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NUCLEAR DATA AND MEASUREMENTS SERIES

The Nuclear Data and Measurements Serles presents results of studies in
the field of microscopic nuclear data. The primary objective is the dis-
semination of information in the comprehensive form required for nuclear
technology applications. This Series is devoted to: a) measured microscopic
nuclear parameters, b) experimental techniques and facilities employed in
measurements, c) the analysis, correlation and interpretation of nuciear
data, and d) the evaluation of nuclear data. Contributions to this Series
are reviewed to assure technical competence and, unless otherwise stated,
the contents can be formally referenced. This Series does not supplant
formal journal publication but it does provide the more extensive informa-
tion required for technological applications (e.g., tabulated numerical

data) in a timely manner.
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Fast-Neutron Elastic-Scattering Cross
Sections of Elemental Tin

by

C. Budtz~Jdrgensen, P. T. Guenther
and A. B. Smith

Applied Physics Division
Argonne National Laboratory
Argonne, Illinois 60439

ABSTRACT

Broad-resolution neutron—elastic-scattering cross sections of ele-
mental tin are measured from l.5 to 4.0 MeV. Incident-energy intervals
are ¥ 50 keV below 3.0 MeV and ¥ 200 keV at higher energies. Ten to
twenty scattering angles are used, distributed between = 20 and 160°.

The experimental results are used to deduce the parameters of a spherical
optical-statistical model and they are also compared with corresponding
values given in ENDF/B-V,

-viii-



I. INTRODUCTION

The present work was undertaken as part of a comprehensive study
of fast-neutron interactions with the light-mass fission products in-
cluding neutron total, scattering and capture cross sections!~7. The tin
isotcoes are at the upper extreme of the light-mass fission-product yield
distribution. Typically, their fission-product yields are !}4Sn (0.1%),
11497(0.05%), 1158n(0.03%), 1168n(0.044%), 117sn(0.042%), '8sn(0.041%),
1198n(0.041%), 120sn(0.42%), 1ZZSn(o.0452) and 1248n(0.056%) for 439pPu
fission induced by thermal neutrons. These are relatively small values.
However, the neutron interaction with tin is of fission-product significance
as it is a basis for model parameters that are generally applicable in this
mass region. The present work was undertaken in order to provide an experi-
mental foundation and to derive therefrom a representative set of model
parameters. The latter were subsequently employed in the formulation of a
“regional” model applicable to the light-mass fission products®. Elemental
tin consists of the ten isotopes 112Sn(l.O ), 11*sn(0.86%), 1t%sn(0.35%),
1165n(14.4%), Y175n(7.6%), 1188n(24.1%), 1195n(8.62), \ZOSn(32 8%),
1225n(4,7%) and 12%sn(5.8%). These isotopes cover a large range of the
nuclear asymmetry parameter, (N-Z)/A. However, the isotopic abundance is
concentrated in the three isotopes 1lbgy, 1185y and !2USn., Thus the present
elemental measurements and model are representative of the neutron inter-
action with targets having similar asymmetries.

Subsequent portions of this paper address; i) a brief outline of the
experimental method, ii) the experimental results, iii) the derivation of
an optical-statistical model (OM) from the measured values, and iv)
compariscns of the experimental results with the evaluated quantities

given in ENDF/B-V9.

II. BRIEF OUTLINE OF THE EXPERIMENTAL METHOD

The measurements were made using the time-of-flight technigque with
the Argonne ten—angle detection apparatuslo. The neutron source was the
7Li(p,n)7Be reaction pulsed on for durations of x 1 nsec at a repetition
rate of 2 MHz. The scattering sample was a cylinder of elemental tin 2 cm
in diameter and 2 cm long placed 13 cm from the neutron source at a zero—~
degree source-reaction angle. Ten proton-recoil-scintillation detectors
were placed x 5.4 m from the scattering sample distributed over
scattering angles from 20 to 160°. The relative scattering angles were
known to * 0.2° and the absolute angular scale to £ 0.6°. The relative
detector efficiencies were determined by the observation of neutrons
emitted from the spontanecus fission of 2%2Cfll. The absolute nor-
malization of the detector efficiencies was determined relative to the
neutron total cross sections of elemental carbon!? in the manner described
in ref. 13. These procedures implied that the differential-scattering
measurements were made relative to the neutron total cross sections of
carbon. The experimental results were corrected for multiple-event,
beam—attenuation and angular~resolution effects using a combination of
Monte-Carlo and analytical procedures as described in ref. 14. Generally,
details of the measurement method are set forth in ref. l4.



I1I. EXPERIMENTAL RESULTS

The measurements were made from 1.5 to 4.0 MeV with incident-energy
spreads of 40 to 70 keV. Below 3.0 MeV the incident-energy-measurement
interval was = 50 keV and ten scattering angles were used. In order
to reduce the effect of any possible cross-section fluctuations the
results obtained at adjacent incident energies were averaged to a single
distribution. At energies above 3,0 MeV the measurements were made at 200 keV
incident-energy intervals and twenty scattering angles. The statistical
uncertainties of the individual differential elastic-scattering measurements
were { 1% excepting the minima regions of the higher-energy distrioutions
where they were larger. The uncertainties associated with the detector
normalizations were = 37 and those due to the correction procedures
< 1%. Thus, the overall uncertainties of the measured differential~
elastic-scattering cross sections were { 5%. The energy-averaged
elastic-scattering renults are summarized in Fig. l. The corresponding
numerical values have been transmitted to the National Nuclear Data Center,
Brookhaven National Laboratory. The angle-integrated elastic-scattering
cross sections were derived from the measured differential values by least-
squares fitting the observed differential distributions with 6th-order
Legendre-Polynomial series. The results of these fitting procedures were de-
scriptive of the observations, as illustrated in Fig. 1. The corresponding
angle~integrated elastic-scattering cross sections are shown in Fig. 2.

Their uncertainties are {5%. The energy-averaged experimental results
displayed no evidence of energy-dependent fluctuations. There have been a
number of previously reported measurements of differential-elastic scattering
from elemental tin as referenced in CINDA'®. These grior results should be
reasonably summarized by the evaluations of ENDF/B-V” and comparisons with
those evaluations are discussed below.

Neutrons due to inelastic-scattering processes were observed in the course
of the above elastic~scattering measurements. They corresponded to relatively
high excitation energies and were attributed to contributions from a number of
isotopes. The primary purpose of the present measurements was the acquisition
of precise energy—averaged elastic-scattering cross sections. To achieve that
objective, relatively bioad incident-energy spreads were used and these
precluded detailed resolution of the complex inelastic-neutron components.
Therefore, cross sections were not derived from the inelastic-neutron data.
Detailed experimental studies of the inelastic-scattering process in tin will

be reported later.

IV. MODEL DERIVATION

It was assumed that the present experimental results could be described
in terms of a the spherical optical-statistical model (OM)II. Approximately
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Fig. 1. Measured Differential-Elastic-Scattering Cross Sections of
Elemental Tin. The present experimental results are indicated

by data symbols and curves are the results of Legendre-Polynomial
fits to the data.
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Neutron Total and Angle-Integrated Elastic-Scattering Cross Sections of Elemental Tin. The
present experimental results, and lower-energy (< l.5 MeV) elastic-scattering results of ref. 15,
are note!l by O and a 50 keV average of the neutron total cross sections of ref. 1 by X.

Curves indicate the results of calculations as described in the text.
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85% of the element consists of even isotopes and that portion is primarily
due to the three isotopes l16gn, 1185y and 12054, Therefore, this OM deri-
vation assumed an elemental mass of 118.8 AMU and the level structure of
1185y as reasonably representative of that of the element. In the energy
range of the present measurements compound-nucleus processes are prominent.
They were calculated using the Hauser-Feshbach formulala, as modified by
Moldauerl9. The excitation energies and J-r values of 118gn were taken from
ref. 20 up to excitations of 2.4 MeV., Hither-energy excitations were
described in terms of the statistical formalism and parameters of Gilbert
and Cameron?l. All of the calculations were carried out using the computer

code ABAREX2Z,

The entire elastic-scattering data base (Fig. 1) was concurrently chi-
square fitted, simultaneously varying the six parameters; real and
imaginary strengths, radii and diffusenesses. The real strength was
assumed to have an energy dependence of the form V = Vg, - 0.3 * E (MeV).

In addition, a 6 MeV spin-orbit potential eof the Thomas form was assumed.
The fitting procedure rapidly converged to the parameters of Table 1. The
real parameters are similar to those reported in the literature?3. The
imaginary strength is relatively small, as previously reported near shell
closures?* (Z = 50 for tin). The parameters of Table 1 give a good des-
cription of the observed differential-elastic-scattering cross sections, as
illustrated in Fig. 3. More than 957 of the measured values are cousistent
with the calculated quantities to within the experimental uncertainties.
The parameters of Table | provide a good description of the angle—integrated
elastic-scattering cross sections and of the nevtron toral cross sections
of ref. 1 as illustvated in Fig. 2.

The agreement between observation and calculation supports the

consideration of the OM parameters of Table 1 in the formulation of a
“regional” OM applicable to rhe light-mass fission-product region.

V. COMPARISONS WITH ENDF/B-V

The ENDF/B-V® evaluated data file gives neutron cross sections of
tin on an isotopic basis. These isotopic components were combined to
obtain an evaluated elemental file for comparisons with the present
experimental values. The results of such comparisons are summarized in
Fig. 4 and Table 2. Abcve several MeV, the experimental neutron total
cross sections of ref. 1 are consistent with those of the file. At lower
enc.gies the measured values are larger than the evaluated quantities by a
few percent. This difference is reflected in comparisons of lower—energy
measured and evaluated elastic-scattering cross sections as the radiative-
capture cross sections are relatively small above several—-100 keV.
However, in the energy range of the present experiments the evaluated and
measured elastic~scattering crcss sections differ by large amounts: e.g.
up to 20-30%. The latter discrepancies are far beyond the relevant
experimental uncertainties or reasonable contributionrs from the low-lying
levels of 1%Sn(8.6% abundant). In addition, the evaluated elastic-scatter—
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of ref. 1, are indicated by heavy curves. Light curves denote the comparable values implied
by ENDF/B-v9.
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ing cross sections at higher energies, extending up to 20 MeV, appear

to have shapes that are not consistent with a conventional OM. The above
situation results in considerable differences between measured and evaluated
nonelastic cross sections amounting to more than 100% at some energies. At

the energies of the present measurements the nonelastic cross sections are
essentially the total inelastic-scattering cross sections. Thus the nonelastic
discrepancies are equivalent to inelastic-scattering discrepancies. They

are factors of up to five larger than the often cited 20% accuracy goal for
fission~product inelastic-scattering cross sections.

VI. SUMMARY COMMENTS

The present experimental results give improved definition to neutron
elastic-scattering from elemental tin over the energy range 1.5 to 4.0
MeV. The measured values were used to determine the parameters of a
spherical optical-statistical model. The resulting parameters provided a
good description of the observed differential-elastic-scattering cross
sections and of recently measured neutron total cross sections! over the
few-MeV range. The model parameters suggest a relatively weak absorption
similar to that previously cited in regions of shell closure (Z = 50)24,
The measured elastic-scattering cross sections are much smaller than the
comparable elemental values deduced from ENDF/B-V?, by amounts that
considerably exceed the experimental uncertainties. The present experimental
results, and the neutron total cross sections of ref. 1, imply nonelastic
cross sections that are much larger than those given by the evaluation.
These differences are reflected in similar large discrepancies between
experimentally-implied and evaluated total-inelastic-~scattering cross
sections by amounts very much exceeding the frequently cited applied
accuracy goals for fission-product inelastic-scattering cross sections.
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Table 1. Optical~Model Parameters for Elemental Tin

Real Potential

Strength? Vo = 48.528 MeV
RadiusP ry = 1.251 F
Diffuseness ay, = 0.596 F
vrZ = 75.94 MeV-F2

J,/ad = 434.86 MeV-F3
v

Imaginary Potential

StrengthC® W = 7.04 MeV
Radius ty = 1.244 F
Diffuseness a, = 0.4707 F
Wa = 3.31 MeV-F

Ju/A = 53.49 MeV-F3

a. Saxon form. Assume energy dependence of the form
V=V, - 0.3 x E(MeV) and a spin-orbit potential
of the Thomas form with a 6 MeV strength.

b. All radii expressed as R = r, x al/3,

C. Saxon derivative form.

d. Integral per nucleon given by J/A.
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Table 2, Comparisons with ENDF/B-V

ENDF—'EXE.
ENDF
I8 A N
Ep\MeV) Ototal Oelastic %nonelastic
0.5 -3.5% - -
1.0 -3.9% -_— _—
1.5 -2.2% - 3.47 + 5.5%
2.0 -1.3% 0.0% - 7.5%
2.5 -1.0% +15.8% - 92,17
3.0 -0.8% +25.3% -129.5%
3.5 +0.7% +27.6% - 85.0%
4.0 +0. 5% +24.1% - 50.4%

4.5 +0.0% —— -—




