

DOE/RL-95-78
Revision 0

PUREX Facility Preclosure Work Plan

United States
Department of Energy
Richland, Washington

Approved for Public Release

TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.
Available in paper copy and microfiche.

Available to the U.S. Department of Energy
and its contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
(615) 576-8401

Available to the public from the U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
(703) 487-4650

Printed in the United States of America

DISCLM-5.CHP (8-91)

PUREX FACILITY PRECLOSURE WORK PLAN

FOREWORD

8 The Hanford Facility is owned by the U.S. Government and operated by the
9 U.S. Department of Energy, Richland Operations Office. Dangerous waste and
10 mixed waste (containing both dangerous and radioactive components) are
11 produced and managed on the Hanford Facility. Waste components are regulated
12 in accordance with the *Resource Conservation and Recovery Act of 1976* and
13 *Hazardous and Solid Waste Amendments of 1990*, and/or the *State of Washington*
14 *Hazardous Waste Management Act of 1976* (as administered through the Washington
15 State Department of Ecology's *Dangerous Waste Regulations*, Washington
16 *Administrative Code 173-303*); or the *Atomic Energy Act of 1954*.

18 For the purposes of the *Resource Conservation and Recovery Act of 1976*,
19 the Hanford Facility is considered to be a single facility. A single
20 dangerous waste permit identification number issued to the Hanford Facility by
21 the U.S. Environmental Protection Agency and the Washington State Department
22 of Ecology is Environmental Protection Agency/State Identification Number
23 WA7890008967. This identification number encompasses a number of treatment,
24 storage, and/or disposal units within the Hanford Facility. One of these
25 treatment, storage, and/or disposal units is the PUREX Facility.

27 The PUREX Facility is currently undergoing a phased closure. Thus, the
28 *PUREX Facility Preclosure Work Plan* submittal differs from closure plans
29 previously submitted by the U.S. Department of Energy, Richland Operations
30 Office to the Washington State Department of Ecology, in that the closure
31 process occurs in three distinct phases as part of the decommissioning process
32 [i.e., transition, surveillance and maintenance, and disposition (*Hanford*
33 *Federal Facility Agreement and Consent Order*, Section 8.0)]. Final closure
34 will occur during the disposition phase. The phased decommissioning process
35 is implemented because development of a complete closure plan during the
36 transition phase is impractical and future land use determinations have not
37 been identified.

38 The *PUREX Facility Preclosure Work Plan* is prepared in accordance with
39 the *PUREX Facility* transition phase as outlined in Section 8.0 of the *Hanford*
40 *Federal Facility Agreement and Consent Order* (Ecology et al. 1996). The
41 objective of the transition phase is to place the *PUREX Facility* in a safe
42 configuration with respect to human health and the environment. Following the
43 transition phase activities, the *PUREX Facility* will begin the surveillance
44 and maintenance phase of 10 or more years until disposition phase activities
45 commence. The closure plan for the *PUREX Facility* will be prepared during the
46 disposition phase.

48 For purposes of this documentation, the PUREX Facility does not include
49 the PUREX Storage Tunnels. The PUREX Storage Tunnels are an operating storage
50 unit (DOE/RL-90-24).

1
2
3
4
5

This page intentionally left blank.

1 **CONTENTS**

2
3
4 **FOREWORD**
5
6 **GLOSSARY**
7
8 **METRIC CONVERSION CHART**
9
10 **1.0 INTRODUCTION**
11
12 **2.0 FACILITY DESCRIPTION**
13
14 **3.0 PROCESS INFORMATION**
15
16 **4.0 WASTE CHARACTERISTICS**
17
18 **5.0 GROUNDWATER**
19
20 **6.0 TRANSITION PHASE STRATEGY**
21
22 **7.0 TRANSITION PHASE ACTIVITIES**
23
24 **8.0 POSTCLOSURE PLAN**
25
26 **9.0 REFERENCES**
27

1
2
3
4
5

This page intentionally left blank.

GLOSSARY

ACRONYMS AND ABBREVIATIONS

6	AFAN	ammonium fluoride-ammonium nitrate
7	ASF	ammonia scrubber feed
8		
9	CERCLA	<i>Comprehensive Environmental Response, Compensation, and Liability Act of 1980</i>
10		
11	CFR	Code of Federal Regulations
12	CO _x	oxides of carbon
13	CRW	cladding removal waste
14		
15	DOE	U.S. Department of Energy
16	DOE-RL	U.S. Department of Energy, Richland Operations Office
17	DQO	data quality objectives
18	DST	double-shell tank
19		
20	Ecology	Washington State Department of Ecology
21	EPA	U.S. Environmental Protection Agency
22		
23	NaNO ₂	sodium nitrite
24	NaOH	sodium hydroxide
25	NEPA	<i>National Environmental Policy Act of 1969</i>
6	NO _x	oxides of nitrogen
27	NPH	normal paraffin hydrocarbon
28	NZAW	neutralized zirflex acid waste
29		
30	PUREX	plutonium-uranium extraction
31		
32	RCRA	<i>Resource Conservation and Recovery Act of 1976</i>
33		
34	S&M	surveillance and maintenance
35		
36	T	tower (generic term used for column, scrubber, etc.)
37	TK	tank
38	Tri-Party Agreement	Hanford Federal Facility Agreement and Consent Order
39	TSD	treatment, storage, and/or disposal
40		
41	UNH	uranyl nitrate hexahydrate
42		
43	WAC	Washington Administrative Code
44		
45		
46		

1 TERMS

2

3

4 Definitions are based on use throughout this document.

5

6 **Crib**--A porous underground structure for disposal of liquid waste.

7

8 **Dunnage**--The nonprocess structure component of process equipment assembly used

9 to support, maintain spacial configuration, and facilitate remote handling.

10

11 **Waste fission products**--Byproducts of nuclear fission, other than plutonium,

12 uranium, and neptunium that were produced by irradiation and extracted through

13 the PUREX process.

14

15 **Jumper**--A prefabricated, remotely installed, piping assembly used to make

16 intra-cell transfers between process equipment. The piping assembly could

17 contain connectors, valves, instrumentation, and counterweights.

18

19 **M--Molar**, or moles, of solute per liter of solution.

20

21 **Metathesis**--A process of reacting potassium hydroxide with residual fluorides

22 remaining on the fuel elements after the fuel elements have been decladded

23 with an ammonium fluoride-ammonium nitrate solution. This reaction complexes

24 the fluoride so the fluoride can be removed from the dissolvers to minimize

25 dissolver corrosion during the fuel dissolution process.

26

27 **Mixed waste**--A dangerous, extremely hazardous, or acutely hazardous waste that

28 contains both a nonradioactive hazardous component and source, special

29 nuclear, or by-product material subject to the *Atomic Energy Act of 1954*.

30

31 **N Reactor**--A graphite-moderated, water-cooled reactor that produced irradiated

32 fuel for processing at the PUREX Plant. The steam byproduct was used to

33 generate electricity.

34

35 **pH**--The negative log of the hydrogen ion concentration in a solution.

36

37 **PUREX**--plutonium-uranium extraction.

38

39 **PUREX Facility**--All buildings and structures that lie within, or adjacent, to

40 the double fenced area. For purposes of this documentation, the PUREX Storage

41 Tunnels (DOE/RL-90-24) are excluded.

42

43 **PUREX Plant**--The PUREX processing building, 202-A Building.

44

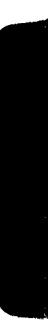
45 **Zirflex**--A buffered acidic ammonium fluoride process for the dissolution of

46 zirconium alloy cladding from irradiated reactor fuel assemblies.

METRIC CONVERSION CHART

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Into metric units

Out of metric units


If you know	Multiply by	To get	If you know	Multiply by	To get
Length					
inches	25.40	millimeters	millimeters	0.0393	inches
inches	2.54	centimeters	centimeters	0.393	inches
feet	0.3048	meters	meters	3.2808	feet
yards	0.914	meters	meters	1.09	yards
miles	1.609	kilometers	kilometers	0.62	miles
Area					
square inches	6.4516	square centimeters	square centimeters	0.155	square inches
square feet	0.092	square meters	square meters	10.7639	square feet
square yards	0.836	square meters	square meters	1.20	square yards
square miles	2.59	square kilometers	square kilometers	0.39	square miles
acres	0.404	hectares	hectares	2.471	acres
Mass (weight)					
ounces	28.35	grams	grams	0.0352	ounces
pounds	0.453	kilograms	kilograms	2.2046	pounds
short ton	0.907	metric ton	metric ton	1.10	short ton
Volume					
fluid ounces	29.57	milliliters	milliliters	0.03	fluid ounces
quarts	0.95	liters	liters	1.057	quarts
gallons	3.79	liters	liters	0.26	gallons
cubic feet	0.03	cubic meters	cubic meters	35.3147	cubic feet
cubic yards	0.76456	cubic meters	cubic meters	1.308	cubic yards
Temperature					
Fahrenheit	subtract 32 then multiply by 5/9ths	Celsius	Celsius	multiply by 9/5ths, then add 32	Fahrenheit
Force					
pounds per square inch	6.895	kilopascals	kilopascals	1.4504×10^{-4}	pounds per square inch

Source: *Engineering Unit Conversions*, M. R. Lindeburg, PE., Second Ed., 1990, Professional Publications, Inc., Belmont, California.

1
2
3
4
5

This page intentionally left blank.

1 **CONTENTS**

2

3	4 1.0 INTRODUCTION	1-1
5		

1
2
3
4
5

This page intentionally left blank.

1 1.0 INTRODUCTION
2
3
4 This preclosure work plan presents a description of the PUREX Facility,
5 the history of the waste managed, and addresses transition phase activities
6 that position the PUREX Facility into a safe and environmentally secure
7 configuration. For purposes of this documentation, the PUREX Facility does
8 not include the PUREX Storage Tunnels (DOE/RL-90/24).
9

10 The *PUREX Facility Preclosure Work Plan* is prepared in accordance with
11 Section 8.0 of the *Hanford Federal Facility Agreement and Consent Order*
12 (Tri-Party Agreement) (Ecology et al. 1996). The *PUREX Facility Preclosure*
13 *Work Plan* submittal differs from closure plans previously submitted by the
14 U.S. Department of Energy, Richland Operations Office (DOE-RL) to the
15 Washington State Department of Ecology (Ecology), in that the closure process
16 occurs in three distinct phases as part of the decommissioning process [i.e.,
17 transition, surveillance and maintenance (S&M), and disposition (Ecology
18 et al. 1996)]. Final closure of the PUREX Facility will occur during the
19 disposition phase. A PUREX Facility closure plan will be prepared during the
20 disposition phase planning process, which follows an extended S&M phase.
21

22 Planning documents supporting the transition phase activities include end
23 point criteria (WHC 1995a) and a S&M plan (WHC 1995b). On completion of the
24 transition phase activities, the PUREX Facility will enter the S&M phase.
25 Tri-Party Agreement negotiations during S&M and disposition phases will
; address closure activities.
26

27 The PUREX Facility was designed and constructed to provide supplemental
28 fuel reprocessing capability to separate uranium, plutonium, and neptunium
29 products from irradiated reactor fuel. The PUREX Facility operated from 1956
30 to 1972, when operations were placed in a standby mode. Operation resumed
31 in 1983 after a backlog of irradiated fuel from N Reactor was accumulated.
32 In 1991, operations once again were placed in a standby mode. In
33 December 1992, DOE-Headquarters notified the DOE-RL that the PUREX Facility
34 would no longer operate and directed the DOE-RL to deactivate this facility.
35

36 Preclosure of the PUREX Facility vessel systems and removal of waste from
37 the canyon deck will occur in conjunction with the overall decommissioning of
38 the PUREX Facility. A vessel system is a treatment and/or storage vessel and
39 its ancillary equipment. The transition phase activities place the PUREX
40 Facility in a deactivated state where all regulated vessels are flushed until
41 solutions do not designate as dangerous waste. The S&M phase will maintain
42 the PUREX Facility in a safe and environmentally secure configuration for
43 10 or more years for a planning horizon. The disposition phase will address
44 final closure activities [for portions of the PUREX Facility identified in the
45 Part A, Form 3, Permit Application (DOE/RL-88-21)] in accordance with
46 *Dangerous Waste Regulations*, Washington Administrative Code (WAC) 173-303. If
47 required, postclosure care requirements would be integrated with the
48 post-remediation groundwater monitoring requirements established for the
49 200-PO-1 operable unit.
50

1 This phased approach to closure allows for an expedient full deactivation
2 of the PUREX Facility in a manner that is safe and cost effective, while
3 minimizing the risk to human health and the environment.
4

5 The transition phase activities will place the PUREX Facility in a
6 deactivated state. The transition phase consists of completion of end point
7 criteria (WHC 1995b), flushing vessel systems until threshold levels are met,
8 and transfer of the lead and cadmium waste from the canyon deck to PUREX
9 Storage Tunnel Number 2. End point criteria are used to achieve a safe,
10 stable, and environmentally secure facility suitable for a low cost S&M
11 program. There are 10 treatment and/or storage vessel systems and 35 storage
12 vessel systems addressed in this preclosure work plan [refer to Part A
13 (DOE/RL-88-21)].

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
CONTENTS

2.0	FACILITY DESCRIPTION	2-1
2.1	PUREX FACILITY DESCRIPTION	2-1
2.2	PUREX FACILITY TREATMENT AND STORAGE AREAS	2-2
2.2.1	Treatment and/or Storage Vessel Systems	2-2
2.2.1.1	Tank E5 (cladding removal waste treatment system)	2-3
2.2.1.2	Tanks F15 and F16 (neutralized zirflex acid waste treatment system)	2-3
2.2.1.3	Tank F18 (miscellaneous mixed waste treatment system)	2-3
2.2.1.4	Tank G7 and Concentrator E-F11 (headend waste treatment system)	2-4
2.2.1.5	Tanks U3 and U4 (miscellaneous headend waste treatment system)	2-4
2.2.1.6	Tanks Q21 and Q22 (Q Cell aqueous makeup tanks)	2-4
2.2.2	PUREX Plant Containment Building	2-5
2.3	SECURITY INFORMATION	2-6

FIGURES

2-1.	200 East Area	F2-1
2-2.	PUREX Facility	F2-2
2-3.	PUREX Plant (Building 202-A)	F2-3
2-4.	PUREX Plant Cross-Section (looking west)	F2-4

1
2
3
4
5

This page intentionally left blank.

1 2.0 FACILITY DESCRIPTION 2 3

4 5 This chapter describes the PUREX Facility and provides information on
6 Hanford Facility security.
7

8 2.1 PUREX FACILITY DESCRIPTION 9

10 11 The PUREX Facility, Figures 2-1 and 2-2, is located in the southeast
12 quadrant of the 200 East Area. The PUREX Facility includes all buildings and
13 structures that lie within the double fenced area, except the
14 241-A-151 diversion box and the 302-A catch tank, which are part of the
15 Double-Shell Tank (DST) System (DOE/RL-90-39). The PUREX Facility also
16 includes the following structures located outside of the double fenced area:
17 the 241-A-201 pump pit and the 295-AD instrument/sample shack located outside
18 the east section of the fenced area; the 216-A-42D diversion box and the
19 216-A-42 diversion basin located approximately 549 meters east of the fenced
20 area, which are associated with the chemical sewer discharge from the PUREX
21 Facility. For purposes of this documentation, the PUREX Storage Tunnels
22 (DOE/RL-90-24) are excluded.
23

24 25 The 202-A Building (referred to as the PUREX Plant) is a canyon-type
25 building where irradiated reactor fuel was processed to separate the
26 plutonium, uranium, and neptunium from the highly radioactive waste fission
27 products formed during fuel irradiation. Construction of the PUREX Plant was
28 completed in 1956. The PUREX Plant is approximately 91 meters above
29 groundwater and does not lie within a 100- or 500-year floodplain
30 (DOE/RL-91-28). (Processing information is presented in Chapter 3.0.)
31

32 33 Cutaway and sectional views of the PUREX Plant are shown in Figures 2-3
33 34 and 2-4, respectively. The PUREX Plant is a reinforced concrete structure
34 35 about 306 meters long, 36 meters wide (at its maximum), and 30 meters high with
35 36 about 12 meters of this height below ground level. The PUREX Plant consists
36 37 of three main structural components: (1) a thick-walled (for radiation
37 38 shielding) concrete canyon containing remotely operated process equipment (in
38 39 cells below ground level); (2) the pipe and operating, sample, and storage
39 40 galleries; and (3) a steel-frame attached annex that includes offices, process
40 41 control rooms, laboratories, and building services. Three cranes are located
41 42 in a craneway above the canyon. The portion of the canyon below ground level
42 43 is subdivided into a row of 12 process cells that are paralleled on the south
43 44 side by an exhaust air tunnel and a hot (radioactive) pipe trench through
44 45 which intercell radioactive solution transfers are made. The air tunnel
45 46 exhausts the ventilation air from the cells to the main ventilation filters
46 47 and the filtered air is discharged to the atmosphere via a 61-meter-tall
47 48 stack.
48

49 50 The PUREX Plant canyon is 9.3 meters wide by 248 meters long. The upper
50 51 canyon deck consists of removable concrete cover blocks that provide access to
51 52 the process cells or the hot pipe trench. The cell cover blocks are 0.9-meter
52 53 thick and the hot pipe trench cover blocks are 0.8-meter thick. The top of
53 54

1 the cover blocks is at a 218 meter elevation, which is approximately
2 2.5 meters above ground level.
3

4 The craneway is 8 meters above the canyon deck and extends almost the
5 full length of the canyon building. In the craneway are three, 36-metric ton,
6 bridge-type cranes (two master cranes and one slave crane) used to handle cell
7 cover blocks, remotely remove process equipment; and in the past, were used to
8 charge irradiated reactor fuel into the dissolvers and replace process
9 equipment. The crane cabs of the two master cranes are located behind a
10 shielding parapet wall. The slave crane can be controlled remotely from the
11 master west crane cab and has been used primarily to assist in removing large
12 equipment items from the process cells.
13

14 The pipe and operating gallery, which is the uppermost of the three
15 galleries that parallel, but are isolated from, the canyon, contains the
16 process instrument transmitter racks, electrical motor controls, steam and
17 cooling-water supply lines, and the piping and associated valving for
18 transferring nonradioactive process fluids used in the in-cell equipment.
19 The sample gallery contains the remote samplers for obtaining radioactive,
20 process-solution samples from the in-cell equipment. The storage gallery,
21 which is the lowermost gallery, provides storage space for miscellaneous,
22 nonradioactive spare parts and supplies.
23

24 A railroad spur enters the PUREX Facility (Figure 2-3) from the north and
25 extends into the east end of the PUREX Plant where the spur enters a vertical
26 door to an area designated as the railroad tunnel. Through this railroad
27 tunnel, irradiated reactor fuel was received for processing. The railroad
28 tunnel also provided building access for replacement equipment for the canyon
29 processing area. Access from the railroad tunnel to the canyon processing
30 area is through a horizontal door located in the ceiling of the railroad
31 tunnel. The reinforced concrete floor, walls, and roof of the railroad tunnel
32 that extend southward have been deleted from Figure 2-3 to show a cask car and
33 the extended railroad track.
34

36 2.2 PUREX FACILITY TREATMENT AND STORAGE AREAS

37
38 The activities addressed in this preclosure work plan involve the
39 following specific vessel systems within the PUREX Facility. A description of
40 the 'containment building' for the canyon deck and F Cell storage areas is
41 provided in Section 2.2.2.
42

44 2.2.1 Treatment and/or Storage Vessel Systems

45
46 There are 10 treatment and/or storage vessel systems and 35 storage
47 vessel systems [refer to Part A (DOE/RL-88-21)]. A vessel system is a
48 treatment and/or storage vessel and its ancillary equipment.
49

50 The 35 storage vessel systems were used specifically to support
51 transition phase activities. Because these vessels were used only for storage
52 of dangerous solutions (mainly flush solutions) until the solutions could be
53

1 treated and transferred to the DST System, these vessels are not described in
2 detail.
3

4 The following sections give a brief description of the six process
5 systems, specifying the vessel and ancillary equipment.
6

7 **2.2.1.1 Tank E5 (cladding removal waste treatment system).** Tank E5 is a
8 cylindrical, 19,873-liter capacity 304L stainless steel tank located in
9 E Cell. The tank shell is 2.8 meters in height, 3.1 meters in diameter, and
10 constructed with 1.4-centimeter-thick top and bottom walls and 0.8-centimeter-
11 thick side walls. The top of the tank contains 22 nozzles of various size to
12 accommodate ancillary equipment. Ancillary equipment associated with the tank
13 consists of the following:
14

- 15 • Two jumpers (304L stainless steel) that lead from tank E5 to the hot
16 pipe trench
17
- 18 • Hot pipe trench piping (Schedule 40 304L stainless steel) between the
19 tank and the discharge piping
20
- 21 • Discharge piping (Schedule 40 304L stainless steel) that runs from the
22 last jumper out (underground) to the 241-A-151 diversion box, which is
23 the interface point with the DST System.
24

25 The original tank, which was placed into service in 1956, was replaced
26 in 1986 because corrosion of the dunnage and support frame around the tank
27 caused a slight shift in the position of the tank. The current tank E5 has
28 been in service since 1986.
29

30 **2.2.1.2 Tanks F15 and F16 (neutralized zirflex acid waste treatment system).**
31 Tanks F15 and F16 are cylindrical, 19,419- and 19,870-liter, respectively,
32 capacity 304L stainless steel tanks located in F Cell. The construction is
33 the same as tank E5 discussed previously. The ancillary equipment associated
34 with the tanks consists of the following:
35

- 36 • Two jumpers (304L stainless steel), one from tank F15 to F16, the
37 other from tank F16 to the hot pipe trench
38
- 39 • Hot pipe trench piping (Schedule 40 304L stainless steel) between
40 the tanks and the discharge piping
41
- 42 • Discharge piping (Schedule 40 304L stainless steel) from the hot pipe
43 trench to the outside wall of the PUREX Plant and through encased
44 underground piping to the DST System.
45

46 Tanks F15 and F16 originally were placed into service in 1965.
47

48 **2.2.1.3 Tank F18 (miscellaneous mixed waste treatment system).** Tank F18 is a
49 cylindrical, 19,798-liter capacity 304L stainless steel tank located in
50 F Cell. Tank F18 is the same type of construction as tanks E5, F15, and F16.
51 The ancillary equipment consists of the following:
52

- 1 • Jumper (304L stainless steel) from tank F18 to the hot pipe trench
- 2 • Hot pipe trench piping (Schedule 40 304L stainless steel) between
- 3 the tank and the discharge piping
- 4 • Discharge piping (Schedule 40 304L stainless steel) from the hot pipe
- 5 trench to the 241-A-151 diversion box.
- 6
- 7
- 8
- 9 Tank F18 was placed in service in 1956.
- 10

11 **2.2.1.4 Tank G7 and Concentrator E-F11 (headend waste treatment system).**
12 Tank G7 is an oval, 50,827-liter capacity 304L stainless steel tank located in
13 G Cell. Tank G7 is 5 meters long, 3.2 meters wide, 4 meters tall, and
14 constructed with 0.9-centimeter-thick side walls and 1.4-centimeter-thick top
15 and bottom walls. The top of the tank contains 23 nozzles of various sizes to
16 accommodate ancillary equipment.

17

18 The ammonia waste concentrator, hereafter referred to as E-F11,
19 [E identifies a heat exchanger (e.g., condenser, concentrator, or steam
20 heater)], is located in F Cell. The E-F11 is constructed of 304L stainless
21 steel; has a capacity of 9,804 liters; is 5.2 meters tall; and has a central
22 draft tube, 76 centimeters in diameter, in the lower portion of the
23 concentrator connected on opposite sides to two cylindrical reboilers, each
24 1.4 meters in diameter. The reboilers are connected to the draft tube by
25 ducts at the top and bottom. A removable de-entrainment tower, 1.7 meters in
26 diameter and 3.8 meters tall, is connected to the top of the draft tube with a
27 bolted flange. Ancillary equipment for tank G7 and E-F11 includes the
28 following:

- 29 • Catch tanks A3-4, B3-4, C3-4 (8,000 liters each) and E3-2
30 (946 liters), each constructed of 304L stainless steel
- 31 • Accumulation tank F12 (19,870 liters), constructed of 304L stainless
32 steel, and piping from the catch tanks to tank F12
- 33 • Hot pipe trench piping (Schedule 40 304L stainless steel) between
34 vessels and discharge piping
- 35 • Various jumpers (304L stainless steel) that interconnect the vessels
36 of the headend waste treatment system
- 37 • Discharge piping (Schedule 40 304L stainless steel) from the hot pipe
38 trench to the outside wall of the PUREX Plant and through encased
39 underground piping to the DST System.
- 40
- 41
- 42
- 43
- 44
- 45

46 Tank G7 originally was placed into service in 1956. The E-F11 was placed
47 into service in 1962 and was removed and replaced in 1970.

48

49 **2.2.1.5 Tanks U3 and U4 (miscellaneous headend waste treatment system).**
50 Tanks U3 and U4, 31,124- and 31,184-liter capacity, respectively, are
51 3.1 meters in diameter and 6.1 meters high. Both tanks are constructed of
52 304L stainless steel with a minimum thickness of 0.8-centimeter. Tanks U3

1 and U4 are located in the western half of U Cell, the acid storage vault,
2 which is located external of the PUREX Plant canyon area along the north wall
3 of the PUREX Plant. The U Cell is constructed primarily below ground level
4 with a removable concrete cover block roof at about 0.3-meter above ground
5 level. Ancillary equipment for tanks U3 and U4 includes the following:

- 6 • Drain piping (304L stainless steel) from laboratory sinks and hoods
- 7 • Transfer piping (304L stainless steel) from drain lines to tanks U3
8 and U4, and from tanks U3 and U4 to sumps SUA and SUB
- 9 • Overflow piping (304L stainless steel) that interconnect tanks U3
10 and U4
- 11 • Discharge piping (304L stainless steel) from tanks U3 and U4, through
12 the north wall of the PUREX Plant adjacent to U Cell, across the
13 ceiling of the storage gallery, through the PUREX Plant canyon wall,
14 across D Cell, into the hot pipe trench, and back to D Cell
- 15 • Jumper (304L stainless steel) in D Cell that connects the discharge
16 piping from tanks U3 and U4 to discharge piping in the hot pipe trench
17 that leads out of the PUREX Plant
- 18 • Discharge piping (304L stainless steel) from the jumper in D Cell,
19 through the hot pipe trench, out the south side of the PUREX Plant, to
20 the 241-A-151 diversion box.

21 Tanks U3 and U4 were placed in service in 1956.

22 **2.2.1.6 Tanks Q21 and Q22 (Q Cell aqueous makeup tanks).** Tanks Q21 and Q22
23 are cylindrical, 81- and 968-liter, respectively, capacity 304L stainless
24 steel tanks located in the Q Cell aqueous makeup unit (AMU). Tank Q21 is
25 45.7 centimeters in diameter and 61 centimeters tall. Tank Q22 is
26 106.7 centimeters in diameter and 121.9 centimeters tall. The Q Cell AMU is
27 located in the west end of the storage gallery, on the second level of Q Cell.
28 Ancillary equipment for tanks Q21 and Q22 are outlet lines (304L stainless
29 steel) to the vessel vent header and tank Q5.

30 **2.2.2 PUREX Plant Containment Building**

31 The solid mixed waste storage areas located in the PUREX Plant consist of
32 a section of the canyon deck adjacent to D Cell and the F17 position in
33 F Cell. These storage areas are considered to be in a 'containment building'
34 subject to the requirements of 40 CFR 265, Subpart DD. The solid mixed waste
35 stored on the canyon deck, consisting of lead and cadmium, was moved to PUREX
36 Storage Tunnel Number 2 as part of transition phase activities. The solid
37 mixed waste in F Cell consists mainly of concrete and tank dunnage corrosion
38 products. A qualified registered professional engineer has certified that the
39 PUREX Plant canyon area meets the required design standards as specified in
40 40 CFR 265.1101(a) (Gillier 1992).

1 Limited activities are planned for the containment building as part of
2 the preclosure work plan.
3
4

5 2.3 SECURITY INFORMATION
6

7 The entire Hanford Facility is a controlled-access area. The Hanford
8 Facility maintains around-the-clock surveillance for the protection of
9 government property, classified information, and special nuclear materials.
10 The Hanford Patrol maintains a continuous presence of protective force
11 personnel to provide additional security. All personnel accessing Hanford
12 Facility areas must have a DOE-issued security identification badge indicating
13 the appropriate authorization. Personnel also could be subject to a random
14 search of items carried into or out of the Hanford Facility.
15

16 Hanford Facility personnel receive training on security regulations in
17 the form of required security education and on-the-job training. Methods for
18 ensuring personnel compliance with security requirements and provisions for
19 security training are maintained on the Hanford Facility.

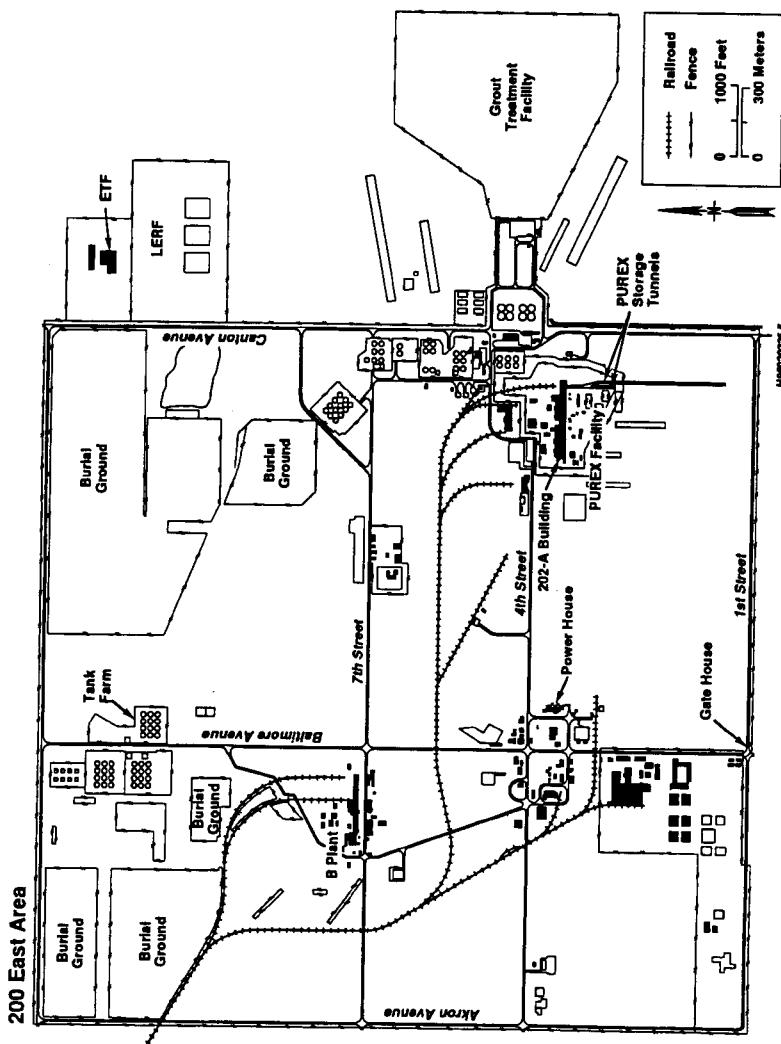
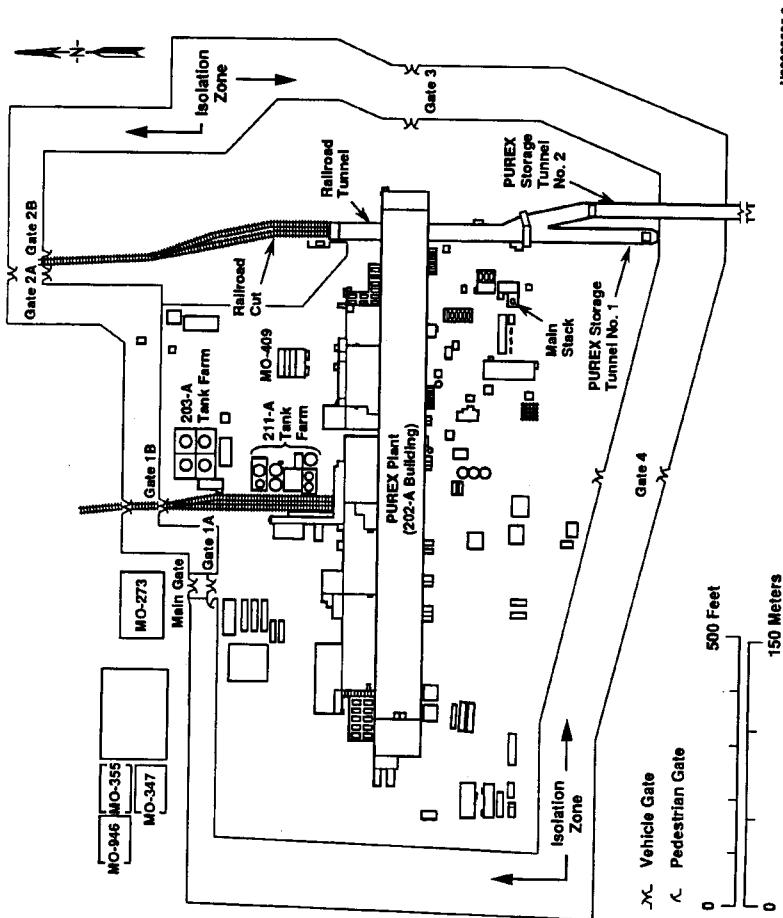



Figure 2-1. 200 East Area.

THIS PAGE INTENTIONALLY
LEFT BLANK.

Note: For purposes of this documentation, the PUREX Storage Tunnels (DOE/RL-90-24) are excluded.

Figure 2-2. PUREX Facility.

THIS PAGE INTENTIONALLY
LEFT BLANK.



Figure 2-3. PUREX Plant (Building 202-A).

24 - AGE Y CULTIVACIONAL
ESTIMACION

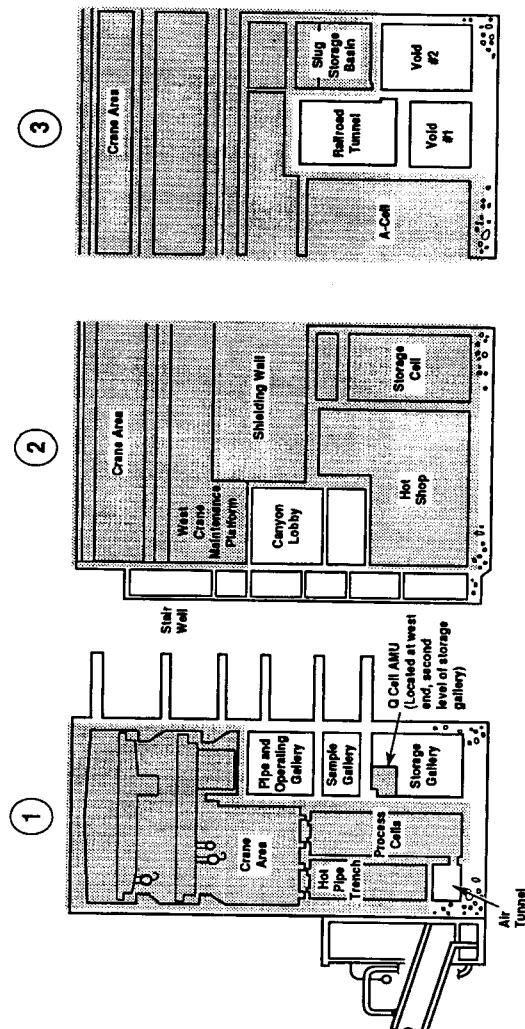


Figure 2-4. PUREX Plant Cross-Section (looking west).

THIS PAGE INTENTIONALLY
LEFT BLANK.

1	CONTENTS
2	
3	
4	3.0 PROCESS INFORMATION 3-1
5	3.1 PUREX PROCESS DESCRIPTION 3-1
6	3.2 VESSEL SYSTEMS 3-1
7	3.2.1 Cladding Removal Waste Treatment System 3-1
8	3.2.2 Neutralized Zirflex Acid Waste Treatment System 3-2
9	3.2.3 Miscellaneous Mixed Waste Treatment System 3-3
10	3.2.4 Headend Ammonia Waste Treatment System 3-3
11	3.2.5 Miscellaneous Headend Treatment System 3-4
12	3.3 TRANSITION PHASE VESSEL SYSTEMS 3-5
13	3.4 PUREX PLANT CONTAINMENT BUILDING 3-5
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

FIGURES

24	3-1. E-F11 and Tank E5 Waste Stream (before August 1987) F3-1
25	3-2. Tanks F15 and F16 Waste Stream F3-2
26	3-3. Tank F18 Waste Stream F3-3
27	3-4. E-F11 and Tank E5 Waste Stream (August 1987 to Deactivation) F3-4
28	3-5. Tanks U3 and U4 Waste Stream F3-5
29	
30	
31	
32	
33	
34	

TABLE

35	3-1. PUREX Plant Process and Chemical Additions T3-1
36	

1
2
3
4
5

This page intentionally left blank.

3.0 PROCESS INFORMATION

This chapter describes the waste streams and the waste treatment systems associated with the PUREX process.

3.1 PUREX PROCESS DESCRIPTION

Irradiated reactor fuel was processed to extract, purify, and concentrate uranium, plutonium, and neptunium produced from the reactor fuel. The main process components provided for the chemical decladding and dissolution of the fuel elements, and separation and purification of uranium, plutonium, and neptunium by solvent extraction. Process support systems recovered and stored nitric acid and organic solvents, and provided other treatment and storage of gaseous, liquid, and solid waste.

3.2 VESSEL SYSTEMS

Waste treatment conducted in vessel systems in the PUREX Plant made liquid waste generated during the PUREX process acceptable for storage in the DST System (DOE/RL-90-39). The corrosion acceptance criteria of the DST System includes a pH greater than 12.0 and a nitrite concentration greater than 0.011 M. Generally, the treatment involved raising the pH with sodium hydroxide (NaOH) and adding sodium nitrite (NaNO₂) to obtain the necessary conditions to inhibit corrosion of the carbon steel tanks in the DST System. The following sections discuss the processes and the vessels associated with each process. Table 3-1 lists all permitted vessels, their associated process, and chemical additions made during processing.

3.2.1 Cladding Removal Waste Treatment System

Three types of mixed waste streams were generated during decladding operations. These three mixed waste streams, collectively called cladding removal waste (CRW), include the following.

- Decladding waste--This waste was generated when the zirconium cladding was removed from the irradiated fuel elements. Ammonium fluoride-ammonium nitrate (AFAN) dissolved the fuel cladding by complexing the zirconium metal jacket, leaving the uranium, plutonium, and neptunium metal in the dissolver.
- Spent metathesis waste--After the zirconium was removed from the fuel rods, uranium and plutonium fluoride compounds generated during decladding operations were metathesized using a solution of potassium hydroxide. The spent potassium hydroxide solution constituted the metathesis waste.

1 • Metathesis rinse waste--Water was added to the dissolvers to rinse the
2 remaining metathesis solution from the fuel and to dilute the residual
3 metathesis solution and decladding solution that remained in the heel.
4 The resulting solution constituted the metathesis rinse waste.

5 All three CRW mixed waste streams were jetted to tank E5 for treatment
6 (Figure 3-1). Before being transferred to tank E5, the decladding and
7 metathesis waste solutions were transferred from tank E3 to one of two
8 centrifuges (E2 and E4) to remove residual plutonium and uranium solids. This
9 recovery process was intended solely to recover plutonium and uranium product
10 and was not a dangerous waste treatment activity.

11 Decladding waste was treated by adding NaOH and NaNO₂ to the waste in
12 tank E5 to meet the DST System corrosion specifications. The line to the DST
13 System was flushed with water after waste transfers.

14 The decladding waste treatment reaction caused approximately 10 to
15 20 percent of the ammonia in solution to be released. Ammonia gas was
16 scrubbed from the offgas treatment system and treated (Section 3.2.4).

17 Metathesis waste normally arrived at tank E5 with a pH greater than 12,
18 which met the DST System pH specifications. The waste was sampled and sodium
19 nitrite was added. Sodium hydroxide was added only if the pH was below the
20 DST System specifications. The transfer to the DST System was followed by a
21 water flush.

22 Metathesis rinse waste was treated in a manner similar to the decladding
23 waste in that NaOH and NaNO₂ were added to tank E5. The treated waste was
24 sampled before being transferred to the DST System, and the line was flushed
25 with water.

3.2.2 Neutralized Zirflex Acid Waste Treatment System

35 Tanks F15 and F16 were used to treat highly radioactive, concentrated
36 acid solutions, known as neutralized zirflex acid waste (NZAW), generated from
37 the solvent extraction process. The NZAW contained the waste fission products
38 separated from the first decontamination cycle.

40 The NZAW was received in tank F15 in approximately 9,800-liter batches
41 for treatment (Figure 3-2). The solution was sampled and, if the solution did
42 not have to be reworked because of high plutonium content, the solution was
43 declared waste, heated, and treated with a sugar (sucrose) solution, which was
44 added to the tank over a 16- to 24-hour period. The resulting reaction
45 between the nitric acid and the sugar solution produced oxides of nitrogen
46 (NO_x) and carbon, and oxides of carbon (CO_x). These offgases were routed to
47 the F5 acid absorber where approximately 25 percent of the NO_x was recovered
48 as nitric acid for reuse in the process.

50 After initial treatment in tank F15, the NZAW was transferred to
51 tank F16. Sugar denitration was completed, if necessary, and the waste was
52 treated with NaOH and NaNO₂, sampled, and transferred to the DST System.

1 3.2.3 Miscellaneous Mixed Waste Treatment System
2

3 Tank F18 received miscellaneous mixed waste solutions from the following
4 areas: canyon cell floor sumps; drainage from the vessel vent system,
5 condenser vent system, and sampler headers; hot shop maintenance cell
6 solutions; sample gallery floor drains; and bottoms from E-F11. Solutions
7 were pumped or jetted to tank F18 from their point of origin (Figure 3-3).
8 Transfer piping is located in the reinforced concrete hot pipe trench.
9

10 Before receiving solutions in tank F18, the heel had to be acidified (at
11 least 0.3 M nitric acid) to keep plutonium and uranium nitrates from
12 precipitating. Keeping these compounds in solution was necessary to allow for
13 representative sampling for nuclear material accountability and was required
14 to meet a criticality specification.
15

16 Once the heel had been acidified, solutions could be received in
17 tank F18. Samples were taken when the level in tank F18 reached 13,200 to
18 15,100 liters. If the contents of tank F18 did not have to be reworked
19 because of high plutonium concentrations, the solution was declared waste,
20 appropriate amounts of NaOH and NaNO₂ were added, and the waste was sent to
21 the DST System.
22

23
24 3.2.4 Headend Ammonia Waste Treatment System
25

26 A solution of AFAN was used in the dissolvers to chemically declad
27 zirconium-clad fuel from N Reactor (Section 3.2.1). During the decladding
28 operation, ammonia was scrubbed from the offgases by water to form an aqueous
29 ammonium hydroxide solution.
30

31 During fuel decladding and solids metathesis, approximately 70 percent of
32 the ammonium compounds charged to the dissolvers were evolved as ammonia gas,
33 most of which was absorbed in dissolver condensate or scrubbed from the
34 dissolver offgas with water. The remaining ammonia remained in the CRW until
35 treated in tank E5 and transferred to the DST System. During treatment of the
36 cladding removal waste in tank E5, approximately 10 to 20 percent of the
37 ammonium ion content was released as ammonia gas, which was scrubbed with
38 water. The ammonia scrubber solutions from the three dissolver offgas systems
39 and the E Cell operations were combined. This stream contained ammonium
40 hydroxide and low levels of radionuclides.
41

42 Before August 1987, the ammonia scrubber waste solution was concentrated
43 in E-F11 in F Cell to remove carry-over waste fission products, and the
44 overhead condensate was discharged to 216-A-36B crib (Figure 3-1). The
45 ammonia scrubber waste treatment process was rerouted to transfer the ammonia
46 solution to the DST System.
47

48 The ammonia generated in the headend dissolvers was scrubbed from the
49 offgas and the scrub solution was collected in catch tanks A3-4, B3-4,
50 and C3-4 and combined with the aqueous discharge from the E Cell ammonia
51 offgas scrubber in accumulation tank F12. After the ammonia scrubber system
52 was rerouted, the ammonia waste collected in tank F12 was transferred to
53

1 tank G7. Chemical additions were made to adjust pH and nitrite concentration
2 to DST System specifications (Figure 3-4). The treated waste was transferred
3 to the DST System.

4
5 The E-F11 concentrator was used during PUREX Plant transition phase to
6 evaporate some of the flush solution waste water normally sent to the
7 DST System. The distillate (nonregulated) was discharged to the atmosphere
8 via the PUREX Plant main stack (291-A-1). The concentrate generated in E-F11
9 was treated with NaOH and NaNO₂ in tank F18 before being transferred to the
10 DST System.

11
12
13 **3.2.5 Miscellaneous Headend Treatment System**

14
15 Tanks U3 and U4 (Figure 3-5), located in the western half of U Cell,
16 received miscellaneous mixed waste solutions from the headend (reactor fuel
17 receiving and dissolution portion). Waste sources, both regulated and
18 nonregulated, include the following:

19
20 • Washdown (radiological decontamination) of railcars in the railroad
21 tunnel via floor drains and sump collection system
22
23 • Analytical laboratory sink and hood drains
24
25 • 206-A Fractionator Building sumps
26
27 • Drain from the 291-A-1 main stack
28
29 • Various analytical laboratory heating, ventilation, and air
30 conditioning vent drains
31
32 • U Cell sumps SUA and SUB
33
34 • Other tank systems on a case-by-case basis.
35

36 The most diversified categories of dangerous waste received into tanks U3
37 and U4 originated from the analytical laboratory. However, the combined
38 quantities of these various dangerous waste components was only a small
39 (estimated to be less than 5 percent) fraction of the total volume of mixed
40 waste stored and treated in this tank system.

41
42 The majority of the waste stream received in tanks U3 and U4 was
43 nonregulated, potential radioactively contaminated water and was jettied or
44 pumped from the point of generation to either tank U3 or U4. An exception was
45 waste (from the analytical laboratory) that drained by gravity from the
46 laboratory area to one of the vessels. The standard activity was to fill one
47 tank, sample and treat the waste in that tank while the other tank began to
48 fill. Thus, each tank in turn received and treated miscellaneous dangerous
49 waste.

1 As with the liquid waste treated in the waste tanks described in the
2 preceding sections, 'treatment' of the miscellaneous headend waste was done
3 solely to address the corrosive characteristic of the waste so the waste would
4 be compatible with the carbon steel containment of the DST System. To comply
5 with the waste acceptance criteria of the DST System, the waste was treated
6 with NaOH to adjust the pH and NaNO₂ to meet the nitrite requirements.
7

8 **3.3 TRANSITION PHASE VESSEL SYSTEMS**

9 During the transition phase, tanks Q21 and Q22 were permitted for
10 treatment and storage when the tanks were found to contain corrosive
11 solutions. The treatment in tanks Q21 and Q22 consisted of a one-time
12 addition of NaOH to neutralize the corrosive solutions. These tanks were not
13 flushed or sampled because both tanks have bottom drains, which left no heel.
14 The tanks were drained to tank F18 and the waste transferred to the
15 DST System.
16

17 An additional 35 vessels were permitted for storage during transition
18 activities, when a determination was made that corrosive solutions had been
19 stored in the vessels. These vessel systems were drained, or flushed and
20 sampled, and the waste transferred to the DST System.
21

22 **3.4 PUREX PLANT CONTAINMENT BUILDING**

23 Since December 7, 1987, discarded, contaminated process equipment removed
24 from the canyon area, which contained lead and cadmium, has been stored on the
25 hot pipe trench side of the canyon deck adjacent to D Cell. To date, the
26 location of the stored mixed waste has been administratively restricted to the
27 area adjacent to D Cell, and inside F Cell (F17 position). As part of
28 transition phase activities, the mixed waste stored on the canyon deck
29 adjacent to D Cell has been moved to PUREX Storage Tunnel Number 2.
30

31 The waste stored in position F17 within F Cell consists of concrete
32 debris collected from the floor of E Cell. The concrete material was
33 retrieved from the floor during the replacement of tank E3. The debris,
34 approximately 1.0 cubic meters and weighing approximately 4,100 kilograms, is
35 contained in a 1.2 x 1.8 x 0.6-meter carbon steel scrap hopper (skip). The
36 debris contains regulated quantities of chromium and approximately 400 grams
37 of plutonium. The estimated dose rate of the skip is 500 Rad/hour.
38

39 Weekly surveillance of the air pressure differential between the inside
40 and the outside of the containment building fulfills the 'inspection'
41 requirements [40 CFR 265.1101(c)(4)]. The canyon area is maintained at a
42 negative air pressure compared to ambient air pressure. The existence of an
43 air pressure differential between the inside and outside of the structure
44 verifies that no large openings exist in the building. In the event that
45 small openings in the building were present, the flow of air would be inward.
46 These factors ensure that adequate containment exists.
47

1
2
3
4
5

This page intentionally left blank.

THIS PAGE INTENTIONALLY
LEFT BLANK.

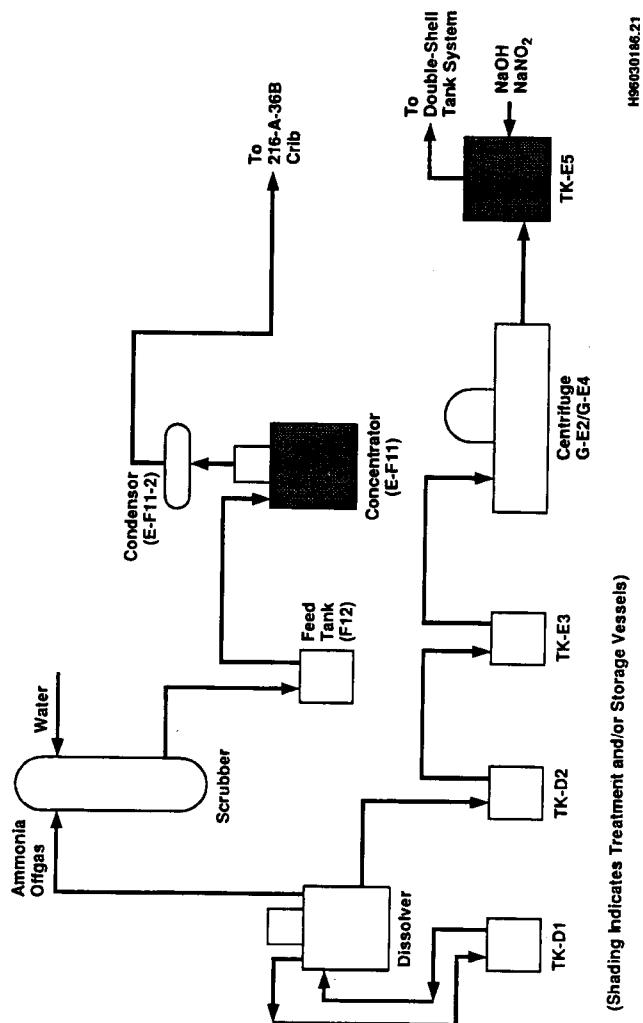


Figure 3-1. E-F11 and Tank E5 Waste Stream (before August 1987).

THIS PAGE INTENTIONALLY
LEFT BLANK.

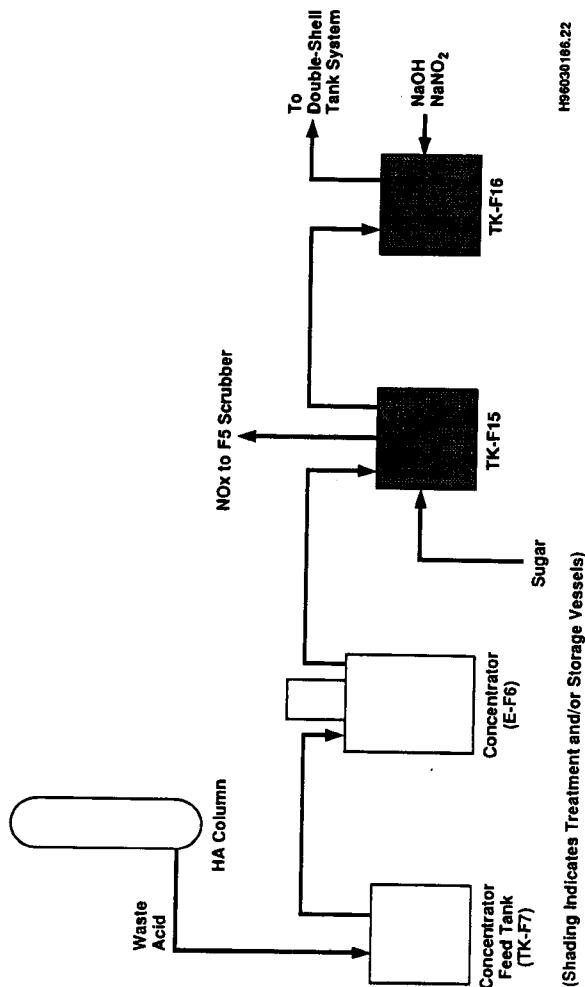


Figure 3-2. Tanks F15 and F16 Waste Stream.

THIS PAGE INTENTIONALLY
LEFT BLANK.

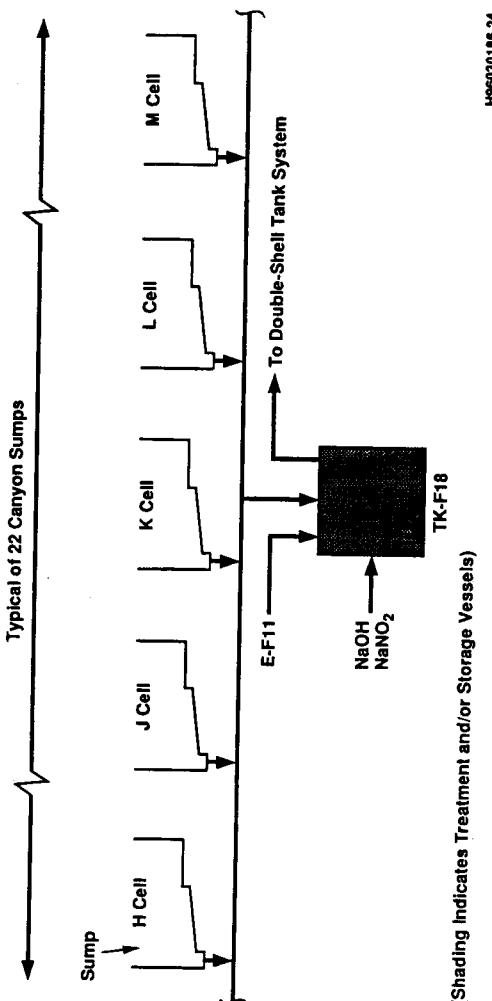


Figure 3-3. Tank F18 Waste Stream.

THIS PAGE INTENTIONALLY
LEFT BLANK.

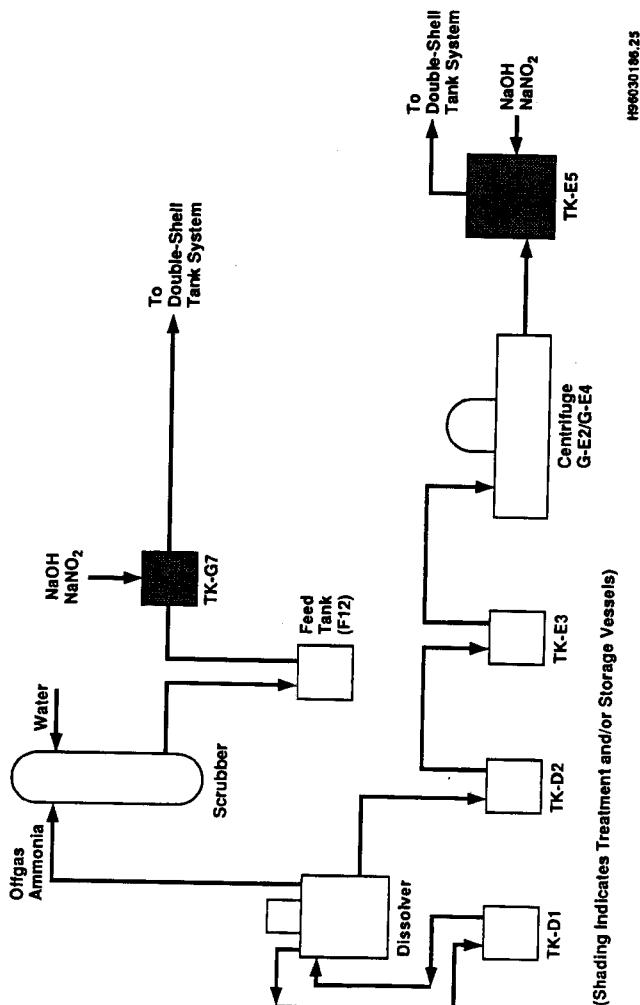


Figure 3-4. E-F11 and Tank E5 Waste Stream (August 1987 to Deactivation).

THIS PAGE INTENTIONALLY
LEFT BLANK.

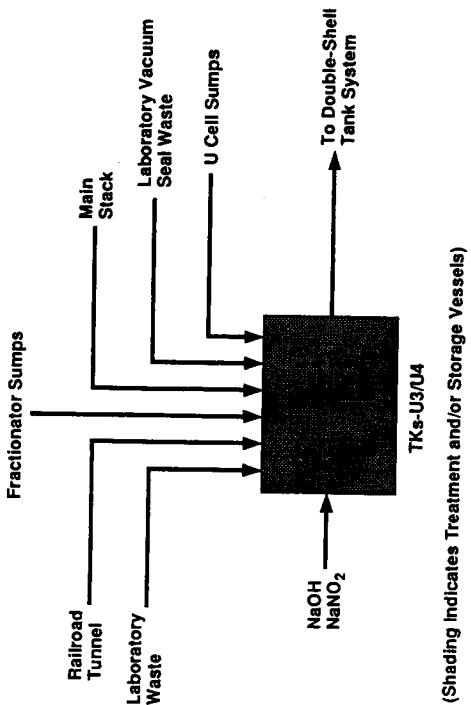


Figure 3-5. Tanks U3 and U4 Waste Stream.

THIS PAGE INTENTIONALLY
LEFT BLANK.

Table 3-1. PUREX Plant Process and Main Chemicals. (sheet 1 of 2)

Vessel	Process	Main chemicals	
Tk-D5 Tk-E6	Metal dissolution and feed preparation	ANN HNO ₃	aluminum nitrate nonahydrate nitric acid
E-F11	Dissolver offgas treatment and ammonia scrubber waste concentration	NH ₃ OH	ammonium hydroxide
Tk-E5	Cladding waste cycle	AFAN ANN KOH *NaOH *NaNO ₂	ammonium fluoride/ammonium nitrate aluminum nitrate nonahydrate potassium hydroxide sodium hydroxide sodium nitrite
Tk-H1 T-H2 Tk-J3 T-J6 T-J7	Decontamination and partition cycle	NaNO ₂ NPH TBP HNO ₃ Fe(NH ₂ SO ₃) ₂ NH ₂ SO ₃ H	sodium nitrite normal paraffin hydrocarbon tri-butyl phosphate nitric acid ferrous sulfamate sulfamic acid
Tk-K1 T-K2 T-K3 Tk-K6	Uranium cycle	NPH TBP N ₂ H ₄ HNO ₃ HN	normal paraffin hydrocarbon tri-butyl phosphate hydrazine nitric acid hydroxylamine nitrate
T-L2 Tk-L3 T-L4	Plutonium cycle	NPH TBP NaNO ₂ HNO ₃ N ₂ H ₄ HN	normal paraffin hydrocarbon tri-butyl phosphate sodium nitrite nitric acid hydrazine hydroxylamine nitrate
Tk-J21 T-J22 T-J23 Tk-Q21 Tk-Q22	Neptunium recovery and purification cycle	NPH TBP N ₂ H ₄ Fe(NH ₂ SO ₃) ₂ HNO ₃ HN	normal paraffin hydrocarbon tri-butyl phosphate hydrazine ferrous sulfamate nitric acid hydroxylamine nitrate
E-H4 Tk-J1	Backcycle waste system	HNO ₃	nitric acid

THIS PAGE INTENTIONALLY
LEFT BLANK.

Table 3-1. PUREX Plant Process and Main Chemicals. (sheet 2 of 2)

Vessel	Process	Main chemicals	
Tk-G1 Tk-G2 T-G2 Tk-G5 Tk-G8 Tk-R1 Tk-R2 T-R2 Tk-R7	Solvent recovery	NPH TBP Na ₂ CO ₃ KMnO ₄ HNO ₃ NaNO ₂ NaOH	normal paraffin hydrocarbon tri-butyl phosphate sodium carbonate potassium permanganate nitric acid sodium nitrite sodium hydroxide
Tk-F15 Tk-F16 Tk-F18	Waste concentration and treatment	Sugar *NaOH *NaNO ₂ ANN HNO ₃	sodium hydroxide sodium nitrite aluminum nitrate nonahydrate nitric acid
Tk-F3 Tk-F4 T-F5 Tk-U3 Tk-U4	Acid recovery	ANN HNO ₃	aluminum nitrate nonahydrate nitric acid
Tk-156	Aqueous makeup	HNO ₃	nitric acid
Tk-P4	Uranium Storage Tanks (203-A Tank Farm)	UNH HNO ₃	uranyl nitrate hexahydrate nitric acid
Tk-40	Chemical Tanks (211-A Tank Farm)	NPH TBP	normal paraffin hydrocarbon tri-butyl phosphate
Tk-G7	Effluent discharge systems	*KOH *NaOH *NaNO ₂	temporary temporary temporary
Tk-M2	Other	HNO ₃	nitric acid

* Chemicals added only when solution was transferred to DST System (i.e., PDD, ASD effluent streams).

THIS PAGE INTENTIONALLY
LEFT BLANK.

CONTENTS

4	4.0 WASTE CHARACTERISTICS	4-1
5	4.1 VESSEL SYSTEMS	4-1
6	4.2 CONTAINMENT BUILDING	4-1

FIGURES

15	4-1.	Flush K Cell Vessels	F4-1
16	4-2.	Flush L Cell Vessels	F4-2
17	4-3.	Flush Headend Feed Vessels, H1, H2, and F Cell Vessels	F4-3
18	4-4.	Flush G and R Cell Vessels (Part 1)	F4-4
19	4-5.	Flush G and R Cell Vessels (Part 2)	F4-5
20	4-6.	Flush Backcycle Waste and Neptunium Package Vessels	F4-6
21	4-7.	Flush U Cell Vessels	F4-7
22	4-8.	Flush Cladding Waste Vessels	F4-8
23	4-9.	Flush Tank D5, Tank E6, Tank F13, Tank F15, and	
24		Tank F16 Vessels	F4-9
25	4-10.	Flush F11 System Vessels	F4-10
26	4-11.	Flush Tank G5A, Tank G7, and Tank G8 Vessels	F4-11
27	4-12.	Flush Aqueous Makeup Tank 156	F4-12

TABLE

34 4-1. Vessel Systems Analytical Data T4-1
35

1
2
3
4
5

This page intentionally left blank.

4.0 WASTE CHARACTERISTICS

This chapter describes the waste and associated activities with the vessel systems within the PUREX Facility. Discussion is limited to those permitted dangerous and/or mixed waste treatment and/or storage vessels.

4.1 VESSEL SYSTEMS

The vessel systems were each identified as part of 12 loops (Figures 4-1 through 4-12) designated for flushing. Flush solutions were cascaded within each vessel. Samples were taken in a tank at the end of the flush loop. In addition to the 12 flush loops, tanks F4, M2, P4, and U3, individually were flushed and sampled. Tanks 40, Q21, and Q22 were not sampled because the tanks have bottom drains, which left no heel.

For each vessel within a flush loop, screening samples were taken of flushes until laboratory results indicated the waste no longer exhibited dangerous waste characteristics. After screen sampling was completed, sampling was conducted in accordance with RCRA protocol and the data quality objectives (DQOs) (WHC 1995c). The DQOs for this sampling effort define the sampling and analysis necessary to support the flushing of the vessel systems that are WAC 173-303 regulated.

Regulated dangerous waste constituents within the mixed waste varied by loop. The primary dangerous waste constituents removed during transition phase activities were cadmium, chromium, and nitric acid. Radioactive components of the mixed waste are attributed to past processing activities. If the flush solution was designated as a dangerous waste, the system was flushed and sampled until results indicated the flush solution no longer designated as dangerous waste. Sampling results are listed in Table 4-1

4.2 CONTAINMENT BUILDING

37 Elemental lead used as weights, counterweights, and/or radiation
38 shielding and elemental cadmium, used as radiation shielding, was stored on
39 the canyon deck of the containment building. As part of the transition phase
40 activities, the lead and cadmium waste was moved to storage in PUREX Storage
41 Tunnel Number 2. Additionally, F Cell contains chromium, which is a corrosion
42 product of stainless steel and nitric acid. The chromium is contained within
43 concrete debris, collected from the floor of E Cell. Interim storage in
44 F Cell was chosen as the best stabilization method for this material because
45 interim storage was environmentally sound, considered personnel safety, and
46 was cost effective. The waste in F Cell will remain in place through the
47 S&M phase, and will be dispositioned during closure.

1
2
3
4
5

This page intentionally left blank.

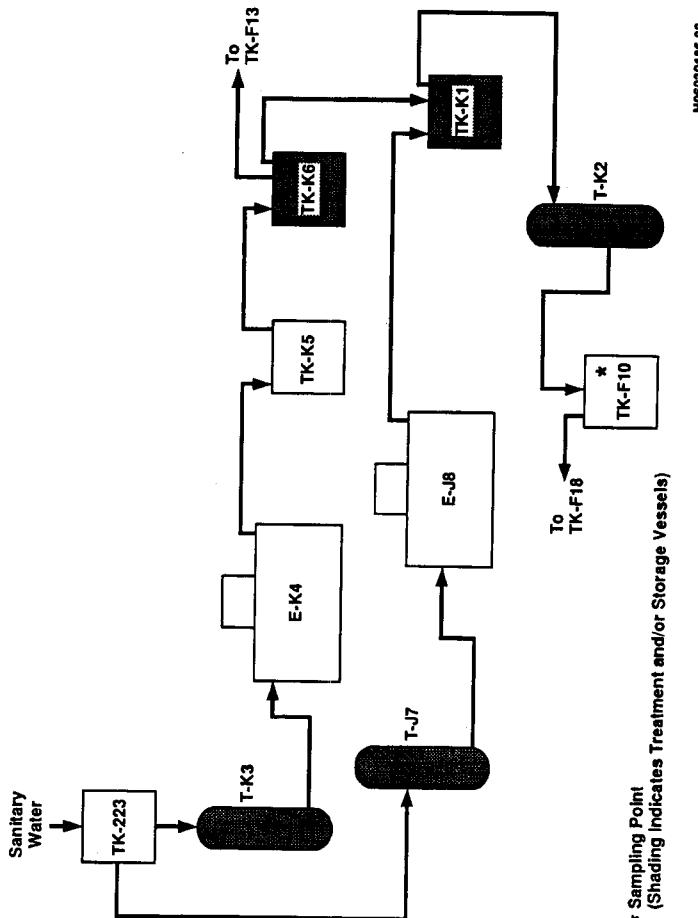


Figure 4-1. Flush K Cell Vessels.

THIS PAGE INTENTIONALLY
LEFT BLANK.

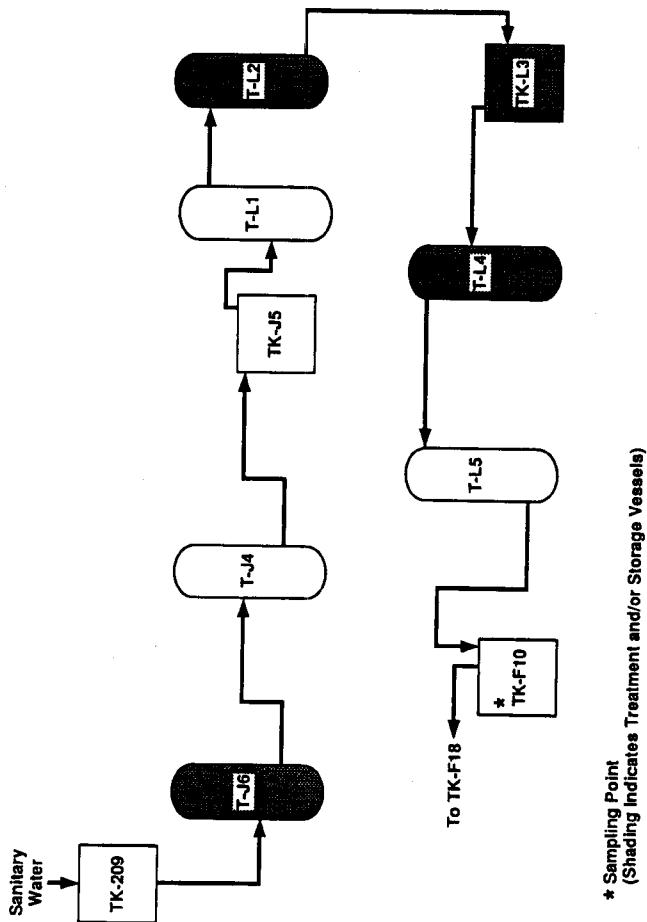


Figure 4-2. Flush L Cell Vessels.

THIS PAGE INTENTIONALLY
LEFT BLANK.

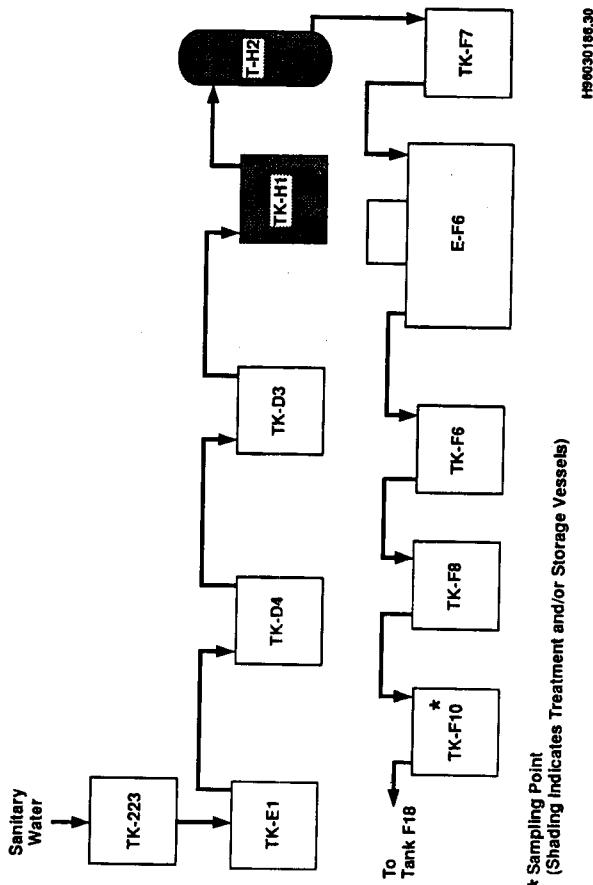


Figure 4-3. Flush Headend Feed Vessels, H1, H2, and F Cell Vessels.

THIS PAGE INTENTIONALLY
LEFT BLANK.

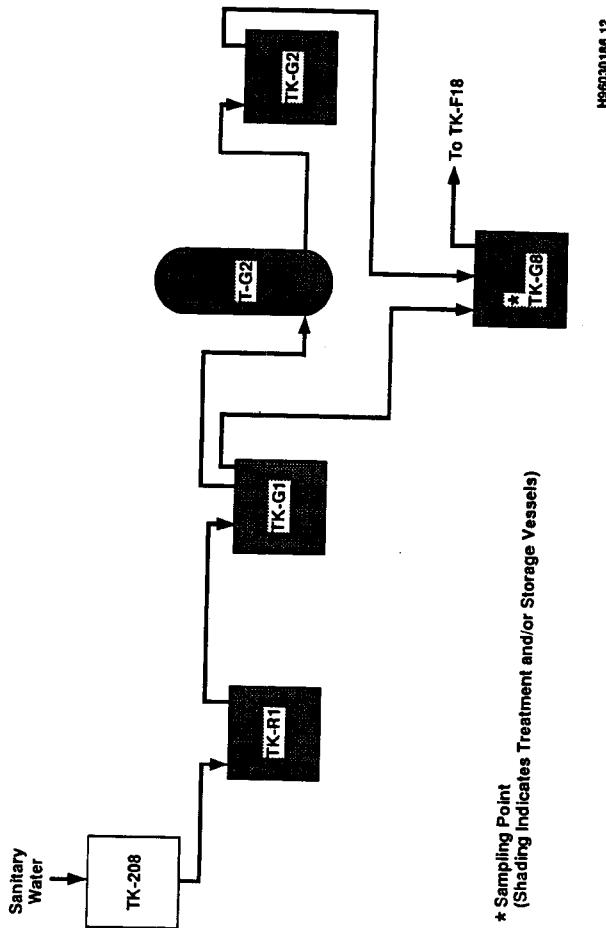


Figure 4-4. Flush G and R Cell Vessels (Part 1).

THIS PAGE INTENTIONALLY
LEFT BLANK.

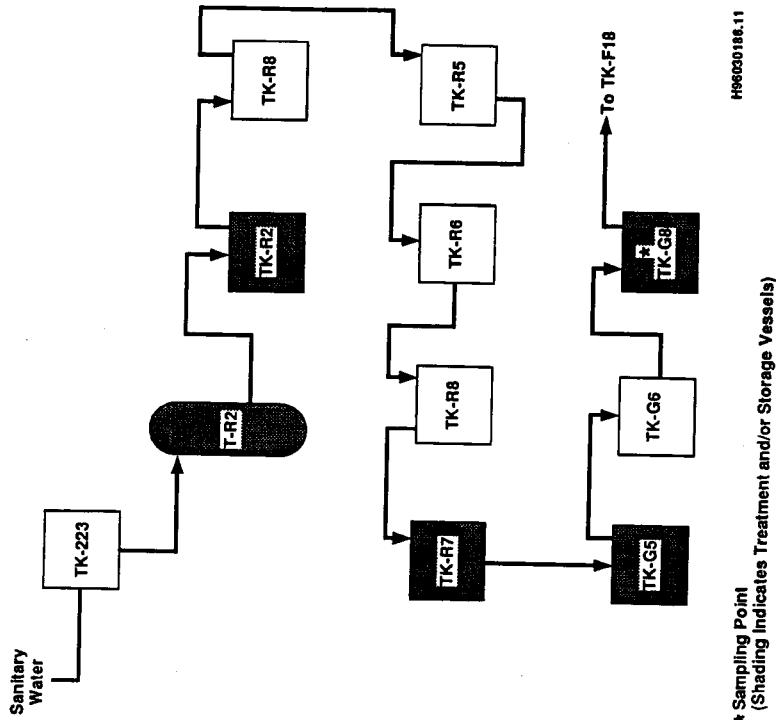


Figure 4-5. Flush G and R Cell Vessels (Part 2).

THIS PAGE INTENTIONALLY
LEFT BLANK.

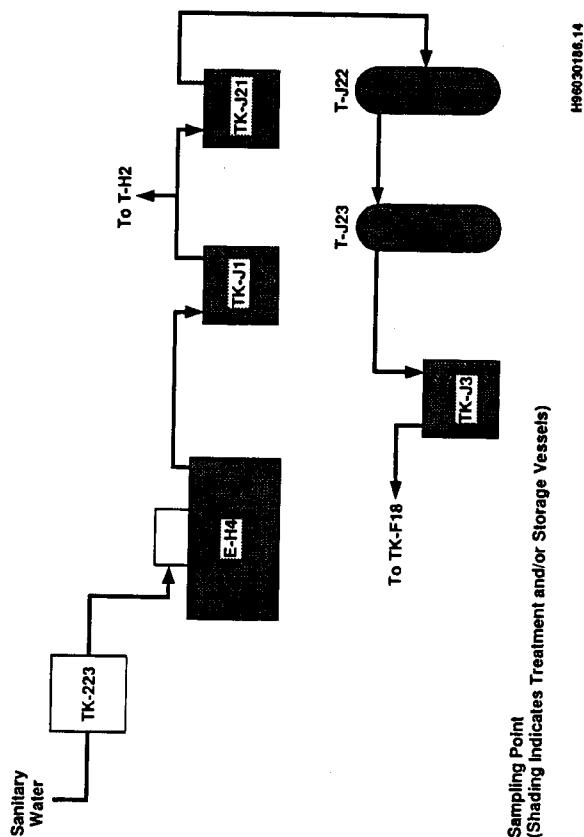


Figure 4-6. Flush Backcycle Waste and Neptunium Package Vessels.

THIS PAGE INTENTIONALLY
LEFT BLANK.

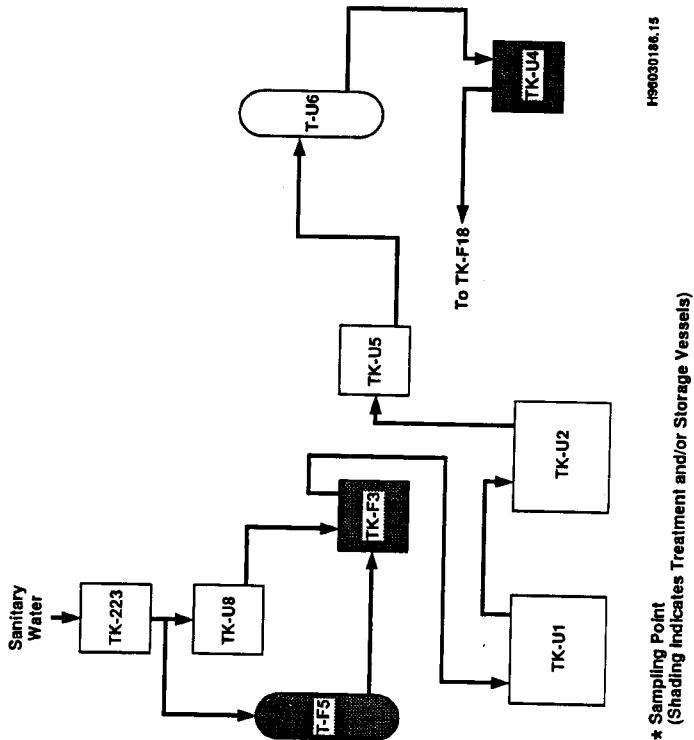


Figure 4-7. Flush U Cell Vessels.

THIS PAGE INTENTIONALLY
LEFT BLANK.

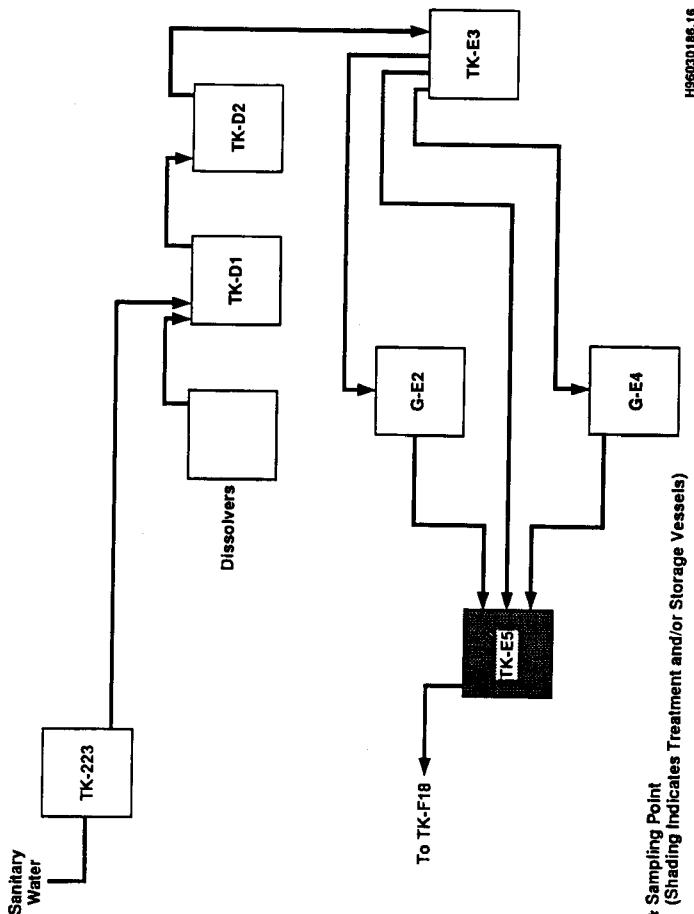


Figure 4-8. Flush Cladding Waste Vessels.

THIS PAGE INTENTIONALLY
LEFT BLANK.

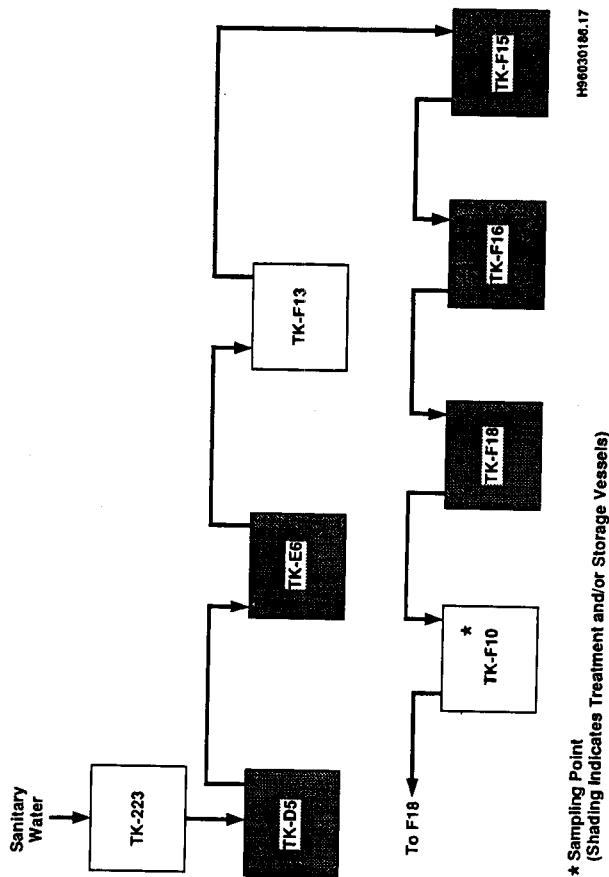


Figure 4-9. Flush Tank D5, Tank E6, Tank F13, Tank F15, and Tank F16 Vessels.

THIS PAGE INTENTIONALLY
LEFT BLANK.

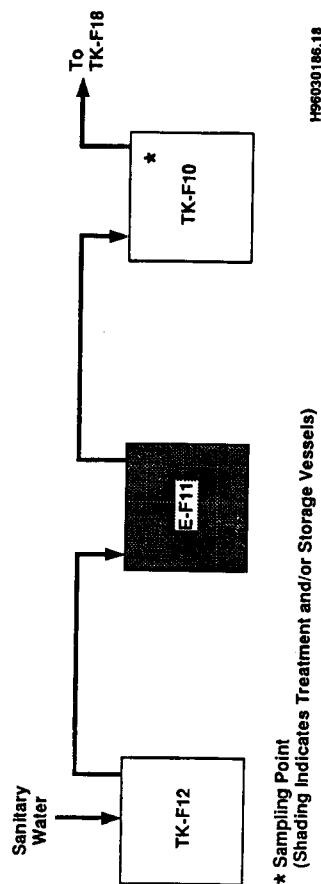


Figure 4-10. Flush F11 System Vessels.

THIS PAGE INTENTIONALLY
LEFT BLANK.

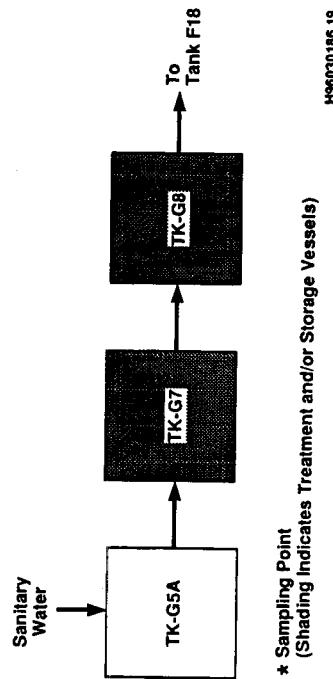


Figure 4-11. Flush Tank G5A, Tank G7, and Tank G8 Vessels.

THIS PAGE INTENTIONALLY
LEFT BLANK.

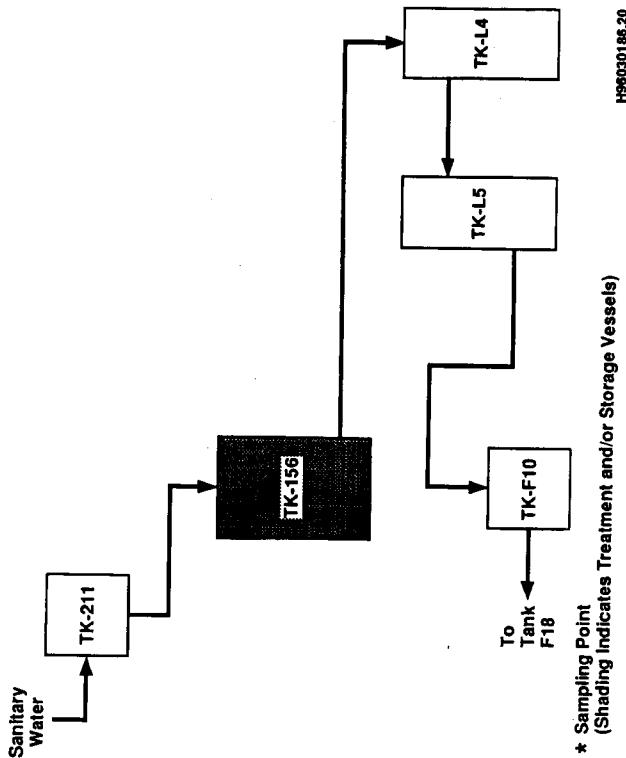


Figure 4-12. Flush Aqueous Makeup Tank 156.

THIS PAGE INTENTIONALLY
LEFT BLANK.

Table 4-1. Vessel Systems Analytical Data. (sheet 1 of 4)

Vessel ¹	Sample no.	Cadmium (mg/L)	Chromium (mg/L)	Lead (mg/L)	Barium (mg/L)	Silver (mg/L)	Arsenic (mg/L)	Selenium (mg/L)	Mercury (mg/L)	pH	TOC (mg/L)
Dangerous waste designation threshold		1.0	5.0	5.0	100.0	5.0	5.0	1.0	0.2	< pH < 12.5	100,000
K-Cell Vessel (Complete) (<u>I-J</u> , <u>E-18</u> , <u>TK-1</u> , <u>TK-2</u> , <u>TK-3</u> , <u>E-4</u> , <u>TK-5</u> , <u>TK-6</u>)	**R6331	0.06	0.336	< 0.6	0.342	< 0.06	< 0.005	< 0.005	< 0.005	2.73	203
L-Cell Vessel (Complete) (<u>I-J</u> , <u>TK-14</u> , <u>TK-5</u> , <u>T-1</u> , <u>T-2</u> , <u>TK-3</u> , <u>TK-4</u> , <u>T-5</u> , <u>TK-6</u>)	*B0F011	0.165	0.764	0.027	0.368	0.004	0.001	0.016	1.47	2.39 ²	256
Headend Feed Vessels (H1-H2, and F-Cell Vessels (Complete) (<u>TK-E1</u> , <u>TK-04</u> , <u>TK-33</u> , <u>TK-H1</u> , <u>TK-27</u> , <u>TK-F7</u> , <u>E-F6</u> , <u>TK-F26</u> , <u>TK-F8</u>)	**B0DVL7	< 0.1	1.4	< 1.1	< 5.0	< 1.0	< 0.125	< 0.25	< 0.005	2.57	91.8
G and R Cell Vessels (Part I) (Complete) (<u>TK-H1</u> , <u>TK-G1</u> , <u>T-2</u> , <u>TK-G2</u>)	**R6636	0.678	1.06	< 0.6	< 0.3	< 0.06	< 0.005	0.0065	< 0.005	7.62	444
G and R Cell Vessels (Part II) (Complete) (<u>TK-2</u> , <u>TK-82</u> , <u>TK-88</u> , <u>TK-85</u> , <u>D-86</u> , <u>TK-87</u> , <u>TK-85</u> , <u>D-66</u>)	**R6714	< 0.11	0.616	< 1.1	< 0.55	< 0.11	< 0.25	< 0.25	< 0.25	10.67	2100
Backcycle Waste and Neptunium Package Vessels (Complete) (<u>E-H4</u> , <u>TK-J1</u> , <u>TK-J2</u> , <u>T-J22</u> , <u>T-J23</u> , <u>TK-J3</u>)	**R6990	< 0.01	0.867	< 0.1	0.291	< 0.01	< 0.25	< 0.25	< 0.005	2.69	171
U-Cell Vessel (Complete) (<u>TK-U8</u> , <u>T-5</u> , <u>TK-3</u> , <u>TK-U1</u> , <u>TK-U2</u> , <u>TK-U5</u> , <u>TK-U6</u> , <u>TK-U4</u>)	*95013-01	B06	0.34(U)	0.73(B)	3.4(U)	0.39(B)	0.5(U)	0.1(U)	0.05(U)	2.94	0.025(U)
Cladding Waste Vessels (Complete) (<u>TK-D1</u> , <u>TK-D2</u> , <u>TK-E3</u> , <u>G-E2</u> , <u>G-E4</u> , <u>TK-E5</u>)	**R6995	< 0.6	0.396	< 0.6	< 0.3	< 0.06	< 0.25	< 0.25	< 0.005	9.44	29.7
TK-DS, TK-EE, TK-F13, TK-F15, and TK-F16 Vessels (Complete)	*B0F059	0.074	0.215	0.041	0.121	0.002	0.001	0.001	0.009	2.33	144
F11 System Vessel (Complete) (<u>TK-F12</u> , <u>E-F11</u>)	*B0F072	0.0038	0.0421	0.0413	0.021	0.002	0.001	0.001	0.009	5.86	180

THIS PAGE INTENTIONALLY
LEFT BLANK.

Table 4-1. Vessel Systems Analytical Data. (sheet 2 of 4)

Vessel ¹	Sample no.	Cadmium (mg/L)	Chromium (mg/L)	Lead (mg/L)	Barium (mg/L)	Silver (mg/L)	Arsenic (mg/L)	Selenium (mg/L)	Mercury (mg/L)	pH (mg/L)	TOC (mg/L)
Dangerous waste designation threshold											
TK-F-8	*B0HNW9	1.0	5.0	5.0	100.0	5.0	5.0	1.0	0.2	2 < pH < 12.5	100,000
Tank U3	*B0HNW6	0.24	0.41 (U)	4.0 (U)	0.33 (B)	0.59 (U)	0.15 (U)	0.14 (U)	0.010 (U)	9.49	3.7
TK-65A, (TK-C7, TK-68) (Complete)											
AMU Tank 156 (Complete)	*B0DPS2	0.0038	8.69	0.037	0.0338	0.0038	0.0012	0.0016	0.001	11.38	1.07
	*B0DVL4	0.019 ²									
Tank M2 (Complete)	*B0FBT8	0.0023	0.0037	0.038	0.038	0.006	0.0008	0.0008	0.0009	6.75	3.02
Tank F4 (Complete)	*B0FBV1	0.027	0.615	0.028	0.059	0.214	0.002	0.0008	0.005	2.52	3.67
Tank P4 (Complete)	*B0FBV4	0.0023	0.58	0.0565	0.0118(B)	0.006(U)	0.002(B)	0.0008(U)	0.00038	11.73	9.04

THIS PAGE INTENTIONALLY
LEFT BLANK.

Table 4-1. Vessel Systems Analytical Data. (sheet 3 of 4)

Vessel ¹	Benzene (mg/L)	Carbon tetrachloride (mg/L)	Chloroform (mg/L)	1,2-Dichloroethane (mg/L)	1,1-Dichloroethane (mg/L)	2-Bromo- ethane (mg/L)	Tetrachloro- ethene (mg/L)	Vinyl chloride (mg/L)
Dangerous waste designation threshold	0.5	0.5	100	6.0	0.5	0.7	200	0.7
K-Cell Vessels (Complete) (<u>T-17, E-18, TK-1, T-2, K-3, E-K4, TK-5, TK-6</u>)	U	U	U	U	U	0.034	U	U
L-Cell Vessels (Complete) (<u>T-18, T-14, TK-35, T-1, T-2, TK-3, T-4, T-5, T-10</u>)	U	U	U	U	U	0.034	U	U
Headend Feed Vessels, H1, H2 and F-Cell Vessels (Complete) (<u>TK-E1, TK-D4, TK-3, TK-H1, TH-2, TK-F7, E-F6, TK-F6, TK-F8</u>)	U	U	U	U	U	0.008(J,B)	U	U
G and R Cell Vessels (Part I) (Complete) (<u>TK-R1, TK-G1, T-G2, TK-G2</u>)	U	U	U	U	U	0.062	U	U
G and R Cell Vessels (Part II) (Complete) (<u>TR-2, TK-R2, TK-R3, TK-R5, D-R6, TK-R7, TK-G5, D-G6</u>)	U	U	U	U	U	U	U	U
Radcycle Waste and Neptunium Package Vessels (Complete) (<u>E-H4, TK-J1, TK-121, T-122, T-123, TK-J3</u>)	U	U	U	U	U	U	U	U
U-Cell Vessels (Complete) (<u>TK-19, T-F5, TK-32, TK-11, TK-12, TK-05, T-06, TK-04</u>)	U	U	U	U	U	U	U	U
Cladding Waste Vessels (Complete) (<u>TK-D1, TK-D2, TK-E3, G-E2, G-E4, and TK-E5</u>)	U	U	U	U	U	0.6(J)	U	U
TK-D5, TK-E5, TK-F13, <u>TK-F15,</u> and <u>TK-F16</u>	U	U	U	U	U	U	U	U
F11 System Vessels (Complete) (<u>TK-F12, E-F11</u>)	U	U	U	U	U	U	U	U

THIS PAGE INTENTIONALLY
LEFT BLANK.

Table 4-1. Vessel Systems Analytical Data. (sheet 4 of 4)

Vessel ¹	Benzene (mg/L)	Carbon tetrachloride (mg/L)	Chlorobenzene (mg/L)	1,2-Dichloroethane (mg/L)	1,1-Dichloroethane (mg/L)	2-Bromo- ethane (mg/L)	Tetrachloro- ethylene (mg/L)	Trichloro- ethylene (mg/L)	Vinyl chloride (mg/L)
Dangerous waste designation threshold	0.5	0.5	100	6.0	0.5	0.7	200	0.7	0.5
TK-F18	U	U	U	U	U	U	U	U	U
Tank U3	U	U	U	U	U	U	U	U	U
TK-35A (TK-37, TK-38) (Complete)	U	U	U	U	U	U	U	U	U
AMU Tank 56 (Complete)	U	U	0.006	U	U	U	U	U	0.012 (d)
Tank M2 (Complete)	U	U	U	U	U	U	U	U	U
Tank F4 (Complete)	U	U	U	U	U	U	U	U	U
Tank P4 (Complete)	U	U	U	U	U	U	U	U	U

* Sample analyzed by Quanterra Laboratory.

** Sample analyzed by 222-S Laboratory.

¹ Underlining indicates permitted vessels (DOE/RL-88-21).² Analytical results after refilling and resampling.

mg/L = milligrams per liter.

TOC = total organic carbon.

U = analyzed but not detected.

N = interference detected in matrix.

B = compound was found in the blank.

J = an estimated value for the target or tentatively identified compound.

THIS PAGE INTENTIONALLY
LEFT BLANK.

1	CONTENTS
2	
3	
4	5.0 GROUNDWATER 5-1
5	

1
2
3
4
5

This page intentionally left blank.

1
2
3

5.0 GROUNDWATER

4 In accordance with the Tri-Party Agreement, groundwater in the 200 East
5 Area will be included in the 200-PO-1 operable unit and will be investigated
6 under *Comprehensive Environmental Response, Compensation, and Liability Act*
7 (CERCLA) of 1980. Therefore, groundwater investigation/remediation is not
8 addressed as part of this preclosure work plan. Work on the 200-PO-1 operable
9 unit will be coordinated with the final disposition process but will not occur
10 until the final groundwater operable unit work plan has been approved.

1
2
3
4
5

This page intentionally left blank.

1 **CONTENTS**

2	6.0	TRANSITION PHASE STRATEGY	6-1
3	6.1	SURVEILLANCE AND MAINTENANCE	6-1
4	6.2	DISPOSITION	6-2
5			
6			
7			
8			
9			

1
2
3
4
5

This page intentionally left blank.

6.0 TRANSITION PHASE STRATEGY

This chapter describes the transition phase strategy and provides a general description of the S&M phase and disposition phase activities.

Preclosure of the PUREX Facility vessel systems will occur in conjunction with the overall decommissioning of the PUREX Facility. The transition phase activities places the PUREX Facility in a deactivated state where all vessels are flushed until the solutions do not designate as dangerous waste. Any hazardous substances (e.g., lead shielding, etc.) left in place will be identified during the transition phase and managed during the disposition phase. The S&M phase will maintain the PUREX Facility in a safe and environmentally secure configuration for 10 or more years for a planning horizon. The disposition phase will address final closure activities [for portions of the PUREX Facility identified in the Part A, Form 3, Permit Application (DOE/RL-88-21)] in accordance with WAC 173-303. If required, postclosure care requirements would be integrated with the post-remediation groundwater monitoring requirements established for the 200-PO-1 operable unit.

This phased approach to closure allows for an expedient full deactivation of the PUREX Facility in a manner that is safe and cost-effective, while minimizing the risk to human health and the environment.

The transition phase activities will place the PUREX Facility in a deactivated state. The transition phase consists of completion of end point criteria (WHC 1995b), flushing vessel systems until threshold levels are met, and transfer of the lead and cadmium waste from the canyon deck to PUREX Storage Tunnel Number 2.

End point criteria are used to achieve a safe, stable, and environmentally secure facility suitable for a low cost S&M program. End points were created to ensure a thorough measure of completeness in preparing the PUREX Facility for future decontamination and decommissioning. End point criteria currently are being used to confirm completion of transition phase activities and to substantiate the readiness for transition to the S&M phase (Ecology et al. 1996; WHC 1995b).

6.1 SURVEILLANCE AND MAINTENANCE

During the S&M phase, the PUREX Facility will be unoccupied and locked. There will be no active systems or utilities (except the electrical, lighting, and heating, ventilation, and air conditioning systems) within the building. The existing filtered exhaust systems that maintain a negative pressure within the PUREX Plant will be consolidated into a single system monitored from a remote location. The S&M plan (WHC 1995b) addresses compliance with RCRA and WAC 173-303 requirements. The S&M plan outlines activities taken to address monitoring of essential systems and to maintain the area in a safe condition that presents no significant threat of release of hazardous substances into the environment and no significant risk to human health and the environment.

1 until final disposition is completed. The completion of these activities are
2 necessary before the final disposition of the PUREX Facility can be
3 implemented.

4

5

6 **6.2 DISPOSITION**

7

8 All aspects of closure not covered during the transition or S&M phases
9 will occur during the disposition phase (i.e., end state of the systems,
10 hazardous substances left in place, end state of the canyon structure, and
11 integration with the CERCLA remedial activities).

12

1 **CONTENTS**

2	7.0 TRANSITION PHASE ACTIVITIES	7-1
3	7.1 REMOVAL OF DANGEROUS WASTE RESIDUE AND CONTAMINATED	
4	MATERIALS	7-1
5	7.2 SAMPLING AND ANALYSIS	7-2
6		
7		
8		
9		
10		
11		

1
2
3
4
5

This page intentionally left blank.

1 **7.0 TRANSITION PHASE ACTIVITIES**
2
3
4 This chapter describes the initial transition phase activities. Included
5 are specific activities that remove, or minimize, dangerous waste residuals
6 from each vessel system; and sampling and analysis information. The overall
7 transition phase strategy is described in Chapter 6.0.
8
9 The objective of the transition phase is to place the PUREX Facility in a
10 safe configuration with respect to human health and the environment.
11 Following the transition phase activities, the PUREX Facility will begin the
12 S&M phase of 10 or more years until disposition phase activities commence.
13 The closure plan for the PUREX Facility will be prepared during the
14 disposition phase.
15
16
17 **7.1 REMOVAL OF DANGEROUS WASTE RESIDUE AND CONTAMINATED MATERIALS**
18
19 Preclosure of the vessel systems includes the following activities:
20
21 • Removing residual solutions
22
23 • Flushing vessel systems until the heels do not exhibit dangerous waste
24 characteristics
25
26 • Conducting protocol sampling and analysis of final (record) flushes of
27 vessel systems as defined in Section 7.2.1
28
29 • Emptying vessels to the maximum extent practicable using existing
30 pumps and/or jets
31
32 • Emptying cell sumps to the normal heel using existing jets and/or
33 pumps
34
35 • Isolating (blanking) all liquid feed and/or drain lines to vessel
36 systems.
37
38 Following the completion of all vessel system flushing, the liquid level
39 in the vessels will be left at the lowest level possible (the residual heels
40 vary between approximately 70 and 400 liters) using existing jets and/or
41 pumps. All liquid feed and/or drain lines will be isolated after emptying the
42 vessel systems and cell sumps to prevent any inadvertent backflow of liquids.
43
44 The following transition phase activities minimizes the required S&M of
45 the containment building and will aid in the protection of human health and
46 the environment during the S&M phase.
47
48 All bare lead and cadmium on the canyon deck has been transferred to
49 PUREX Storage Tunnel 2 for long-term storage.
50

1 Some dangerous and/or mixed waste (F Cell) will remain in storage in the
2 containment building. Surveillance of the containment building is discussed
3 in Chapter 3.0, Section 3.4.

4
5 When transition activities are completed, the personnel entries will be
6 locked and appropriate warning signs (e.g., "Danger - Unauthorized Personnel
7 Keep Out" and "Radiation Zone") will be posted.
8
9

10 **7.2 SAMPLING AND ANALYSIS**

11
12 The vessel systems will be flushed until the heels do not exhibit
13 dangerous waste characteristics (WHC 1995d). Flushing of the vessel systems
14 ultimately will lead to closure of the vessel systems that are regulated by
15 WAC 173-303.

16
17 The DQO planning process was used to develop the sampling and analysis
18 approach used during transition activities (WHC 1995c).

19
20 Soil sampling and analysis will occur as part of the corrective action
21 investigation process of the 200-PO-2 operable unit.

CONTENTS

1
2
3
4
5

This page intentionally left blank.

8.0 POSTCLOSURE PLAN

If waste is left in place, a postclosure plan will address disposition scenarios. Groundwater contamination will be investigated and remediated through the operable units under the CERCLA remedial investigation/feasibility study process as specified in the Tri-Party Agreement.

1
2
3
4
5

This page intentionally left blank.

CONTENTS

1	CONTENTS
2	
3	
4	9.0 REFERENCES
5	9-1

1
2
3
4
5

This page intentionally left blank.

9.0 REFERENCES

DOE/RL-88-21, *Hanford Facility Dangerous Waste Part A Permit Application*, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE/RL-90-24, *Hanford Facility Dangerous Waste Permit Application, PUREX Storage Tunnels*, latest revision, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE/RL-90-39, *Hanford Facility Dangerous Waste Permit Application, Double-Shell Tank System*, latest revision, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE/RL-91-28, *Hanford Facility Dangerous Waste Permit Application, General Information Portion*, latest revision, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

Ecology, EPA, and DOE, 1996, *Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement)*, Section 8.0, Washington State Department of Ecology, U.S. Environmental Protection Agency, U.S. Department of Energy, Olympia, Washington.

Giller, R.A, 1992, "Certification of the 202-A Building as a Dangerous Waste Containment Building", Internal Memo 92-RAG-043, Westinghouse Hanford Company, Richland, Washington.

ICBO 1952, *Uniform Building Code*, International Conference of Building Officials, Whittier, California.

WHC, 1995a, *PUREX Facility End Point Criteria*, WHC-SD-WM-TPP-053, Westinghouse Hanford Company, Richland, Washington.

WHC, 1995b, *PUREX Facility Surveillance and Maintenance Plan*, (transmittal letter 9651858), Westinghouse Hanford Company, Richland, Washington.

WHC, 1995c, *Sampling and Analysis Plan (SAP) for Plutonium-Uranium Extraction (PUREX) Plant Canyon Vessel Flushing*, WHC-SD-CP-PLN-027 (this plan was used for sampling and analysis of all PUREX Facility vessels), Westinghouse Hanford Company, Richland, Washington.

1
2
3
4
5

This page intentionally left blank.

DISTRIBUTION

OFFSITE

MSIN

Washington State Department of Ecology

R. J. Julian, Kennewick Office

B5-18

J. Witczak
P.O. Box 47600
Olympia, WA 98504-7600

Confederated Tribes of the Umatilla
Indian Reservation

J. R. Wilkinson
P.O. Box 638
Pendleton, OR 97801

Nez Perce Tribe

D. Powaukee
P.O. Box 305
Lapwai, ID 80540

Confederated Tribes and Bands
of the Yakama Nation

D. Dogsleep

G1-02

R. Jim
P.O. Box 151
Toppenish, WA 98948

ONSITE

U.S. Department of Energy,
Richland Operations Office

G. M. Bell
R. X. Gonzalez
E. M. Mattlin
Public Reading Room (2)

A5-52
R3-79
A5-15
H2-53

MAC Technical Services Company

M. Ciminera

B1-42

Pacific Northwest Laboratory

Hanford Technical Library

K1-11

DISTRIBUTION (cont)

ONSITE	MSIN
<u>Westinghouse Hanford Company</u>	
R. C. Bowman	H6-24
C. R. Haas	S6-21
D. G. Hamrick	S6-15
D. G. Harlow	S6-19
J. P. Hayfield	S6-19
W. G. Jasen	S6-19
S. E. Killoy	S4-66
D. M. Korematsu-Olund	H6-24
G. J. LeBaron	S6-19
M. R. Morton	X5-53
S. M. Price	H6-23
C. P. Strand	H6-24
C. N. Villalobos	S6-19
B. A. Ward	H0-12
B. D. Williamson	B3-15
C. D. Wollam	S6-22
L. C. Zinsli	S6-19
Central Files	A3-88
DPC	A3-94
EDMC (2)	H6-08
RCRA File (MWC)	H6-24