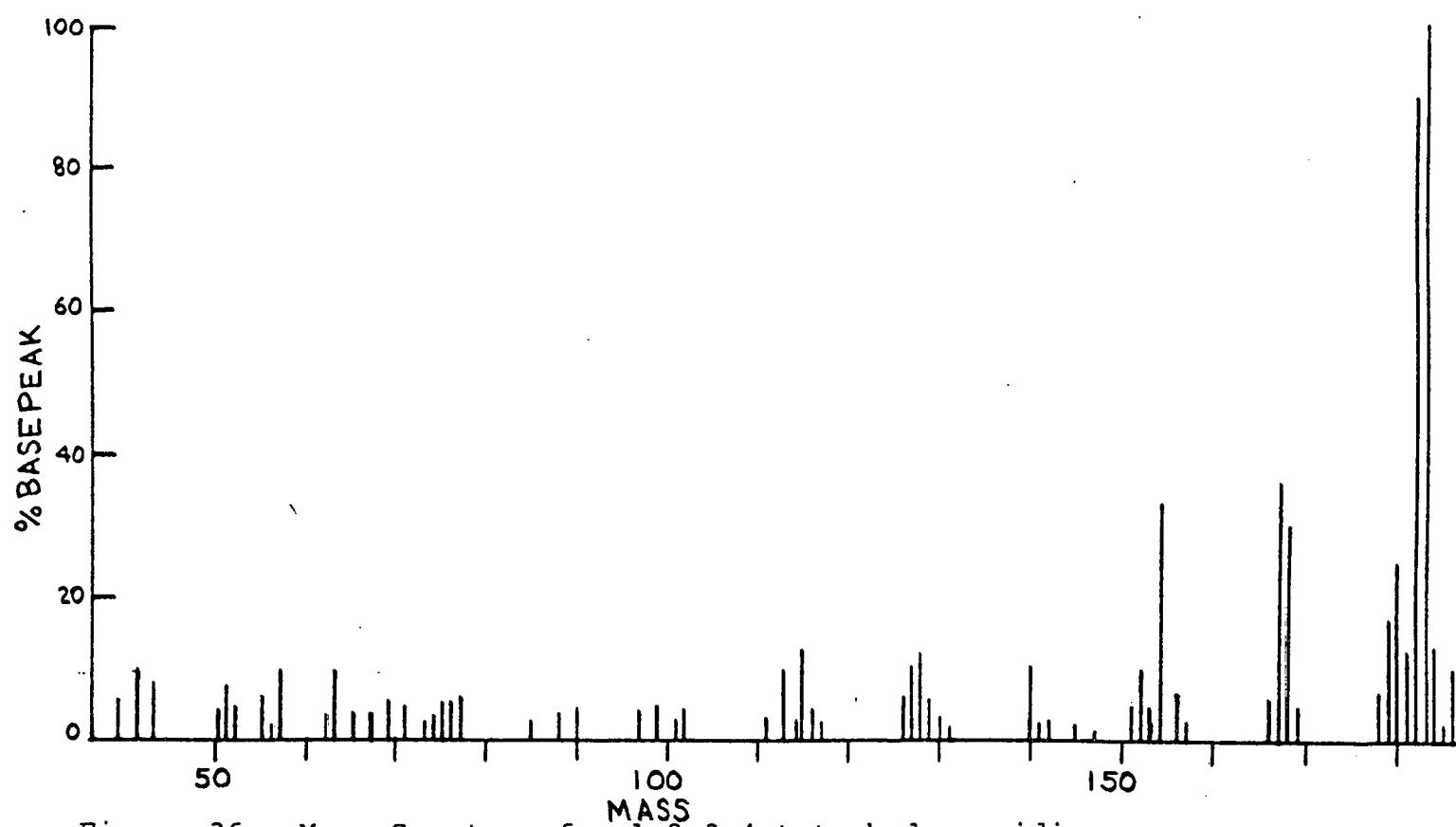



Figure 35. Mass Spectrum for Acridine.

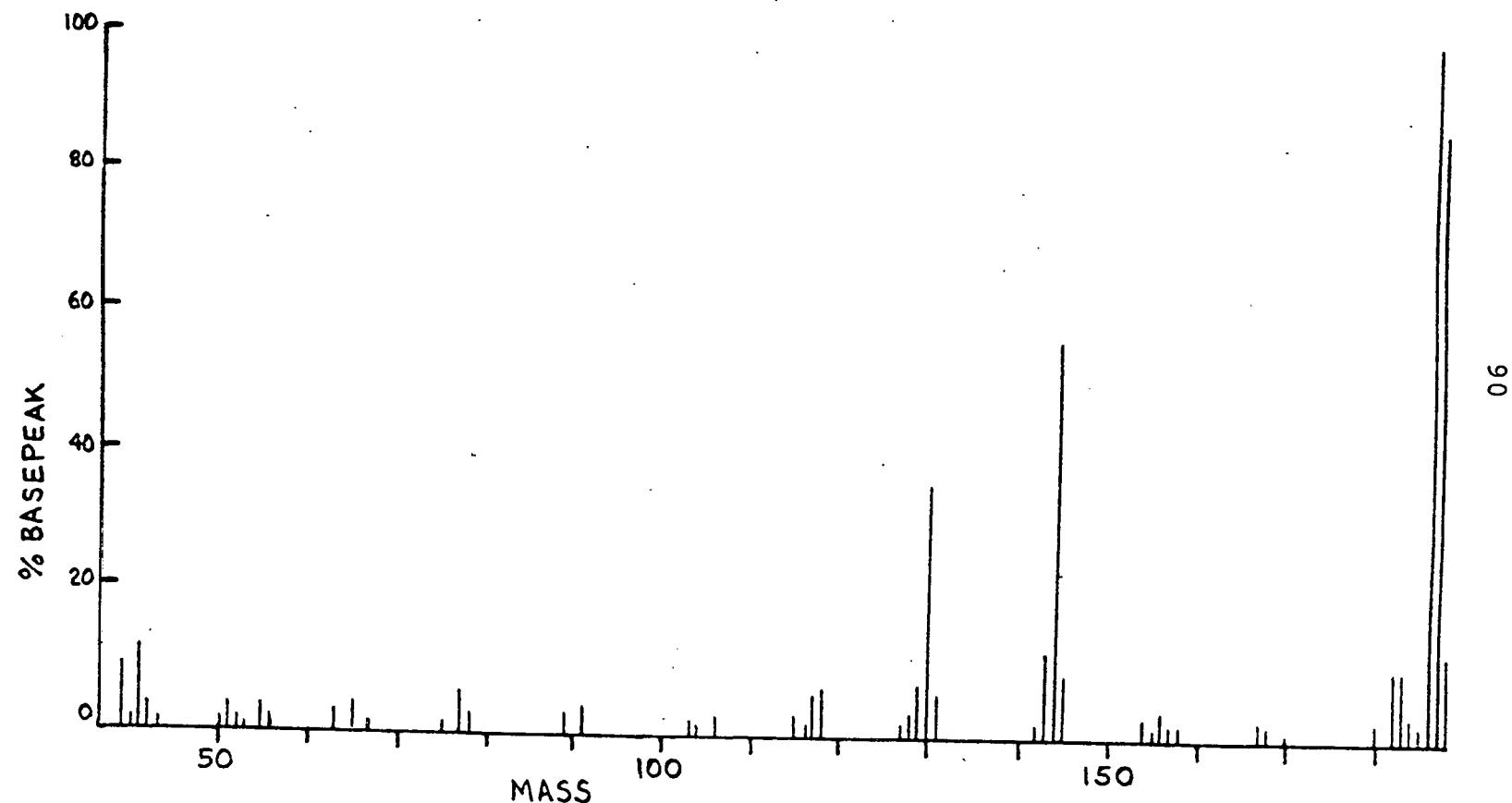


Figure 37. Mass Spectrum for 1,2,3,4,9,10,13,14-octahydroacridine.

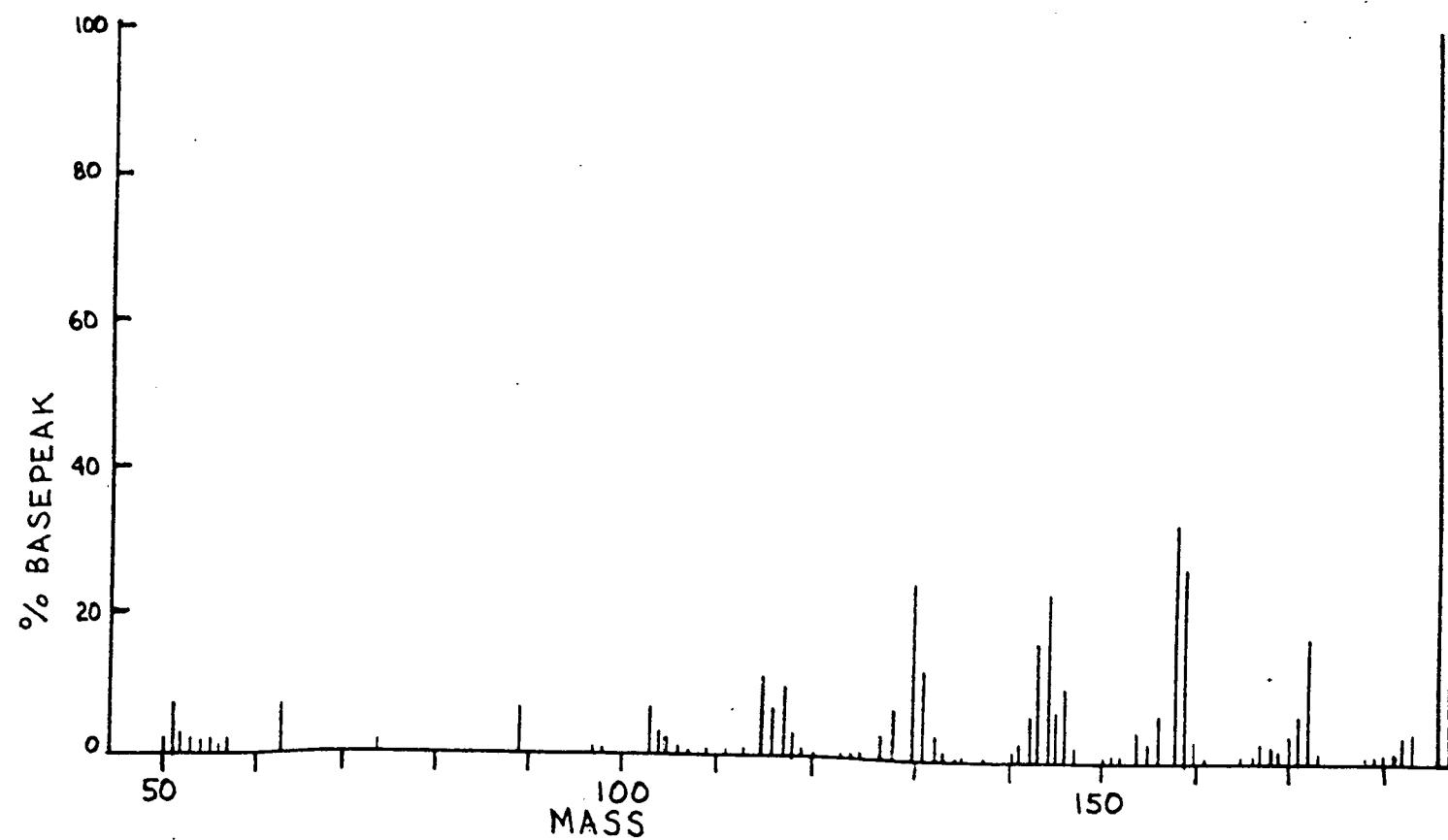


Figure 38. Mass Spectrum for sym-octahydroacridine.

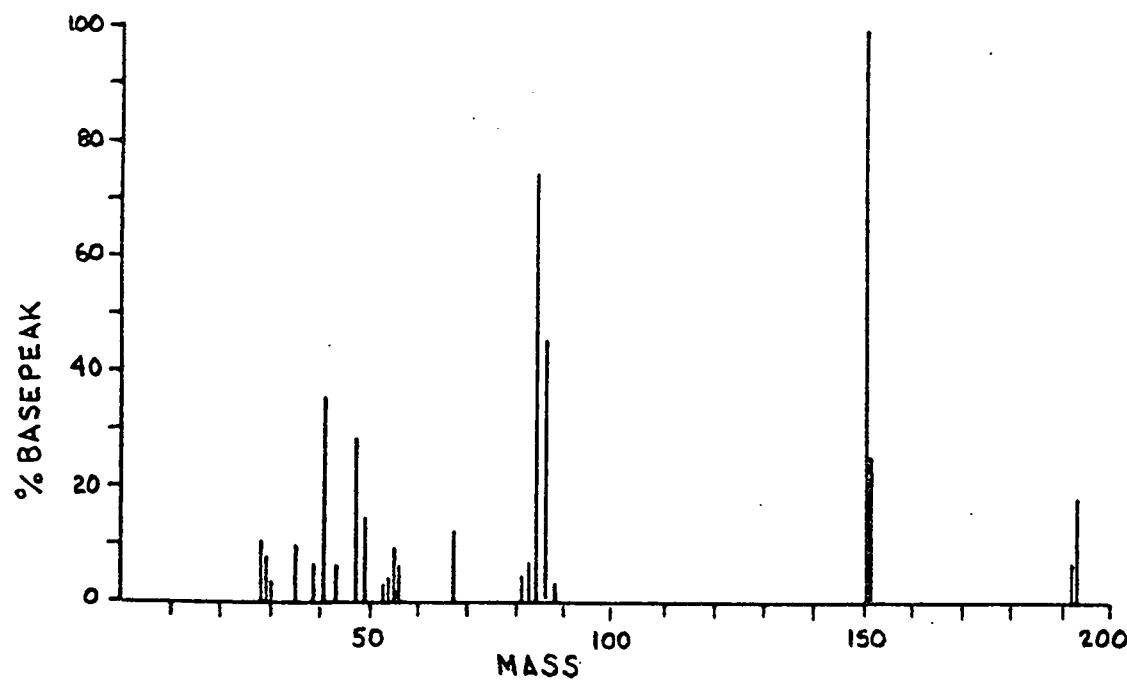


Figure 39. Mass Spectrum for perhydroacridine.

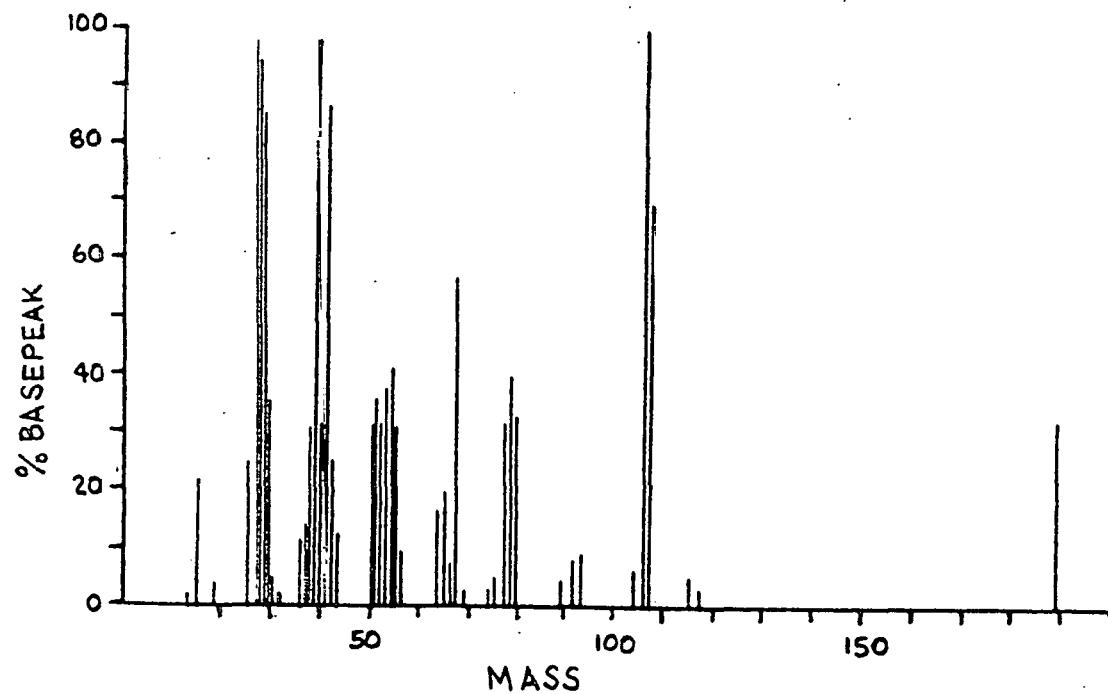


Figure 40. Mass Spectrum for o-(methylenecyclohexane)aniline.

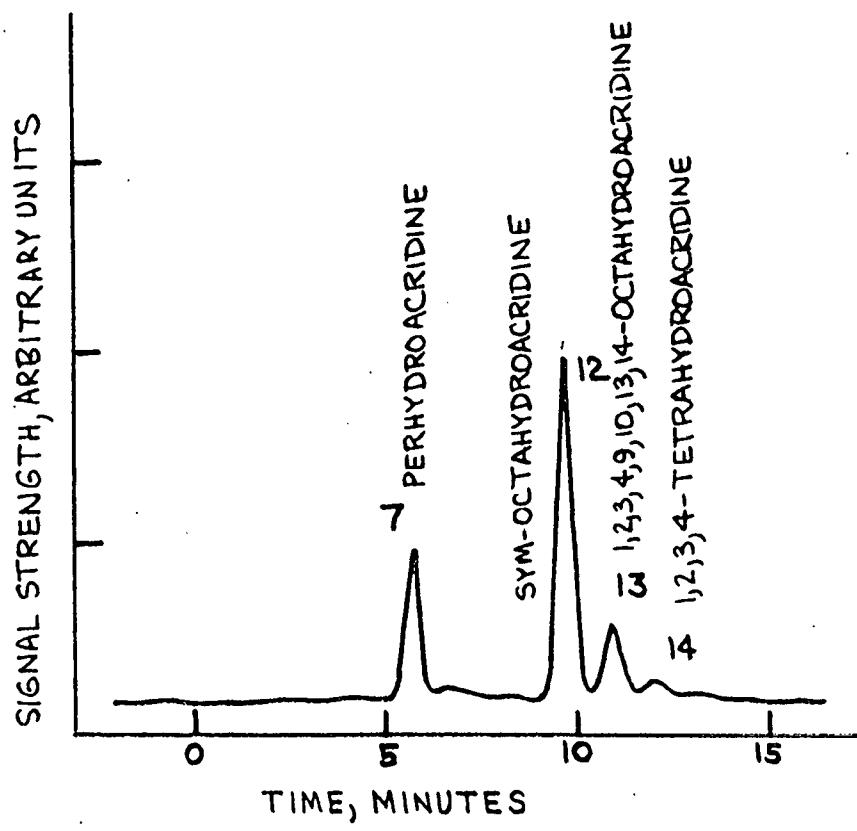


Figure 41. Chromatogram for an Acridine Reactor Sample: 353°C and 2000 psig (Run 1050 - 10 minutes); Ni-Mo/Al₂O₃ (American Cyanimid HDS-9A) catalyst.

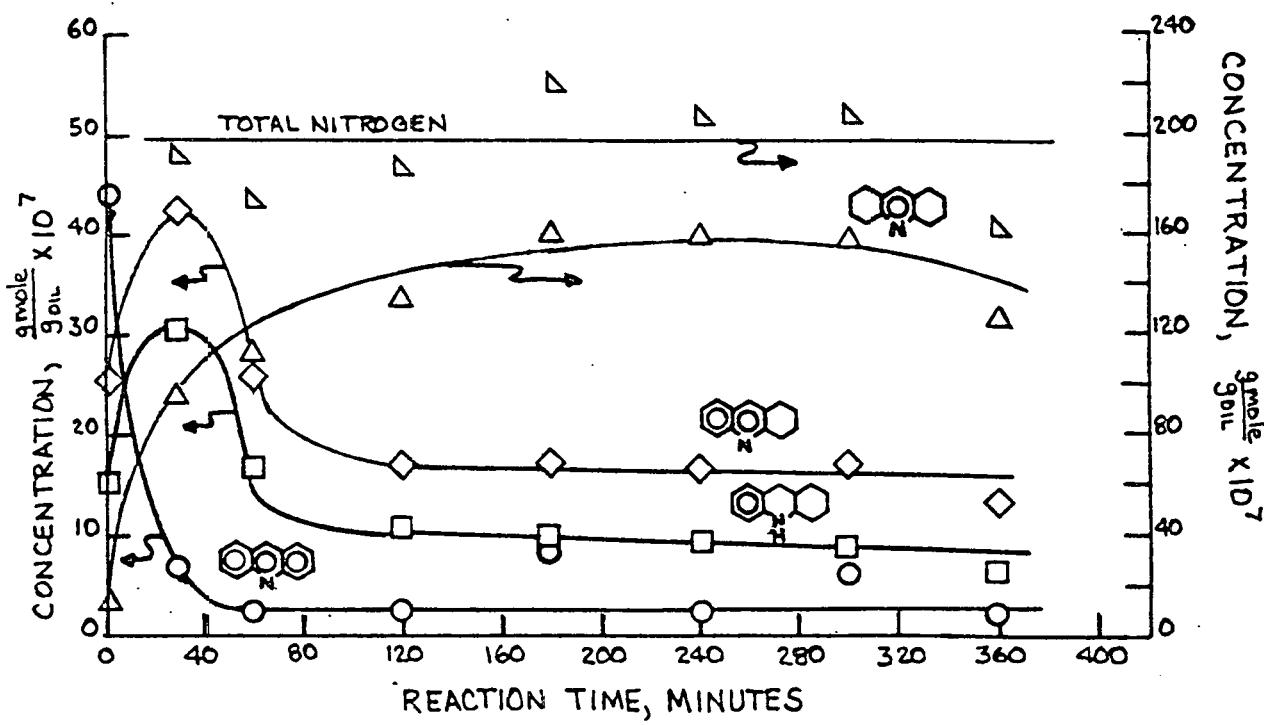


Figure 42. Concentration Profiles for Acridine Hydrodenitrogenation:
 340°C and 500 psig (Run 1042); $\text{Ni-Mo}/\text{Al}_2\text{O}_3$ (American Cyanimid HDS-9A) Catalyst.

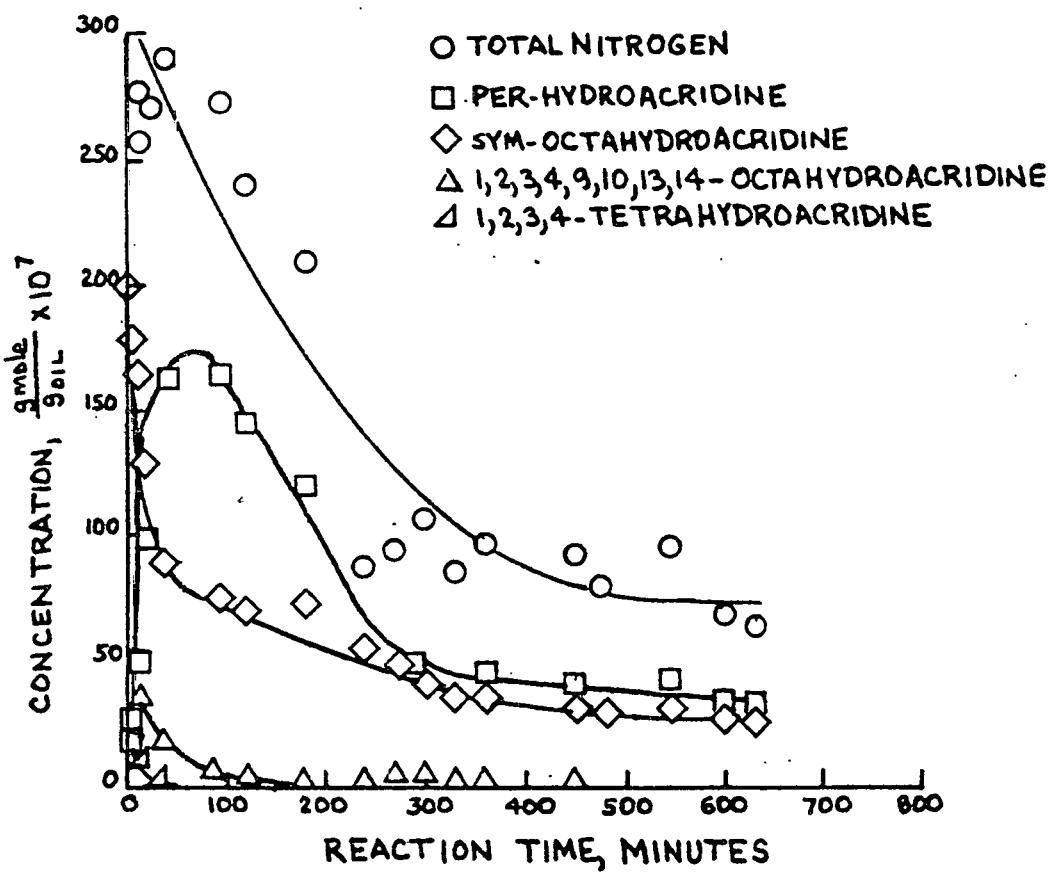


Figure 43. Concentration Profiles for Acridine Hydrodenitrogenation:
 353°C and 2000 psig (Run 1050); Ni-Mo/ Al_2O_3 (American Cyanimid HDS-9A) Catalyst.

tially no nitrogen is removed at 342°C and 500 psig (Run 1042) over a 360 minute period. However, the total nitrogen curve in Figure 43 indicates that there was a significant rate of nitrogen removal at 353°C and 2000 psig (Run 1050). Figure 44 presents a pseudo first-order kinetic analysis for the total nitrogen removal data for Run 1050 (353°C, 2000 psig). The rate constant was 0.51 $\frac{\text{g oil}}{\text{g catalyst-min}}$ and the coefficient of correlation was -0.918. Detailed concentration and reaction condition data for Runs 1042 and 1050 are presented in Appendix J. There were two experimental problems associates with Run 1050 (353°C, 2000 psig). First, the temperature rose at least 20°C above 353°C between the reaction sample taken at 180 and at 240 minutes. Second, all the acridine had undergone hydrogenation before the catalyst was injected into the reactor. Although all the acridine had undergone hydrogenation, there was no nitrogen removal since the measured total nitrogen concentration at zero time was the same as the amount of acridine initially loaded into the reactor. Figures 43 and 44 indicate that the initial reactor samples had this total nitrogen concentration. However, Run 1042

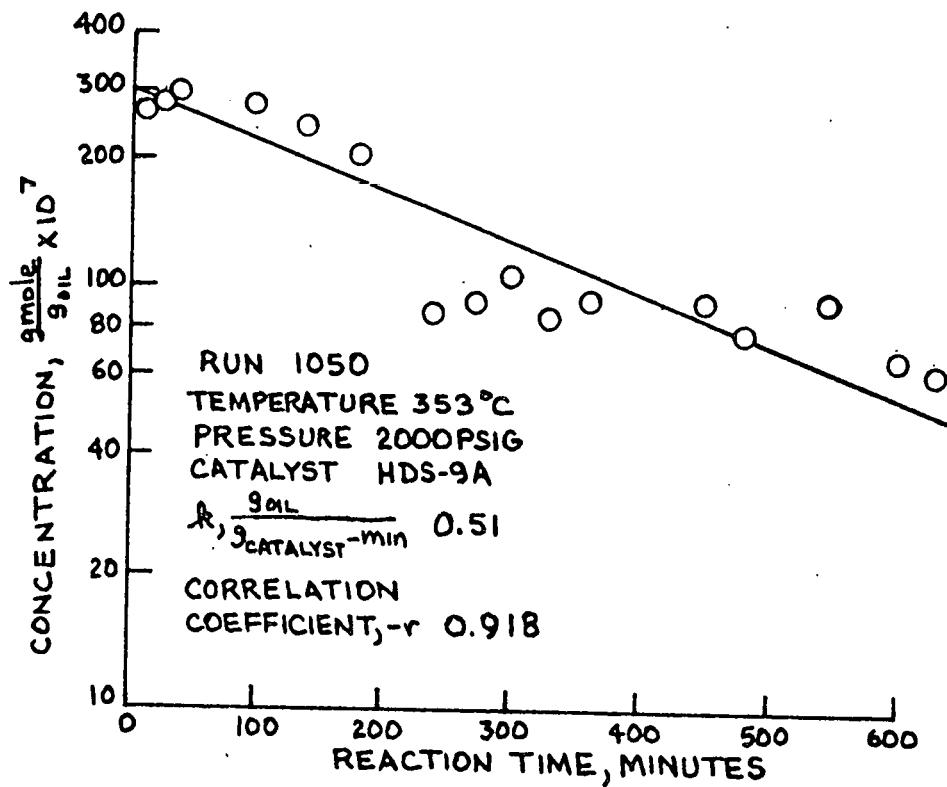


Figure 44. Pseudo First-order Kinetic Analysis for Total Nitrogen Removal: 353°C and 2000 psig (Run 1050); Ni-Mo/Al₂O₃ (American Cyanimid HDS-9A) Catalyst.

(342°C, 500 psig) had approximately the same initial acridine concentration loaded as Run 1050, and the total nitrogen curve in Figure 42 indicates only about one-fifth remained in the initial reactor samples. This difference is attributed to an error in the amount loaded; the important observation for this is the lack of nitrogen removal over a six hour period.

CHAPTER IV

DISCUSSION OF RESULTS

A. Hydrodenitrogenation of Quinoline

The blank reactor experiments indicated that the reactivity of quinoline is negligible in the absence of catalyst. Therefore, this experiment insured that the observed kinetics are a measure of catalyst activity and are not a result of thermal or wall-catalyzed reactions.

The extracted first-order rate constants describing the disappearance of the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline were reproducible within 2%; however, reactor reproducibility will be discussed further with respect to the mass transfer effects experiments.

The mass transfer effects experiments indicated the possibility of significant intraparticle mass transfer resistances for a catalyst particle size range of 90 to 275 μm and of significant gas-liquid mass transfer resistances for a stirring speed range

of 750 to 1250 rpm. The possibility of significant intraparticle mass transfer resistances is based on the fact that different catalyst particle sizes (90 μm versus 275 μm) led to pseudo first-order rate constants for the disappearance of the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline which differed by slightly over 20%. Values of the Thiele modulus were 0.329 (275 μm), 0.057 (125 μm) and 0.030 (90 μm). Thus, the effectiveness factor calculations, which were based on the diffusion of the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline, indicated there were no significant intraparticle mass transfer effects. This contradiction could be explained by poorer run to run reproducibility than was reported in the reactor reproducibility experiments. The contradiction could also be explained by questioning the validity of the effectiveness factor calculations. The disappearance of the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline was shown to follow pseudo first-order kinetics quite well, and the effectiveness factor calculations were based on the premise that a power law, irreversible kinetic analysis is valid. If the estimate of the effective diffusivity was changed by 50% so as to

obtain a larger estimate of the Thiele modulus, the conclusions drawn from the effectiveness factor calculations would remain the same. Therefore, it appears that the effectiveness factor calculations are rather insensitive to the estimate of the effective diffusivity. This result may also imply that the experiments were conducted in an intrinsic kinetic regime far from significant diffusional effects. The possibility of significant gas-liquid mass transfer resistances is based on the fact that one experiment (Run 1015; 125 μm) in the catalyst particle size survey did not produce a rate constant for the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline that had an intermediary value with the experiments run with catalyst particle sizes of 90 μm and 275 μm (Runs 1016 and 1017). This was attributed to the lower stirring speed of Run 1015.

The statistical analysis (correlation coefficients) for the catalyst survey indicated that pseudo first-order kinetics represent the rate of removal of the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline very well over the range 0 to 50% conversion; however, pseudo zero-order

kinetics also yield reasonable results. The reaction network for the hydrodenitrogenation of quinoline in the absence of carbon disulfide is shown in Figure 45. Shih (1976) completed experiments in which carbon disulfide was present in the reactor to maintain a sulfided catalyst and found a reaction network for quinoline as shown in Figure 46. The rate constants shown in Figure 46 are based on a pseudo first-order kinetic analysis. This network is similar to that reported by Goudriaan (1974). Figure 1 presents Goudriaan's reaction network. There are differences in the two proposed networks. Goudriaan found partially hydrogenated ring species, such as propylcyclohexene, and 1-amino-2-propylcyclohexene, present while Shih did not. Also, Shih proposed alternate routes for the hydrogenolysis of 1,2,3,4-tetrahydroquinoline involving n-propylaniline and gamma-phenylpropylamine; however, these compounds were never detected in a reactor mixture.

Figure 46 indicates that quinoline hydrogenses very quickly to form 1,2,3,4-tetrahydroquinoline, and equilibrium is established. Quinoline also hydrogenses at a measurable rate to 5,6,7,8-tetrahydro-

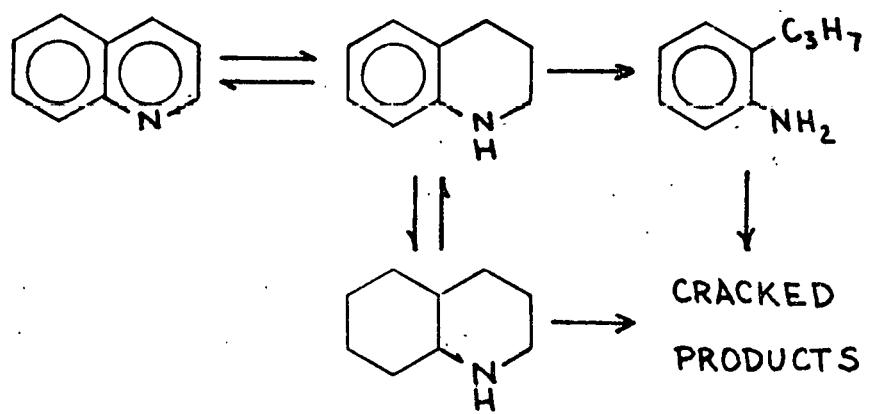
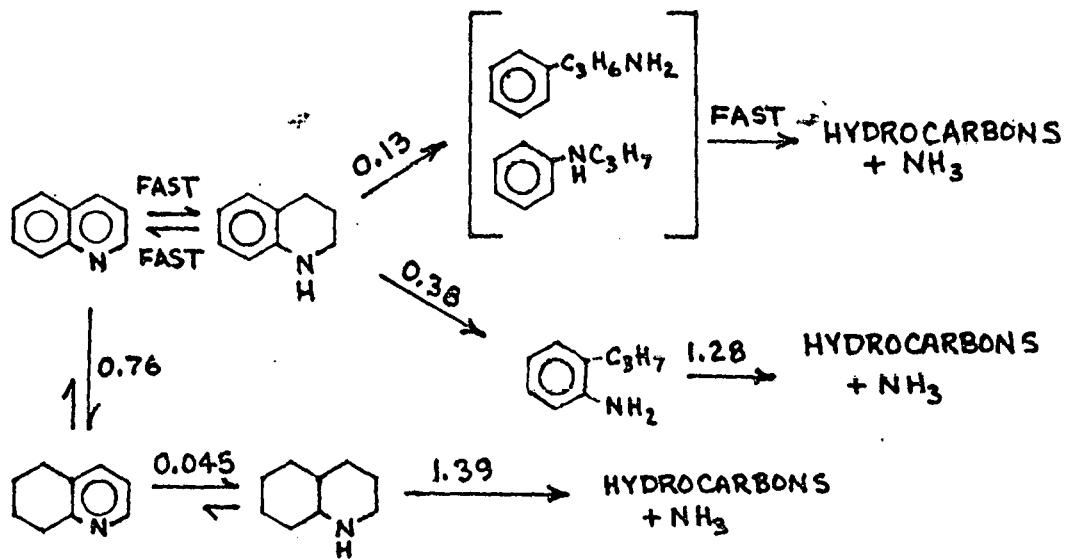



Figure 45. Quinoline Reaction Network in the Absence of Carbon Disulfide: 342°C and 500 psig; Ni-Mo/ Al_2O_3 (American Cyanimid HDS-9A) Catalyst.

REACTION CONDITIONS

TEMPERATURE 342°C

PRESSURE 500 PSIG

INITIAL QUINOLINE CONCENTRATION 1.0 wt%

CATALYST HDS-9A ($\text{Ni-Mo/Al}_2\text{O}_3$)

CATALYST CONCENTRATION 2 g/500 cc oil

CS_2 CONCENTRATION 0.05 wt%

FIRST ORDER RATE CONSTANTS, $\frac{\text{g oil}}{\text{g catalyst} \cdot \text{min.}}$

Figure 46. Quinoline Reaction Network in the Presence of Carbon Disulfide.

quinoline, which is very unreactive. Thus, for quinoline the hydrogenation of the nitrogen-containing ring is much faster than the hydrogenation of the benzene ring. This can be explained by the higher electronegativity of the nitrogen atom. Its unshared electrons increase the electron density and consequently activate the nitrogen-containing ring. Another explanation is that the basic nitrogen atom enhances adsorption of the nitrogen-containing ring on the catalyst surface and promotes hydrogenation of this ring. The steric hinderance arising from the (non-planar) puckered conformation of the saturated ring may create difficulties for adsorption on the catalyst surface, reduce the rate of adsorption, and thus retard activity.

The removal of nitrogen probably takes place via cracking of the saturated nitrogen-containing ring based on bond strength and resonance stabilization arguments. Roberts et al. (1971) report that the carbon-nitrogen single bond has an energy of 73 kcal/mole while the carbon-nitrogen double bond has an energy of 147 kcal/mole. Also, the reactivity of the aromatic nitrogen-containing ring should be

further reduced because of resonance stabilization.

Figure 46 shows that CS_2 , when added to the reaction medium to maintain the catalyst in a sulfided state, promoted the formation of 5, 6, 7, 8-tetrahydroquinoline to a measurable concentration. This intermediate was not observed in the catalyst survey experiments in which CS_2 was not added to the reaction medium.

Another key point concerning Figure 46 is that the reaction time for the experiment was 13 hours. The concentration profiles of o-propylaniline and decahydroquinoline presented in Chapter III for the catalyst survey show that in a reaction time of 4 hours the concentrations of these compounds were still increasing and had not reached their maximum values. These concentrations should pass through a maximum and then decrease to allow a meaningful kinetic analysis to be performed to extract rate constants for the formation and depletion of these compounds. This was the case for the 13 hour experiment represented in Figure 46.

Figure 46 indicates that possibly the hydro-

genation of 5,6,7,8-tetrahydroquinoline to decahydro-quinoline and the cracking of 1,2,3,4-tetrahydro-quinoline are the rate-limiting steps. A summary of rate-limiting steps reported in the literature was presented in Table VII in Chapter I of this thesis. At approximately the same reaction conditions (350-400°C; 3000 psig) Aboul-Gheit and Abdou (1972) also found that the rate-limiting step was the cracking of 1,2,3,4-tetrahydroquinoline. Doelman and Vlugter (1963) found that the hydrogenolysis of o-propylani-line was rate-limiting, but they used pure quinoline as a reaction medium. More importantly, both of the above-mentioned studies used a cobalt-molybdenum catalyst while the results presented in Figure 46 were for a nickel-molybdenum catalyst. However, it should be noted that the concept of one discrete rate-limiting step for a reaction network containing several parallel and series steps is not always clear cut and definitive.

B. Hydrodenitrogenation of Acridine

The most difficult experimental problem concerning the hydrodenitrogenation of acridine was finding suitable and convenient gas chromatographic

conditions for the quantitative analysis of nitrogen-containing reaction products. This goal was never achieved using packed column technology (See Appendix F) and, therefore, many acridine reactor experiments which were performed were not analyzed and reported. It is hoped that future developmental work at the University of Delaware on the application of open tubular gas chromatographic columns will be successful in solving this problem. Recently, an OV-101 wall-coated capillary column has been found to be satisfactory for the acridine reaction sample analysis.

Of the 16 nitrogen-containing reaction products 6 were identified according to compound structure. A compound with a molecular weight of 201 indicates that alkyl transfer reactions can take place for acridine similar to that reported for quinoline by Goudriaan (1974). The problems associated with the identification of the reaction products using mass spectroscopy are described in Appendix H. A preliminary reaction network based on the six identified compounds is presented in Figure 47. Of the 16 nitrogen-containing compounds 5 compounds can be measured quantitatively in the reactor samples. These

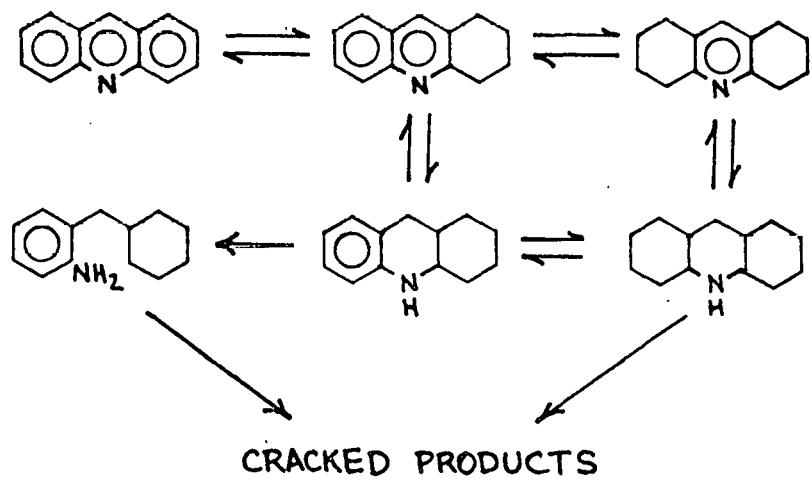


Figure 47. Preliminary Acridine Reaction Network:
 353°C and 2000 psig (Run 1050);
 $\text{Ni-Mo/Al}_2\text{O}_3$ (American Cyanimid HDS-9A)
 Catalyst.

are acridine, 1,2,3,4-tetrahydroacridine, 1,2,3,4,9,10,13,14-octahydroacridine, sym-octahydroacridine, and per-hydroacridine. The compounds assigned only a molecular weight are probably cracked products. Since the quinoline experiments indicated that compounds with partially hydrogenated aromatic rings were not formed, it is unlikely that compounds of this nature are present in the acridine experiments. At the experimental conditions of 340 to 355°C and 500 to 2000 psig o-(methylenecyclohexane) aniline appeared only in trace amounts in the reactor samples over a reaction time period of 12 hours. The other nitrogen-containing compounds assigned only a molecular weight appeared only in small quantities in the reaction samples and either were not detected or were fused with other major GC peaks.

The experiment (Run 1042) run at 340°C and 500 psig for 6 hours indicates that several species are probably in equilibrium (refer to Figure 42). After 80 minutes of reaction time the concentration ratio of 1,2,3,4-tetrahydroacridine to acridine is constant (6.3) and the ratio of 1,2,3,4-tetrahydroacridine to 1,2,3,4,9,10,13,14-octahydroacridine is

constant (1.7). Also, the concentration ratio of sym-octahydroacridine to 1,2,3,4-tetrahydroacridine is approximately constant (9.6), but there is more scatter in these data. The experiment run at 353°C and 2000 psig (Run 1050) for 12 hours did not show these trends; however, reactor samples taken before the injection of the catalyst indicated that acridine had essentially reacted completely to partially hydrogenated forms. This problem is serious with respect to calculating detailed kinetics for each species based on catalyst activity, and it was the impetus for the blank reactor (no catalyst) experiment, which has not been analyzed. A serious problem associated with Run 1042 (342°C, 500 psig) is that the total nitrogen content of the initial reactor samples taken shortly after injection of the catalyst was only 20% of the initial acridine concentration loaded into the reactor. However, regardless of this problem there was no total nitrogen removal over a 360 minute reaction time period for Run 1042 (refer to Figure 42).

The pseudo first-order kinetic analysis performed on the total nitrogen concentration for

Run 1052 (353°C, 2000 psig) led to a rate constant of 0.51 $\frac{g_{oil}}{g_{catalyst} \cdot \text{min}}$, and the quinoline experiment run at 342°C and 500 psig (Runs 1021 and 1031) led to a total nitrogen removal rate constant of 0.41 $\frac{g_{oil}}{g_{catalyst} \cdot \text{min}}$. Dr. Shih has conducted quinoline experiments at 342°C and 2000 psig which led to a total nitrogen removal rate constant of 0.76 $\frac{g_{oil}}{g_{catalyst} \cdot \text{min}}$. These rate constants indicate that the total nitrogen removal rates for quinoline and for acridine are the same order of magnitude.

Since no nitrogen-containing cracked products for acridine rose to significant, measurable concentrations, it would appear that the cracking of hydrogenated species of acridine could be the rate-limiting step in the hydrodenitrogenation of acridine. This also implies the only significant cracking step probably involves perhydroacridine. The bond strength arguments used in the analysis of the quinoline experiments can be applied to the acridine experiments. The carbon-nitrogen single bond (73 kcal/mole) is weaker than the carbon-nitrogen double bond (147 kcal/mole). In the quinoline experiments no cracked products of decahydroquinoline were formed in measurable amounts.

able concentrations, and in the acridine experiments no cracked products of perhydroacridine were formed in measurable concentrations. Both of these compounds have only carbon-nitrogen single bonds, and any of their cracked products are probably very reactive. o-(methylenecyclohexane)aniline is less reactive than any cracked products of perhydroacridine because of resonance stabilization of the carbon-nitrogen bond with the aromatic ring. Therefore, since this compound was not formed in measurable concentrations in the acridine experiments, the cracking step through 1,2,3,4,9,10,13,14-octahydroacridine is not significant.

A catalyst with better hydrogenation capabilities would promote the formation of reactive carbon-nitrogen single bond compounds and, thus, increase the rate of acridine hydrodenitrogenation. However, this would increase hydrogen consumption. Therefore, a catalyst which could selectively crack the stronger carbon-nitrogen double bond without hydrogenating the aromatic ring would be better for industrial hydrodenitrogenation operations. Also, compounds such as decahydroquinoline and perhydroacridine are not

planar molecules and have several conformations.

Steric hindrances can result which decrease the reactivity of these compounds. A catalyst which possibly has stronger adsorption capabilities to overcome these steric hindrances would improve its hydrodenitration capabilities.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

1. The reactor reproducibility was measured to be better than 2% based on a pseudo first-order kinetic analysis for the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline.
2. Effectiveness factor calculations for the quinoline experiments indicated that there were no significant catalyst pore diffusion effects for the catalyst particle size range of 90 μm to 275 μm ; however, kinetic analyses on the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline indicated there were differences between the catalyst particle sizes. These experiments also indicated the possibility of significant external mass transfer effects in the autoclave stirring speed range of 500 to 1250 rpm.

3. Nitrogen-containing reaction products for quinoline hydrodenitrogenation at 342°C and 500 psig were 1,2,3,4-tetrahydroquinoline, o-propylaniline, and decahydroquinoline when the catalyst was presulfided but when no carbon disulfide was added to the reaction medium to maintain the catalyst in the fully sulfided state. In experiments with carbon disulfide present 5,6,7,8-tetrahydroquinoline was formed.

4. In quinoline hydrodenitrogenation at 342°C and 500 psig quinoline and 1,2,3,4-tetrahydroquinoline are in thermodynamic equilibrium.

5. The total nitrogen removal rate for quinoline follows pseudo first-order kinetics quite well over the 0 to 50% conversion range at 342°C and 500 psig. Pseudo zero-order kinetics fit almost as well.

6. The disappearance of the lumped group of quinoline plus 1,2,3,4-tetrahydroquinoline follows pseudo first-order kinetics.

7. For quinoline hydrodenitrogenation at 342°C and 500 psig the following ranking of catalysts in order of decreasing activity was observed: Ni-Mo/

Al_2O_3 (American Cyanimid HDS-9A), Ni-W/ Al_2O_3 (NALCO NT-550), Ni-W/ Al_2O_3 (Harshaw Ni4303), Ni-W/ SiO_2 - Al_2O_3 (Harshaw Ni4301), and Co-Mo/ Al_2O_3 (American Cyanimid HDS-16A).

8. The presence of hydrogenated and partially hydrogenated reaction products probably implies that acridine must be hydrogenated before cracking and heteroatom removal occurs. This is supported by bond strength arguments which state that the carbon-nitrogen single bond is weaker than the carbon-nitrogen double bond.

9. The appearance of so many reaction products (16) for acridine hydrodenitrogenation implies that there are many paths possible for heteroatom removal. However, the most significant cracking step is probably through perhydroacridine. This is supported by bond strength arguments and by no significant measurable concentration of a cracked product in the reaction medium.

10. Identified nitrogen-containing reaction products for acridine hydrodenitrogenation were 1,2,3,4-tetrahydroacridine, 1,2,3,4,9,10,13,14-octa-

hydroacridine, sym-octahydroacridine, perhydroacridine, and o-(methylenecyclohexane) aniline. The presence of a reaction product with a molecular weight of 201 indicates that alkyl transfer reactions can occur.

11. A preliminary reaction network for acridine hydrodenitrogenation is presented (Figure 47, p.110).

12. Quinoline and acridine have total nitrogen removal rates which are the same order of magnitude.

13. The cracking of hydrogenated species of acridine is probably the rate-limiting step in the reaction network.

B. Recommendations

1. The reactor reproducibility for the 300 cc autoclave reactor should be studied further in a series of 3 to 5 experiments. If the reproducibility approaches 20%, then the effectiveness factor calculations are probably valid and no significant intraparticle mass transfer resistances are present in the catalyst particle size range of 90 to 275 μm . If the reactor reproducibility is much better than

20%, then the effectiveness factor calculations are suspect, and further experiments with smaller catalyst particle sizes (less than 90 μm) should be conducted to find a size region in which intraparticle mass transfer resistances are not significant.

2. A series of experiments should be made varying the autoclave reactor stirring speed in the 500 to 2000 rpm range to find a region in which varying the stirring speed does not effect the kinetic analysis.

3. For a fairer comparison catalysts should be prepared on supports of equivalent physical properties for evaluation of hydrodenitrogenation activity.

4. Catalyst parameters, such as metal content and physical properties, should be studied for their effect on the hydrogenation and cracking steps in the hydrodenitrogenation of acridine.

5. Other nitrogen-containing compounds such as substituted acridines and quinolines are desirable to study for their hydrodenitrogenation reactivity.

BIBLIOGRAPHY

Aboul-Gheit, A. K. and I. K. Abdou, *J. Inst. Petrol.*, 58, 564 (1972)

Beugling, T., M. Boduszynski, F. Goudriaan, J.W.M. Sonnemans, *Anal. Letters*, 4, 727 (1971)

Cocchetto, J. F., S. M. Thesis, M.I.T., Cambridge (1974)

Cox, K. E. and L. Berg, *CEP*, 56, No. 12, 54 (1962)

Damon, R. A., Thesis, Montana State College, Bozeman, Mont. (1960)

Dean, J. A., *Lange's Handbook of Chemistry*, 11 Ed., Mc-Graw-Hill, New York, N. Y. (1973)

Doelman, J. and J. C. Vlugter, *Proc. 6th World Petrol. Congress*, Frankfurt, III 247 (1963)

Flinn, R. A., O. A. Larson, and H. Beuther, *Hydro-carbon Proc. and Pet. Refiner*, 42, No. 9, 129 (Sept., 1962)

Goudriaan, F., PhD Thesis, Twente Technical Institute, The Netherlands (1974)

Haensel, V., E. L. Pollitzer, and C. H. Watkins, *World Petrol. Congr. Proc.*, 6th, Hamburg, Sect III, Paper 17 (1963)

McIlvried, H. G., *Preprints Division of Petroleum Chemistry of the ACS*, 15, No. 1, A 33 (Feb., 1970)

Mayer, J. T., ScD Thesis, M.I.T., Cambridge (1974)

Richter, F. P., P. D. Caesar, S. L. Meisel, and R. D. Offenhauer, *IEC*, Vol. 44, No. 11, p 2601

Roberts, J. D., R. Stewart, and M. C. Caserio,
Organic Chemistry, W. A. Benjamin, Inc.,
Menlo Park, Ca. (1971)

Ryffel, J. R., Thesis, Montana State College,
Bozeman, Mont. (1960)

Schuit, G. C. A. and B. C. Gates, AiChE J., 19,
417 (1973)

Schultz, J. L., T. Kessler, R. A. Triedel, and
A. S. Sharkey, Jr., FUEL, 51, 243 (1973)

Shih, S., submitted for publication to the Journal
of Catalysis (1976)

Sonnemans, J., PhD Thesis, Twente University of
Technology, The Netherlands (1973)

Tschamber, H. and E. DeRuiter, "Coal Science,
Advances in Chemistry, Series 55", ACS,
350 (1966)

APPENDIX A

DETAILED MATHEMATICS FOR THE PSEUDO FIRST-ORDER AND PSEUDO ZERO-ORDER KINETIC ANALYSES

PRESENTED BELOW ARE THE DETAILED MATHEMATICS FOR THE PSEUDO FIRST-ORDER AND THE PSEUDO ZERO-ORDER KINETIC ANALYSES.

FIRST-ORDER ANALYSIS

CONSIDER THE FOLLOWING RATE EXPRESSION DESCRIBING THE DISAPPEARANCE OF THE LUMPED GROUP OF QUINOLINE PLUS 1,2,3,4-TETRAHYDROQUINOLINE

$$r = k' [C][H]^a [Q+THQ]$$

WHERE

$$r = \text{RATE OF REACTION, } \frac{\text{moles } Q+THQ}{\text{g}_\text{OIL} - \text{MINUTE}}$$

$$k' = \text{RATE CONSTANT, } \frac{[\text{g}_\text{OIL}]^2}{[\text{mole hydrogen}][\text{g}_\text{CATALYST}][\text{MINUTE}]}$$

$$[H] = \text{HYDROGEN (H}_2\text{) CONCENTRATION, } \frac{\text{mole hydrogen}}{\text{g}_\text{OIL}}$$

a = UNKNOWN CONSTANT

$[C]$ = CATALYST CONCENTRATION, $\frac{g_{CATALYST}}{g_{OIL}}$

$[Q+THQ]$ = CONCENTRATION OF QUINOLINE PLUS
1,2,3,4-TETRAHYDROQUINOLINE, $\frac{\text{moles}}{g_{OIL}}$

ASSUMING THAT THE HYDROGEN CONCENTRATION IS
ESSENTIALLY CONSTANT IT CAN BE LUMPED WITH
THE RATE CONSTANT TO OBTAIN

$$k' [H]^a \equiv k$$

$$r = k [C][THQ+Q]$$

ASSUMING AN IDEAL BATCH REACTOR

$$\begin{aligned} \frac{d[Q+THQ]}{dt} &= -k [C][THQ+Q] \\ \int \frac{d[Q+THQ]}{[Q+THQ]} &= - \int_0^t k [C] dt \end{aligned}$$

$$\ln[Q+THQ] = -k[C]t + \ln[Q+THQ]_0$$

WHICH IS IN THE FORM

$$y = Ax + B$$

AND THUS A LINEAR REGRESSION ANALYSIS CAN BE APPLIED TO OBTAIN ESTIMATES OF THE PSEUDO FIRST-ORDER RATE CONSTANT, k , AND THE INITIAL CONCENTRATION, $[Q+THQ]_0$.

ZERO-ORDER ANALYSIS

CONSIDER THE FOLLOWING RATE EXPRESSION DESCRIBING THE DISAPPEARANCE OF THE LUMPED GROUP OF QUINOLINE PLUS 1,2,3,4-TETRAHYDROQUINOLINE

$$r = k' [H]^a \equiv k$$

AGAIN, ASSUMING IDEAL BATCH REACTOR BEHAVIOR

$$\frac{d[Q+THQ]}{dt} = -k$$

INTEGRATING

$$[Q+THQ] = -kt + [Q+THQ]_0$$

WHICH IS IN THE FORM

$$y = Ax + B$$

AGAIN, A LINEAR REGRESSION ANALYSIS CAN BE APPLIED TO OBTAIN ESTIMATES OF k AND $[Q+THQ]_0$.

APPENDIX B
CONCENTRATION PROFILES FOR REACTOR REPRODUCIBILITY
EXPERIMENTS

ANALYSIS 2/18/76

RIN 1020

RUN CONDITIONS:

TEMPERATURE. T. 343

TEMPERATURE, °C 375
PRESSURE, PSIG 500

~~PRE-
CATALYST~~, 1510

CATALYST HDS-9A

CATALYST SIZE 125µm

CATALYST SIZE 125 μm

SOLVENT WHITE OIL

INITIAL REACTANT CONC (1CB3ED) 64.7×10^{-6} g mole/liter

INTER-REACTANT ONE (WATER)

CS₂ CONC. (LOADED) NONE
H₂S GAS PHASE CONC TRACE

N₂S END PHASE CONC. 1.5%

128

DATE OF
ANALYSIS 4/12/76

二二二

COMPOUND					TOTAL NITROGEN	Q + THQ	THQ/Q		
SET. TIME	4.3	5.9	8.6	11.2	—	—	—	—	—
CONC. UNITS	$\frac{\text{nmole}}{\text{g soil}} \times 10^7$	$\frac{\text{nmole}}{\text{g soil}} \times 10^7$	$\frac{\text{nmole}}{\text{g soil}} \times 10^6$	$\frac{\text{nmole}}{\text{g soil}} \times 10^6$	$\frac{\text{nmole}}{\text{g soil}} \times 10^6$	$\frac{\text{nmole}}{\text{g soil}} \times 10^6$	$\frac{\text{nmole}}{\text{g soil}} \times 10^6$	—	—
EXAMPLE #									
2	12.7	12.9	8.34	54.6	65.5	62.9	6.5	—	—
5	32.1	20.7	6.10	49.9	61.3	56.0	8.2	—	—
15	57.1	39.5	7.15	52.1	68.9	59.2	7.3	—	—
30	69.3	48.3	5.53	41.3	52.6	46.8	7.5	—	—
60	93.7	76.5	5.09	33.8	61.5	45.9	7.6	—	—
93	104	85.1	4.62	31.3	55.0	36.0	6.8	—	—
120	105	88.6	3.97	26.8	50.1	30.8	6.8	—	—
180	115	99.5	3.01	22.0	46.4	25.0	7.3	—	—

RUN CONDITIONS:

TEMPERATURE. 342

PRESSURE PSIG - 500

CATALYST HDS-9P

CATALYST C-100 200

CATALYST SIZE 125 μ m

SOLVENT WHITE OIL

INITIAL REACTANT CONC (1.03P.D) 67.4×10^{-6} mole/gm

INITIAL REACTANT CONC. (MOL/L) 0.0001

H. S GAS PHASE CONC. TRACE

APPENDIX C
EFFECTIVENESS FACTOR CALCULATIONS

THE EFFECTIVENESS FACTOR CALCULATIONS WERE BASED ON THE METHODOLOGY DESCRIBED IN MASS TRANSFER IN HETEROGENEOUS CATALYSIS BY C.N. SATTERFIELD. ALL PAGE NUMBER CITATIONS IN THIS APPENDIX REFER TO THIS BOOK.

THE EFFECTIVENESS FACTOR CALCULATIONS ARE BASED ON THE DISAPPEARANCE OF THE LUMPED GROUP OF QUINOLINE PLUS 1,2,3,4-TETRAHYDRO-QUINOLINE. EXPERIMENTAL DATA HAVE BEEN SHOWN TO FOLLOW PSEUDO FIRST-ORDER KINETICS.

FIRST, THE MOLECULAR DIFFUSIVITY FOR 1,2,3,4-TETRAHYDROQUINOLINE IN WHITE OIL AT 342°C MUST BE ESTIMATED.

p.18 STOKES-EINSTEIN CORRELATION

$$D_{12} = \frac{1.05 \times 10^{-9} T}{\mu V_b^{1/3}}$$

FOR 1,2,3,4-TETRAHYDROQUINOLINE (THQ)

$$(V_b)_{\text{THQ}} = 6(V_b)_{\text{CARBON}} + 11(V_b)_{\text{HYDROGEN}} + 1(V_b)_{\text{NITROGEN}} - (30)_{\text{NAPHTHALENE RING STRUCTURE}} = 111.50$$

$$D_{\text{THQ}} = \frac{[1.05 \times 10^{-9}][342 + 273^{\circ}\text{K}]}{[0.00256][111.5]^{1/3}} = 5.24 \times 10^{-5} \frac{\text{cm}^2}{\text{sec}}$$

NOTE: THE VISCOSITY (μ) AND MOLECULAR WEIGHT OF WHITE OIL AT 342°C WERE ESTIMATED BY THOMAS' METHOD AND BY ASSUMPTION OF A $\text{C}_{24}\text{H}_{50}$ PARAFFIN, RESPECTIVELY.

SINCE THE CATALYST PROPERTIES WERE NOT AVAILABLE FOR AMERICAN CYANIMID'S HDS-16A CATALYST, IT WAS ASSUMED THAT HDS-16A HAD SIMILAR PROPERTIES OF HDS-3 CATALYST, A NICKEL-MOLY AMERICAN CYANIMID CATALYST

PORE VOLUME 0.6 cc/g

SURFACE AREA 180 m^2/g

COMPACTED BULK DENSITY 43 lb/ft^3

P. 66

 $\tau = \text{TORTUOSITY FACTOR} \approx 4.75$ $\theta = \text{VOLUME FRACTION VOIDS} \approx 0.354$

SO THAT THE EFFECTIVE DIFFUSIVITY BECOMES

$$D_{\text{THQ}_E} = \frac{D_{\text{THQ}} \theta}{\tau} = 3.91 \times 10^{-6} \text{ cm}^2/\text{sec}$$

NEXT, THE THIELE MODULUS CALCULATION

p.142 $\phi_s = \frac{R^2}{D_E} \left(-\frac{1}{V_c} \frac{dn}{dt} \right) \frac{1}{C_s}$ FOR SPHERICAL GEOMETRY

 ϕ_s = THIELE MODULUS

R = CATALYST RADIUS

V_c = CATALYST VOLUME

dn/dt = RATE OF REACTION, gmoles/sec

C_s = REACTANT CONCENTRATION @ CATALYST SURFACE

BASED ON 0.8g CATALYST LOADED IN REACTOR

$$V_c = \frac{0.8g}{0.8g/\text{cc}} = 1.0 \text{ cc}$$

RUN 1015 (125 μm)ESTIMATE OF $\frac{dn}{dt}$

FROM APPENDIX D

$$@ t = 7 \text{ min} \quad [Q + \text{THQ}] = 60.04 \times 10^{-6} \frac{\text{gmole}}{\text{gole}}$$

$$@ t = 90 \text{ min} \quad [Q + \text{THQ}] = 54.08 \times 10^{-6} \frac{\text{gmole}}{\text{gole}}$$

$$\frac{dn}{dt} \approx \frac{(60.04 - 54.08) \times 10^{-6} \frac{\text{gmole}}{\text{gole}}}{(7 - 90 \text{ min}) (60 \text{ sec/min})} (210 \text{ cc}) (0.834 \frac{\%}{\text{cc}})$$

$$= -2.096 \times 10^{-7} \frac{\text{gmole}}{\text{sec}}$$

$$C_s = \frac{(60.04 + 54.08) \times 10^{-6} \frac{\text{gmole}}{\text{gole}}}{2} (0.648 \frac{\%}{\text{cc}}) = 3.697 \times 10^{-5} \frac{\text{gmole}}{\text{cc}}$$

$$R \approx \frac{125 \times 10^{-6} \text{ m}}{2} (10^2 \text{ cm/m}) = 62.5 \times 10^{-4} \text{ cm}$$

$$\phi_s = \frac{(62.5 \times 10^{-4} \text{ cm})^2}{(3.91 \times 10^{-6} \text{ cm}^2/\text{sec})} \left[-\frac{1}{(1.00)} (-2.096 \times 10^{-7} \frac{\text{gmole}}{\text{sec}}) \right] \frac{1}{(3.697 \times 10^{-5} \frac{\text{gmole}}{\text{cc}})}$$

$$= 0.057$$

p. 144 FIGURE 3.5 $\gamma \approx 1.0$

RUN 1016 (275 μ m)

$$\frac{dn}{dt} \approx \frac{(59.94 - 52.88) \times 10^{-6}}{(5-90) \text{ min} (60 \text{ sec/min})} (210)(0.834)$$

$$= -2.424 \times 10^{-7} \frac{\text{gmole}}{\text{sec}}$$

$$c_s \approx 3.655 \times 10^{-5} \frac{\text{gmole}}{\text{cc}}$$

$$R \approx 138 \times 10^{-4} \text{ cm}$$

$$\phi_s = \frac{(138 \times 10^{-4})^2}{(3.91 \times 10^{-6})} \left[-\frac{1}{1.0} (2.424 \times 10^{-7}) \right] \left[\frac{1}{3.655 \times 10^{-5}} \right] = 0.329$$

p144 FIGURE 3.5 $\gamma \approx 1.0$

RUN 1017 (90 μ m)

$$\frac{dn}{dt} \approx \frac{(58.27 - 64.49) \times 10^{-6}}{(90-10)(60)} (210)(0.834) = -2.270 \times 10^{-7} \frac{\text{gmole}}{\text{sec}}$$

$$c_s \approx 3.977 \times 10^{-5} \frac{\text{gmole}}{\text{cc}}$$

$$R \approx 45 \times 10^{-4} \text{ cm}$$

$$\phi_s = 0.030$$

p144 FIGURE 3.5 $\gamma \approx 1.0$

APPENDIX D
CONCENTRATION PROFILES FOR CATALYST PARTICLE SIZE
SURVEY

DATE OF
ANALYSIS 3/3/76

RUN 1015

COMPOUND					TOTAL NITROGEN	Q + THQ	THQ/Q				
RET. TIME	4.5	7.6	9.6	12.8	—	—	—	—	—	—	—
CONC. UNITS $\frac{\text{mol}}{\text{dm}^3} \times 10^7$	$\frac{\text{mol}}{\text{dm}^3} \times 10^7$	$\frac{\text{mol}}{\text{dm}^3} \times 10^7$	$\frac{\text{mol}}{\text{dm}^3} \times 10^6$	$\frac{\text{mol}}{\text{dm}^3} \times 10^6$	$\frac{\text{mol}}{\text{dm}^3} \times 10^6$	$\frac{\text{mol}}{\text{dm}^3} \times 10^6$	$\frac{\text{mol}}{\text{dm}^3} \times 10^6$	—	—	—	—
RET. TIME	—	—	—	—	—	—	—	—	—	—	—
2	—	—	47.9	13.3	61.2	61.2	0.28	—	—	—	—
5	2.74	—	35.8	22.1	58.1	57.8	0.62	—	—	—	—
7	—	—	31.1	28.9	60.0	60.0	0.93	—	—	—	—
10	3.13	7.05	29.5	35.7	62.3	61.2	1.4	—	—	—	—
15	5.48	9.07	19.2	39.8	60.5	59.0	2.1	—	—	—	—
30	8.49	17.5	11.7	48.0	62.4	59.8	4.1	—	—	—	—
45	13.2	22.0	9.10	48.6	61.2	57.7	5.3	—	—	—	—
60	15.3	27.0	9.28	47.5	61.0	56.8	5.1	—	—	—	—
75	17.2	29.3	7.96	46.1	58.7	54.0	5.9	—	—	—	—
90	20.1	35.0	7.74	46.3	59.6	54.1	6.0	—	—	—	—
120	22.3	36.9	6.74	43.4	56.1	50.1	6.4	—	—	—	—
150	27.1	42.1	6.67	42.3	55.9	49.0	6.3	—	—	—	—
180	29.2	47.7	6.16	40.6	54.5	46.8	6.6	—	—	—	—
210	33.6	54.7	6.08	39.7	54.6	45.8	6.5	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—

RUN CONDITIONS:

TEMPERATURE, °C 342

PRESSURE, PSIG 500

CATALYST HDS-16A

CATALYST CONC. 2.0/50CC

CATALYST SIZE 125 μm

SOLVENT WHITE OIL

INITIAL REACTANT CONC (LOADED) $67.7 \times 10^{-6} \frac{\text{mol}}{\text{dm}^3}$ CS₂ CONC. (LOADED) NONEH₂S GAS PHASE CONC. TRACE

DATE OF
ANALYSIS 3/3/76

RUN 1016

COMPOUND						TOTAL NITROGEN	Q + THQ	TH2/O				
SET. TIME	4.5	7.6	9.6	12.3	—	—	—	—	—	—	—	—
CONC. UNITS	mmole 50cc x 10 ⁷	mmole 50cc x 10 ⁷	mmole 50cc x 10 ⁶	mmole 50cc x 10 ⁶	mmole 50cc x 10 ⁶	mmole 50cc x 10 ⁶	mmole 50cc x 10 ⁶	mmole 50cc x 10 ⁶	—	—	—	—
SAMPLE #	—	—	—	—	—	—	—	—	—	—	—	—
2	—	—	52.2	9.77	61.9	61.9	0.19	—	—	—	—	—
5	—	—	39.3	20.6	59.9	59.9	0.53	—	—	—	—	—
10	5.00	7.74	25.5	33.3	60.1	58.8	1.3	—	—	—	—	—
15	7.59	12.4	19.1	41.8	63.0	61.0	2.2	—	—	—	—	—
30	10.5	22.1	11.0	46.8	61.1	57.8	4.3	—	—	—	—	—
45	14.9	31.0	9.69	45.8	60.1	55.5	4.7	—	—	—	—	—
60	20.5	37.0	8.62	47.4	61.7	56.0	5.5	—	—	—	—	—
75	2.1	40.7	8.36	43.7	58.2	52.1	5.2	—	—	—	—	—
90	27.0	49.0	9.48	43.4	60.5	52.9	4.6	—	—	—	—	—
120	23.3	56.5	7.24	41.6	57.3	48.9	5.8	—	—	—	—	—
150	23.4	58.2	5.91	39.8	54.8	45.6	6.7	—	—	—	—	—
180	39.5	64.7	5.97	39.5	55.9	45.4	6.6	—	—	—	—	—
210	22.7	67.8	5.46	36.5	53.0	41.9	6.7	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—

RUN CONDITIONS:

TEMPERATURE, °C 342

PRESSURE, PSIG 500

CATALYST HDS-16A

CATALYST CONC. 20/500cc

CATALYST SIZE 275/1M

SOLVENT WHITE OIL

INITIAL REACTANT CONC (LOADED)

CS₂ CONC (LOADED) NONEH₂S GAS PHASE CONC. TRACE

DATE OF
ANALYSIS 3/4/68

RUN 1017

COMPOUND					TOTAL NITROGEN	Q ₊ THQ	THQ/Q					
FET. TIME	4.9	7.6	9.6	12.5	—	—	—	—	—	—	—	—
CONC. UNITS	1mole 9mL x 10 ⁷	9mole 9mL x 10 ⁷	9mole 9mL x 10 ⁶	9mole 9mL x 10 ⁶	9mole 9mL x 10 ⁵	9mole 9mL x 10 ⁵	9mole 9mL x 10 ⁴	—	—	—	—	—
SAMPLE #												
2	—	—	43.1	19.5	62.6	62.6	0.45	—	—	—	—	—
5	1.30	1.59	18.4	44.5	63.1	62.8	2.4	—	—	—	—	—
10	7.22	8.43	9.51	53.0	66.1	69.5	5.8	—	—	—	—	—
15	12.3	11.0	8.93	57.0	68.3	69.9	6.3	—	—	—	—	—
20	12.0	12.1	8.50	49.9	60.8	58.3	5.9	—	—	—	—	—
30	17.6	21.3	8.27	52.9	65.1	61.2	6.4	—	—	—	—	—
45	23.3	31.0	6.73	53.5	67.7	62.3	6.1	—	—	—	—	—
60	25.1	29.8	7.68	46.9	60.0	54.5	6.1	—	—	—	—	—
70	35.4	42.0	7.65	50.6	66.1	58.3	6.6	—	—	—	—	—
120	39.3	49.7	7.40	45.8	62.1	53.2	6.2	—	—	—	—	—
155	44.3	57.0	6.71	44.0	60.8	50.7	6.6	—	—	—	—	—
135	48.3	68.4	7.02	42.6	61.3	49.6	6.1	—	—	—	—	—
210	49.7	67.1	5.85	40.9	58.4	46.7	7.0	—	—	—	—	—

RUN CONDITIONS:

TEMPERATURE, °C 342

PRESSURE, PSIG 500

CATALYST HDS-16A

CATALYST CONC. 2g / 500cc oil

CATALYST SIZE 90µm

SOLVENT WHITE OIL

INITIAL REACTANT CONC (LOADED) 66.5 x 10⁻⁶ g/moleCS₂ CONC. (LOADED) NONEH₂S GAS PHASE CONC. TRACE

APPENDIX E
CONCENTRATION PROFILES FOR CATALYST SURVEY

DATE OF
ANALYSIS 3/4/76

RUN 1017

COMPOUND					TOTAL NITROGEN	CS ₂ / THQ	PERCENT	PERCENT	PERCENT
SET TIME	4.9	7.6	9.6	12.8	—	—	—	—	—
CONC. UNITS	mmole 10 ⁻³ oil	mmole 10 ⁻³ oil	mmole 10 ⁻³ oil	mmole 10 ⁻³ oil	mmole 10 ⁻³ oil	mmole 10 ⁻³ oil	—	—	—
SAMPLE #									
2	—	—	43.1	19.5	62.6	62.6	0.45	—	—
5	1.30	1.59	18.4	44.5	63.1	62.8	2.4	—	—
10	7.22	8.43	9.51	55.0	66.1	64.3	5.8	—	—
15	12.3	1.0	8.98	57.0	68.5	65.9	6.3	—	—
20	12.0	12.1	8.50	49.9	60.6	59.3	5.9	—	—
30	17.6	21.3	8.27	52.9	65.1	61.2	5.4	—	—
45	23.5	31.0	8.78	53.5	67.7	62.3	6.1	—	—
60	25.1	20.8	7.68	46.9	60.0	54.5	6.1	—	—
90	35.4	42.0	7.65	50.6	66.1	58.3	6.6	—	—
120	39.3	49.7	7.40	45.8	62.1	53.2	6.2	—	—
155	44.3	57.0	6.71	44.0	60.8	50.7	6.6	—	—
185	43.3	63.4	7.02	42.6	61.3	49.6	6.1	—	—
210	49.7	67.1	5.85	40.9	58.4	46.7	7.0	—	—

RUN CONDITIONS:

TEMPERATURE, °C 342

PRESSURE, PSIG 500

CATALYST HDS-16A

CATALYST CONC. 2g/500cc-oil

CATALYST SIZE 90µm

SOLVENT WHITE OIL

INITIAL REACTANT CONC. (LOADED) 56.5 X 10⁻³ mmole/10⁻³ oilCS₂ CONC. (LOADED) NONEH₂S GAS PHASE CONC. TRACE

DATE OF
ANALYSIS 2/18/76

RIN 1020

COMPOUND					TOTAL NITROGEN	Q ₊ T.HQ	THQ/Q			
SET. TIME	4.0	6.9	8.7	11.6	—	—	—			
CONC. UNITS	gmole X 10 ⁷ g oil	gmole X 10 ⁷ g oil	gmole X 10 ⁶ g oil	gmole X 10 ⁶ g oil	gmole X 10 ⁶ g oil	gmole X 10 ⁶ g oil	—			
SAMPLE #										
2	—	—	19.1	43.9	63.0	63.0	2.3			
5	8.84	—	6.62	58.3	65.8	65.8	8.8			
10	22.4	12.5	4.92	58.0	66.5	62.9	11.8			
15	29.2	17.1	6.43	49.9	61.0	56.3	7.8			
30	48.2	38.2	6.60	46.3	61.6	52.9	7.0			
60	68.2	63.5	5.27	41.5	59.9	46.8	7.9			
90	82.2	78.5	4.29	34.8	55.2	39.1	8.1			
120	89.4	94.0	3.67	31.0	53.0	34.7	8.5			
150	95.5	109	3.69	29.5	53.6	33.2	8.0			
180	86.8	99.8	2.99	22.2	43.9	25.2	7.4			
210	90.1	102	2.62	20.2	42.0	22.8	7.7			

RUN CONDITIONS:

TEMPERATURE, °C. 343

PRESSURE, PSIG 500

CATALYST HDS-9A

CATALYST CONC. 2 g/500 ml

CATALYST SIZE 125µm

SOLVENT WHITE OIL

INITIAL REACTANT CONC (LOADED) 64.7×10^{-6} g/mole

CS₂ CONC. (LOADED) NONE

H₂S GAS PHASE CONC. TRACE

ANALYSIS 2125

RIN 1021

COMPOUND					TOTAL NITROGEN	Q + THQ	T <small>NO</small> ₂ /a	—	—	—
SET TIME	4.0	7.9	9.9	13.3	—	—	—	—	—	—
CONS. UNITS	amide X 10 ⁷ Soil	amide X 10 ⁷ Soil	amide X 10 ⁶ Soil	amide X 10 ⁶ Soil	amide X 10 ⁶ Soil	amide X 10 ⁶ Soil	amide X 10 ⁶ Soil	amide X 10 ⁶ Soil	amide X 10 ⁶ Soil	amide X 10 ⁶ Soil
EXAMPLE #	—	—	—	—	—	—	—	—	—	—
2	—	—	50.4	15.3	65.7	65.7	0.30	—	—	—
5	2.68	—	24.9	36.7	61.9	61.6	1.5	—	—	—
10	10.9	12.7	12.9	47.1	62.4	60.1	3.6	—	—	—
22	25.5	21.9	7.26	53.9	65.9	61.1	7.4	—	—	—
35	36.0	29.4	6.97	48.7	62.2	55.6	7.0	—	—	—
61	50.1	42.4	7.30	44.2	60.8	51.5	6.1	—	—	—
90	61.5	59.3	8.10	42.8	63.0	50.9	5.3	—	—	—
117	72.1	68.9	6.40	39.2	59.7	45.6	6.1	—	—	—
159	80.4	85.0	6.39	34.8	57.7	41.2	5.4	—	—	—
210	89.9	103.5	5.96	31.0	56.8	36.9	5.2	—	—	—

RUN CONDITIONS:

TEMPERATURE, °C 341
 PRESSURE, PSIG 500
 CATALYST (HOSHINO) NL 4-301
 CATALYST CONC. 20/50/30/50
 CATALYST SIZE 125/150

SOLVENT WHITE OIL
 INITIAL REACTANT CONC. (LOADED) 67.6×10^{-6} g/mol/g oil
 CS₂ CONC. (LOADED) NONE
 H₂S GAS PHASE CONC. TRACE

ANALYSIS 3/9/76

RIN 1022

RUN CONDITIONS:

TEMPERATURE, °C 34.2

PRESSURE, PSIG 500

CATALYST Ni-4303

CATALYST CONC. 2.150 mg./ml.

CATALYST SIZE 125 μ m

SOLVENT WHITE OIL

INITIAL REACTANT CONC (LCF,DEG) 68.2×10^{-6} MOL/L

CS₂ CONC. (%APED) NONE

H₂S GAS PHASE CONC. TRACE

DATE OF
ANALYSIS 3/17/76

RUN 1023

COMPOUND					TOTAL NITROGEN	$\frac{S_i}{S_i + THQ}$	THQ/A				
RET. TIME	4.6	7.6	9.5	12.3	—	—	—	—	—	—	—
CONC. UNITS	$\frac{\text{mole}}{\text{g oil}} \times 10^7$	$\frac{\text{mole}}{\text{g oil}} \times 10^7$	$\frac{\text{mole}}{\text{g oil}} \times 10^6$	$\frac{\text{mole}}{\text{g oil}} \times 10^6$	$\frac{\text{mole}}{\text{g oil}} \times 10^6$	$\frac{\text{mole}}{\text{g oil}} \times 10^6$	$\frac{\text{mole}}{\text{g oil}} \times 10^6$	—	—	—	—
SAMPLE #											
2	—	—	31.8	31.0	62.7	62.7	0.97				
5	5.83	7.39	11.7	48.2	61.3	60.0	4.1				
10	15.1	12.8	7.29	51.9	62.0	59.2	7.1				
25	31.1	27.9	6.68	47.5	60.1	54.2	7.1				
40	35.9	37.8	7.09	42.0	54.5	49.1	5.3				
60	41.4	61.1	8.48	38.1	56.9	46.6	4.5				
90	51.8	79.0	5.55	34.8	53.5	40.4	6.3				
110	59.6	94.1	5.40	32.7	53.4	28.1	6.1				
150	65.1	104	4.70	26.9	48.5	31.6	5.7				
180	71.4	112	3.95	24.1	46.4	28.1	6.1				
...
...
...

RUN CONDITIONS:

TEMPERATURE, $^{\circ}\text{C}$ 344
 PRESSURE, PSIG 520
 CATALYST NT-550
 CATALYST CONC. 2/15200 oil
 CATALYST SIZE 125 um

SOLVENT WHITE OIL
 INITIAL REACTANT CONC. (100% CS₂) 67.7×10^{-6} mole/g oil
 CS₂ CONC. (100% CS₂) NONE
 H₂S GAS PHASE CONC. TRACE

APPENDIX F

ANALYTICAL PROBLEMS WITH THE GAS CHROMATOGRAPHIC ANALYSIS OF NITROGEN-CONTAINING ACRIDINE REACTION PRODUCTS

This work concerned the development of suitable gas chromatographic conditions (stationary phase, temperature, flowrate) for the quantitative analysis of nitrogen-containing acridine reaction products using a Perkin-Elmer 3920B gas chromatograph with a nitrogen specific detector. Many different stationary phases were investigated and rejected for various reasons. Table A-F-1 presents a list of some of the stationary phases investigated and a summary of the reasons for rejection. Figures A-F-1 through A-F-5 present chromatograms on several stationary phases for an acridine reaction sample.

There were several reasons for rejecting a stationary phase. First the acridine reaction sample was known to have at least five major compounds, and the stationary phase should be capable of having these well-resolved. Second, the compound peak shapes should approach a Gaussian distribution and, therefore,

TABLE A-F-I

STATIONARY PHASES INVESTIGATED FOR THE ANALYSIS OF NITROGEN-CONTAINING REACTION PRODUCTS

<u>Stationary Phase</u>	<u>Column*</u>	<u>Thermal Limit, °C</u>	<u>Reasons for Rejection</u>
Apiezon L (2% KOH) on 80/100 Chromosorb			
WAW	6' X 1/8" SS	225	Resolution
SAME AS ABOVE	17' X 1/8" SS	225	Detector Sensivity
SAME AS ABOVE	5' X 1/8" G	225	Resolution
60/80 Chromosorb-103	5' X 1/8" SS	300	Resolution, excessive retention times
SAME AS ABOVE	6' X 1/8" SS	300	SAME AS ABOVE
SAME AS ABOVE	5' X 1/8" G	300	SAME AS ABOVE
10% UC-W98	6' X 1/8" SS	250	Resolution, slight tailing
Carbowax 20M (2% KOH) on Chromosorb WAW	10' X 1/8" SS	225	Resolution, tailing
Tenax	6' X 1/8" SS	375	Resolution

G = Glass column

SS = Stainless steel column

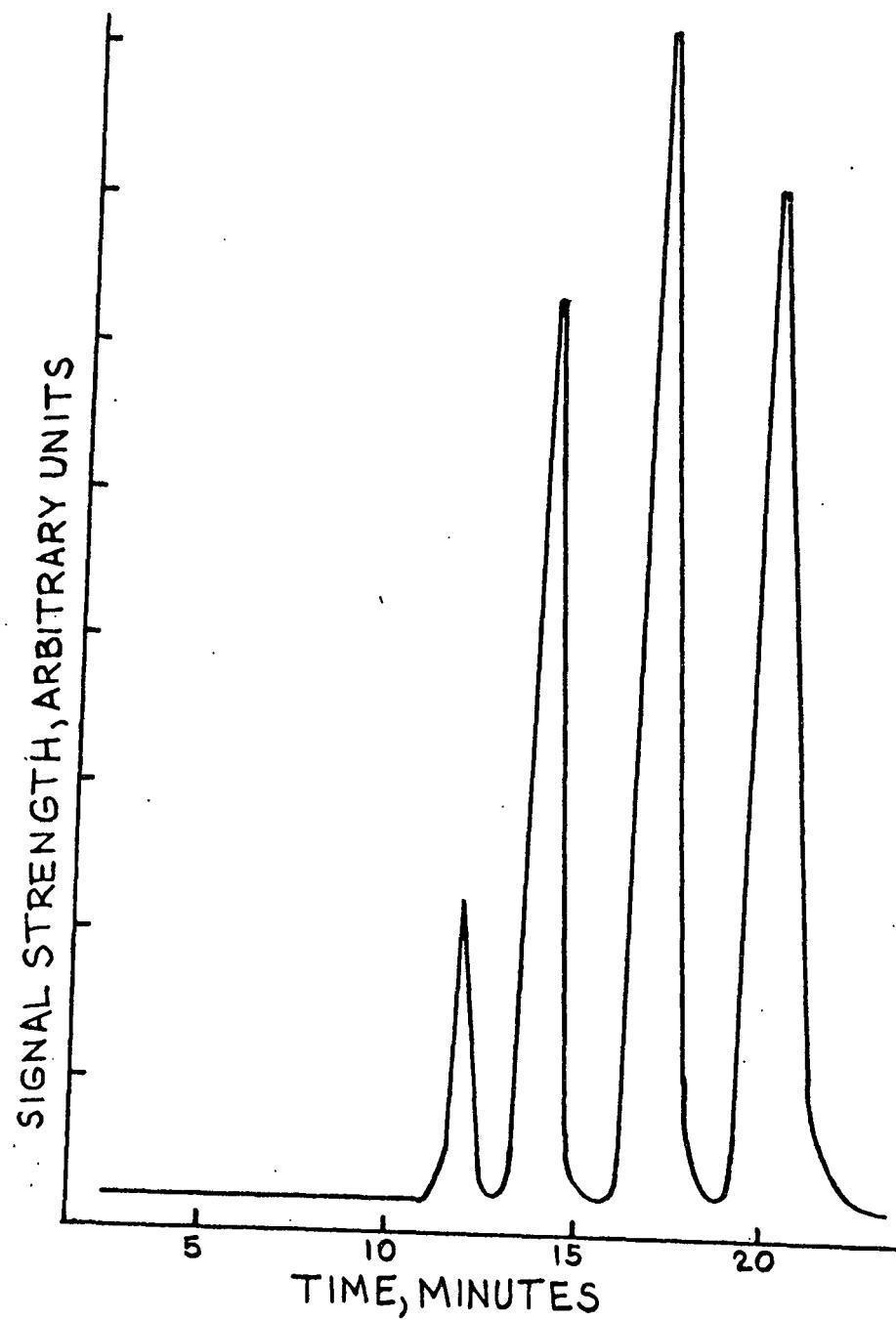


Figure A-F-1. Chromatogram of Acridine Reaction Sample (Run 1041-10) on a 5' X 1/8" Apiezon L (2% KOH): 180°C, 30 cc/min.

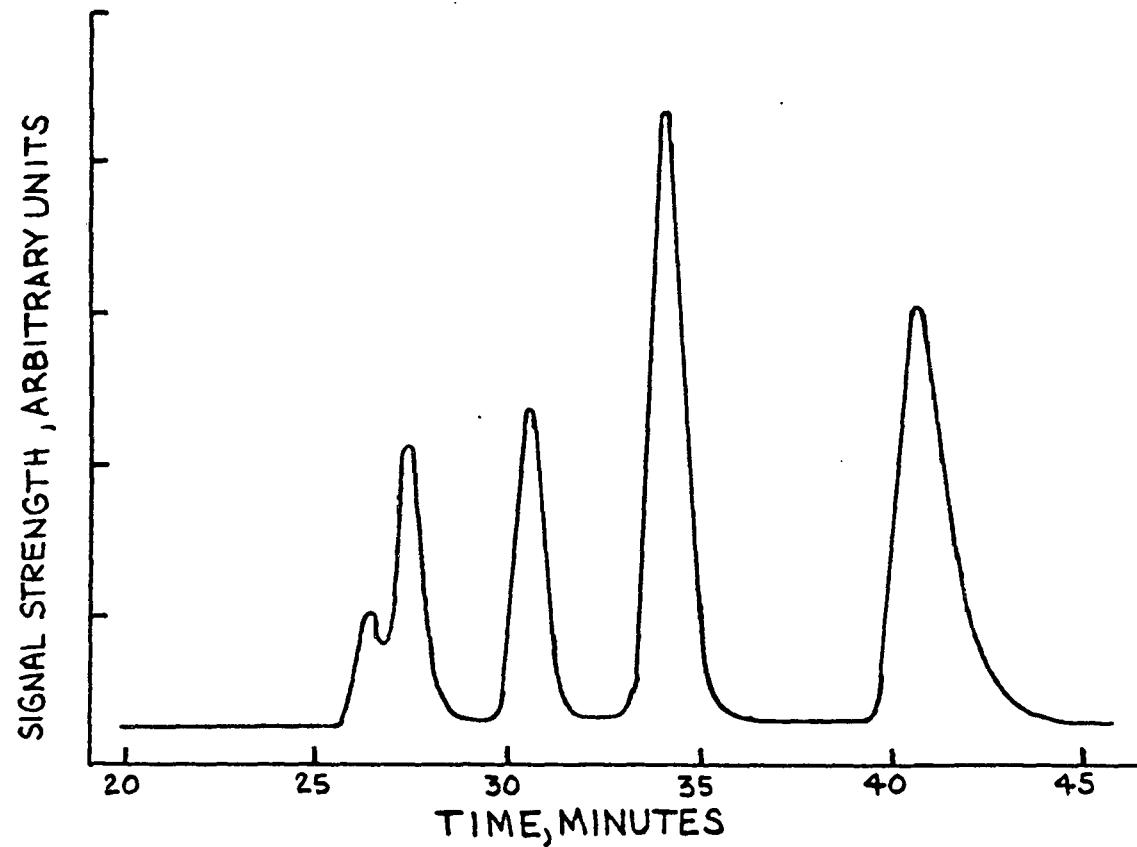


Figure A-F-2. Chromatogram of Acridine Reaction Sample (Run 1041-10) on 17' X 1/8" SS Apiezon L (2% KOH): 200°C, 25 cc/min.

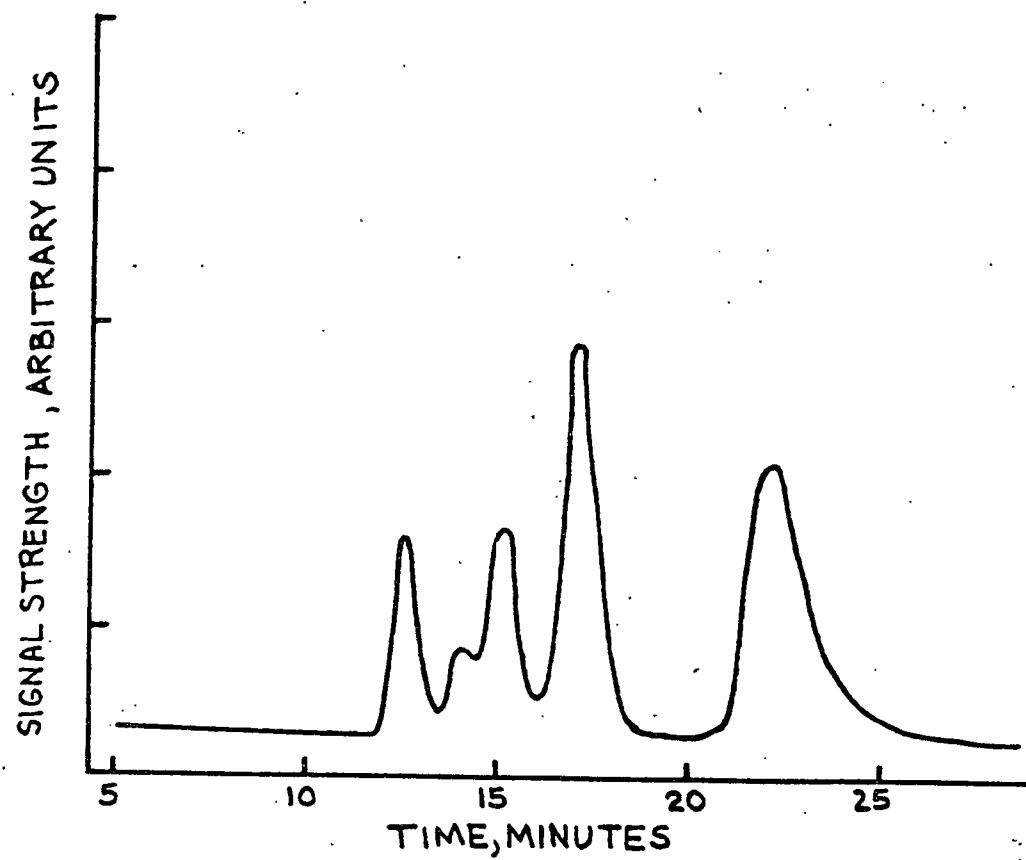


Figure A-F-3. Chromatogram of Acridine Reaction Sample (Run 1041-10) on 6' X 1/8" Chromosorb 103: 250°C, 30 cc/min.

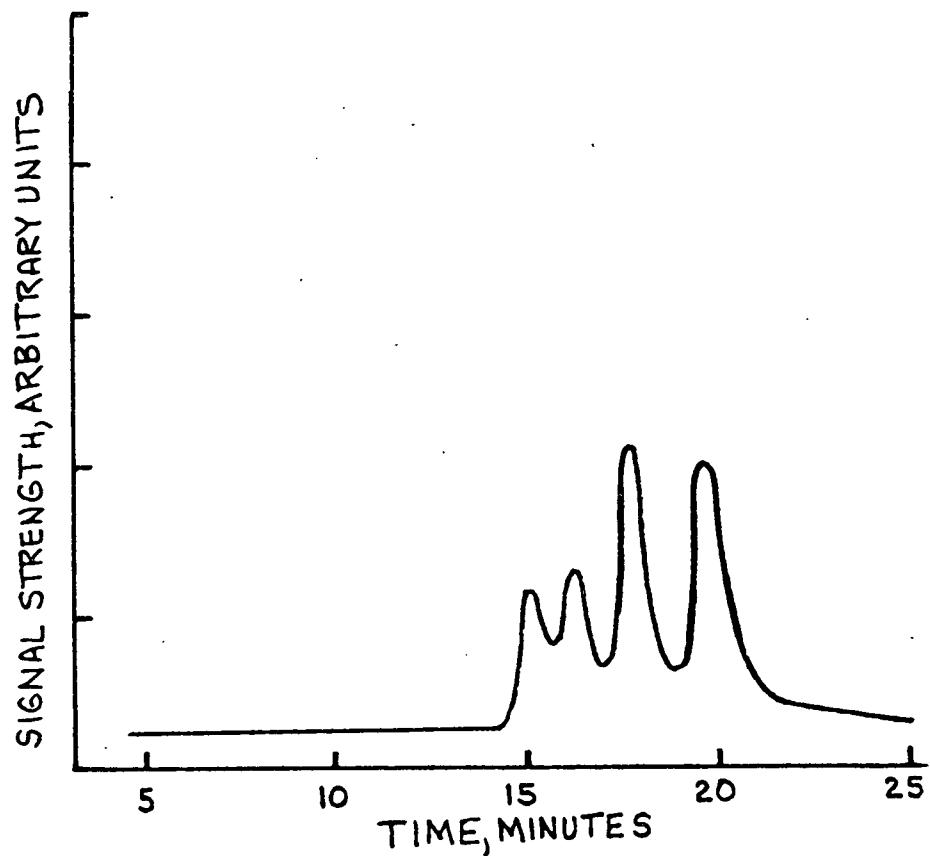


Figure A-F-4. Chromatogram of Acridine Reaction Sample (Run 1041-10) on 6' X 1/8" SS UC-W98: 160°C, 30 cc/min.

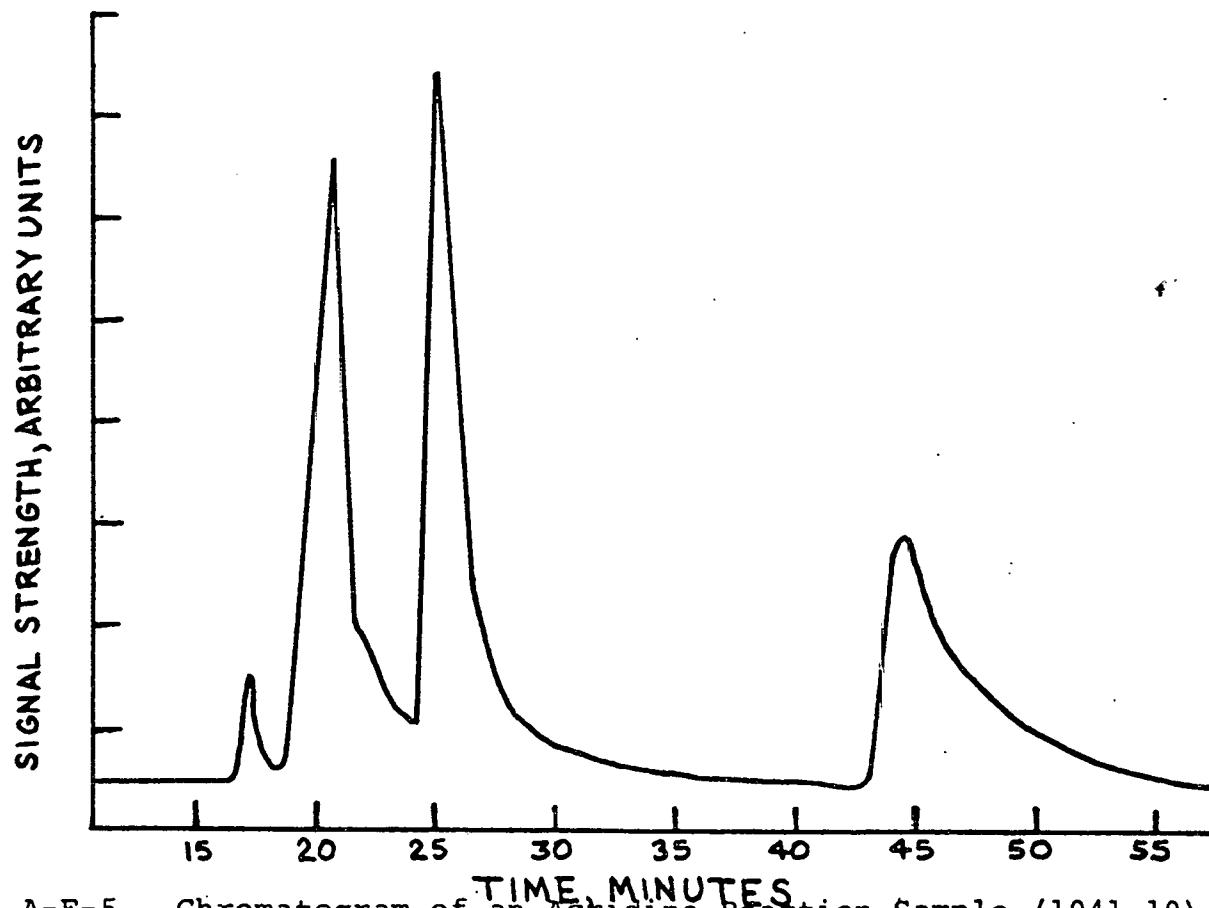


Figure A-F-5. Chromatogram of an Acridine Reaction Sample (1041-10) on 10' X 1/8" SS Carbowax 20M: 200°C, 21 cc/min.

have no severe tailing. Next, the compound retention times should not be excessively long, which was defined as greater than 45 minutes to 1 hour. Next, the temperature required to meet the above constraints should be at least 25°C lower than stationary phase thermal stability limit as suggested by the manufacturers. Finally, the nitrogen-specific detector is very sensitive to flowrate, and the flowrate required for the above constraints should not be so high as to significantly decrease the detector's response. Also, it was recognized that a stainless steel column could contribute to the various problems stated above, especially resolution and tailing; however, the supply of glass columns was not sufficient to investigate every stationary phase using glass.

APPENDIX G

EXTRACTION PROCEDURES

The following is a detailed procedure for the extraction of nitrogen-containing reaction products of acridine from white oil.

1. Extract nitrogen-containing compounds from white oil using 3-300 cc washings with 0.1M HCl.
2. Wash HCl solution with 3-100 cc portions of ether.
3. Neutralize HCl solution with 0.1M NaOH to a pH of 13. Solution should become cloudy.
4. Cool neutralized solution in ice bath.
5. Extract nitrogen compounds from neutralized solution using 3-100 cc portions of ether.
6. Wash ether solution with 100 cc of saturated NaCl solution.
7. Dry ether solution over anhydrous magnesium sulfate.
8. Filter ether solution.

9. Strip ether under reduced pressure and ambient temperature.
10. Run white oil chromatogram to make sure all nitrogen-containing compounds were extracted. (Note: No nitrogen-containing compounds were ever found in the white oil after extraction).

APPENDIX H

MASS SPECTRAL PROCEDURES AND PROBLEMS

A. Procedure

1. Predetermine gas chromatographic conditions.
2. Run sample on chromatograph-mass spectrometer system.
3. As soon as a compound peak passes through the gas chromatograph thermal conductivity detector (monitored visually on the mass spectrometer oscilloscope for appearance of fragmentation pattern).
4. Monitor the total ionization until it is maximum.
5. Record spectrum with computer software.

In most cases 10 scans were taken and averaged.

B. Discussion

1. Well-resolved compounds yielded good mass spectra.
2. For fused peaks spectra were taken over the entire area in question and then sub-

tracted from each other to yield reasonably good mass spectra if the peaks were in about the same concentration.

3. Trace amounts of compounds before or after a compound in large concentration could not be determined by mass spec.

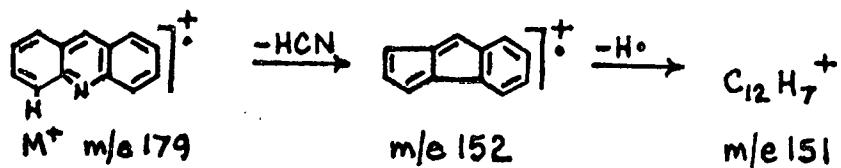
4. Gas chromatographic preparatory work was done to isolate various sections of the extract so that these sections could be chromatographed at various conditions to optimize resolution.

5. Mass spectral structure assignments were made using standard literature fragmentation patterns as models. A published spectrum was available for acridine. When original compounds were available (acridine and sym-octahydroacridine), their spectra were obtained using the mass spec direct introduction probe.

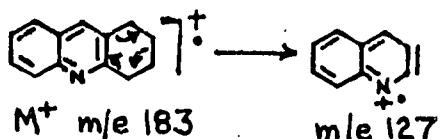
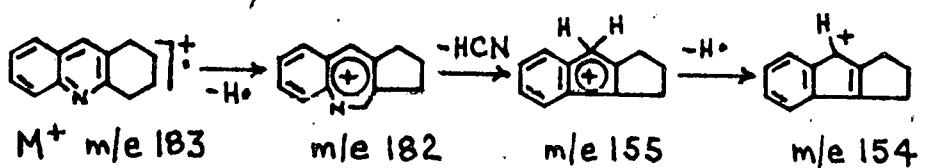
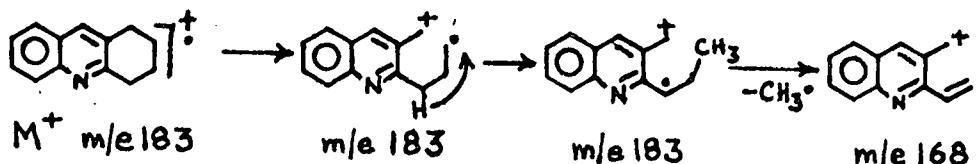
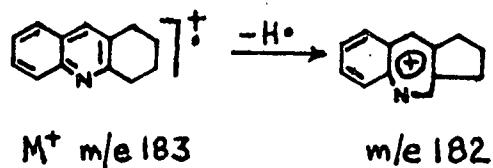
C. Limitations

1. Mass spectroscopy yields information about molecular weights and compound structures; however, isomers have to be confirmed

by other means.

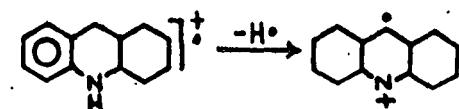

2. If the structures of two compounds are very similar, fused peaks yielded molecular weight information.

3. Many compounds do not give a molecular ion and lowering ionization voltage to retrieve this information was not always successful.

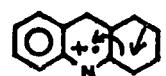




APPENDIX I

MASS SPECTRAL FRAGMENTATION PATTERNS FOR ACRIDINE
NITROGEN-CONTAINING REACTION PRODUCTS

ACRIDINE



1,2,3,4- TETRAHYDROACRIDINE


m/e 179,180,181 ACCOUNT FOR THERMAL DEHYDROGENATION

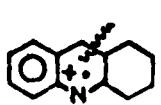
1,2,3,4,9,10,13,14-OCTAHYDROACRIDINE

M^+ m/e 187

m/e 186

m/e 187

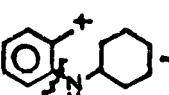
m/e 145


m/e 144

m/e 187

m/e 131

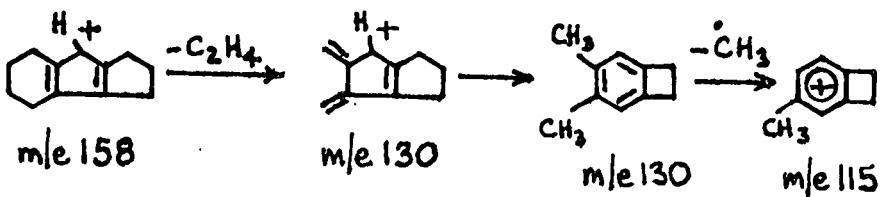
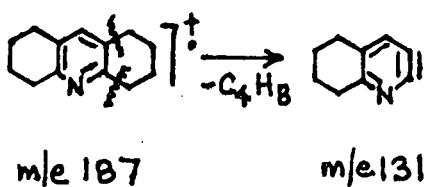
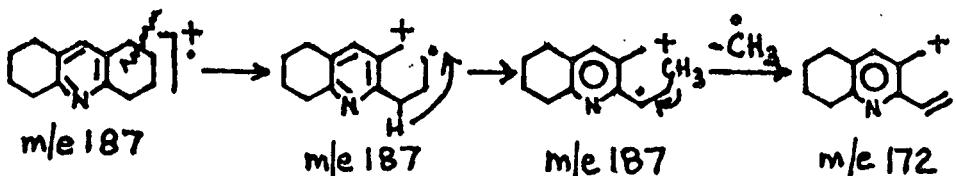
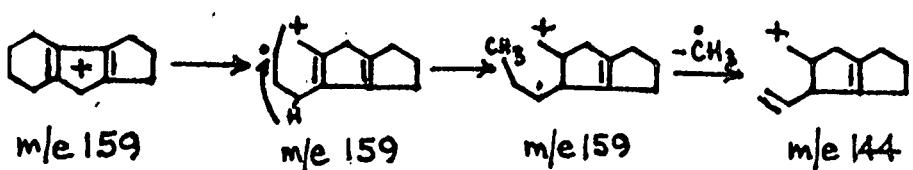
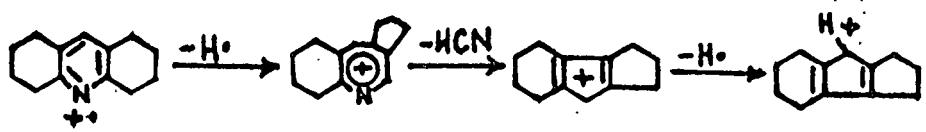
m/e 130


m/e 187

m/e 187

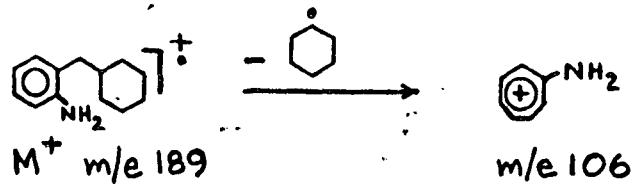
m/e 187

m/e 106

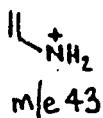
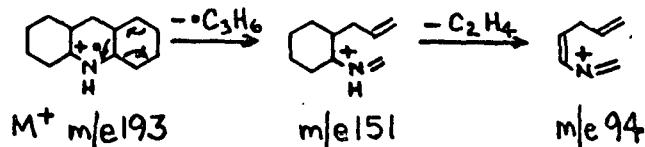
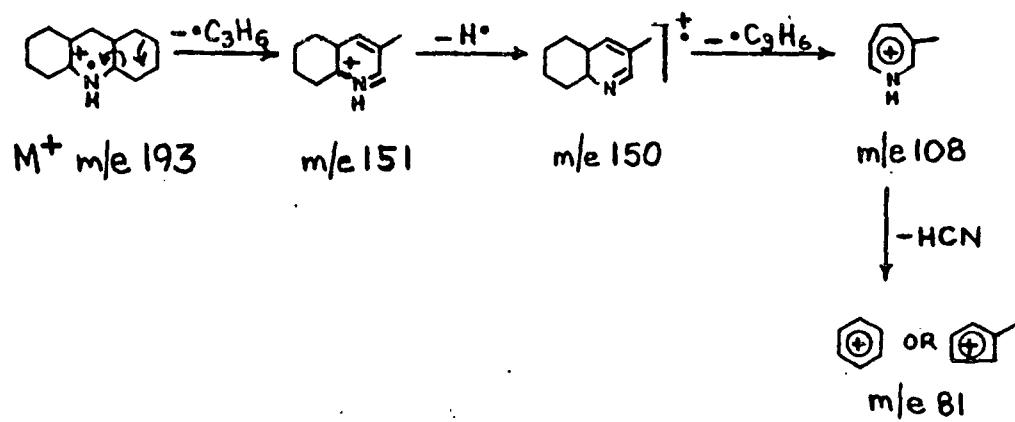





m/e 187

m/e 91

m/e 65


ANILINE TYPE STRUCTURES UNDERGO α CLEAVAGE
OF SIDE CHAIN AS DOMINANT PROCESS YIELDING THE
AMINOTROPYLIUM ION AND ALSO FRAGMENTATION OF
THE AROMATIC NITROGEN BOND

1,2,3,4,5,6,7,8-OCTAHYDROACRIDINE

PYRIDINE TYPE STRUCTURES LOSE HYDROGEN RADICAL
 TO FORM AN AZATROPYLIUM ION. IN SUBSTITUTED
 PYRIDINES β CLEAVAGE IS IMPORTANT. NO α CLEAVAGE
 CAN OCCUR.

σ -(METHYLENECYCLOHEXYL)ANILINE

PER-HYDROACRIDINE

COMPOUND 1

MMSS	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
17.3	2004	11.70	1.12
17.3	588	3.43	0.33
25.9	1758	10.36	0.98
25.9	3280	19.73	1.89
27.0	8813	51.45	4.93
27.0	17130	100.00	9.59
29.1	4390	25.83	2.46
30.1	6177	36.06	3.46
31.0	10848	63.33	6.87
32.9	3942	23.01	2.21
33.9	6585	37.27	3.57
35.9	3026	17.66	1.69
41.3	16137	94.20	9.03
41.9	3453	20.16	1.93
41.9	5317	34.54	3.31
41.9	829	4.84	0.46
47.9	1925	11.24	1.08
51.5	324	1.89	0.18
57.3	2194	13.81	1.23
57.3	2972	17.12	1.64
59.0	6979	40.74	3.91
59.9	5080	34.73	3.20
61.7	1646	9.00	0.95
67.0	7345	42.98	4.11
67.0	8417	20.12	1.93
67.0	850	4.96	0.42
67.0	2304	13.45	1.29
67.0	5120	10.03	1.01
67.8	3321	19.60	1.80
67.8	3557	21.35	2.05
69.2	7546	20.70	1.96
69.2	1711	10.34	0.95
69.2	1728	10.50	1.01
69.2	18302	30.58	9.45
69.2	4754	26.00	2.43
69.2	5352	19.57	1.88
69.2	2703	17.74	1.72
69.2	3579	20.67	2.00

COMPOUND 2

MASS	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
17.3	1224	7.26	2.22
27.0	4234	25.12	7.66
33.0	16856	100.00	30.51
32.0	9187	54.50	16.63
35.9	349	2.07	0.63
33.9	2233	13.57	4.14
39.9	637	3.70	1.15
43.9	4526	26.85	8.19
55.0	2514	14.91	4.55
57.0	2129	12.65	3.85
130.1	6119	36.30	11.08
150.1	5184	30.75	9.38

COMPOUND 3

MASS	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
12.4	3562	21.06	8.46
17.4	586	3.46	1.39
27.0	1347	7.36	3.00
38.0	16913	100.00	48.19
32.0	2103	47.94	19.37
35.9	2027	11.96	4.82
40.9	4239	25.06	10.07
55.0	1444	8.54	3.43
56.0	1290	7.83	3.07
57.0	273	5.16	2.07
67.1	1341	7.97	3.19
105.1	256	2.19	0.65

COMPOUND 4

MASS	INTENSITY	X BASEPEAK	X TOTAL IONIZATION
25.9	1319	7.81	1.31
27.9	2586	15.33	3.74
29.0	16853	100.00	24.42
29.1	1751	10.44	2.55
32.0	7481	44.41	10.85
35.9	2275	13.40	3.20
39.9	2714	16.09	3.93
40.9	6711	39.79	9.72
42.9	1735	10.20	2.01
55.0	591	5.34	1.30
55.0	304	5.76	1.31
77.0	1223	7.25	1.77
81.0	350	2.07	0.51
81.0	370	2.10	0.54
119.0	1695	9.59	2.44
147.0	13314	70.23	19.28
148.0	1379	8.18	2.00
150.1	4970	24.13	5.89
150.0	1497	8.34	2.04

COMPOUND 5

MASS	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
27.1	1400	8.23	2.55
28.1	17003	100.00	31.00
29.2	1192	7.01	2.17
30.2	3005	17.67	5.48
32.1	6657	39.15	12.14
35.1	4231	24.88	7.72
39.1	1052	6.13	1.92
41.1	4224	24.84	7.70
43.1	260	1.53	0.47
67.4	851	5.00	1.55
153.0	13643	80.24	24.88
154.0	1323	7.78	2.41

COMPOUND 6

MASS	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
26.0	1264	7.52	2.48
29.1	575	3.42	1.13
30.1	754	4.48	1.48
41.1	4769	28.36	9.34
42.0	255	1.52	0.50
43.1	514	3.06	1.01
53.1	98	0.58	0.19
54.1	374	1.39	0.65
55.1	1674	11.14	3.67
56.1	1306	7.77	2.56
67.1	1856	11.04	3.63
69.1	320	1.90	0.63
81.1	2337	13.84	4.56
82.1	757	4.50	1.48
85.0	460	2.77	0.91
106.1	556	3.71	1.09
121.0	16815	100.00	32.93
151.0	4393	25.59	8.43
152.0	1936	11.80	3.91
163.0	9651	53.08	17.72
174.0	876	5.21	1.72

COMPOUND 7 (Per Hydroacridine)

MASS	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
27.0	674	4.05	0.88
29.1	1767	10.62	2.30
29.1	1633	9.81	2.13
30.1	783	4.70	1.02
35.0	2159	12.27	2.81
39.0	1449	3.71	1.39
41.1	6508	39.05	8.59
47.1	261	1.57	0.34
47.0	5029	39.23	6.54
49.0	2643	15.83	3.44
53.1	539	3.24	0.70
54.1	1104	7.11	1.54
55.1	1557	9.95	2.16
59.1	1142	6.06	1.49
67.1	1707	10.26	2.22
81.1	465	2.73	0.51
81.1	421	4.03	1.07
94.0	13717	51.34	17.34
95.0	7718	24.33	10.04
101.0	452	2.72	0.53
109.0	16643	100.00	21.66
151.1	4117	24.71	5.75
192.0	1138	6.84	1.48
193.0	2400	14.30	3.23

COMPOUND 8

MASS	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
18.8	62	0.40	0.03
18.8	1403	9.08	0.74
23.9	728	4.71	0.38
25.0	2575	16.49	1.33
28.0	15141	97.94	7.87
27.1	13756	88.99	7.24
28.1	15159	100.00	8.14
29.1	5077	39.31	3.20
30.1	2222	14.37	1.17
31.0	1096	10.79	0.85
35.2	2359	15.30	1.25
39.0	1005	12.84	1.05
39.0	11653	75.41	6.14
40.1	4105	23.49	2.02
41.1	11073	71.63	5.03
43.1	1637	10.59	0.86
50.1	2762	17.87	1.45
51.1	7019	45.40	3.70
51.1	2180	14.10	1.15
55.1	4941	26.14	2.13
55.1	4785	39.82	3.11
57.1	1723	11.18	0.91
65.1	7471	27.45	1.87
73.1	5769	37.32	3.04
74.1	4359	20.20	2.30
74.1	2109	13.64	1.11
74.1	2293	14.03	1.21
75.1	1138	7.30	0.60
76.1	1295	8.38	0.62
105.1	703	5.10	0.41
117.1	934	6.37	0.52
121.0	1322	8.55	0.70
130.0	2138	13.83	1.13
141.0	549	3.55	0.29
142.0	553	4.22	0.34
143.0	3077	19.90	1.62
144.1	2293	14.83	1.21
150.1	3392	21.94	1.79
156.0	760	4.92	0.40
164.1	843	5.45	0.44
167.0	935	5.41	0.44
170.0	3137	20.62	1.63
171.0	2927	16.93	1.54
172.0	14716	95.13	7.79
173.0	2772	17.93	1.46
175.0	8700	56.73	4.73
197.0	3900	38.27	2.05

COMPOUND 9

WAVES	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
15.3	2505	14.55	0.56
25.0	2763	16.05	0.62
36.0	16473	95.70	3.71
37.0	16737	57.55	3.70
39.1	17219	100.00	3.88
39.1	16261	94.44	3.66
39.1	4668	27.11	1.05
41.0	821	4.77	0.10
41.0	5715	15.77	0.61
41.0	4418	26.66	1.00
41.0	16810	97.62	3.79
41.0	10322	59.95	2.33
41.0	16703	83.54	3.02
47.1	5219	30.31	1.18
47.1	10673	77.72	2.88
47.1	730	4.41	0.17
57.0	4495	26.11	1.01
57.1	7552	43.86	1.70
57.1	2146	16.55	0.64
57.1	6005	51.03	2.00
57.1	5118	33.20	1.20
57.1	5731	30.00	1.00
57.1	6673	30.52	1.09
57.1	1361	8.10	0.31
57.1	3454	14.25	0.55
57.1	1627	9.30	0.36
57.1	7364	42.77	1.66
57.1	4122	37.94	1.37
67.1	11245	63.31	2.53
67.1	2280	12.24	0.51
67.1	3141	12.43	0.48
67.1	1160	6.74	0.26
67.1	8159	53.19	2.07
67.1	5003	31.03	1.13
67.1	3071	52.68	2.04
67.1	5037	34.84	1.35
67.1	3446	20.01	0.73
67.1	3602	16.27	0.63
67.1	12665	75.24	2.92
67.1	770	4.53	0.10
67.1	5247	30.47	1.13
67.1	2428	14.10	0.55
67.1	3764	19.54	0.76
67.1	1125	6.54	0.27
107.0	3365	19.54	0.76
104.0	2049	11.90	0.46
105.0	3103	18.06	0.70
115.0	3222	18.11	0.73
117.0	5841	34.50	1.34
118.0	5056	29.35	1.14
119.0	3849	22.35	0.97
120.0	2510	14.50	0.57
130.0	6857	40.40	1.57
132.0	6784	79.49	1.53
134.0	3715	21.57	0.84
135.0	403	2.37	0.09
143.0	3253	18.83	0.73
144.0	3997	19.00	0.71
145.0	4771	27.71	1.01
146.0	1.01	10.47	0.41
147.0	16372	93.40	3.41
147.0	15015	22.07	0.80
152.0	7102	21.41	0.82
152.0	16260	55.35	3.62
153.0	3533	4.94	1.94
153.0	2702	17.02	0.64
153.0	5625	25.87	1.01
153.0	100	1.02	0.04
153.0	16105	95.82	3.54
154.0	416	2.42	0.09
155.0	700	3.07	0.13
157.0	9317	51.09	2.01

COMPOUND 10

Mass	INTENSITY	% BASE PEAK	% TOTAL IONIZATION
10.5	100	100.00	0.50
15.0	50.0	17.14	2.10
18.5	6.11	2.11	0.25
24.0	6.78	2.57	0.30
25.0	5.00	1.78	0.20
26.0	150.15	100.00	7.16
27.0	145.40	99.15	6.63
29.0	145.27	21.76	1.04
29.0	56.02	8.18	7.92
30.0	9.76	3.37	3.04
36.0	29.60	19.01	0.29
37.0	1.01	0.55	1.64
38.0	3.05	23.04	0.82
39.0	125.17	70.89	1.99
40.0	41.43	26.54	6.81
41.0	14.05	91.62	2.29
42.0	4.93	27.91	7.31
43.0	3.50	21.46	2.41
50.0	4.05	25.68	1.25
51.0	45.94	13.12	2.50
52.0	2.00	10.19	2.54
53.0	0.02	1.30	1.40
54.0	16.17	141.55	1.57
55.0	42.70	30.59	0.91
56.0	157.1	8.78	2.68
62.0	17.9	4.15	0.76
63.0	2.290	147.72	0.09
65.0	2.41	15.25	1.27
66.0	7.12	4.50	1.32
67.0	43.05	26.00	0.59
68.0	6.31	4.45	2.46
70.0	10.5	0.60	0.38
71.0	507.1	52.42	0.06
73.0	39.67	25.47	2.00
81.0	5.97	3.02	2.20
90.0	4.21	2.06	0.33
91.0	24.82	15.20	0.23
95.0	17.17	8.82	1.37
105.0	6.22	3.30	0.76
115.0	1.93	0.92	0.34
116.0	0.90	0.06	0.78
117.0	5.60	3.63	0.44
130.0	14.22	9.11	0.31
136.0	6.64	4.25	0.79
144.0	6.65	4.26	0.37
150.0	63.24	40.50	0.37
154.0	156	1.00	3.50
156.0	5.71	1.97	0.00
159.0	27.1	1.74	0.13
164.0	137	0.80	0.15
167.0	9.0	0.74	0.07
170.0	5.05	2.52	0.40
171.0	1.94	0.70	0.20
172.0	6.95	14.74	0.70
175.0	6.54	5.54	3.06
176.0	11.11	7.71	0.46
187.0	1.63	12.53	0.63
			1.07

COMPOUND 11 (o-(methylenecyclohexane)aniline

MASS	INTENSITY	X BASEPEAK	X TOTAL IONIZATION
15.3	3497	20.36	1.21
25.0	4029	28.12	1.67
25.0	16717	27.35	5.78
27.1	16830	53.12	5.82
29.1	15914	93.67	5.50
29.1	4171	24.29	1.44
30.1	1592	9.27	0.55
35.0	3762	21.91	1.30
37.2	7246	12.30	1.12
39.2	5955	34.10	2.02
39.2	17120	29.70	5.22
40.2	5416	31.54	1.87
41.2	16915	57.52	5.05
42.1	6764	39.32	2.26
43.1	2278	12.15	0.72
50.2	5172	53.12	1.79
51.2	6201	47.76	2.03
51.2	5603	32.09	1.80
52.1	8196	44.03	2.05
54.1	8223	47.93	2.81
55.1	4870	22.13	1.57
56.1	2214	12.89	0.77
63.1	4837	25.26	1.30
64.1	1197	6.97	0.41
65.1	3724	19.35	1.15
66.1	2220	12.93	0.77
67.1	12914	75.10	4.35
67.2	2031	15.12	0.74
67.2	6201	43.12	1.74
67.2	11558	65.20	3.23
68.1	6182	71.70	2.14
69.1	1580	9.20	0.55
71.1	310	1.73	0.11
71.1	2071	12.06	0.72
73.1	3214	18.72	1.11
74.1	2109	12.38	0.73
75.0	2802	10.32	0.57
76.0	518	3.02	0.18
78.1	961	5.20	0.33
79.0	2290	12.34	0.79
104.0	2532	14.74	0.68
106.0	17172	100.00	5.93
107.0	16713	57.33	5.78
115.0	1660	9.47	0.57
130.0	3115	10.14	1.02
143.0	650	5.04	0.24
152.0	13251	27.22	4.55

COMPOUND 12 (Sym-octahydroacridine)

MASS	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
25.0			
27.0	1157	29.53	4.10
29.0	1105	28.11	3.80
29.0	2320	52.02	8.14
31.0	1270	32.31	4.45
33.0	1616	41.11	5.67
41.0	1140	23.00	4.00
43.0	739	18.80	3.53
51.0	581	14.70	2.64
51.0	439	11.17	1.54
53.0	546	13.03	1.92
57.0	714	18.16	3.31
57.0	552	14.04	1.94
59.0	233	6.44	0.89
67.0	624	15.87	2.19
71.0	769	19.56	2.70
73.0	466	11.85	1.64
107.0	255	5.49	0.89
109.0	315	20.73	3.26
111.0	535	14.91	2.05
113.0	109	7.70	1.11
117.0	401	10.86	1.51
121.0	403	17.29	1.70
121.0	435	11.09	1.53
121.0	610	15.42	2.14
121.0	915	23.30	3.21
121.0	472	10.33	1.52
124.0	1276	32.45	4.48
125.0	555	18.51	2.39
126.0	386	9.62	1.35
157.0	2594	60.53	9.45
157.0	3231	100.00	13.80

COMPOUND 13 (1,2,3,4,9,10,13,14-octahydroacridine)

100%	100% (117)	% RELATIVE	% TOTAL IONIZATION
29.0	4.80	1.00	0.37
37.0	5.4	1.00	0.10
38.0	7	1.00	0.07
39.0	36.00	1.00	2.64
39.0	7	1.00	0.29
39.1	115.10	1.00	10.75
40.0	17	1.00	1.50
41.1	12.17	1.00	10.62
42.1	2.7	1.00	2.02
43.0	3.00	1.00	0.42
50.0	46.89	1.00	4.05
51.0	4.21	1.00	4.32
52.0	21.81	1.00	1.06
53.0	10.79	1.00	1.47
54.0	11.0	1.00	1.03
55.0	12.05	1.00	1.30
56.0	9.12	1.00	0.72
62.0	11.13	1.00	0.97
63.0	33.29	1.00	2.95
64.0	7.63	1.00	0.67
65.0	19.44	1.00	1.70
66.0	16.1	1.00	0.14
67.0	2.81	1.00	0.25
74.0	8.67	1.00	0.77
75.0	10.05	1.00	1.40
76.0	8.72	1.00	0.73
77.0	47.63	1.00	3.81
78.0	14.5	1.00	1.31
79.0	8.50	1.00	0.75
83.0	10.98	1.00	1.40
90.0	19.51	1.00	1.70
91.1	11.71	1.00	1.02
102.0	5.00	1.00	0.45
103.0	6.55	1.00	0.57
104.0	2.61	1.00	0.84
106.0	9.56	1.00	0.02
115.0	2.41	1.00	2.13
116.0	7.79	1.00	0.62
117.0	17.11	1.00	1.52
119.0	1.42	1.00	1.24
120.0	1.41	1.00	1.34
130.0	97.32	1.00	8.58
131.0	2.98	1.00	2.00
142.0	3.09	1.00	0.36
143.0	14.55	1.00	1.28
144.0	50.65	1.00	4.42
145.0	4.93	1.00	0.43
154.0	5.11	1.00	0.45
159.0	1.28	1.00	0.14
160.0	1.04	1.00	0.70
163.0	7.17	1.00	0.19
166.1	1.41	1.00	1.72
167.1	11.6	1.00	1.05

COMPOUND 14 (1,2,3,4-tetrahydroacridine)

MASS	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
25.9	1861	25.03	3.79
26.9	7262	100.03	14.85
27.9	7354	42.14	6.70
29.9	1420	19.67	2.82
30.9	673	9.13	1.38
37.9	421	5.79	0.85
50.9	1570	21.60	3.16
59.9	5133	84.37	12.36
60.9	782	10.75	1.52
61.9	2304	31.70	4.64
62.9	500	12.33	1.81
63.9	2418	33.68	4.93
64.9	3413	46.35	6.60
65.9	505	8.95	1.32
67.9	749	10.30	1.51
68.9	332	41.57	0.67
69.9	581	9.37	1.37
77.9	1745	24.01	3.52
78.9	627	8.63	1.26
79.9	433	4.23	0.61
80.9	1671	22.41	3.19
81.9	1520	21.74	3.12
82.9	781	10.74	1.57
83.9	231	4.55	0.67
84.9	299	3.93	0.56
85.9	658	9.05	1.33
86.9	456	6.41	0.94
87.9	127	2.51	0.37
88.9	74	1.02	0.15
101.9	1320	14.10	2.07
102.9	140	1.13	0.17
103.9	623	9.41	1.37
104.9	716	9.00	1.33
105.9	1343	19.50	2.71
106.9	728	3.21	0.45
107.9	1336	18.73	2.63

COMPOUND 15 (Acridine)

MASS	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
25.9	441	10.72	3.22
25.9	500	12.16	3.65
27.0	590	14.34	4.31
29.0	1112	27.04	9.12
39.0	220	5.35	1.61
59.0	621	15.10	4.53
62.0	474	11.52	3.46
63.0	430	10.45	3.14
73.0	395	9.63	2.69
75.0	514	12.50	3.75
77.0	531	14.37	4.31
102.0	250	8.01	2.55
125.0	349	9.45	2.54
126.0	467	9.90	2.97
151.0	403	11.01	3.31
151.0	749	8.49	2.55
171.0	535	24.77	6.24
171.0	4113	100.00	30.01
183.0	337	13.70	6.34

COMPOUND 16

MASS	INTENSITY	% BASEPEAK	% TOTAL IONIZATION
27.0	1748	10.39	2.34
29.0	405	3.41	0.54
31.0	2323	17.00	3.17
41.0	2513	14.93	3.37
43.0	509	5.49	0.79
51.0	735	4.37	0.39
53.0	73	0.43	0.03
55.0	465	2.76	0.62
57.0	478	2.84	0.64
61.0	143	0.98	0.20
63.0	563	3.35	0.75
73.0	1404	2.28	2.00
75.0	101	1.12	0.17
91.0	1613	3.58	2.16
103.0	66	0.39	0.09
115.0	772	4.59	1.87
117.0	173	1.03	0.23
139.0	1394	0.22	1.00
171.0	221	1.13	0.19
191.0	121	1.31	0.48
204.0	2026	10.33	3.11
207.0	567	3.37	0.76
209.0	1177	6.99	1.58
251.0	3904	24.20	5.23
259.0	4587	27.06	6.15
271.0	4715	25.05	5.78
274.0	424	2.52	0.57
275.0	16123	100.00	22.71
277.0	16753	25.00	22.45
279.0	4281	27.00	6.67
281.0	61	0.37	0.03
290.0	564	5.73	1.29
291.0	730	4.83	1.04

APPENDIX J

CONCENTRATION PROFILES FOR ACRIDINE EXPERIMENTS

178

1971-01
ANALYSIS-8/7/76

R-114-104-2

PUN CONDITIONS:

TEMPERATURE, °C 342

PRESSURE, PSIG 500

CATALYST HTS-9A

CATALYST CO. INC. 20/5000000

CATALYST SIZE 90 μ m

SOLVENT HEXADECANE

INITIAL REACTANT CONC (LCODE) 2.64×10^{-5} g/mol

CONC. (order) 0.05 wt%

H₂S GAS PHASE CONC. NOT MEASURED

DATE OF
ANALYSIS 10/24/76

RUN 1050

COMPOUND					TOTAL NITROGEN								
RET. TIME													
CONC. UNITS	$\text{g mole} \times 10^7$ Soil												
SAMPLE #													
2	19.4	19.9	31.9	17.1	27.3								
5	27.3	17.8	33.1	11.5	25.9								
10	49.3	16.5	32.4	6.6	25.7								
20	72.4	12.7	38.4	5.4	27.0								
40	164.3	23.7	17.8	1.3	29.0								
95	164.1	75.9	5.5	5.5	27.2								
120	146.8	70.3	3.0	0.2	24.1								
160	120.6	73.0	1.7	—	20.9								
240	8.1	55.6	3.5	6.6	88.3								
270	23.1	49.9	5.9	1.5	93.7								
300	43.0	45.7	6.0	1.4	108.								
330	58.1	35.0	2.8	—	85.7								
360	43.7	37.6	3.0	—	96.4								
450	41.3	30.8	1.4	—	93.1								
480	37.2	31.8	—	—	79.5								
514	43.0	33.4	0.9	—	96.7								
600	32.3	28.7	—	—	68.5								
630	31.1	27.4	—	—	64.8								

RUN CONDITIONS:

TEMPERATURE, °C 353

PRESSURE, PSIG 2000

CATALYST HDS-9A

CATALYST CONC. 2g/500cc oil

CATALYST SIZE 0.025m

SOLVENT WHITE OIL

INITIAL REACTANT CONC (LOADED) $259 \times 10^{-7} \text{ g mole}$ CS₂ CONC. (LOADED) 0.05 wt %H₂S GAS PHASE CONC. < 1 %