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INTRODUCTION 

Photobiology deals  with the  i n t e r a c t i o n  of l i g h t  and l i v ing  
systems. However, we w i l l  t a l k  about only one kind of photo- 
biology: the  i n t e r a c t i o n  of l i g h t  i n  t he  wavelength range 
200-300 pm ( u l t r a v i o l e t  l i g h t )  and i t s  i .nteract ion with b io log ica l  
systems, in s p e c i f i c ,  l i v i n g  c e l l s  (1). 

Why u l t r a v i o l e t  l i g h t ?  The f i r s t  and most important reason 
is t h a t  t h i s  wavelength range i s  s t rongly  absorbed by many 
b io log ica l ly -bpor t an t  molecules. 

Why b io log ica l  molecules? Since we want t o  dea l  wi th  photo- 
biology, we must work i n  the range of doses i n  which the  c e l l  is 
s t i l l  a l ive .  This poses both  a problem of measuring photoproducts 
i n  small  numbers and provides a challenge t o  us  t o  develop methods 
which enable us t o  do th i s .  

When u l t r a v i o l e t  l i g h t  i n t e r a c t s  with a c e l l ,  what a r e  the  
important t a r g e t s  which determine the  f a t e  of the  c e l l ?  .Cells a r e  
mostly water by weight. However, the important molecules i n  t he  
c e l l  which absorb i n  the  u l t r a v i o l e t  range a r e  a )  pro te ins ,  be 
they enzymes o r  s t r u c t u r a l  p ro te ins  - perhaps membrane components, 
and b)  nuc le ic  ac ids ,  the  DNA which contains the  genet ic  infor-  
mation and the  RNA'S which a re  s t r u c t u r a l  molecules, mediators i n  
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p r o t e i n  s y n t h e s i s  and a l s o  t ake  p a r t  i n  t he  t r a n s m i s s i o n  of  
g e n e t i c  i n £  orma t i o n .  

Hov.could we d e c i d e  which o f  t hese  t a r g e t s  i s  a  c r i t i c a l  one 
f o r  t h e  c ' e l l ?  A popu la r  method o f  doing t h i s  i s  a c t i o n  s p e c t r o s -  
copy, measurement o f  t h e  e f f i c i e n c y  o f  d i f f e r e n t  wavelengths i n  
producing  a  g i v e n  b i o l o g i c a l  e f f e c t .  I f  t h e  a c t i o n  spec t rum is  
s t r a i g h t f o r w a r d ,  and many of  them a r e ,  one c a n  match t h e  a c t i o n  
spec t rum f o r  t h e  g i v e n  b i o l o g i c a l  e f f e c t  w i t h  t h e  a b s o r p t i o n  
spec t rum o f  d i f f e r e n t  b i o l o g i c a l  macromolecules t o  g e t  a n  idea  o f  
which molecule  is  doing  t h e  a b s o r p t i o n ,  and t h u s  which i s  t h e  
chromophore o r  " t a r g e t "  f o r  t h e  r e s u l t i n g  b i o l o g i c a l  damage. A s  
a n  example, i n  t h e  1930 ' s  a c t i o n  spec t roscopy  provided  impor t an t  
i n f o r m a t i o n  t h a t  DNA was t h e  t a r g e t  f o r  t h e  a c t i a n  u l t r a v i o l e t  
l i g h t  i n  t h e  c a s e  o f  t h e  k i l l - i n g  o f  b a c t e r i a .  Very r e c e n t l y  
Rothman and Set low have shown t h a t  DNA i s  t h e  impor tant  t a r g e t  
f o r  t h e  k i l l i n g  of mammalian c e l l s  by u l t r a v i o l e t  l i g h t .  

What a r e  t h e  b i o l o g i c a l  e f f e c t s  of  damage t o  DNA? I n  t h e  
f i r s t  p l a c e ,  a s  we have s a i d ,  a  c e l l  can  d i e .  The second 
p o s s i b i l i t y  is :  t h e  c e l l  does  n o t  d i e ,  b u t  i s  a f f e c t e d  by muta t ion ,  
a  change i n  t h e  DNA l e a d i n g  t o  a l t e r e d  c e l l  p r o p e r t i e s .  The t h i r d  
p o s s i b i l i t y  i s :  no e f f e c t  on  t h e  c e l l .  Now how can  t h i s  happen? 
L e t  us c o n s i d e r  t h e  b i o l o g i c a l  p r o p e r t i e s  o f  DNA. I t  c o n t a i n s  
i n f o r m a t i o c  i n  t h e  g e n e t i c  code which i s  r ead  i n  groups o f  t h r e e  
c a l l e d  t r i p l e t s .  Each t r i p l e t  s p e c i f i e s  a  t R N A  i n t e r m e d f a t e ,  
which Fn t u r n  s p e c i f i e s  a n  amino a c i d  which i s  assembled i n t o  a  
growing p r o t e i n  cha in .  S i n c e  t h e r e  a r e  f o u r  b a s e s  and 43 = 64, 
t h e r e  a r e  64 possib1.e t r i p l e t s  v s .  abou t  20 amino a c i d s .  The 
c e l l ' s  s o l u t i o n  t o  t h i s  is  degeneracy  (more t h a n  one t r i p l e t  
s p e c i f y i n g  t h e  same amino a c i d ) .  So even i f  a  t r i p l e t ,  f o r  
example UUU, i s  mutated t o  UUC, b o t h  t r i p l e t s  s p e c i f y  t h e  amino 
a c i d  s e r i n e  and t h u s  t h e  p r o t e i n  coded f o r  by t h a c  DNA segment 
w i l l  n o t  b e  changed. Second, r e l a t e d  t r i p l e t s  f r e q u e n t l y  code 
f o r  amino a c i d s  w i t h  s i m i l a r  s i z e  and cha rge .  So even i f  t h e  DNA 
t r i p l e t  &A were mutated t o  GCA r e s u l t i n g  i n  s u b s t i t u t i o n  of  t h e  
amino a c i d  a l a n i n e  f o r  v a l i n e ,  t h e  p r o t e i n  would l i k e l y  show 
l i t t l e  s t r u c t u r a l  o r  f u n c t i o n a l  d i f f e r e n c e s  s i n c e  a  l a n i n e  and 
v a l i n e  a r e  c l o s e l y  r e l a t e d  amino a c i d s .  The t h i r d  p o s s i b i l i t y  
i s  a n  a l t e r a t i o n  o f  a  n o n e s s e n t i a l  p a r t  of t h e  p r o t e i n .  Most 
p r o t e i n s  a r e  p r e s e n t  i n  e x c e s s  anyway, s o  t h e  c e l l  can  limp a l o n g  
even w i t h  a  t r u e  change i n  i t s  DNA and i n  t h e  p r o t e i n  f o r  which 
t h a t  DNA coded. 

How does  one measure a  mu ta t ion?  B a c t e r i a  a r e  f r e q u e n t l y  
used  and we w i l l  t a l k  abou t  them h e r e  i n  some d e t a i l  a s  a n  example. 
Many b a c t e r i a  can  be  grown on d e f i n e d  chemica l  media c o n s i s t i n g  
o n l y  of  s a l t s ,  m i n e r a l s ,  and a  ca rbon  sou rce .  Upon m u t a t i o n  t o  
auxo t rophy ,  c e l l s  must b e  supp lemen ted 'w i th  a n  exogenous m a t e r i a l ,  



f o r  example, amino a c i d s ,  v i t amins ,  a n u c l e i c  a c i d  base  and s o  
f o r t h .  I n  t h e  c a s e  of b a c t e r i a l  v i r u s e s ,  mutat ions  can be 
d e t e c t e d  by t h e i r  l ack  of growth on c e r t a i n  h o s t ,  t h e i r  slow 
growth o r  the  appearance of the  plaques which they  make on a  p l a t e  
of bacter i ' a .  I f  t h e  c e l l  does no t  grow on a  def ined medium, the  
problem of  f i n d i n g  mutations i s  som'ewhat harder .  I n  mammalian 
c e l l s ,  f o r  example, i n  which growth on def ined media i s  r a t h e r  
d i f f i c u l t  t o  ach ieve ,  it ' i s  j u s t  i n  the  p a s t  few years  that '  
systems have been developed f o r  examining mutants.  Here a g a i n  one 
g e n e r a l l y  s c r e e n s  f o r  the  l a c k  o f  some metabol ic  enzyme by 
s p e c i a l l y  developed s e l e c t i o n  procedures.  

Chemica 1 Damage t o  DNA 

We have d i scussed  t h e  b i o l o g i c a l  consequences of  t h e  d e t r i -  
mental e f f e c t s  of UV on c e l l s .  What i s  some o f  the  chemis t ry  
l ead ing  t o  t h e s e  b i o l o g i c a l  changes? When u l t r a v i o l e t  l i g h t  
impinges upon DNA, a l though t h e r e  a r e  .many photoproducts formed, 
one of t h e s e  has  been impl ica ted  i n  much of t h e  r e s u l t i n g  
b i o l o g i c a l  damage ( 2 ) .  Among t h e  m u l t i p l i c i t y  of  products  formed 
i n  DNA, a r e  pyrimidine dimers (formed between two a d j a c e n t  
pyr imidines  on t h e  same DNA s t r a n d ) ,  hydra tes  o f  pyr imidines ,  
adducts  w i t h i n  a  DNA molecule (mainly pyr imidine  t o  pyr imidine)  , 
DNA-DNA c r o s s - l i n k s ,  and a  product f o r  mainly i n  d ry  and .frozen 
DNA o r i g i n a l l y  termed the  "spore photoproduct." O f  t h e s e ,  t h e  
dimer has  been .shown:to be l a r g e l y  r e s p o n s i b l e  f o r  dea th  and 
mrrtation i n  thc  ' b a c t e r i a  and i n  simple eucaryo tes ,  and now 
evidence is  accumulating t h a t  the  same i s  t r u e  i n  mammalian c e l l s  

What happens t o  a  c e l l  which r e c e i v e s  damage t o  i t s  DNA? I s  
t h e  c e l l  f a t e d  t o  d e a t h  o r  mutat ion? Evidence now i n d i c a t e s  t h i s  
i s  not  t h e  case .  C e l l s  can r e p a i r  damage t o  t h e i r  DNA. There 
a r e  a t  l e a s t  t h r e e  major modes of r e p a i r  of DNA i n  b i o l o g i c a l  
sy'stems. You.might j u s t  imagine t h e  p o s s i b i l i t i e s .  F i r s t  i s  t h e  
r e v e r s a l  of t h e  damage; t h e  second mode is  t h e  c u t t i n g  ou t  of 
damage; and t h e  t h i r d  mode i s  one i n  which t h e  c e l l  p r o c r a s t i n a t e s  
and t r i e s  t o  ignore  t h e  damage. We w i l l  t a l k  about  t h e s e  mecha- 
nisms i n  more d e t a i l  i n  t h i s  and i n  subsequent l e c t u r e s .  Pluch of  
what we know comes from E. s. We w i l l  d i s c u s s  n o t  on ly  what we 
know from b a c t e r i a l  c e l l s ,  but  a l s o  what we know and what , 

we wish t o  e x t r a p o l a t e  t o  h igher  c e l l s .  

What a r e  t h e  consequences of  Ea i lu re  of  r e p a i r ?  I n  b a c t e r i a l  
c e l l s ,  a s  we have s a i d ,  c e l l s  can be mutated o r  d i e  'but what about 
people? Are t h e r e  any impl ica t ions  t h a t  f a i l u r e  o f  DNA r e p a i r  i n  
people can lead t o  harmful e f f e c t s ?  There a r e  now a  number of  
human d i s e a s e s  which have been impl ica ted  a s  r e s u l t i n g . f r o m  l a c k  



of DNA r e p a i r :  one of these  i s  xeroderma pigmentosum, which i s  
t h e  p ropens i ty  t o  sunl ight- induced s k i n  cancer ( 3 ) .  Most of 
t h e s e  i n d i v i d u a l s  d i e  be fo re  the  age of about 20 from invas ive  
tumors. Other such d i s e a s e s  a r e  F a n c o n i t s  anemia and p roger ia .  

PHOTO REACTIVATION 

W e  ,have noted t h a t  t h e r e  a r e  t h r e e  kinds o f  DNA r e p a i r .  We 
w i l l  d i s c u s s  t h e  one which, a t  l e a s t  i n  concept,  i s  the  s imples t  - 
s imple  r e v e r s i o n  of t h e  l e s i o n  c a l l e d  p h o t o r e a c t i v a t i o n  ( 4 , 5 ) .  

ph hot ore activation was f i r s t  found i q  1949 by Dulbecco and by 
Kelner.  They showed t h a t  UV-induced k i l l i n g  could be reduced by 
exposure t o  v i s i b l e  l i g h t  a f t e r  t h e  u l t r a v i o l e t .  A decade l aLer  
Rupert ,  i n  b o t h  t h e  E .  and i n  y e a s t ,  found t h a t  t h e  a c t i v e  
agen t  was a  p h o t o r e a c t i v a t i n g  enzyme (PRE) and t h e  s u b s t r a t e  was 
u l t r a v i o l e t - i r r a d i a t e d  DNA. Rupert showed t h a t  the s t e p s  i n  
t h i s  r e a c t i o n  were s e v e r a l :  f i r s t ,  complex format ion between PFE 
and W ' d  DNA which d i d  not r e q u i r e  l i g h t ,  and then a  r e p a i r  s t e p  
t h a t  was dependent on t h e  presence of l i g h t .  (Note t h a t  t h i s  
r e a c t i o n ,  u n l i k e  some which a r e  known i n  pho tosyn thes i s ,  i s  no t  t h e  
a c t i v a t i o n  of a n  enzyme by t h e  l i g h t  and i n  i t s  subsequent a c t i o n  
i n  an  a c t i v e  s t a t e  on a s u b s t r a t e .  This enzyme must be complexed 
t o  t h e  s u b s t r a t e  when t h e  l i g h t  energy is  supp l i ed . )  The Setlows 
showed t h a t  pyrimidine dimers i n  DNA were t h e  p h o t o r e a c t i v a b l e  
lesion. They ' d h o  provided evidenca t h a t  the pyrimidine dimer was 
t h e  only  s u b s t r a t e .  They showed t h a t  the  product of the  a c t i o n  
o f  the  p h o t o r e a c t i v a t i n g  enzyme on DNA were pyrimidine monomers. 
P h o t o r e a c t i v a t i n g  enzymes a r e  i n t e r e s t i n g  not  only  because they 
c a t a l y z e  a b i o l o g i c a l  important  r e p a i r  s t e p ,  b u t  a s  unique p r o t e i n s  
whlch r e q u i r e  l i g h t  f o r  p h o t o l y s i s  ( 6 ) .  ~ h ' o t o r e a c t i v a t i n g  enzymes 
have been s tud ied  from a  v a r i e t y  of  p r o c a r y o t i c  and eucaryo t i c  
sources .  Most, of p h o t o r e a c t i v a t i n g  enzymes have t h e  fo l lowing 
func t ions  i n  common: f i r s t  they  have a l l  been shown t o  be  p r o t e i n s ,  
they  r e q u i r e  l i g n t  f o r  t h e i r  f u n c t i o n ,  . they  monomerize pyr imidine  
dimers ,  they have a  molecular weight i n  t h e  range of 35-40,000 and 
most a r e  a c t i v e  i n  t h e  wavelength range of 300-500 nm. It is  t h e  
l a s t  of t h e s e  p r o p e r t i e s  which provides  bo th  i n t e r e s t  and a l s o  a  
u s e f u l  a n a l y t i c a l  t o o l .  

The peaks of t h e  a c t i o n  s p e c t r a  o f  v a r i o u s  enzymes range 
from about 360 nm t o  380, 405 t o  even 435 nm, f o r  the enzyme from 
Streptomyces g r i s e u s .  The shor t -wavelength  e x t e n t  of t h e  a c t i o n  
spectrum i s  somewhat l i m i t e d  by t h e  wavelengths a t  which one 
s t a r t s  making dimers a s  w e l l  a s  p h o t o r e a c t i v a t i n g  them, t h a t  i s  
about  300 run. The long wavelength e x t e n t  v a r i e s  wi th  t h e  enzyme. 



Many . p h o t o r e a c t i v a t i n g  enzymes do not  use l i g h t  wavelength  l o n g e r  
t han  about  500 nm. Hor- ever, we have found t h a t  t he  humaa enzy,me 
c a n  use  l i g h t  which i s  between 500-600 nm and Giese  has  a l s o ,  
found t h a t  t h e  p h o t o r e a c t i v a  t i n g  enzyme from Blepharisma can  use  
l i g h t  i n  t h i s  wavelength  range.  

One of  t h e  pr imary  laws o f  photochemis t ry  s t a t e s  t h a t  photo- 
chemica l  a c t i o n  occu r s  on ly  when t h e r e  i s  l i g h t  a b s o r p t i o n ,  s o  
we would expec t  p h o t o r e a c t i v a t i n g  enzymes which a c t  i n  t h e  r e g i o n  
300 t o  s ay  500 o r  600 nm t o  abso rb  i n  t h i s  r eg ion .  Eker h a s  
found t h a t  t h e  enzyme from St reptomyces  g r i s e u s  seems to. c o n t a i n  
a n  i n t r i n s i c  chromophore which a b s o r b s  i n  t h e  r e g i o n  where t h e  
St reptomyces  enzyme i s  a c t i v e .  However, o t h e r  p h o t o r e a c t i v a t i n g  
enzymes, t h a t  from E .  a, t h a t  from t h e  s i l v e r f i s h  Thermobia 
dornestica and perhaps  t h e  one from y e a s t ,  do  n o t  show any v i s i b l e  
a b s o r p t i o n  i n  t h e  r e g i o n  of t h e  photochemical  a c t i o n .  The 
s o l u t i o n  t o  t h i s  dilemma was found by J. C. S u t h e r l a n d  and h i s  
p o s t d o c t o r a l  f e l l o w  K. L .  Wun ( 7 ) .  They found t h a t  t h e  complex 
of  E .  & w i t h  W - i r r a d i a t e d  DNA gene ra t ed  a  new a b s o r p t i o n  
which ag reed  i n  magnitude (molar  e x t i n c t i o n  c o e f f i c i e n t )  and 
wave leng th  r ange  w i t h  t h a t  p r e d i c t e d  by  the  a c t i o n  spec t rum o f  
t h e  E. enzyme a c t i n g  i n  p u r i f i e d  form i n  v i t r o  o r  a c t i n g  i n  
t h e  E .  c o l i  c e l l  ( i n  v i v o ) .  The new a b s o r p t i o n . w a s  dependent  on 
t h e  p re sence  o f  d imers  i n  t h e  DNA, and on complex fo rma t ion ,  a s  
i t  d i d  n o t  a p p e a r  when PRE was added t o  i r r a d i a t e d  DNA i n  t h e  
p r e s e n c e  o f  s o  much s a l t  t h a t  no complex was formed. The absorp-  
t i o n  a l s o  d i sappea red  t h e  same k i n e t i c s  a s  d imers  were monomerized. ... .. . 

F o r  many y e a r s  i t  was thought  t h a t  p h o t o r e a c t i v a t i n g  enz'yme 
was a b s e n t  i n  mamal i a ' n  c e l l s ,  even  though t h e r e . w e r e  a  few 
r e p o r t s  o f  b i o l o g i c a l  p h o t o r e a c t i v a t i o n  of  tumor f o r m a t i o n  i n  
mice and o f  human erythema.  I n  1974 a  p h o t o r e a c t i v a t i o n  enzyme 
was f i r s t  i s o l a t e d  from human l eukocy te s  (6,8,S). S i n c e  t h e n  
D r .  Helga Harm has  shown p h o t o r e a c t i v a t i n g  a c t i v i t y  from r a b b i t ,  
cow, c a t  and human c e l l s .  P h o t o r e a c t i v a t i n g  enzyme from human 
c e l l s .  has  been  c h a r a c t e r i z e d  a s  a  p r o t e i n  o f  a  mo lecu la r  we igh t  

' of a b o u t  40,000 w i t h  a c t l o n  spec t rum ex tend ing  from a b o u t  300 t o  
a t  l e a s t  600 nm: 

I f  p h o t o r e a c t i v a t i n g  enzyme is p r e s e n t  i n  t h e s e  c e l l s ,  d o  
they  u s e  t h e  enzyme t o  p h o t o r e a c t i v a t e  d imer  l e s i o n s  i n  t h e i r  
own DHA, o r  perhaps  does the enzyme not  have a c c e s s  t o  t h e  DNA? 
A c a s e  of  p a r t i c u l a r  i n t e r e s t  i s  t h a t  o f  human s k i n .  S u n l i g h t  
forms py r imid ine  d imers  i n  t h e  DNA o f  human s k i n  c e l l s .  I f  we 
w i s h  t o  measure p h o t o r e a c t i v a t i o n  of  d imers  i n  s k i n ,  we would 
be f aced  w i t h  a  problem: most measurements o f  r e p a i r ,  d i m e r  
e x c i s i o n ,  p h o t o r e a c t i v a t i o n  o r  whatever, depend on t h e  use  o f  



r a d i o a c t i v e  DNA. I n  o rde r  t o  have enough r a d i o a c t i v i t y  t o  t e s t ,  
one would have t o  have a  v e r y  r a d i o a c t i v e  human! A s o l u t i o n  t o  
t h i s  problem has been worked o u t  i n  the  l a b o r a t o r y  of 
R. B .  Setlow, us ing  the  technique developed..in t h e  l a b o r a t o r y  of . 

F. W. S t u d i e r  a t  Brookhaven. The technique i s  e l e c t r o p h o r e s i s  
i n  a l k a l i n e  agarose.  DNA e x t r a c t e d  from c e l l s  i s  t r e a t e d  w i t h  
an  enzyme which s p e c i f i c a l l y  makes a  n i c k  bes ide  every  pyrimidine 
dimer. The DNA i s  then denatured and e lec t rophoresed  on t h e  
a l k a l i n e  g e l s .  DNA which c o n t a i n s  dimers and t h e r e f o r e  is  nicked 
by t h e  "UV-specific endonuclease" w i l l  be s m a l l e r  and t h e r e f o r e  
migrate  f u r t h e r  i n t o  t h e  g e l .  The absen t  of dimers,  however, 
w i l l  be seen  by t h e  l ack  of  n ick ing  by t h e  enzyme. and by the  
presence of l a r g e r  molecular weight DNA. Using such a  technique 
we have been a b l e  t o  show t h a t  leukocytes  (whi te  blood s e l l s )  
t a k e n  d i r e c t l y  from ,humans do have dimers formed i n  t h e i r  DNA 
and they do p h o t o r e a c t i v a t e  t h e s e  dimers i n  a  reasonably  s h o r t  
exposure (about.  20 t o  40 minutes)  t o  v i s i b l e  l i g h t .  

What is  t h e  r o l e  of pyr imidine  dimers i n  t h e  i n d u c t i o n  o f  
s k i n  cancer  by W? We have developed a  model system i n  our  
l a b o r a t o r y  which we b e l i e v e  w i l l  a l low us t o  examine t h e  r o l e  of 
p h o t o r e a c t i v a t i o n  and of DNA r e p a i r  i n  the  p reven t ion  of t h e  
i n d u c t i o n  of s k i n  cancer  by u l t r a v i o l e t  l i g h t .  This  t echn ique  
invo lves  a  convers ion of normal human c e l l s  by u l t r a v i o l e t  l i g h t  
t o  c e l l s  which a r e  "transformed" t h a t  i s ,  w i t h  many p r o p e r t i e s  
o f  cancerous c e l l s .  We f i n d  t h a t  u l t r a v i o l e t  l i g h t ,  a t  r a t h e r  , 

s m a l l  dosec, produees t h i s  cullversion of normal c e l l s  t o  t r a n s -  
formed c e l l s .  Furthermore,  a n  exposure of  t h e  c e l l s  t o  photo- 
r e a c t i v a t i n g  l i g h t  immediately a f t e r  t h e  UV dec reases  t h e  r a t e  
of convers ion of t h e  c e l l s  from normal t o  transformed (10) .  

Although much p rogress  has been made i n  unders tanding t h e  
photobiology and photobiochemistry of p h o t o r e a c t i v a t i o n ,  many 
o u t s t a n d i n g  problems remain. The f i r s t  is  the  s t r u c t u r a l  
s i m i l a r i t i e s  and d i f f e r e n c e s  i n  p h o t o r e a c t i v a t i n g  enzymes. Do 
they  r e f l e c t  evo lu t ionary  s i m i l a r i t i e s ,  d ivergence,  o r  do they  
r e f l e c t  perhaps t r u e  d i f f e r e n c e s  i n  func t ion?  For example, 
does the  enzyme from Streptomyces, which seems t o  have i t s  own 
i n t r i n s i c  chromophore,have a  d i f f e r e n t  method of  f u n c t i o n  from 
t h e  enzymes from E. c o l i  and yeas t ,  which do n o t  c o n t a i n  i n t r i n s i c  
chromophores? 

' 

F i n a l l y ,  we can a s k  some ques t ions  about p h o t o r e a c t i v a t i o n  
i n  v ivo .  Since  the r e a c t i v a t i o n  seems t o  b e  s p e c i f i c  f o r  -- 
pyr imidine  dimers ,  we can use i t s  a c t i o n  a s  a n  a n a l y t i c a l  tooL; 
t h a t  i s ,  i f  a  r e a c t i o n  is r e v e r s i b l e  by a  t r u e  photoenzymatic 
r e a c t i o n ,  t h e  chemical l e s i o n  which lead t o  t h e  b i o l o g i c a l  damage 



i s  l i k e l y  t o  have been  a  py r imid ine  dimer.  F i n a l l y ,  w e  can  
e x p l o r e  t h e  r o l e  o f  t h e  p h o t o r e a c t i v a t i n g  enzyme i n  r e p a i r  i n  
h u v n  c e l l s ,  de termine  t h e  b i o l o g i c a l  consequences  o f  t h e  f a i l u r e  
of  t h e  enzyme t o  r e p a i r  DNA.:. , . . . 
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