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CP VI OLATICFJ: THE STANDARD tlODEL
AND LEFT-RIGHT SYMMETRIC ELECTRWEAK NODELS

P. Herczeg
Theoretical Division, Los Alamofi National Laboratory

Los Alamos, New Mexico 87545

AESTRACT

We review and discuss CP violation in the minimal standard mod-
el of the electroueak interactions, and in general left-right 6ym-

❑etric electroweak models based on the gauge group SU(2)L x SU(2)R x
u(l). We point out that in left-right syunetric ❑odels the contri-
bution to c“ due to WL-WR mixing could be a6 large as the present
experimental limit. Some other effects of !JL-UR ❑ixing are alSO
considered.

INTROINJCTI~

Thi6 year is the 20th anniversary of the discovery of CP viola-
tion. CP violation has been found so far only in the neutral kaon
system, and there the only observed effect is a nonzero valuel

IcexptI - (2.28 t 0.05) x 10-3

Re cexpt = (1.64 f 0.06) x 10-3

of the parameter
‘: (: + =’4)~=.:

Re AO

[Ai = A(KO+ Zn(x - ~)), Am ~ ❑KL - ❑KS = 2ReA(K0 +
m’ s ImA(KO + Eo)] involved in KL + 2n decayE. New
the second parameter

(1)

(2)

F),
❑easuremenLh of

i(62-6U+W/2) Re~
c’ m

he
~eA (i- - !2?)

o ReA2 ReAO
(3)

descrtbink KL + 2n decays have been reported at this conference.
The present value 1s3

(E’/t)tixl,L - -0.0U46 f 1).0U53 t [).0023 (4)

(the first error is sta~i~tical , the Hecond one is aytiLem#tic), from
which one ctin deduceq

-0.0163 < u’/c < u.0(J7H (9UZ C.L.) . (>)

TllL! origin of CP vlulntion lB Htill unknown. Hut CP violation
ha~ become leBB a mybtery, ~incc in current tlworie~ there are ❑any
p[)~~ihle sourceti 0[ Cl’ violation. AI} lmporlanl qurstion in whether
chc obMurvud Ct’ vlolnll(~u i~ M ❑anlletiLtitlOn of 111P usual wctik



interaction. In the fir~t part of this tnlk I shall review briefly
what one can say at preGent regarding this question. In the rest of
the talk I shall discutzB CP violation in general left-right 6ymmet-
ric electroweak models baged on the kauge group SU(2)L x SU(2)R ~
u(l).

CP VIOLATICXJ IN THE MINIMAL STANDARD MODEL

In the minimal standard ❑ode15 (the standard ❑odel with one
Higgs doublet) there is no CP violation in the Higgs sector, but for
three generations the W-quark couplings involve a CP-violating
pheee.6 The AS = -1 Hamiltonian in the local limit is of the form

(6)

where
int. ({iiYpd,Eypn)+ + (fiyBy5d.~YUy5n}+) - (n + E)B

Fng- ({iiYPd,EYBy5n)+ + {iiYUy5d,ElVn)+ - (n + l) ,B

:. ~u,c+K;c ~, ~. fu,c+ @t, f = -2-3/2Gs1c C,?,

t i

K-s:+
s2c2t3c6/cl, = s2c2t3sd/cl (sl = sin 61,t3 = tan ~, etc.; 6 1.s

the CP-violatlng phase; the quark fieldB are interacting fields).7
The contributions cw and t~l of the standard model to c and c’ arc
proportional to the CP-violating parameter K’
by8

= 62S3S6 and are given

E~l/c2xpt - (-1/20 fi) lcexpt l-l (ImAO/ReAO) = 8.4 B2S3S~ , (~)

cm = ‘iw’4(s#~s6)‘F(mtD‘2(S2 + ‘3C6)) t (8)

where U parametrizes the matrix element of the AS = 2 operator and
F is a function of the Indicated quantities. The value of B has
been extracted from K + Wn data using PCAC and SU(3) symmetry, with
the result B = +-J.33 (Ref. 9). Equation (8) invol~es the assumption
that the long-distance contribution to ImA(KO + KO) can be ignored
in the Uu-Yang pt,ase convention.10 The experimental bound 011
b-quark branching ratios E(h + u)/tJ(b + c) < 0.(.)5 fixes F to bc
positive. ll

The measured b-lifetime nnd the previous bound on the b-quark
branching ratios set an upper bound on S2(S2 + S3C6) und this
implies an upper boitnd Fmax on F (Ref. 12).

Onc has therefore 162e3s61 > ~C~ll/BPmax, SO that

lc’K,M/cexptl > U.4 lc~l/wmax . (9)

Let u~ now a~~ume chat the stal~dard model accounts for Ll]e
observed CP violation, i.e., that = cexpt” Thun (~incr

Re~ex t > O) it follow~ from Eq.
c’/c !H ,Iotilti,c.

(tl) th~tc~~l~~ > 0, implying that
13 Equutiun (9) now ~ives n lower bound

c’/c ) 8.4 lcl/uFmax = (c’/E)mIn (10)
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on c’/c.~lsl2sO (~’/c)9in is a decreasing function of at. For ❑t -
15(J CeV one obtaino (c /c)min-2 - 10-3, whereas ret==40 GeV corre-
sponds to (c’/c)min = 3 ~ 10 (see Ref. 8). The experimental
limit (4) requiree mc ~ 60 GeV (Et ~ 35CeV if B = 0.66).

What would one conclude if a future measurement reeulte in a

value of c’/c that significantly violatee the bound (10) for ● known
value of mt? The possibilities include: our methods of calculating
nonleptonic amplitude ●re much lees reliable than W@ presently
believe; a fourth quark family MY be present; ● new interaction
muet exist to ●ccount for the obrerved CP violation. Note that even
if the standard ●odel is not full)’‘etiponeiblefor cexpt, it could
ntill &iV~ a ●izeable contribution (o: arbitrary sign) to c’.

s me further conaequencee of the etandard model for CP
violation:

● time-reversal-violating effects in leptonic and semileptonic
processe~ are abeent in first order in the weak interactions;

. the electtic dipole mment of the neutron Dn is predicted to
be Dn = ( 10-29-10-32 )ecm (assuming cm - cexpt ). 14 It should be
noted that if the P,T-violating term in the QCD Lagrangian 18
present, Dn would receive an additional contribution, which can
as large as the

!

9?reeent experimental limit [(Dn)expt < 4 x 111-
(90% C.L.) (Ref. 15) ;

● the CP-violating part of the quantity I&O(E CW+S-WOll~lKS>/
<W+a-mO~H IKL> can

1!
be shown16 (uuing PCAC and current.algebra) to

satisfy t ● relation I&o((J) - c1 = (2/3) KO - IIool1-0(0) iS
the value of ~O(S1,B2 = S1,S3 !)ats3= so.

Further CP-viola~ln8 qu~ntitiea of interest include the rate
asyanetry A(A) ~ (I’ - r)/(r’+ r) and thg-quantity
Am E (a+ ;)/ (a- 6) for A +pw- and A +~a- dernya (a ~ parity
violating
A(1) ~ (a( T+)’~%A~~/(a!~J~m~t~~~L) ] ;~~ Kit~wfm3$p~eca~~tr y

The rate as~etry A(A) can be written generally ael*- 0

w (5 x i(l‘3)sin(#l -“03) ,

s A? are the S-wave amplitudes for the I = 1/2 ●nd 1 = 3/2where Al,
final statem, 63 ●re the corresponding f ncl-state acatt~ring

61;3 ● re the phtises of A!? kphase shifts, O1. and A3. In the absence of
CP violation Af and A! are retil, rnnd !llua A(A) = O. ~buming the
domlnunce of Penguin-type diagrum~, A(A) ~R predictedig ‘! In the

standard
hae ls~saadl ~ 2 x llJ-~, c:o;’::’ef:;i;i;:: ;~:]’g”, :r~-k:a” ‘5) ●nd ‘7) ‘ne

Aa w - tan(~~ - VI,) tan{61 - 611] = - 0.1 tan($s- OF) , (12)

where *S and Op are tl~cphwe~ of A; and o’ the P-wave amplitude Ap,
reupectlvel y. AAm = O in lhe ab~e!lce of W viulntlon. Altlmugh a
would vunish in the approximtitiun 0[ l%nguln domlnanre for all the
itmplltuden involved (tiin$e ono would hnvc +$ = +lJ), OIM! ❑ay have ~n
g~n~’r~l $S - *P E 0S,*P=21 Am i~ Lhen uxpectud to be2A (uuink; for

- -)’



i,

~ the phase of the coefflclerlt of the Penguin
‘0=2 82&!~86,

operator”) Aa =
Implying lAal S 4 x 10-4.

The slope asymmetry ia giw:n b$z

Im(Blc -+3c)(2a1c- a3c)* + 6 Imy3c(2alc - a#
A(T) = tan6 [ 1

Re(Ellc - >3c)(2aIc - a3c)* + 43 Rey3c(2alc - a3c)*
(13;

where age, SEC (f - 1,3), and Y3C are defined by <n+I+m-lHIK+> =
163c + ~ ‘3c Jy]; ~~~c ‘p~~a;e~$~i[(2alc - a3c) + (03= - ~ Ogc -

13g+i B~ (E- 1,3), “ y + iy3. 0~
(C - 1,3), Y3. and afi, P~3t2 D ?, S), y; describe the matrix e%ents
of the CP-conserving and of the CP-violating hlmiltonian, respec-
tively. They are real if final-state Interactions are neglected.
In Eq. (13) 6 deBcribes the final-state Interaction in the I = 1
symmetric three-pion state. The finaJ.-state interaction In other
states have been neglected for simplicity.

The slope asymmetry, like the quantity &la, 16 not supp?:essed In
general by the ratio of AI = 3/2 and AI ~ 1/2 matrix elements. In
the standard ❑odel, however, A(T) vanishes approximately in the

The commutator relation

‘;~~7”::: -::~:~”;m:::::;::~ns~re ‘he

vector (axial-vector)
charges , whlchthol s in the standard model, makeE it possib$e to
●xpress in terms of the physical K- + 2n
matrix elements using soft- ~ion techniques. The soft-pion treatment
leads to the relationl a~tal = B~/61, which eliminates the
contribution of the ~~=alc interference term in (13) (Ref. 23). The
s lope asytmnetry is found to bezb A(l) = 10 t~ tan6, so that
IA(I)I ~ (4 x 10-4)tan6. The value of 6 is not. known. Using tk.~
estimate25 tan6 E aOmfi, where aO is the I = O W-W sc t:ering length,
and the current -!algebra prediction26 aO = 0.2U mm , one ottnins
IA(T)I < 8 x 10-5. The present experimental valuo iS27 A(T)expt -
-0.0070 i 0.0053. A new experiment using present technology could
improve the sensitivity by a factor of 10 to 100 (Ref. 28).

‘CP VIOLATICN’J IN LEFT-RIGHT SYMMETRIC ELECTROWEAKMODELS

Althou&h the ~tandard model is consistent at pr~@en? with all
data including the observed CP violation, the electroweak interac-
tion ❑ay yet turn out to be associated with a gauge group larger
than SU(2)L X U(l).

An attractive ●xtens!.on of the standard model is a ~iescript; n
of the electroweak interactions in terms of a left-right-synmer ric
theory btised on the gauge group SU(2)L x SU(Z)R x u(l) (Ref. Z!’).
The fermlons Jn the~c models are ati~igned to representations or
SU(2)L M SU(2)R x u(l) in a left-right-a wetric manner: the left-

(right-) handed fermions are doublet~ of SU(2)J, [SU(2)R] and
Oinglete of SU(2)R [SU(2)L] (Ref. 30). The presence of right-hnndccl
cou~lin~u allowa for new sources of CP violation to be prcment,
which ❑ight be responsible for the observed CP violation.31 ’32 UC

note that studies of CP violation in theme models are of intcreRl
regarclle~u of whether or not they account for the ob~erv~d CP viulJI-

-[, -



tion, in particular since they give rise to new types of cP-
violating effectam

The couplinge of the charged gauge bo80nrt ~llL and WR to the
fermiong are given by

1 6L

- Ii? ‘LFrLuLN+* WR~rR”RN + leptonic terms + H.c. , (14)

where rL,R = YA(l F y ) (the Lorentz indices have been euppreaaed),
r- (G,E,... ), N- (5,%...); u,d,..o are the quark mass eigen-
etateG; UL and UR are the quark mixing matrices. They are unre-
lated, unless some ad hoc eynmetrlea are introduced in the Hlgg6
eectoro We shall leave them to be independent. WL and UR are lln-
ear combination of the maGG eigenstate6 Wl and U2

wL-CC)6cw~+6iIIcw2 ,

(15)

‘R- eiw(-6iII cw~ +C96 c W2) ●

It 16 instructive to discuss firGt CP violation in the four-quark
❑odel and without WL-WR mixing.
A. Model for Two Generations with c - 0.—.— —— -

This Is the original model, propox by Mohapatra and Pati.31
The moGt general form of UL and UR is given by 33’34

The AS = -1 l%miltonian is of the form

,IAS--l - ~fL+fRei(a-B)]~u,c - [fL- fRei(a-B)]~u,c , (17)

where fL R - (E:/16m~,R) Gin ‘L R co~ ‘L ~= The operators Su . and
;“ ~ are~efinedas inEq. (6). ‘

9 B

m
An immediate consequence of the HamiltonIan (17) is that E’ = O

(Ref. 31), sfnce the resulting AO and A2 have the same phase35:

ImAO/ReAO - ImAZ/ReA2 D -r Ein(a - ~, , (lb)

Strin ent
t

constraint on the parameter~ of the model come from
the KO + ‘~ amplitude.3b Uit.h the matrices (16), the dominant
contribution from right-handed currentti (box diagrams involving ML
and UK) hau the form

ALR(KO +~o) “ (-1/2)Ar ei(a-B)ALIJ(KO +~) ,

where AL], is the USUU1 contribution involving two WL’S and
f~ctor f~und to bu -43LJ (Ref. 36).37 From Eq. (20) one hae

(’20)

A is a

-5-



(h)]~R - [-Ar Cos(a - 6)](Am)LL , (21)

c~ - -2-3/2 eiW/4r Ojn(m - ~) [2 + A/(1 - Ar cos(a - 6))] . (22)

Kequiring (Am)LR <

Ir

Irl Isin(a

and therefore also

(h)expt and l~LRl < l~exPtl yields33

Icos(a - B)l g A-l = 3 x 10-3 , (23)

6)1 < (3 X 10-3)(1 + A/2)-1 = 1.5 x 10-5 {24)

Irl < 3 x 10-3 . (25)

Note that for smaller A (Ref. 37) the above con6traiIlts would te
weaker.

It follcws that the ❑odel can account for the observed CP vio-
lation if

1

rl is in the range 1.5 x 10-5 < Irl < 3 x 10-3 and

Isin(a - B)l =1.5 x 10 ‘5/lrl) satisfies 5.7~10 ‘3< ~sin(a- 0)1 c 1.
Such values of the parameters are not ruled out by any available
data.38 Some further consequences:

● in fir~t order all P-conserving, T-violating observable in
uemileptonic processes vanish, and P,T-violcting observable not
involving neutrino polarization are proportional to neutrino mass-
es; 33,38

9 K)n arises only in fourth order In the W-quark couplings.31
The magnitude of this contribution is expected to be less than
-10-26 ecm:

● %-0- %00 mc XptY
+ 2ir sin(a - B) (Ref. 31), so that

w-o - ~ooo ❑ cexpt; - %1 = 21r sln(a -.6)1 (Ref. 31), im-
‘+0 ‘5 (the equality

plying Iwo -~~f3xlo sign corresponds to

CLR = cexpt );
● the rate asymmetry (11) (as well as the rate asymmetries of

other nonieptonic hyperon decays) vanishes, since o~ = $3 “
r sin(u - 0);

● the phase difference

[Eq= (12)] iS s$ - $p ‘s:;;e::;::e::Y7:::onE:0:2JY= 2r ain(a -
Ibal ~3 XIO- for A~pn-, ~~pn

● the talope asymmetry A(T) [Eq.+(13)1 ~n-K* + ntnfn~ decays
vani~hes, since all the independent K- + II m m+ ❑atrix elements
acquire the same CP-violating pka~e.
B. Three-Generation Model with c = O—— .— ..— .— -

It is straightforward to extend the four-quark model to incor-
porate the third quark .amily. 33034s39 For three generations UL,UR
cr,ntain altogether Hix mixing angles ,7nd seven unremovable CP-
viulating phases. UL can be writtun in the form of the usual
Kobaya6hi-Maskawa matrix, containing three mixing nngle~ Bk (i -
1,2,3) and a CP-violating phatic 6L. UN contakns tb.e mixing angles

e;(i - 1,2, 3) and the remnlning phases.
‘k t UIS conbider a scenario in which the Kobu;’aslli-Maskawu-t ype

CP violations are negligible so chat t~lc dominant Cl’ violation is
due to r~lative phases between the lefL- and ri~ht-handed coupling~.
One find~ then3J

-b-



ImAo/ReAo = -r sin(a - 8) + (KR - KL)hr ~in(a - ~, (26)

ImA2/ReA2 = ‘r 6iII(a - 6) B (27)

where h s fL<Wr(l - 0)1 FC, t lKO>/ReAo = 0.5 (from the re6ults for
ImAo in the standard model) and r IB given by Eq. (19) with
sin6mcosBm replaced by (-ain9~)co6e~cose~ (m - L~R)= KL and KR are

defined a~ in Eq. (6), KL (KR) involving parameter from UL (UR).

Thus, unlike in the four-quark model, c’ vaniahea
(Ref6. 33 and 39).

onJ.y if Ok - 0:
Equations (26) and (27) yield

lC’/Eexpt{ = 8.4 IKR - KLI Ir ain(a - 6)1 . (28)

Assuming that there is no significant cancellation in (AKU)LR and ~LR
amon~ terms involving different combination~ of ❑ixing angles or
phaseg, nor with other possible cor~tribution6, the constraints (23)
and (24) remain valid and in addition, the same constraints also
hold for I(KR - KL)r cos(a- B) and (KR - KL)r Sin(a - ~)1, respec-
tively. AS a consequence one finds3 4

l~’/~exPtl ~ ~h/10(A+ 2) R 1.3 x 10-4 K , (29)

where K = IKR - KLI if IKR - KLI G 1 and K = 1 for IKR - KLI > 1.
The equality sign in .Zq. (29) applies when the phase (a - B) ac-
counts for cexpt.uo

For I’+_o,IIoOJ one obtains33

~ijk(o) - c~~~t+ 2ir sin(a - 0)

+ (KR - KL!(Zij~ - h)ir sin(a - B) , (30)

where z~jk = <n~mjmkl :C,t lKl>/<fiin ‘kl ~LIK2>s
i

The result6 of

Ref. 16 yield Z+o = ZOOO E 0.8 Re
!

/KeAO, so that n+o = 11000 =

cexpt a~d 111+0 - I+_l is approximate y of the order of 10-5 or
less.

The rate as;mnetry h(A) iS give? by A(A) =
(5 x 10-3)r sin(a- 0) (KR- KL)(<PW-16C tlA>/<pn-ISLIA>), so that
(using the standar’!-model results fo; the ratio of the matrix
elemental and the bound IKR - KLllr Sin(a - 6)! g 1.5 x 10-5)
IA(A) I ~ 2 x 1~-7. Similarly one obtainq A (A) f 10-5, and
IA(l)I = (J.2 tan61(KR - K14)r sin(a - 6)1 < 3 x 10-gltan61.

The general implications for T violation in semileptonic proc-
esbcs and for Dn are the same nE in the four-quark ❑odel.
c. Models with WA--WRMixin~—---- ..——-- - . ..-—- .-

In general one expects the parameter c to be different from
zero. UC shall discuss the effect? of WL-WR ❑ixing for stmpllcity
1A the framework of the four-qun~ic ❑odel. The essential conclusions
would be the same in the eix-quark model.

For c * U the p.c. and p.v. AS - -1 llamiltonian~ ;lcqulre a new
term

-7-



~.c. = ‘fL(gR/gL) C([cosoR ●i(Ma)/co68L + 6inoR e-i(tiB)/6ine~]~~

● nd

i(-a)/coseL - 8ineR e -i(*B)/6ineL]pL
~.v. = fL(gR/gL) C([c08eR e

+ [COSieRe ‘i(@6-CI-y)/cO$6~ - S~I19R e i(wy)/sineL]~~) ,(32)

respectively, where !!n- {iiywd,~yud)+ - {fiyuy5d,E~,uy5d}+,and ;; =

~’f’;y”’*”)+
- {fiyMY5d,~yvn)+ (n = u,c). The cc~ltribution A&,2

32 to mA0,2 is expected to be dominated by the W-exchange dia-
gram for the Ed + iid transition.3h For c’, which no longer van-
ishes,31D33’34’k: one obtains then

Ic’1 =2-1/2 lReA2/ReA0 llXll C8R/gLl

x lS~n(U + dCO19eR/COSbL + f3iII(w + 6)aineR/6ineLl , (33)

where x = (<fJ>2/<Fu, c>2- <~~>O/Fu =>.) (<~u>z =<2m(I = 2)@~lK0>,
etc.). Since the W-exchange diagra~ for Ed +ud contributes to both
AI _ 1/2 and AI = 3/2 transitions, one expects Im~ and ImA~ to be
of the same order of magnitude, i.e. , that (ReA2/Re~)X is of the
order of 1. An estimate3b yields x = 12. Using thie value, the
experimental limit (5) im; lies

lcgR/gLl lsin(l~+ dcoseR/coseL+sin(~+ ~)aineR/sineLl < 10-4 .
(34)

/

Among fu ther consequences of WL-WR mixing is a neutron elec-
tric dipole moment generated in first order in the weak interac-
tions.41Bk2 Berring cancellations, the results of Refs. 41 and 42
and the present experimental upper limit on Dn (Ref. 15) implyb3

lc8R/gLl lsin(~+ a)~OseR/coseLl g 10-4 (35)

lcgR/8Ll lsin(~+ 8)sineR/sineLl ~ 4 x 10-3 (36)

lcgR/gR~ lsin(w- y)sineR/sineLl < 3 x 10-4 . (37)

A nonzero C gives rise to a time-reversal-violating triple cor-
r~lation <3> ● ~e x ;V/EeEV ‘n ‘uclear p ‘ecay ‘ith a coefficient
proportional to (C R/gL)~in(~ + a)coH6R/co60L.33’38 The present ex-
perimental limit6q e imply

lcgR/gL1lsin(~+ o)coae~/coseLl < 2 x 1°-3 . (3B)

The analogous corrrlaLion in eemileptonic hyperon decay~ ia propor-
tional to (C8R/gL)sin(m+ b)BintiR/BineL. 33t3~ ~ experimental study

of A + pe-~ deca~45 sets a weak upper bound, of the order of one,
on this quantity.

The upper limits (35), (36), and (38) are the ❑os’t stringent
bounds at prctient on the quantities appearing in Eq. (33).46 We

- H-



canclude, therefore, that c’/E ex t due to WL-WR mixing could
!limito .

be as
large as the present experiments

If a value of ~’/~exPt 16 found near the present limit and iB
due to the effects of right-handed current6, a T-violating correla-
tion <~> w $e x $v/EeEv with a coefficient of the order of 10-4 IS
expected either in nuclear B decay or in 6emlleptonic hyperon de-
cays, or both.h’ At the 6ame time, a neutron dipole moment should
k found near the present exper~mental limit.

Let UE con6ider the slope asynunetry (13). Neglecting the con-
t=ibutlona of the AI = 3/2 component of the Hamlltonian, A(’c) Is
given by

6i
A(I) = tan6(— -~) . (39)

81 al

Becaus~ of the terms (31) and (32), which are anti6ymmec~ic under
interchange of V and A, the commutator property [Q&,H ~co] -

~$.~,v.] doe s not hold. As a consequence, i /0the relation ~ ~ =
a; /als which holds in the standard model in the soft-plon llmit, iE
riot valid here. From Eqs. (31) and (39) we have

A(T) = -(tan6)(CgR/gL)[cos9Rsin(tia)/coseL-sin9Rsin(*B)/sin6L]fl ,

(40)
W!le re

Q- [(<MIE~lKb/al~u,clKb) - (<sl:~lKb/<slsfi,ciK~)] ● (41)

(IS> and IM> are the symmetric three-pion stat? and the three-pion
Gtate of ❑ixed symmetry, respectively.)

The experimental limit lA(T)exPtl < 1.5 X 10-2 (Ref. 27)
implies (using tan6 = 0.2)

lggR/gLl lcoSeRsin(@a) /coseL-sin6Rsin( ~B)/6in8Ll < (8x10-2 )IQI-1 .

(42)

The operatora ~~, ~~ have been encountered ~ome time ago in the
context of a pre-gauge-theory rmdel of CP violation, due to

K + 3m decays in this mode149Glashow.48 A soft-pion calculation o.
yielded large values, of the order of 20, for quantities like fl.
Witfi Q - 20 one obtain6

lu~/6Lllc0seRain(&a)/cos ‘L - sin6Rsin(@+6)/8in6Ll i 4X10-3 , (43)

which is a bound already comparable with some of the previous bounds
we diBcu6sed. A calculation of Q would clearly be of interest.

Barring cancellation in Eq. (34), the experimental limit on
I E’/Eexpt I implies (with can6 = 0.2 and Cl = 20)

IA(T)I < 4 x 10-4 . (44)

Allowing for the possibility of cancellation in c’, we have to turn
to the bounds (35), (36), and (38), which imply

IA(T)I g (B x 10-4)IQI . (45)

-9-



~is upper bound is even for !Ql = 1 just an order of magnitude
below the present limit.

For the rate a~ymmetry and the quantity As(A), inspection
yields A(A) ~ 10-5-10-6 and As(A)< 10-4-10-51 assuming that the
tatioe of the matrix elements of ~~ and ~u,c, P; and ~u,c are of the
order of one. The quantity IWO - ~expti could be of the order of

cexpt”
In the above discuaaion we have treated the various parameter

of left-right symmetric models a~ Independent, invoking implicitly a
Higgs sector as rich as necessary to guarar,tee this. In models with
reacricted liig~s sectors come of the parameters may be related. An
example is the model of Chang,3k which has a minimal Higgs sector
and P and CP broken spontaneously. As a consequence, 8L = 9L and
a,Bgy = (mc/m=)(~’/K)sin& and also c - (m~/m~)~’/tc and u = a (K,
K’, and ~ parameterlze the lilggs vacuum eXpeCttitiOII value; ~ 16 a
W-violatir.g pha6e, providing the only source of CP violation in the
model; mlB m2 are ‘he ~y;sv(m:;mc:/m;;::)6::/;

It follows that
C(U+ a),c(~+ B),c(~- - B), and since
(m7/m~)sin(a - B) IS constrained by Eqi8(24), the effects of WL+JR
❑i~ing are correspondingly suppressed.

CONCLUSIONS

Present experiments studflng KL + 2X deca~ have already
reached the level where they can sensitively probe the question
whether the standard electroweak model can be considered as a poten-
tial source of the observed CP violation. Not C0n6iderlng the pos-
sibility that the calculation involved may be less reliable than we
can presently assess, the present limit on c’/cex t lemands that the
❑ass of the top quark be larger than about 40-6 ~ GeV if the three-
generation minimal model of the electroweak interaction Is to remain
a candidate for explaining the observed CP violation.

Even if the standard model accounta for the observed CP viola-
tion, additional CP violation may be present from various ?ossible
extensions of the etandard model. We di6cu6t3ed CP violation In
left-right symmetric extensions of the standard ❑odel based on the
gauge group SU(2)L ~ SU(2)R x U(l). These ❑odels can account for
the observed C? violation even If WL-WR mixing and the effects of
the third generation are negligible.

We have 6hOWn that In models that include WL-WR mixing qnd
where no other constraints are imposed on the parameters than phe-
nomenological, E’/cex t could be as large as the present experimen-

Rtal limit. A feature t at diati~guishes an c’/Eexpt originating from
M~-WR ❑ixing from an E’/~exPt generated by the Kobayashl-Maskawa
❑echanism or by some other mechanisms is the presence of a time-
reversal-violating triple correlation <~> “ $e x fiv/EeEv in nuclear
0 decay or semileptonic hyperon decays. or both. If a value cf
C%expt iS found near the experimental limit and is due to WL-WR
❑ixing, this correlation in neutron decay, 19Ne decay and/or A decay
la expected at the level of -10-4. A nonzero e’/cex t near the pres-

fent limit would alto imply, if it is due to WL-WR m xing, a neutron
elec~ric Qigole moment near the present limit, and a slope asymmetry
in K + w-w n+ decays that could be in the obeervatile range.
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