
_ _:_ i_ _

UCRI_,-ID-I06077
PREPRI NT

_

Studies in Branch-Prediction

- Carl Ponder

' Lawrence Livermore National Laboratory

Livermore, CA

i

September ii, 1990_

_

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United Stales Government.
Neither the United States Government nor the Univers'ity of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

, usefulness of any information, apparatus, product, or process disclosed, (Jr represents that its use would not
infringe privately owned rights, Reference herein to any specific commercial products, process,.or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or hnply its endorsement,
recommendation, or favoring by the United States Government oi' the University of California. The views and
opinions of authors expressed herein do not necessarily s_ate or reflect those of the United States Government
or the University of California and shall no[be used for advertising or product endorsement purposes,

This reporthas been'reproduced
directly from the besl available copy.

AvailableIoDOI!andI)Oli contractorsfromthe
(.){ficeoi Scientificand 'lechnical]nlorrnaiion

P.(). blo_62,Oak Ridge,TN 37831
Pricesavailable fri)m(6151576-8401,FTS626-B401,

Availabieto Ihepublic from the
NationalTechnicalInformalionService

U.S,Deparlmenlof Commerce
_285PortRoyal Rd.,

Springfield,VA22161

Price Page

Code Range

A01 Microfiche

Papercopy Prices b,

A02 1- 10
A03 11- 50
A04 51- 75
A05 76-i00
A06 101-125
A07 126-150
A08 151-175

A09 176-200 -
Al0 201-225 :

All 226-250
Al2 251-275
A13 276-300 -
A14 301-325
A 15 326-350
A16 351-375 -

A17 376-400

A18 401-425

A19 426-450 -
A20 451-475
A21 476-500

A22 501-525
A23 526-550
A24 551-575
A25 576-600
A99 601 & UP

UCRL-ID--106077

DE91 000499
Forward

September II, 1990

The following four papers describe work I performed on the branch-prediction problem.
Originally Mike Shebanow brought the problem to my attention, while developing an im-
proved branch-predictor for the HPS desigi._ aet UC Berkeley. It occurred to me to derive
upper-bounds on the predictability of branches, based on the characteristics of the predictor;
the bounds provide a way to judge the quality of a given branch-predictor, and of knowing
when certain design constraints must be violated to achieve a requisite level of prediction
accuracy. Many of the ideas in the first and second papers came from discussions with Mike
Shebanow, who also provided the trace data.

Previous work in this area concentrates on presenting specific branch-predictors and
evaluating them on trace data. This trace-driven simulation approach has made outstanding
progress in improving methods of branch-prediction. Trace-driven analysis or trace-driven
optimization is a refinement applied here, to study the problem of improving the predictions
as much as possible. I expect' to apply methods of trace-driven analysis to other problems in
the future. The results are limited by the trace data available; although the comprehensive
data from the Lee & Smith study is on magtape, it is unreadable, and no one else was willing
to provide anything beyond more UNIX traces.

Deriving bounds is not always easy. The Moore-machine prediction problem described
in the third paper must be solved; the brute-force solution described in the fourth paper
constructs optimal machines as a by-product. These optimal machines, or finite-state su-
perpredictors, appear in the first paper, which suggests that an architect should design a
superpredictor from program traces and incorporate it in improved CPU designs. An effi-
cient solution to the Moore-machine prediction problem would help considerably..-

-- Carl Ponder,

Lawrence Livermore National Laboratory

This work was supported in part by the Ap_ lied Mathematical Sciences subprogram of the Office of Energy

Research, U.S. Department of Energy, by Lawrence Livermore Nation_.l Laboratory under contract No. W-7405-
Eng-48. hadirect support was provided by the NationM ScienCe Foundation under grant number GCR-8812843;

Army Research Office, grant DAAG29-85-K-O070, through the Center for Pure and Applied Mathematics,

University of California at Berkeley; the Defense Advanced Research Projects Agency (Doi)) ARPA order
#4871, monitored by Space & Naval Warfare Systems Command under contract N00039-84-C-0089, through

the Electronics Research Laboratory, University of CMifornia at Berkeley; the IBM Corporation; and a matdling
grant from the State of California M IC}{O program.

Table of Contents

]ibrwar(] iii
An Information-Theoretic Look at Branch-Prediction .. 1

Questions l_lndarnental to the Theory of Branch-Prediction i.......... 23
String Prediction by a Snlall Machine i 27
SOlving Moore-Machine Prediction by Brute Force .. i.... 29

List of Figures

1, Distribution of instruction-block sizes 11

2, Pipeline utilization contours ,, 5
3, Speedup for an infinitely long pipeline 6
4, Distribution of history-string lengths 9
5. Distribution of taken-branch densities i................................... 10

Appendix I- Finite-state superpredictors , 20
Appendi× II - Miscellaneous predictors .. 22

List of Tables
,,

1, Characteristics of the test data .. i........... 8

2. Upper bounds on prediction accuracy 11
3. Dynamic bounds using truncated history-strings .. i..... 12

4. Bounds for finite-state Predictors ,,........................... i................ 13
5. Optimal large machines directly encoding history traces .. 13
6. Sensitivity of 4-superpredktor Construction .. 14
7, Comparison of 4-.state predictors 15

8, Accuracy upper bounds for two families of predictors 15
9, (Static) Consistency between 2 runs of the same program .. 16

10. Consistency in initial state selection for 4-superpredictor 17
11. (Dynamic) Consistency between 2 runs of the same program 17
12. Counts of distinct Moore-machines 29

List of Formulas

(1) Pipeline utilization 2
(2) Pipeline speedup .. 3
(3) Adjusted pipeline utilization 3
(4) Adjusted pipeline utilization i.............. i.............................. 3

iV

An Irlform tion-Theorct;ic Look at Brarlci-l-Prediction

Carl G. Ponder

Computing Research Group, L-419
Lawrence Livermore National Laboratory

P.O. Box 808

IAvermore, CA 94550

(415) 428-7034 "

Michael C. Shebanow

88000 Advanced Processor Design Group
Motorola, Inc. OE318

6501 Wm. Cannon Drive West

Austin, TX 78735

Abstract

Accurate branch-prediction is necessaryto utilize deeply pipelined and Very Long Instruction-Word
(VLIW) architectures. For a set of program traces we show the upper limits on branch predictability,

, and hence machine utilization, for important classes of branch-predictors using static (compiletime)
and dynamic (runtime) program information. A set of optimal "superpredictors" is derived from these
program traces. These optimal predictors compare favor._bly with other proposed methods of branch-
prediction.

Index Terms: branch prediction, CPU performance, information-theoretic bounds, Moore machine,
pipeline optimization.

l

Motivation

"l'he rr,zLjority of tnodertl l_igl>sl,?ed coJllt)uter arcllitt,cturcs ertJt, l(,y Idl)clilti_lg as ;, sl,¢_cduI, I,,(:cllat,isn,.
Pipelinirig subdivides the work of au individual instruction illto a sequence c,f stages, and .ovcrlap_s tile
execution of successive instructiolls by executing dilt'erent stage s of dilt'ercnt illstructions siinultar, cottsly.
Future syst, ems will use pit)elining to larger and larger degrees.

Conditional branch instructions potentially interrupt tile slnooth execution of a pipclilm ---the pi.pelille
rnay be ready' to process instructions frorn the destination of the conditional branch b@_r'e the condition Ilas
been evaluated. Null instructiolls may be passed through tile pipeliim until the branch-colldition is resolved
alid instructions t'rom the correct destination are ready. Lo be fetclled. Tills sequence of null ilJstructioI_s,
refe.rred to as a bubble, inllibits pipeline utilization try, filling pipeline stages but, l:)erf'orming no work.

An alternative to passing pipeline bubbles is, branch-prediction, where the result of a branch conditioli
is guessed before it is fully evaluated. Instructions from tlle assumed branch destil_ation are proce.ssed
inm_ediately. Some repair work is necessary if the guess was incorrect, to erase tile effect, of exccut, ing tl_,
wrong sequence of instructions, lt is interesting to note that fairly simple schemes of guessing are reasonably

accurate. Treatments of pipelining arid pipelined rnachirms are found in [3] [8] [16]. 'Fl_e specilic problem of
branch-prediction is treated in [4] [6] •[7] [15].

The Very Long Instruction- Word (VLIW) architectures perform simultaneous instruction execution', and
also benefit from branch-prediction. A program is compiled into a nurnber of instruction streams which
execute in. lock-step. Analysis of the program at compiletime and in sample executions is used to detect
parallelism, Some program transformations are ernployed to improve parallelism, notably the movement Of
instructions across conditional branches, If a branch condition is deemed likely to hold, or likely to not
h01d, instructions from the favored destination may be moved to execute before the condition is evaluated.
Instructions must be introduced at the alternate destination to erase the effects when the condition did not

behave as expected. Utilization of the VLIW processor is inhibited if the condition tends to behave contrary
to expectation, since operations are done and undone. Again, accurate branch-prediction is necessary to
achieve high utilization. Treatments of VLIW processors are found in [1] [13]. The specific problem of
analyzing and compiling pi'ograms fbr VLIW architectures is treated in [2]

Irl thisstudy we examine general classes of proposed branch-predictors, arid show upper limits on their
accuracy with respect to a set of program traces. The relationship between prediction accuracy and machine
utilization and speedup is studied. An architect requiring a certain level of utilization will require a. cor-
responding level of prediction accuracy, and may need to devise a new class of branch-predictor to achieve
this.

2 A Simplified Model of Pipeline Utilization

Consider a simple linear pipelined machine model, where instructions are issued and retired in order at a rate
of one pe r clock cycle. The pipeline is D stages long. We define a block a.s a sequence of instructions executed

between conditional branches. For an idealized pipelined machine we have the following relationship:

p = average blocksize = # instructions
branches

N := penalty for a wrongguess

p = proportion of correct guesses

U = utilization = _ instructions
(# instructions) + N(# wrong guesses)

1

- 1 + (_-r)t" (1)
/l

i

Expressior) 1) at)pears t<.,be independent of the actual pipeli);e lcngtl); dependent Ul)O))I> l,>elillc le))gl.lJ
is til,. qua)lt.ity At, wllicll rel)resents t.lt,..Size of l,lt(: pipeline bubble introduced upon an incorre.c(, prcdic(,ioll.
'l'liis a.ssun,cs tile I)erlall, y does ltc)l, depeIld upoll whzch branch is being predict,(,d. 1 'Il,is J)_od,:l ignores til,:

I S.(rictly speaking, tlm a._,sumpti,m is f,ll&t the likelilmod of correctly guc.-:ssing a brm,d_ doe.s not correlatr with (lm cost (,I

initial pipeline-.till mid final pipeline-enll)ty when the process is started and cn(ted; these are llot signilicmlt
ii' the length of tile instruction sl,roalll is long witll respect to N aild D. Similar efl\++cl.sare IJresent ill VI,IW
arcllit, ecturcs, b'ul, are. vmi.so easily modeled.

Average blocksize va.lues _uare presented in table 1, for a number of real t)rogranls described in s('.ction
4. Figure 1 shows the distribution of blocksizes across ali cases (the last two values arc' represented as a
scatter-t)lot). Figure 2 shows contours for tixed values of U, as a function 0f N/# and p. N/tz is used as a
normalized penalty value; the architect may treat N as a variable parameter, but t, is determined by the
instruction set, the workload, and the compiler.

The speedup S due to pipelining is expressed a.s follows:

S = speedup = (pipeline depth)(1)ipeline utilization) = I)U

_ D

- 1+ (___,)_, (2)I*

From figure 2 the speedup can be determined by reading the contours in units of D. If we assume D = N,
and let tlm pipeline depth go to infinity, we find a strict upper bound on speedup wliich depends only on the
proportion of correct guesses p; this relationship is shown in figure 3. The dotted lines labelled situb, di tub,
sditub, etc. correspond to upper bounds on the predictability of our program traces, derived in sections 5 &
6. As we study various kinds of predictors we will see how a'ccurate they can possibly be, and what speedups
and pipeline utilizations can be achieved.

The model ignores pipeline stalls due to ottler effects such as cache misses. We can adjust, it to accom-
modate other causes as follows:

N1 = penalty for a wrong guess

N2 = penalty for other causes

p = proportion of correct guesses

q m_ frequency of other causes
1

U : _ (3)1 + _+_a_
P

lt assumes the penalties are additive when an incorrect guess occurs in conjunction with some other cause.
The penalty for an incorrect guess should be insignificant w.r.t, a cache miss, so the assumptionshould not
significantly perturb the results.

Formula (3) rearranges into

1
V = (4)

1+ -_a'(1 - (p- q-_)

which amounts to deducting some quantity from the proportionp. If we assume thai; adjustments to the
branch-prediction strategy (and thus p) do not significantly affect N1, N_., and q, it appears that wecan still
treat U and S as being functions of p. Figures 2-3 would remain valid by shifting the p values to deduct

the appropriate quantity. For example, if the penalties for a cache miss and an incorrect guess are the same,
and the table hit rate is 95%, the proportion of correct guesses must be reduced by 0.05 to give the corr(:ct
utilization and speedup relationships.

3 Branch Predictors

The CP[I can predict, branches using information collected as the program executes, or information provided
by the compiler, or both. We will call these forms of" information dynamic inforvnatioT_, s'talic infor_7_atioT_,
and static+dynamic infom,.alio1_, resl)ectively.

llere are three notable examples of branch-prediction using static information'

incorrectly gu(Nsing thai brandl. An example of how they might (:orrelatc is that "expensiv(C hr,'uichr+s would tend to behave
unt_r_'di('tably.

L

3

Figure 1: Distribution of instruction-block sizes

1000000 ' ,

! 00000

1_ i _

.1_ 'V

+

......... °'4,10 .. : ...

! •
+

+

0 10 20 30 40 50

block size

,t

0.8'

80%
P

0.6'

70% 50%

ditubO

0,5

10 _ O0

Nlu

d

Figure 3: Speedup for an infinitely long pipeline

100o i

' i1
i

, i

t
!

100 . ..

1. _,ubl IS/u
I: d"Ub2 / I

i I
i I I

!
1

/ 0t i

10 _ "

.... " i _......................... b...... !

: i II
Ii

, , _ II_all_
II

: _ sltub Ii
II
II
II

bo i ii,_,_ ,................ , ,,._ .., ,..
05 0.6 0.7 08 0.9 1.0

1 The Cl"tl assurnes (,lla(, a branc.l>condition always holds true.

2 The _ _, (,l U a_ssurnes that a brancl>condition holds true ii"the destination is a previous address ("backward

brallch"); til is would bc accurate for rel_eatedly-ex,ecul,ed loops.

3 Two conditional bra, nch instructions are defined ' ". , "branch-prolmble and "branch-iml_robal__le" Tlm
compiler issues one or the other depending upon the context. The CPU guesses the branch-condltion
always holds true iii the firs_ case, and always fails in the second.

The static information associated with a conditional-branch instruction does. noI change as the program
executes.

There is no ini"t,ial dynamic information before a program begins executing, The CPU must guess each
branch-condition using information it accumulates as the program executes, In this study we restrict, dynamic
information to a per address basi_ -the prediction of a conditional-branch instruction depends on the past
behavior of that instruction and no o,_her. I-Iere are two example_ of brailch-predictors using dynamic
information:

4, The CPU maintains a table of addresses containing conditional-branch instructions. A bit indicates
whether or not the condition held on the l_st activation of the corresponding instruction; on the next
activation the CPU will guess that the branch-condition holds if and only if it did previously.

5. Instead of associating a bit with each address, a k-bit counter is associated with each conditional-braaMa
address, Each time the brancla-condition holds, the associated counter is incremented, otherwise it is

decremented, The CPU guesses that the branch-condition holds if and only if the counter has a 1 in the
highest bit-position, indicating that the branch-condition held in the majority of its recent activations.

Most of these methods have been sgudied in detail [4] [6] [7] [15].
These two forms of information can be coupled, .For example, we could apply strategy 5, with initial

k-bit counters accumulated in a test run 0_"the program. The same initial information is used each time the
program begins execnting.

4 The Test Data

We use 7 Vax Unix traces from Mike Shebanow's original study [1.4]. Each is a frequently used utility
program. The larger traces were truncated to 1 million instructions. Unconditional branch instructions are

not considered here, since they require no real guessing. Unfortunately there were no counts of context-switch
or other control,flow instructions available. Likewise, instructions with multiple destinations or computed

destinations were ignored. This may skew the results somewhat, but the effective blocksize was small enough
that we suspect t.hat few "exotic" branch operations occurred. The test cases are described as follows, with
statistics reported in table 1....

pccoml, ccom2: Lxecutmns of the Unix portable C compiler.

cppl, cpp2: Executions of the Cpreprocessor.

fgrep: A search in a dictionary for words stored in a small text file. ,

find: A file-search program using the command "find / -name '*.o' -print",

ls: A directory listing using the comnmnd "Is -alsg/bin".

Unix composite is the combination of ali the other traces.

[Table I - (lllara, teristic,_ of tile 'l'u_t l)al, a

i"rogra111 _/: lllsl, rucl, ic,lls ._/:Active 1_rm,clJ ://: llrm,clJu.s Mem_]_l(,ck
Nalne E×e,clll,e(I I,_,cal.iolls I(',×ecui.ed _ize

ccoml 1,0()(),00(1 13_,'1 2,17,262. ,1.04,'1
ccoxn2 1,000,000 511 21.5,871 4.032
cppl 249,708 326 75,657 3,30()

cpp2 1,000,000. 297 327,124 3.057
fgrep 1,000,000 131 394,546 2.535
find " 1,000,000164. 220,167 - 4'542'
'Is 440,722........ _02 12i,811. " 3.618
'('UN lX .CoIT,P.'OSite).." 5,690,430 _ " 3215 1,602,438 3.551

5 Upper Bounds Assuming Unbounded Information

Now we will construct upper bounds on the predictability of the program traces. We can draw some general
bounds by restricting the type, but not tile quantity of information (defcrred to section 6) the predictor is
allowed to use,

Central to our discussion is the notion of a branch-histo W siring [4], which is associated with the address
of a branch instruction in the program. For example,

program address: 0010100

opcode: BRC

.. branch-history string: NTTNNNNTN

For the given execution, tile branch-history string associated with the BIKC instruction at address 0010100

indicates that, on the first activation of this instruction, the branch-condition failed to hold ("N" for nor
' _aken). On the second activation, the branch-condition held ("T" for taken), and so on. Figure 4 shows the

distribution on the lengths of the bran.eh-history strings accumulated from our set of program traces. Figure
5 shows how they are distributed in terms of the fraction of T's they contain.

The purpose of a branch-predictor is to try to guess whether the kth position of the branch-history
string will be an N or a T, using static information or dynamic information accumulated up to the kth
activation. We will explore combinatorial properties of branch-history strings in order to make statements
about branch-predictors in general.

For predictors using static information, for each branch-history string the predictor must make the same

guess N or T throughout. The best the predictor can do, then, is to trove always predicted N if the string
is densest with N's, and T if it is densest with T's. For example, for the branch instruction with associated
history-string

TTNTTTTNTTT

the optinlal static predictor would have predicted

TTTTTTTTTTT

F'or our iustructioll traces, 1,1mJl,l.lie optilz,al brallch..l_redictor btused on static infl)rl_mtion will always gu(.ss 'I'
fi:)rtJranches witll a.n _:ussocial.edI.)ral,cll-llistory string deiisest with T's, and N forbran(:llcs witll ali assc,ciate, I

I_rancl,-llistory strillg densest witll N's. 'l'lJe re.sults for ttl(, C,l,ti_nal a.ssigllnlezlt ;tr(: in tablu 2 uxider Oplzmal
,q'l¢_l_('l"rcdiclor'. 'l'l_is v;dm: f,::rii,, I.;NIX co_ll,c,sil(" al,l,_:ars ;ts li_w. ml'ub (for sialic z7@,7"Tnatw_-thcc,rcltc

Figure 4: Distribution of history-string lengths

10o0

lO0

1
1 0 lO0 1000 10000 100000

string length

Figure 5" Distribution of taken-branch densities

10000

lOOO

r..
100

iO

1
0 1 o 20 30 40 50 60 70 80 90 100

% branches taken

r

upper bound) in figures 2 & 3, showing how this upper bound restricts tile potential speedup and utilizatioll
under static prediction:

" 'I'able 2Upper Bounds on Prediction Accuracy
...... ,., ,' ...:,

........

""Program Optimal Static Optimal IJyilamic"Predictor '

Natne Predictor Oi.w,! Bxecution. [GrouP Execution
ccoml................. c90.75% 99.46% .. 99.42%
"cc0m2 90.28% 99.77% 9'§.74%

. cpp'i ' "' 90.49% ' 9_}.58% 99.50%
cpp2 ' -........ §3,49% 99.90% 99.88%

"fgrep 93,85% 99,9,8% 99.97%
find 95.24% 99.94% 99.93%

is . 90.68% " 99,74% 99,69%

,.(U.NIX composite) 92.61% " 99,79% . {i'§,;}9%'

,,

Suppose'two branch locations have these associated brancll-history Strings:

1
' TTNNTTNNT

TTNNTTNNN

Under our definitions, a predictor using dynamic information will base its prediction solely on the l)ast
. behavior of the given branch. The prefixes of these two strings are identical; thus the predictor will make
the same guess for the last branch in each string. Any predictor based on dynamic information will guess
incorrectly for the last branch in one of these strings. By identifying ali the distinct prefixes of the branch-
history strings from our traces, we can weigh the number of cases branching each way after having generated
a given prefix. No dynamic predictor can do better than to guess whichever direction is observed most
frequently. From this "interference" property we can establish an upper bound on the accuracy of dynamic
predictors, for these test cases.

Such upper bounds are given in table 2 under Optimal Dynamic Predictor. Own E_ecution is where

we consider only the interference between the strings from the given trace. Group Execution is where we
consider interference between the strings of the given trace and the combination of the remaining traces.
Ties occur when an equal number of cases branch N and T from a given prefix; ties were broken to evenly
divide the incorrect guesses between the test case and the remaining cases. Since few ties occurred this had

little effect on the results, roughly 0.15% for the most significant case (cppl).
The dynamic upper bounds are quite high, decreasing only slightly as we increase the set of test causes

and thus the interference between strings, This upper bound for the UNIX composite is shown ms ditub
(for dynamic information-theoretic upper bound) in figures 2 & 3. If a predictor could be constructed this
accurately, pipeline utilization would be determined more significantly by other effects such as memory stalls
or branch-target buffer misses. Perleberg & Smith [9] study' this in detail.

We can only speculate where this bound should be for a real system workload; it may possibly be even
,lower than the static upper bound [12]. Table 3 shows the interference of short prefixes of the history-
strings. A significant number of branches areaccounted for t)y short prefixes, indicating that many branch

instructions fired few times. There is a strong interference between these short strings. The upper bound
grows fairly steadily ms the lengths increase. This occurs because the set of strings observed is relatively
small compared to the (exponential) number of strings possible for the given length. There is less interference
because there are few strings to interfere with. Figure 4 illustrates this.

'Fable 3 -- Dynamic Bounds Using Truncated Itistory-Strings

' Maxil]l{l'ill :# Branches :# Distinct # Distinct Dynamic Predictor

String Lengtll Accounted For Strings Possible Strings Observed Upper Bound
.... 1 3215 ' 2 2 51.51%

" 2 5867 f3 5 71.48%
3 8298 14 ' 9 '....... 79108%

...... ,....

4 10,580 30 14 83.29%
5 12,776 62 20 85.93%

6 14,9'25 126 '27 8'7.83%
7 17,028 254 35 89.18%....

8 19,063 510 44 90.24%......

9 21 ,C165 1022 62 89.82%
10 " 23,001 2046 88 90.18%

20 40,607 2,097 150 846 93.36%........ ' (' , ,

30 55,812 2,147,483,646 2626 94.88%
40 69,189 2 41 -- 2 5004 95.67%

' 50 81,880 251 2 77211 96.23%
60 94,158 ' 261 -- 2 10,629 96.67%

70 106,041 271- 2 ' 13,680 ' '§;::01%
' 80 1"16,757 2s_' 2 16,704 97.9.7%

90 126,918 2 91 - 2 19,691 _-- 9i.47%

100 136,455 _0_ _ 2 22,656 ' 97.i34%

84049 1,602,438 284°_° - 2 975,465 99.79%

For bra.nch-predictors using static+dynamic information, the only upper bound for unbounded informa-
tion is exactly 100%. The "static information" would be a table of addresses and associated branch-tiistory
strings; the "dynamic information" would be the number of times the branch at that address was executed.
To predict the branch-condition on the kth activation, the predictor simply finds the branch-history string
associated with the address and returns the kth entry:

address branch-history string

0000001 NNNNNNTNNNNNNTTTTTNNNN

0000010 TTTNTTTNTTTTTTTTNNNNTT
,

:

:

etc. etc.

Thus there is no "inl,erference", static or dynamic, to reduce the upper bound from 100% correct. Such a
t,able could not be realistically constructed; not only is it large, but it would have to be the same across ali

program runs (this is discussed in more detail in section 7,3). In order to make for more realistic bounds,
we now shift from a pure information-theory to an information-based complexity-theory using restricted
quantities of inforlnation.

6 Upper-Bounds Given Bounded Information

']'ho three provious Ut)l,er bounds depended ut)on tlm type of intbrmation used by ;t I)ranch-predictor; for
dytlalnic and static+dynamic information l,tmse upt)er bounds were too high to signilicantly bound pil)eline
utilization or speedup, l;'11rtllern_ore, tbr dynamic and st,atic-t-dynamic information tlw. opti111al l)redictor
w_,lJld Ilave t.o encode larg,, tal:,les of l)rogranl traco, inforlnal, ion, whicll slmuld not t:,e i)ractical.]:/y bouIl(lillg

]"2

the quantity of information used t})' the predictor, we can reduce these upper bounds to more interest, illg
ranges.

If a branch-predictor associates k bits of information with each conditional-branch instruction, and pre-
dicts each branch based only on these k bits, we can model the predictor as a Moore-machine with 2k states.

Each state represents a configuration of the k bits. The output from each state represents the guess made
from those k bits, The input represents the actual N or T result of the branch-condition. The state-transitions.
represent transformations on the k bits as the branch is executed. There is a designated initial-state if static
information is not used, so all .branch instructions start with the same initial k bits. If static information is
used, different branch instructions can start at different initial states. In the presence of static information
we refer _,othe machine as having a no'ndeterministic initial state (in the automata-theoretic sense), since
the initial state is chosen to minimize the prediction error. Examples of such Moore-machines are given in
the appendices. . ,

Now we can draw information-theoretic upper bounds on the quality of any predictor using k bits, by

deriving the optimal Moore-machine predictor with 2 k states. 'rhis is done in table 4, for 0, 1, and 2 bits
corresponding to 1,2 and 4 states. Unfortunately our (brute-force) optimization procedure [11] was only
effective for up to 2 bits. The optimM Moore-machines for the UNIX composite case are shown in appendix
1, which we dub SUlW_redictors for. outperforming any other predictor of the same size.

" Table 4 - Bounds for Finite-State Predictors
.... , , ',,' ,_' ,,', ,,....... ','..... ',

"Test Designated Initial State Nondeterministic Initial State

Case 0 bits 1 bit 2 bits 0 bits] 1 bit] 2 bits
ccoml 55.16% 95,27% "95",32% 55.16%' 95','54% 95,86%
ccom2 6.4.52% 95.14% 95',21%"',6'4.5'2% 95.'25% 95',57%
cppl 61.65% 95.02% 95,10%" 6'1.65% 95'.23% 95,41%/..
cpp2 72.0'6% "'96,'Ii% "96,19% 72,06% 96.16%': 96.35%

fgrep 55.98% 93.90% 93.94% 55.98% 93191% 93.97%
find 55.95% '95.19% 95.22% 55.95% '95.25% §5.43%

_s 64.34% 94.39% 94,43%' 64,34%' 94.55% 94.'8,3%....

(UNIX.compgsite) 5.1.08%.. '95.00% 95.05% 5.1.08% 95.10% 95.28%

For0 bits of information there is no information, static or dynamic', the guess must be uniformly N or
T. The values for theUNiX composite case are shown in figures 2 & 3 as ditubO, dilubl, dilub2 for the 0, 1,

and 2-bit predictor using dynamic information (designated initial state) and sditubl, sditub2 for the 1 and
2-bit predictor using static+dynamic information (nondeterministic initial state). There was little difference
between them.

The accuracy of the finite-state predictors increases as we add states. In fact we could encode the program
execution 'traces directly into a machine of suflqcient size (one state for each distinct substring), achieving
the information-theoretic upper bound for unbounded information for these traces. The results are shown

in table 5; inequalities are used because the traces might be compressible into smaller machines.

Table 5 Optimal Large Machines Directly Encoding Itistory Traces

Same Initial State Nondeterminis'tic Initial State

Test Case Max Accuracy Necessary # Bits Max Accuracy]..Necessary # Bits
ccoml 99.46% < 17 100% < 18

, __ ---- ,,

ccom2 'l 99.77% < 1"_ {100% < 18

cppl 99.58% < 16 i00%" < 17
•--.- --

cpp2 99.90% < 18 i00% < 19
................ f --- ,

fgrep ii9.98% < 19]00% < 19
,,,,,,

' { Oti_ d 99.,)4 K, < 18 100% < 18
, _ ,.,.,,

Is !}9.24{){, < 17 1{}0% < 17
, , , , , __

(IINIX c(,mf, r}site) {}{}"_'{'/...... ,,:,/{, < 20 100/){, < 21

_r ' '('
' Iii1 " _ v ,, _i_' '

7 HOW General are tile Results?

So far we have shown concrete upper bouzlds on tire l:)redictability of branches i,l a collection of traces, for
various classes of predictors. So long as a given predictor falls illto one of these classes, ii, will predict tl_e
traces no more accurately than the upl_er bound dictates,

_Phere are a numbel' of side results, however, which are worth pursuing. We constructed optimal static allcl
dynamic predictors for the 7 traces; if these traces are good indicators of general program behavior, thmi the
optimized predictors may be accurate for most Progra_rL._. In particular, the finite-state "superpredictors"
constructed in section G, alld the technique of static prediction based on one program run, seem quite

practical:

7.1 Superpredictor Sensitivity Analysis
, r 'qIn section 6 we provided upper bounds on dynamic predictors using 2 bits of information Fhl,; was done

by deriving optimal predictors for tlm.given trace. If we were to use one of these, superpredictors in a real
machine, it would have to demonstrate high prediction accuracy beyond the one design trace. To study this,
we will analyze the sensitivity of the predictor to the Case it was designed for, by comparing its accuracy
across ali cases. Interestingly enough, the test cases ccoml, ccomg, cppl, cpp2, fgrcp, is, and the UNIX
composite all designed the sun,e 4-state superpredictor; find generated another. Table'6 compares the two
superpredictors across all test cases.

Note that the difference between them was at most 0.12%. The superpredictor derived from find was not
significantly better than the composite superpredictor, which was uniformly better for ali the other cases.

Table 6 --Sensitivity of 4,Superpredictor Construction

Design Case
ccoml, ccom2, cppl, cpp2, I

_ Test Case fgrep, ls, (UNIX cqmposite)] find
ccoml 95.32% 95.30%
eco,m2 95.21% 95.12%

cppl 95.10% 94.98%
cpp2 96.19% 96.11%

fgrep 93.94% 93.89%
find 95.21% 95.22%

Is 94.43% 94.35%

(UNIX composite) 95.05% 95.00%

7.2 Comparison with Other Predictors

Three 4-state predictors were presented in Lee & Smith [4], which we show in appendix ii. Each exhibits
an interesting symmetry, and is designed to capture an intuitively plausible form of branch behavior. Table

7 compares them against the composite 4-superpredictor. Since the initial states were notspecified in tile
reference ' for each test case we chose the one initial state that, minimized the error for tl,e trace.

Note that the 4-superpredicl, or was strictly superior to the other predictors by a significant amount.
Furl,hermore it w,a.s more stable, ill t.llat the range of performance was narrower. The bellavior of the ol.ller
predictors is fairly consistent wilh tlm results for the workloads used by Lee & Smith; unfortuilately tlmir
traces were not. available for our study.

14

Table 7 - Comparison of 4-State Predictors '

"l_,'st Case ' "4-SuperiTredictor" 'S'-I Proposal Majority 2-i]ranch lli story_
cc0ii_l ' 95,31%' 93.11%.... 93.52%...... 93.33%
ecom2 95,21% 99.,79_; 9_I:21% 92,82%'

l cppl 95,1'0% 92,59% "93,04% 92,82%
cpp2 96,19%' 94114% 94,54%' 9.1,39%
fgrep 93.94%' _i9.82% 90.33% 91,3'_2_i........... i ,.....

find 95,2'1% 92,17%' "92.64% 93,18%
, ,, ,, - ,_

-' Is 94.43% 9'i.1'6% 91,76% 91.93%

(uNIx composite)' '.'i'_95.05% .9'.2.!7%' '.... 92.62% . 9'2.85_i I "

The gap between the dynamic information-theoretic upper bound for 2 bits and for unbounded informa-
tion (=20 bits) was significant. Unfortunately we could not generate superpredictors for 3 or more bits to
see how quickly they approach'the upper bound. Other methods, however, may be able to utilize more bits

to achieve higher accuracy. There are two proposed ways of constructing predictors to use any number of
bits; we will see how these work w,r.t, our .bounds.

One.obvious approach [4] [15] is to simply count the frequency of taken branches rs. not, taken branches,
and guess with whichever is higher. In table 8 we do this one _tep better (for the UNIX composite case), which
is to guess whichever direction is more frequent upon observing that density, The counter is restricted to stay
at fixed maximum or'mlnimum values instead of overflowing or underflowing. Note that the performance is
generally worse for more bits; this is consistent with the previous studies. The likely explanation is that the
behavior at a given activation is a good indicator Of thebehavior at the next activation, and this pattern is
obscured by the behavior of earlier activations. "

Lee & Smith used a method of identifying all branch-history substrings of length k, and assigning the
most frequently encountered next branch as the guess for each. This constructs a predictor that encodes
the results of the last k activations, and branches with the most frequently encountered next result. Upper-
bounds on this approach are presented in table 8, for up to 16 bits. Note that this upper bound is less
than the 4-superpredictor performance ali the way up through 8 bits. The 16-bit performance is rather low
considering the fact that a 20-bit superpredictor can achieve the dynamic information-theoretic upper bound
of 99.79% for this trace.

Table 8 -- Accuracy Upper Bounds for Two Families of Predictors

[)its' Counter M'ethod Iiistory Subs Jcring Method "
1 94.99% 95,00% '....

.... 2 92.73% 95.00%
3 ' 90.80% 95,00%
4 89,97% 95.00%

5 89.58% 95.00%
6 8958% 95.oo%

........

7 89,15% 95,00%

" 8 89.06% ' 95.00_,
...... 9 88.99% 05.85%

I0 88,93% ' 95.85%

1i 88.88% 95.85%
.............

J2 88,85% 95.85%
...... 15 88,85% 95.85%

_4 _8,85% 95.86%
. '.... 15' 88.8'5% 95.87%

,, ,

16 ,q8.85% 95.94%
.....

t';xl,,,Imiol_s of tile suf,erpredicl,ors and tile l,ee/SE,dtli l)redictors nmy be complicated, and hello' r,:,quir,
'.;i.,.gtlifica_lat_lr:mlll,sof h.,g.icl/, iml,lelnr_nt. For 16 (Jr lll,r.,rr, I,il.s l.ll*' cost in gates and gat.,>delays c¢,uld I,,.

I rj

prohibitive. Oi,her ad hoc predict, ion schemes might be easily designed to use large rlulnb(.,.rs of bit,s,.I)ut tile
structure must, be silnple enough to allow a compact implenmntation.

7,8 Consistency Between 2 Program Runs

Static information does not ch_mge during the execution of a program, or across ,lmltiple executions of the
same program. The usefulness of static informa_tion or static information coupled with dynamic information
depends on some uniform behavior between program runs. Since we have traces for two runs e.acll of the C
compiler and the (2 preprocessor, we can look tbr evidence of this uniformity, .

For example, our optimal static predictor in section 5 assigned a guess T to each conditional branch witll
an associated branch-llistory string densest with T's, or N otherwise, Such a prediction scheme _night be
useful in practice, using a test run of the program to determine the static prediction. Such a technique is
used in trace-scheduling compilers for VLIW architectures [2]. For this tecllnique to work, between mul{,iple
runs of the same progran_ the branch-history strings associated with the location of a coiLditional-branch
instruction slmuld be consistently denser with T's or N's. In table 9 we find this pattern holds for our test
cases; tile few. brallch inst.ructions reversing the density relationshil) llapl)ened t,o perfbrm few brimclms,

In table 10 we extend this to 2 bits of static+dynamic information: not only is a predictor designed from
the trace, but initial static information associates an initial state with eacll branch address. For two runs of

the saJne .program we use the same predictor (note that our optimization procedure indepm._.dently derived
the same predictor for each), as well as the same initial state for the same branch address each time. 'Ib
test this, then, we derive the predictor and associate the initial states using the design case, and evaluate it

on the test case. The performance for the test, cases was always quite good. Note, though, that if a brancl_
instruction was never activated in the design case, we use the test case to select the optimal initial state, so
these results are actually upper bounds.

in table 11 we go back to studying unbounded dynamic information. In section 5 we studied the interfer-
ence between history-string prefixes, to see how predicting for the benefit of one branch would hurt another.

The upper bound was reduced slightly if we measured the interference of one case with ali the remaining
cases, rather them .just itself. In table 11 we study tile interference between multiple runs of cpp and ccom,
to see if there was enough self-consistency between the two runs that no additional dynamic interference
occurred. Comparing against columns 3 and 4 of table 2 shows that there was significant additional interfer-
ence. In some cases the test case interfered more with its other runs than ii, did with the UNIX composite
C &so,

Table 9 - (Static) Consistency Between 2 Kuns of the Same Program

Active Branch Instructions ccoml: 1384
ccom2:511

cppl: 326
cpp2:297

of Instructions I_versing Behavior ccoml+ccom2:18
cpl)l+cpp2:2

4/-'llranches Performed ccoml+ccom2:463,133
cl)Pl+cpp2: 402,78J.

Branches Lost ccoml+ccom2:205

cppl-Fcpp2:276

15

;]_ble 10 - Consis't, ency in Initial State selection for 4-Superpredicto r
• , ,..... ,::,, ,, ,:7,, ..- ,,., , _

" ' Design Test Set.

Set ccolll] CCO1"112 ,,I , CCOI]'I] + Ccoln2

ccoml ' "95.86% 95,50% 95.69%
.... cc0m2 ' ' 95.4"7% 9[_'157% 95,81%

ccoml + ccom2 95,85% 95,55% 95,71%
........... ,.... ,

" cpPl .cpp2 cppl + cpp2.. ...

.cppl . '"951Li1% 96,3i%"' 96,1'4% _
clp2 '95.34% 96.35% 96,16%....

cppl + cpp2 95.39% 96135% 96,17%

Table 11- (DynarniC) Consistency Between 2 Runs of tile Sarne Program '
.... '......... " '"_ Correct upper Bou,,{l

Design Set Test Set # I3ranches Performed Individual-l. Composite
ccoml q: e:com2 " ccoml 247;262 99.38% 99.36%

" ccon12 215,871 99,7'5% 99.72%
" ccoml +"ccom2 ' 463,133 99,53% 99.53%

cppl + epp2 cppl 75,657 99.5'3% 99.48%....

" cpp2 327,124 99.90% 99.89%

" cppl + cpp2 4{)2,781 99.81% 99.81%......

8 Conclusions & Directions for Further Work

For our set of UNIX traces, the bounds on the accuracy of the best possible branch-predictor using static
information or <_ 2 bits of dynamic or static+dynamic information are enough to limit pipeline speedup
and utilization by a significant degree. For example, in a machine with a pipeline' depth (and associated

misprediction penalty) of 4, the utilization will be no better than 92% under static prediction, and 95%
under dynamic or static+dynamic prediction with 2 bits. The speedup will be no better than 3.7x under
static prediction and 3.8x under dynamic or static+dynamic prediction with 9. bits. For a machine with a
pipeline depth (and associated misprediction penalty) of 8, the utilization will be no better than 86% under
static prediction, and 90% under dynalnic or static+dynamic prediction with 2 bits. The speedup will be

nobetter than 6.9x under static prediction and 7.2x under dynamic or static+dynamic prediction with 2
bits. _lb achieve higher degrees of speedup and utilization for the same pipeline depth and workload, the

architect will need to design a branch-predictor with more bits of dynamic or static+dynamic inforrnation,
or devise a new class of branch-prediction strategy.

The 4-superpredictor, generated by an optimization procedure,, appears to be superior to any proposed
method of branch-prediction using up to 8 bits of information for each branch instruction. The results of
such a study are only as strong as the data used - they look almost too good - and may be biased by
tile nature of the test cases. For example, the 2-superpredictor.outperformed the miscellaneous predictors

shown in Appendix II; this contradicts earlier findings [4] [15], suggesting different control-flow patterns
between the test cases. The observed consistency between two program runs irl 7.3 is based on too few cases
to be convincing. Ali the results are ba.sed on VAX UNIX utilities; they should be extended to numeric

Fortran codes, sys' em programs, and Cobol business codes (as is done in [4]) if "superpredictors" are to be
sllown practical. Very likely, the structure of the 4-superpredictor will change using such design sets, though
by definition it will have to perfornl al. least a.s well as any other 4:state predictor. \¥il:h more d,ta the
information-theoretic upper bound on dynamic predict, ors may also be reduced enough to indicate that sma.l]
SUl:_erpredictors are near-.optimal in practice. \Ve Consider our methods more interesting than our results al,

this stage; an architect needing an improved branch-predictor can use the information-theoretic bolinds as
rcf,:rellce in deciding how mucl_ il,lprovement is possil,lc,.

The problem of finding a superpre.dictor [10] appears to be intractable since il. is si,lfilar l,(_ an Ar'P -
COml_lete prol:_ler, i for finite-state transducers [17]. I_rut.e.force case-I_y-case analysis was used I,(_ tiIld t.l,'.

17

optinlal predictor [11], and was. effective for ollly 1 to 4 states. '['h,_re may h_ve been a h_rge arnounl, of
redundancy ill theenumeration of c_ses. A more efficient enumeration schemo migllt provide results for 8
or 16 state predictors, though a polynomiM-tin-ie optimization algorithm should Mlow solutions to arbitrary
sizes. In the meanLirne, more mediocre prediction schemes might outperform the 4-super,,redictor simply by
designing predictors on larger numbers of states.

Tlm number of gates required to hnplement a superpredictor on 16 or more bits would be prohibitive if
.it requires a complex boolean mapping. Again a more mediocre prediction scheme may be able to perform
well with less logic, lt might be more realistic to use a theory of circuit-complexity rather than information-

compleyd'ty with which to classify and'optimize the predictors.
Sonle stat.istical methods might, be 'used to study the information-theoretic upper bound for unbounded

dynamic information. The bound drawn had depended on there being a small but significant number of
branch-history strings of long length. We might assume these strings were drawn randomly from a distribu-
tion; this underlying distribution would deternfine the actual information-theoretic upper bound. The set of

strings used was small enough that the underlying distribution could be. almost anything, with any resulting
bound between 50-100%. Textbook distributions, such as Gaussian or Poisson, are unlikely to be realistic,
judging from the distribution in figure 5. An interesting hypothesis is that strings of higher Kolmogorov-
complexity [5] occur with lower frequency, since the Kolmogorov complexity measures the computational
"difficulty" of generating the string. The range of Kolmogorov-complexities increases among longer strings -
this implies that sparse sets of long branch-hiStory strings would tend to be observed. Further, the cumula-

tive Kolmogorov-complexity across strings with a given ratio of O's to l's should show an irregular pattern.
Sparsity of long strings is illustrated in table 3 and figure 4; an irregular distribution of 0/1 densities is
demonstrated in figure 5. The resulting upper bounds on prediction could be impossible to determine.

The model of pipeline utilization made .some gross .assumptions regarding the costs of operations and
the penalty of a bad prediction. The model might be extended, and considered in a revised opt.imization
procedure; alternately the sensitivity of the model to these assumptions could be studied empirically. The
model of finite-state predictors assumes teat a predictor is associated with a branch operation for the duration
of the execution; in reality the state may be stored in a cache which is periodically erased,.and prediction is
restarted further along the branch-history string. Our model would assume the. predictor states are stored
and reloaded whenever cache entries are displaced; in fac t exarnples can be constructed where periodically
reinitializing a Moore-machine improves the prediction [12]. A Mark0v-chain may be a more appropriate
predictor model under these conditions. The penalty of a prediction cache miss can be considered in Our
extended model in section 2.

Our definition of predictors based on dynamic information was quite narrow - prediction could only
depend on the prefix of the branch-history string. More exotic methods are possible, such as cross-correlating
the behavior of different conditional branches in the programl Such methods are not necessarily a.s limited
as the ones treated here; they may be practical for VLIW systems, where the program can be modified Lo
analyze and predict its own behavior. We did not pursue these possibilities because a) we have foundno
proposed methods falling outside our classification scheme, and b) our analytic approaches did not allow us
to make general statements about other classes of predictors.

Acknowledgments

Our interest in the problem of branch-prediction arose from our work on the lIPS architecture [8] with
Wen-Mei Hwu and Yale Patt. Umesh Vazirani, Chris Perleberg, and Corina Lee provided useful feedback.

18

References

[i] R..P. Colwell, lt..P. Nix, J .d. O'Donnell, D,P. Pai)wortl'l, lt.I(, l/.0drntm, "A VLIW arcllit, ecture for a trace
scheduling compiler," IEEE 7'rans. on Computers, vol. 37, no, 8, pl). 967-979, Aug. 1988.

[2]a,l_.. Ellis, Bulldog.. a Compiler for VLIW Architectures, MIT Press, Ca_nbridge MA, 1986,

[3] R.W. Ilolgate, ILN. Ibbett, "An analysis of instruction-fetching strategies in pipelhmd computers,"
IEEE Trans, on Computers, vol. 29, no, 4, pp.' 325-329,April 1980,

[4]J.K. Lee, A.J, Smith, "Branch prediction strategies and branch target, buffer designs," IEEE Compllter,
vol. 17, no. 1. pp. 6-22, Jan. 1984.

[5] M. Li, p.M.IJ. Vitanyi, "Two decades of applied Kolmogorov complexity," Proc. lEES ,g.tructuTr, in
Complexity (Jrd aT_nual conference), June 1988, pp. 80-101.

[6] D.J. Lilja, "Reducir, g the .branch penalty in pipelined processors," IEEE Computer, vol. 2i, no. 7, pp.
47-55, July 1988.

,r

[7] S. McFarling, J. Itennessy, "Reducing the cost of branches," Proc. 13rh ACM/IEEE International
Symposium on Computer Architecture, June 1986, pp. 396-403.

[8] Y.N. Part, S,W. Melvin, W. ltwu, W,, M.C. Shebanow, "Critical issues regarding HPS, a high-
performance microarchitecture," Proc. 18lh Microprogramming Workshop, Dec, 1985, PI), 109-116,

[9] C.H. Perleberg, A,J. Smith, "Branch target buffer design and optimization," Univ. of California, Berke-
ley, Tech. Rep. UCB/CSD 89/552, Dec. 1989.

[10] C.G. Ponder, "String prediction by a small machine," in Sludies in Branch-Prediction (this report).

[11] C.G. Ponder, "Solving Moore-machine prediction by brute force," in Studies in Branch-Prediction (this
report).

[12] C.G. Ponder, "Questions fundamental to the theory of branch-prediction," in Studies in Branch.
Prediction (this report).

[13] B.R. Rau, ,CYDItA TM 5 directed dataflow architecture," Proc. I988 IEEE Spring Compcon, Feb. 1988,
pp. 106-113.

, ,

[14] M.C. Shebanow, Y.N. Patt, "Autocorrelation, a new method of branch prediction," Submitted to IEEE
Transactions on Computers (Nov. 1987).

[15] J.E. Smith, "A study of branch prediction strategies," Proc. 8rh IEEE Symposium on Computer Archi.
lecture, May 1981, pp. 135-148.

[16] D.R. Stiles, H.L. MeFarland i "Pipeline control for a single cycle VLSI implementation of a complex
instructionset computer," Proc. 1989 IF,ES Spring Compcon, Feb. 1989, PI). 504-508.

[17] U.V. Vazirani, V.V. V_irani, "A natural encoding scheme proved probabilistic polynomial complete,"
Theoretical Computer Science, vol. 24, Pl). 291-300, 1983.

19

AppeIldix I- Pinit;e-St;al;c Sllp¢_rl_redicl;ors
J

13esigllat, ed lnit, ial Sl,at,e

I'1 T Accuracy : 51,0BY,
Remarks: Always predict

_lllO't', takell, "

Accuracy : 9S, 00_,

Remarks: Alway_ predict

T T previous input,

Accuracy: 95.05_{

Remarks: Kludge on top
of 2-state

N N

20

Nollcleternlinisl, lc Illil;ial Sta_e

.A,¢curacy: 51.08%

N r Remarks: Always' predict
SfllOt taken, j_

Accuracy: 95,10_

N _ Remarks: Always predict
previous input.

Accuracy: 95.28_
N Remarks: 3 disconnected

components treat
T 3 kinds of

behavior.

N N

T T

?.l

Appendix II- Miscellaneous Predictors

Description', S-I proposal

Accuracy: 92.16_
Remarks: Requires 2 "takens"

' or "not takr;ns" in

a row to change

guess.

Description: Majority

N Accuracy : 92,62'/,

alks: Predicts more

' Ireque'_t result
_4 so far.

h-
T T

Description: 2-Branch History

Accuracy : 92.85%
Remarks: State encodes

/" _ last 2 branch

T results,

y

T_ \ /r

2'2

Q_lestions Fundament,_fl to the Tlmory of 13ranch-Predictioil *

Ca, rl (;. Ponder

Computing Research Group, L-4 19

I,awrence Livermore Natio1_al I,aboi'atory
P.O. Box 808

I.,ivermore, (.',A 9455(1

(,115),t23-70:_4

There are a numbe1' of issues to be resolved in designing a good branch-predictor, tlow good is a given
predictor? When is it. optimal? Itow does one predictor perform with respect to anothe,'i across some range
of cases? How is the performance conditioned by other considerations, such as cache nlisses? Some of these

questions can be posed in a genera! way, and answered by constructing (degenerate) exalnples.

i

1. Can branches be predicted 100% correct'?

A branch-predictor can be constructed to be 100% correct for a given program A:

St_L_T,_ _'A _'

Vr' TO

By simulating the progr.'_m A, the predictor determines the direction of the next branch correctly each time.
No program is bad for all predictors; furthermore, for any predictor there is a program for which another
predictor is at le_:.ustas good.

2. Can a branch predictor be 100_) correct across ali programs?

On the flipside, a program carl be constructed to render a given branch-l_redictor]3'100% wrong. By
simulating the predict, or B on it;s own execution, tile program simply does the Opl)osite of what the predictor

"This materiM was omitted from [!] for the sake of compactness, but. is necessary for a complete., treatment of the subject.

23

will guess:

or' #aSt

2\

@lq_

la(o 1.0O (I lO,i_l_

(Tvz _C H t

No branch-predictor is, or can be proven, infallible.

a. Itow good can an oblivious predictor be?

The above cases depend upon the predictor encoding the program, or the prograln en coding the predictor.

If the predictor is limited to monitoring the branch.beb.avior of the program, we can still find limits on its
quality. Let P perform independent flips of a fair coin, and branch accordingly:

F_.t P

l
VlkJ

i,io

Any predictor will have an expected correctness rate of 50%. Using a pseudo-random tmmber general,or
(along the lines of Yao [2]) we can in fact construct a family of prugrams approaching t,his:behavior, so long
as the predictor does not encode P.

4. Is dynamic information l)ett(,;r than stati(" infornlation?

So far we have placed few restrictions on the nature of l,l_e predictors. In reality the pred'icl, iox_ for a
given bra_,ch instruction may be t.)_Lsedonly on its own bellavior. \¥e distinguish two types of l_redi('.tioll
information: static inform.alton, whicl} is associated with a branch instruction before tile progrtml ex(!,.cut.(_s,
and does not ,:hange.; and dyT_amic illJornlatzoTl, whicla is initially tlm same across ali brancll instructions, bul.

2,1

changes with the behavior of the instruction. Tile quality of a static predicl, or is sensitive to the interference

between elements of a given branch-history string. The quality of a dynamic predictor is sensitive to the
interference bet,ween strings,

The following branch-history string will be predicted 50% correct, by a static predicl, or'

NTNTNTNTNT

A dynamic predictor need only reverse its prediction each time to predict 100% correct. The following set of
branch-history strings will be predicted 50% by a dynamic predictor, since the second element is essentially
independent of _he first element,!

NN
NT
TN
TT

A static p'redictor will be 75% correct by predicting "NN" for the first two cases, and "TT" for the Second,,

two. Itow static and dynamic predictors compare in practice is another matter.

5. What is the effect of re-initializing a predictor?

This question is concerned with the hardware implementation of a predictor. Prediction is usually done by
maintaining a table of information associated with each conditional branch instructiop in the program; if
this table is stored as a small cache, entries are periodically displaced. If a displaced entry is not saved and
restored, prediction for the associated branch instruction is re-initialized when it next executes.

intuitively this re-initialization should degrade the prediction, since information is lost. We can construct

an example where this is no¢ the case: let {TN k }* be the string we want to predict. No finite-stat, e predictor
will be 100% correct unless it has > k states; however, the following two-state predictor will be 100% correct
if it is re.-initialized every (k + 1) steps:

,,

Wl2c.t,ller aJl era sixlg-c.ache sche,ne will outperform a rel_lacing-caclj(, scllemc in practice is anotl,er question.

25

I eferences

[1] C.G, Ponder, M.C. Shebanow, "An informatlon-theoretic look at branch-l_redict, ion," ixl ,5'tudics i77
Branch-Prediction (this report i.

" _LEI', ,Sym lWSZum o711 oun dalions[2] A.C. Yao, 'q:heory and applications of trapdoor functions Proc. 23rd _c _' ' _ ' ,'
of Coml,Uter sciencc, Nov. 1982, pp. 80-91.

26

String Prediction by a, Small Machine

Carl G. Ponder,

Computing Research Group, L-419
Lawrence Livermore Nation_d Laboratory

P.O..Box 808

Livermore, CA 94550

(,115) 423-7034 ,,

There are circumstances in online computation where we wish to predict the value of an input before

it:is actually known. An example is in'branch-prediction [2]: the microcontroller guesses whether a brancti
condition will hold before the conditional expression is evaluated. It then prefetches instructions from
the assumed branch destination. The instruction-stream can be processed faster by prefetching than .by
repeatedly waiting for conditions to be evaluated. The more correct guesses, the lower the penalty due to

incorrect prefetching.
I-Iere we formalize the prediction problem as a prediction of the ith element of a string,' based on the

previous (i- 1) elements. The predictor is only allowed to maintain a fixed amount of'information. The

predictor is modeled as a Moore-machine [1], where the states of the machine encode the information states
of the predictor. We can then determine how good the "best" predictor of this type can be.

Defini_iort: Let z and y be two strings over alphabet IE, of length rn and n respectively. \¥e de-
fine error(x,y) as the number of positions i, 1 < i < rain(rh,n) such that x[i] # y[i]. For example,

error(000! ii0,00001110) = 2.

Definition: a roofless Moore-machine Mover E _ is a four-tuple (Q,IE, a,A). E is the input and output
alphabet. Q is the set of states. _ is the state-transition function _5:Q x E ----_Q, determining a new state
based on the old state and the input symbol. A is the output function k : Q ---+E determining an output
symbol for each state. For example:

0

Given input string al a=...an and initial state qi_, M computes a mapping M(qi,, al a2...arn) = b_b'2...b,, b,,4.1

where 6(qi.,.,aj) = qij+, and k(q/,) = bi. The machine shown above maps the string 0001110 into 0000Ii10,
when star_,ed from state q0.

We can now combine these two definitions, to measure how well M predicts a given string z: let q,(q,x) =

error(x,M(q,x)). (I, is precisely the number of positions where the input x fails to match the output of M,
starting from state q. In the abow! example, 4_(q0,0001110) = 2.

1Note that this definition differs from standard Moore-machines [1]; under the standetrd definition 'the input and output
alph_d_etsmay be different, aald there isa premssignedstart state q0for every computation. This variation better fits our needs,

27

llere are four fornls of tlm l)redictiolt problem, We n_ay izl soIlje c_L_eswant to predict collectiorls of stril_gs,
with or witllout the restrictioTi til at we nmst start is, tl_e sasne initial state each ti.x_'_,

Problem 1: (predicting a single string) _' ', Given k and a strillg x, what is l,ll_ stnallt_st tC "-- (l,(q,z) for any
k-state machine M and clloice of initiM state q?

Problem 2: (predicti_g a set, of strings, from the san.: start stat,'c), Given k a,_d a set of strings {u:j}, wl_at

is the snlallest /3' - _-4 q'(q' xi) for any k-state machine M and clloice of initial state q?

Problem 3: (predictingasetofstrings, from arbitrary start states), Given k and a set of strings {zj),wl_at

is the smallest E = ___j cI)(qi,, xi) for any k-state machine M and assignment of inil,ial states q; ?

Problem 4: (predicting a sat, of strings, where designated subsets nmst start from same initial state), Given '

k, and a set of strings {a:i_}, what is the snaallest E - Ej,lcI'(qi,,a'jl) for at_y k-state _nacl_izm Al atjd
;t,qSiglll]lOlll, Of il,it, ial states qij?

Is tl.._rc al, el'l'icient solution to t;l,ese problenls? An ideal solution would t_e polyilor111al ill k alld lil.-.ar
iii til(, lellgtlls of t'.l,e strings.

Remarks: These problems are clearly in .&r;r, if we ask wllether tlmre exists a k-state nlachlne' M sucll tlmt
tlm error. E < E ¢, for given k and E _, A nondetermhlistic Turing IllacllixJ_' need only generate a /.:-state
inachine M (picking au assignment of initM states as necessary), sinmlate it on tile input, and answer "yts".;.
if M predicts the input within the margin of error. A related problem for Mealyzmacliines [1] has been sl_own
A/7_-complete [3].

Problem lis trivial if k is as large ms the input string, since.we can encode x directly into M. Problems=

2-4 are similarly trivialized if k is as large as the sums of the lengths of the input strings.
There is a variation on tl_ese questions which is not of direct interest; but see_ns _atural to ask. I"or eacl_

mac!_ine Ai there is a string s which M will predict 100% correct, and anotl_er s' which Ai Will predict 0%
correct. But for tixed /,:, tllere should be "long" strings wl,icl_ any k-state machi_e will show only limited
S UC tess,

Problem ,5: (the worst possible string for any k-state machi_e). ('liven k and n, what is

max(rnin(q,(q, s)))
s M,q

wl_ere M ranges over ali k-state machines, q ranges over the states of M, and s ranges over all strings of
length ,'/ Is there any pattern to these "worst" ctrings?

Clearly a lower bound is ./IEI, independent of k, since at least 1/IEI of the positions of any string will
contain the same symbol. A 1-state machine predicting sequences of the same symbol will be right for that
many positions.

References

[I] .].E. ltopcroft, J.l). Ullman, Introduction to Automata Theory, I,anguages, and Computation, Addison-
Wesley, Reading, M ass., 1979.

[2] J.l<. Lee, A.,I. S_nit.lt, Branch Prediction Strategies t_,<:1I3ranch Target 13t_ffer I)esigns. IE'El;/Compiler
17 (195,1) 6-21.

[3] U.V. Vazirani, V.V. Vazirani, A Natural Encoding Sct_eme Prow_d I_robabilistic Polyno_ial CO_nl-,lete
7'heoretical Computer Science, 24 (1983), 291-300.

Solving Moore-Ma,chirle Predict:ion by Brul;e Force

C_rl G, Ponder

Computing Research Group, I.,-419
Lawrence Livermore National Laboratory

P.O. Box 808

Livermore, CA 94550
(415)

Abstract

A Moom-machin_ Is a form of finite-state transducer, mapping string x into string z'. Gt_en k
and a string z over {0, 1}, the Moore.machine prediction problem is as follows: find a k-state Moore-
machine such that xi = zl for as many i as possible. A brute force solution enumerates ali k-state
Moore-machines, simulates each on z, counts the number of positions where each mac}fine produces a
mismatch, and identifies the machine minimizing this count, Some theoreticM refinements allow us to
remove redundant M0ore-mae sines from consideration.

Introduction

Variations of the Moore-machine prediction problem are discussed in [2]. Tlm purpose of this report, is
to explain how the problem was solved in [3], for readers intending to rel,roduce or repeal the study on
additional data sets. The problem was solved using a brute-force algorithm. Two details of this algorithm
are sketched' how the Moore-machines are enumerated, which derives from Graph Theory,. and how we
eliminate redundant machines, which derives from Automata Theory. Farniliarity with Moore-machines and

the stringprediction problem are assumed, Details of representing, simulating, arid choosing the opt!mM
machines are straightforward; the code is somewhat readable if one is interested.

The following table shows the number of distinct k-state machines used in the simulation. The nunfl)er

depends on whether an initial state is designated, or can be chosen to best predict the stri,g (called non-
deter'rninislie initial state). A gross upper bound of k_k2k is shown for comparison; there are 2A' ways of
assigning 0 or 1 as the output of each state, and there are k possible destinations for each of the 2k state-
transitions. Many of the possibilities compute the same mapping, or form improperly configured macllines;
the algorithms in the following sections limit the enumeration to nonredundant and correctly-formed cases.

Counts of distinct Moore-rnachines

number of distinct machines upper

states des!.gnated initial-state., non deterrninistic initial2state bound
1 1 2 2
21 ' 12....... 16 64

.............. ,,,,

3 216 5832
4 5428 14279 1048576
,5 f6o675 312,50o600

......... :......

For machines with designated initial states, tile states are not a.ssigned outputs, tj'his sl_ould reduce t,lle

rnachine count considerably. The sirnulation is siml_lified by assigning outputs to stales after completillg, a.s
described _r_ the next section.

Machine ::,:,es of/e = 2" are considered in our study [3], where each state correspo2tds to a coiltiguratioll
of. bits. q'he n lnlber of k-stal,e llmchines grew fast enough tllat t,lie problem could Jlof be solved for 2a = 8

_(

states: storing the machine descriptions takes Lee mucll space, and simulltLing tlmm takes Lee inuch til_u:,
For k = 4, gelwrating the tlmchines takes about a day oll a liglitlS,.-hmded VAX 86()0 or MII'S/l li(III,

Enumerating Machines with DeslgnaLed Initial St;ate

The following nondeterministic algorithnl generates ali possible k-state lllacllines, sucll tllat a) every stn{.c
is reachable from the initial slate, b) every state has two exiting transitions (0 and 1), No twu nmchilm
descriptions will bc isomorphic,

Three sets of states are maintained: U is the set of uTlused states with no incolning or outgoillg traIIsii, iozts.
W is the set of working states with inconfing, bui, llot outgoillg, trallsitiolls, .I;' is tlm aet of finished states
with ineozningand outgoing transitions, At each iteration IU]-b]W] + lie I = k,

1, Initially l,l" = {1}, tlw initial state, wit,li ali illll,licit: i_lCOll_iJlgl,rmlsiti0n, /I =.- {2,.,,_'} cc,l_taiJls l,ll,,
remaillillg Sl, aLe's.

2. l)raw a state ,_;'from 14:; sel, tile trallsitioll eli 0 to eil.ller

• a_ty one of tile 114/Iworking slates,

• any of the I/_'1final states, or

• a new state if IUI > 0, in which c.ase tllis new state is Inoved frmn U to W,

3. Set the transition on 1 to either

• any one of the fW I working states,

• any of the 1t*'I final states, if [ICf > 0 or [U[:-: 0 (tills i,regenl, s tlw _lachine froil_ being coral,le!ted
with fewer than k states), or

• a new state if [U[> 0, in which case this new state is moved fronl tj to W,

d. Move S into F. Return '_ostep 2 if [F[< k,

This will take exactly k iterations,

'lh actually program the nmldeterminism, a recursive procedure keeps copies of U, W, and F. Whenever
alternatives are presented, recursive calls are made wltich create appropriately modified copies of U, If, alld
F. Once a machine description is completed, it is written into an array used in tile later simulation,

Note that outputs are never assigned to the states, This saves work in the simulation, Rather than
comparing the input and output of each machine, the simulation records the number of times a 1 or 0 is

read as input Lo each state, After the simulation completes, the state is defined to output whichever input

was more frequent; this minirnizes the prediction error across ali 2 k assignments of outputs, without having
to enumerate them,

Redundancy still exists: states will be equivalent under many assignments of outputs, The machine
will be non-mininml under such assignments, and hence equivalent to a smaller machine, Likewise, sonm

minimal machines may compute identical mappings, An alternative approach is to assign outputs to the
states, whictl increases the number of configurations, and remove redundant machines, which decre_Lses tile
number of configurations. This approach had to be used in the following section, The number of macllines
grew by less t]lali a factor of 2k, as shown in the table, so a significant number of possibilities must have
been eliminated. Sillc(.' the number of configurations is largc, r witll nondeterministic initial states, il, is still
not clear whether or not this approach would produce more macllines with designated initial states.

Enumerating Machines with Nondetemninistic Initial States

A harder version of tile prediction problem allows each sl,rillg in a set to be predicted from a different illil,i'al

state. We musl (letermine botli tile best machine and the best assignment ot' illit,ial states to strings, 'l'lle
Moore-.:nachines have a different cllaracl.e.r: there is no designated illitial state, and tlm sLal,es need u(_t,ali I,e

collnecLed. The "nlachine" may acl, ually lie divided il_to disjoint (:onlm('.ted COml-;onel_ts; and different strings
are l_re(ticted by the difl'er(..nt parts, Tile previous enulneral,ion I)revenl,ed itself froln creating ma¢:llil_es l,hal.

3()

were t,oo sllmll or ll_t<lutire_tc.hnble stit(,es, 'l'llese ,u'e no longer cot'tsideral, ions: ttuy sl,l-tt,e lli_ty be ft sgttrl, sLut,e,
and lleilce is rettcllable.

(.'liven lt liiacJitile wit, li/_: sf.at,es, Iri, c Itr {.Itr ittllnber of coliilecLed colllpollellt, s, I,eLsi be {,lie size of t,he itll

connected colill_onetlt,, noltdecre_tsing in i, k = }_; *i, 1t' t,wo niuchines Itre isorriorptlic, theli _t) l,hey eonsisl, of
t,he l_atrie lmlliber of COmlmllents, und b) eorrespollding colnponent.s are. isoniorl_liic, ',l'he lnttchill.es full ilit,o
cllisses tlccordiiig to t,he urrutigetilenL of s; we generltLe disl, incl, niucliities us eolnl_iu_tt,ions of disl,ilicl, si-sized
compoimnt,s. The only l_roblenl occurs when two eolnpolmnts have ectu_tl size: l,hey lliliy be isomorphic to
el,tell other; iii wliic.ll ea,_e t,he niacliilm is noli-mitliinal _tit¢lc_m be reduced, oi' tile in,tehilie may be shown

isomort_hic t,0 anot, her by reordering t,lle components, "lT'henext, sect,ion shows how Lo eliminate such cases
itri,rr they _tre construct.cd,

The following nondeternliliist, ie algorithm generates ali possible _l.sl,u.t,eeorinect, ed compoimnt, s: !./,14:,alid
I_'_lre defined ti.s before, except, the sl,aLes of F lieed tier have incolning t,ransitions,

1, lllil,i_tlls; I"l:= {1} Itllcl I: -= {2,,,,_l},

2, l)ra_' ,t st,,tl,e ,.q'frolrl I'1:'aild ge l,o sl,ep Ii, or frorrl I./ fllld J_O{.o.st,el" '1.

3. Set. t,he t,riulsit.ion oil (I t,o either

• all3: one of the li,l.'] workillg st,ares,

• ally of t.lle]/e I [ill_l.lst,ai,es, or

• a new st,al,e if iU] > 0, in whieli case t,his new state is moved from U t,o 14:.

F_epettl, for the l,r_tnsil,ioll on 1, _uid go l,o sl,ep ('l,

4, Sri, olle of the tr_tlisit, ions Lo eil,lier

• any one of the IW] workilig st,al,es, or

• ,I.,iy of Lhr Is"ltln.i s_._t,e.s,if IWI> 0 or ItzI- 0

'].['his prevents a new coliimcl, ed COml,otieilC frolri forulill!;.

,5, Set the renlailiing transition t.o cit.Iter

• _ny one of l,tie Ila,'] workillg sl.ttr,es,

• any of/.lie II;'lfi_l_tlstates, if IwI > 0 or IISl:=0, or
• a new si,ai,e if iU[> 0, iii which c_l.sethis new s.al,e is liiOve_t front I.I to 14:.

{3, Move £' inLo /,_, Itri, tim i,o st,ep 7 if iS 'l<.,,,
Alttin, Lhis process Lakes li iterations.

The sinltllai, iOll processes etich sl,ring USilig e.lteh 8i, lll,e tt._;t.ke inltitt.l st,ate. ,qt_tl,e Otlt, plll, S ll'llisi, l)e _,_sig;ned:
the bedunee of O's _nd l's predicted by eucii state depends upoli [.}leiilitiul st.al;e ,I-ssigilniellt of eucii sl.ring,
which is not fixed. Ali f2_ otltpUl, ussignineilts Irlilst, be considered. Non-miniliild inuchines urr eliminated,
since they urr irnplicil, ly considered with smttller k. M_ichilies are discarded if _ii equivalent, mltclline has
_tlre_dy been produced. Testing I-llillimality _uid equiv_tlence is explailied iii I,he llext, seclioli.

Identific<"ttion of Non-Minimal and Bquivalent M_chines

'1'li(: Myllill-Nerode i,heorelii [1] provides li w_ly to t,(,si,til(., liiillilll_tlil,)' of _t Ill_<tehille,or t,lie equivltiellce cir
t.wo tn;-lchines, using the t'ollowilig f_.lct.:

Two si,ai,es are ilieqiiivale.ril, if, fc_rSl::,lill:, ilililit, sl, rilig a:, i, lie lii_tcliiile l_i'odiic_,s diiTereill, _ul,pul,

de,pendiilg ill:>on wliicll is lise<las l,li_' iliil, il-ll sl,_llx,,

'l'exl, books define l,he l,iieoreili iii Lerliis of tiliil,<_-si,_lieili;ictiiiles; t,liv exl, elisiOli t,o l,rltilsdlicers is ideill, ici_l iri
till w_tys.

A /_'× /_'i,l.d>l_ill,irks p,'tirs of sl,ltl,es kllOWll [xi lie ili_!qUiV;llelll,. 'l'llt! lilillilliltlil,y ta'sl, is lm follc>ws:

1. If two states httve different output, mark them &,_inequlvalent.

2, On a given input, if two statics transfer go inequivalent st,at,es theft mark them inequivalent,,

For each pair of inequivalent states, then, we follow each transition backwards to find the states they trmlsl'er
l'roln, Tills requires o_xly k :a tests, since eacll p_dr of states is considered at, most once, _md only after (,lie
t,wo have been shown inequivalent, Once every pair of inequiwtlen{, states 'is processed, and no new ones
appear, any pair not marked inequtvalent are now equivalent. If two equivalent states exist,, the machine is
nori-minimal.

Testing equivalence between machines is identical, lnst,ead of comparing states of the sanm lnaclline, we
compare the states of one machine with the statesof the oilier. Repeat the above procedure; the macllines
are equivalent, if a correspondence can be found between the sl,ate_. of the two machines, such that none of

l,lle pairs of corresponding states are shown in_'.'quiwlleut,.

I_eferences

[l] ,l,l'.,'. llopcrofl,, J ,D. Ullnmn, lntroduetioll to Aut_)ll,al, a 'l'lleory, Imnguages, and C,ompul, ation, Addison-
Wesley, Reading, Mass., 1979.

[2] C.G. Ponder, "String prediction by a small lnachine," in Studie, in Brane/!-1-'rediction. (this report).

[3] C,(3, Ponder, M,C, Shebmmw, "An infornmtion-,tlmovetic look at branch-prediction," iii Studies i7_

BraT_cb-Prediction (t,his report),

32

t /#!j,h...... (.... ,_

