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The following four papers describe work I performed on the branch-prediction problem.
Originally Mike Shebanow brought the problem to my attention, while developing an im-
proved branch-predictor for the HPS design at UC Berkeley. It occurred to me to derive
upper-bounds on the predictability of branches, based on the characteristics of the predictor;
the bounds provide a way to judge the quality of a given branch-predictor, and of knowing
when certain design constraints must be violated to achieve a requisite level of prediction
- accuracy. Many of the ideas in the first and second papers came from discussions with Mike
Shebanow, who also provided the trace data.

Previous work in this area concentrates on presenting specific branch-predictors and
evaluatmg them on trace data. This trace-driven szmulotzon approach has made outstanding
progress in improving methods of branch-prediction. Trace-driven analysis or trace-driven
optimization is a refinement applied here, to study the problem of improving the predictions
as much as possible. I expect to apply methods of trace-driven analysis to other problems in
the future. The results are limited by the trace data available; although the comprehensive
 data from the Lee & Smith study is on magtape, it is unreadable and no one else was willing
to provide anything beyond more UNIX traces.

Deriving bounds is not always easy. The Moore-machine prediction problem described
in the third paper must be solved; the brute-force solution described in the fourth paper
constructs optimal machines as a by-product. These optimal machines, or finite-state su-
perpredictors, appear in the first paper, which suggests that an architect should design a
superpredictor from program traces and incorporate it in improved CPU designs. An effi-
cient solution to the Moore-machine prediction problem would help considerably. -

-- Carl Ponder,
Lawrence Livermore National Laboratory
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An Information-Theoretic Look at Branch-Prediction

Carl G. Ponder

Computing Research Group, L-419
Lawrence Livermore National Laboratory
‘ P.O. Box 808
Livermore, CA 94550
(415) 423-7034

Micheyel C. Shebanow

88000 Advanced Processor Design Group
Motorola, Inc. - OE318
6501 Wm. Cannon Drive West
Austin, TX 78735 .

Abstract

Accurate branch-prediction is necessary to utilize deeply pipelined and Very Long Instruction-Word
(VLIW) architectures. For a set of program traces we show the upper limits on branch predictability,
and hence machine utilization, for important classes of branch-predictors using static (compiletime)
and dynamic (runtime) program information. A set of optimal “superpredictors” is derived from these
program traces. These optimal predictors compare favorably with other proposed methods of branch-
prediction, ‘

Index Terms: branch. prediction, CPU performance, information-theoretic bounds, Moore machine,
pipeline optimization.



1. Motivation

The majority of modern high-speed computer architectures crploy pipelining as a speedup mechauism.
Pipelining subdivides the work of an individual instruction into @ scquence of stages, and overlaps the
execution of successive instructions by exccuting different stages of different instructions simultaneously.
FPuture systems will use pipelining to larger and larger degrees.

Conditional branch instructions potentially interrupt the smooth execution of a pipeline — the pipeline
may be ready to process instructions from the destination of the conditional branch before the condition has
been evaluated. Null instructions may be passed through the pipeline until the branch-condition is resolved
and instructions from the correct destination are ready to be fetched. This sequence of null instructions,
referred to as a bubble, inhibits pipeline utilization by filling pipeline stages but performing no work,

An alternative to passing pipeline bubbles is, branch-prediction, where the result of a branch condition
is guessed before it is fully evaluated. Instructions from the assumed branch destination are processed
immediately. Some repair work is necessary if the guess was incorrect, to erase the effect of exceuting the
wrong scquence of instructions. It is interesting to note that fairly simple schemes of guessing are reasouably
accurate. Treatments of plpclmmg and pipelined machines are found in 3] [8] [16]. The specific problem of
branch-prediction is treated in [4] [6] (7] [15).

The Very Long Instruction- Word (VLIW) architectures perform simultancous instruction C)\(,CUL[OII and
also benefit from branch-prediction. A program is compiled into a number of instruction streams wlnc_h
execute in.lock-step. Analysis of the program at compiletime and in sample executions is used to detect
parallelism, Some program transformations are employed to improve parallelism, notably the movement of
instructions across conditional branches. If a branch condition is deemed likely to hold, or likely to not
hold, instructions from the favored dest,matlon may be moved to execute before the condition is evaluated.
Instructions must be introduced at the alternate destination to erase the effects when the condition did not
behave as expected. Utilization of the VLIW processor is inhibited if the condition tends to behave contrary
to expectation, since operations are done and undone. Again, accurate branch-prediction is necessary to
achieve high utilization. Treatments of VLIW processors are found in (1] [13]. The specific problem of
analyzing and compiling programs for VLIW architectures is treated in {2] ‘

In this study we examine general classes of proposed branch-predictors, and show upper limits on their
accuracy with respect to a set of program traces. The relationship between prediction accuracy and machine
utilization and speedup is studied. An architect requiring a certain level of utilization will require a cor-
responding level of prediction accuracy, and may need to devise a new class of branch-predictor to achieve
this.

2 A Simplified Model of Pipeline Utilization

Consider a simple linear pipelined machine model, where instructions are issued and retired in order at a rate
of one per clock cycle. The pipeline is D stages long. We define a block as a sequence of instructions executed
between conditional branches. For an idealized pipelined machine we have the following relationship:

# instructions

1 = average blocksize =
/ & ‘ ‘ # branches
N = penalty for a wrong guess
7 = proportion of correct guesses
[/ = utilization = - - # instructions
© (# instruztions) + N(# wrong gnesses)
_ 1
BERTE | (1)
I3

Expression (1) appears to be independent of the actual pipelire length; dependent upon pipeline length
is the quantity N, which represents the size of the pipeline bubble introduced upon an incorrect prediction.
This assumes the penalty does not depend upon whick branch is being predicted.! This model ignores the

'Strictly speaking, the assumption is that the likelihood of correctly guessing a branch does not correlate with the cost of
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initial pipeline-fill and final pipeline-empty when the process is started and ended; these are not signilicant
if the length of the instruction stream is long with respect to N and D). Similar effects are present in VLIW
architectures, but are not so ecasily modeled.

Average blocksize values y are presented in table 1, for a number of real programs described in section
4. Figure 1 shows the distribution of blocksizes across all cases (the last two values are represented as a
scatter-plot). Figure 2 shows contours for fixed values of U, as a function of N/ and p. N/uis used as a
normalized penalty value; the architect may treat N as a variable parameter, but yu is determined by the
instruction set, the workload, and the compiler.

The speedup S due to pipelining is expressed as follows:

S = speedup = (pipeline depth)(pipeline utilization) = DU
D _ :
AN =LY \ )
H

From figure 2 the speedup can be determined by reading the contours in units of D, If we assume D = N,
and let the pipeline depth go to infinity, we find a strict upper bound on speedup which depends only on the
proportion of correct guesses p; this relationship is shown in figure 3. The dotted lines labelled situb, ditub,
sditub, etc. correspond to upper bounds on the predictability of our program traces, derived in sections § &
6. As we study various kinds of predictors we will see how accurate they can possibly be, and what speedups

and pipeline utilizations can be achieved. ‘
The model ignores pipeline stalls due to othier effects such as cache misses. We can adjust it to accon-

modate other causes as follows: ‘

Ny = penalty for a wrong guess

N, = penalty for other causes

p = proportion of correct guesses
¢ = frequency of other causes
- 1+ (1=pIN1+g¢N, (3)
Cou

It assumes the penalties are additive when an incorrect guess occurs in conjunction with sorne other cause.
The penalty for an incorrect guess should be insignificant w.r.t. a cache miss, so the assumption.should not
significantly perturb the results.

Formula (3) rearranges into

1

1+ 21— (p - ¢57) @

which amounts to deducting some quantity from the proportion p. If we assume that adjustments to the
branch-prediction strategy (and thus p) do not significantly affect Ny, Ny, and ¢, it appears that we can still
treat U and S as being functions of p. Figures 2-3 would remain valid by shifting the p values to deduct
the appropriate quantity. For example, if the penalties for a cache miss and an incorrect guess are the same,
and the table hit rate is 95%, the proportion of correct guesses must be reduced by 0.05 to give the correct
utilization and speedup relationships.

3 Branch Predictors

The CPU can predict branches using information collected as the program executes, or information provided
by the compiler, or both. We will call these forms of information dynamzc mformation, static information,
and stalic+dynamic mformation, respectively. ‘

Here are three notable examples of branch-prediction using static information:

incorrectly guessing that branch. An example of how they might correlate is that “expensive” branches would tend to behave
unpredictably.
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Figure 1: Distribution of instruction-block sizes
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Figure 2: Pipeline utilization contours
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~ Figure 3: Speedup for an infinitely long pipeline

1000 ]

100

S/iu

10 1

- " sllub

ditub

ditubo

U S S A S S S S ——

b e e - — — — ———— —

0.5 0.6 0.7 08 0.9 1.0

0



1. The CPU assurnes that a branch-condition always holds true.

2. The CPU assumes that a branch-condition holds true if the destination is a previous address (“backward
branch”); this would be accurate for repeatedly-executed loops.

3. Two conditional branch instructions are defined, “branch-probable” and “branch-improbable”. The
compiler issues one or the other depending upon the context. The CPU guesses the branch-condition
always holds true in the first case, and always fails in the second.

"The static information emsoocnated with a conditional-branch instruction does not change as the program
executes.

There is no initial dynamic information before a program begms executing, The CPU must guess each
branch-condition using information it accumulates as the program executes. In this study we restrict dynamic
information to a per address basis ~ the prediction of a conditional-branch instruction depends on the past
behavior of that instruction and no other. Here are two examples of branch-predictors using dynamic
information:

4. The CPU maintains a table of addresses containing conditional-branch instructions. A bit indicates
whether or not the condition held on the last activation of the corresponding instruction; on the next
activation the CPU will guess that the branch-condition holds if and only if it did previously.

5. Instead of associating a bit with each address, a k-bit counter is associated with each conditional-branch
address. Each time the branch-condition holds, the associated counter is incremented, otherwise it is
decremented. The CPU guesses that the branch-condition holds if and only if the counter has a 1 in the
highest bit-position, indicating that the branch-condition held in the majority of its recent activations. -

Most of these methods have been studied in detail [4) [6] [7] [15]. :

These two forms of information can be coupled. For example, we could apply strategy , with initial
k-bit counters accumulated in a test run of the program. The same initial information is used each time the
program begins execnting.

4 The Test Data

We use 7 Vax Unix traces from Mike Shebanow’s original study [14). Each is a frequently used utility
- program. The larger traces were truncated to 1 million instructions. Unrconditional branch instructions are
not considered here, since they require no real guessing. Unfortunately there were no counts of context-switch
“or other control-flow instructions available. Likewise, instructions with multiple destinations or computed
destinations were ignored. This may skew the results somewhat, but the effective blocksize was small enough
that we suspect that few “exotic” branch operations occurred. The test cases are described as follows, with
statistics reported in table 1.

ccoml, ccom?2: [xecutions of the Unix portable C compiler.

cppl, cpp2: Executions of the C preprocessor.

fgrep: A search in a dictionary for worrjs stored in a small text file.

find: A file-search program using the command “find / -name "*.0’ -print”.
Is: A directory listing using the command ‘Is -alsg /bin”.

Unix composite is the combination of all the other traces.

~1



[' ' Table 1 - (ﬁluu‘u(t(ﬁ!_r-r fes of the Test Daba i ]
Program 3t Instructions | # Active Branch | # Branches | Mean Block
Name Executed Localions Exccuted  Size
cconl L,000,000 | 1384 247,262 4.044
ccon? 1,000,000 H1l - 215,871 4.632
cppl 249,708 326 75,6567 | 3.300
cpp2 1,000,000 297 327,124 3.067
fgrep 1,000,000 131 394,646 2.635
find ‘ 1,000,000 o164 220,167 4.542
s 440,722 402 121,811 3.618
(UNIX composite) © 5,690,430 3215 1,602,438 3.561

5 Upper Bounds Assuming Unbounded Information

Now we will construct upper bounds on the predictability of the program traces. We can draw some general
bounds by restricting the type, but not the quantity of information (deferred to section 6) the predictor is
allowed to use. ‘ o
Central to our discussion is the notion of a branch-history string {4], which is associated with the address
of a branch instruction in the program. For example, ‘ ‘

program address: 0010100
opceode: BRC .
branch-history string: NTTNNNNTN

For the given execution, the branch-history string associated with the BRC instruction at address 0010100
indicates that, on the first activation of this instruction, the branch-condition failed to hold (“N” for not-
taken). On the second activation, the branch-condition held (“T” for taken), and so on. Figure 4 shows the
distribution on the lengths of the branch-history strings accumulated from our set of program traces. Figure
5 shows how they are distributed in terms of the fraction of T’s they contain.

The purpose of a branch-predictor is to try to guess whether the kth position of the branch-history
string will be an N or a T, using static information or dynamic information accumulated up to the kth
activation. We will explore combinatorial properties of branch-history strings in order to make statements
about branch-predictors in general.

For predictors using static information, for cach branch-history string the predictor must make the same
guess N or T throughout. The best the predictor can do, then, is to have always predicted N if the string
is densest with N’s, and T if it is densest with T’s. For example, for the branch instruction with associated
history-string ‘

TTNTTTINTTT
the optimal static predictor would have predicted
TTTTTTTTTTT

For our instruction traces, then, the optimal brauch-predictor based on static information will always guess T
for branches with an associated branch-history string densest with ‘IVs, and N for branches with an associated
branchi-history string densest with N’s. The results for the optimal assignment are in table 2 under Oplimal
Statie Predictor. This value for the UNIX composite appears as line situb (for static mformation-theoretic



Figure 4: Distribution of history-string lengths
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upper bound) in figures 2 & 3, showing how this upper bound restricts the potential speedup and utilization
under static prediction.

[ Table 2 — Upper Bounds on Prediction Accuracy ]
Program Optimal Static Optimal Dynamic Predictor

Name Predictor Own Execution | Group Execution

ccoml ‘ 90.75% 99.46% . 99.42% |
ccom?2 90.28% 99.77% 99.74%
cppl 90.49% | 99.58% 99.50%
cpp? ‘ 93.49% 99.90% 99.88%
fgrep 93.85% , 99.98% 99.97%
find , 95.24% 99.94% 99.93%
Is ‘ 90.68% : 99.74% 99.69%
(UNIX composite) 92.61% o 99.79% 99.79%

Suppose two branch locations have these associated branch-history strings:

TTNNTTNNT
TTNNTTNNN

Under our definitions, a predictor using dynamic information will base its prediction solely on the past
-behavior of the given branch. The prefixes of these two strings are identical; thus the predictor will make
the same guess for the last branch in each string. Any predictor based on dynamic information will guess
incorrectly for the last branch in one of these strings. By identifying all the distinct prefixes of the branch-
history strings from our traces, we can weigh the number of cases branching each way after having generated
a given prefix. No dynamic predictor can do better than to guess whichever direction is observed most
frequently. From this “interference” property we can establish an upper bound on the accuracy of dynamic
predictors, for these test cases.

Such upper bounds are given in table 2 under Optimal Dynamic Predictor. Quwn Ereculion is where
we consider only the interference between the strings from the given trace. Group Erecution is where we
consider interference between the strings of the given trace and the combination of the remaining traces.
Ties occur when an equal number of cases branch N and T from a given prefix; ties were broken to evenly
divide the incorrect guesses between the test case and the remaining cases. Since few ties occurred this had
little effect on the results, roughly 0.15% for the most significant case (cppl).

The dynamic upper bounds are quite high, decreasing only slightly as we increase the set of test cases
and thus the interference between strings. This upper bound for the UNIX composite is shown as ditub
(for dynamic information-theoretic upper bound) in figures 2 & 3. If a predictor could be constructed this
accurately, pipeline utilization would be determined more significantly by other effects such as memory stalls
or branch-target buffer misses. Perleberg & Smith [9] study this in detail.

We can only speculate where this bound should be for a real system workload; it may possibly be even
lower than the static upper bound [12]. Table 3 shows the interference of short prefixes of the history-
strings. A significant number of branches are accounted for by short prefixes, indicating that many branch
instructions fired few times. There is a strong interference between these short strings. The upper bound
grows fairly steadily as the lengths increase. This occurs because the set of strings observed is relatively
small compared to the (exponential) number of strings possible for the given length. There is less interference
because there are few strings to interfere with. Figure 4 illustrates this.

11



[ ~ Table 3 = Dynamic Bounds Using Truncated History-Strings |

Maximum # Branches | '~ # Distinct # Distinct | Dynamic Predictor
String Length | Accounted For | Strings Possible | Strings Observed Upper Bound
1 3216 2 ‘ ‘ 2 51.51%

2 5867 5 5 71.48%

3 8208 14 9 79.08%

4 10,580 30 ' 14 , 83.29%

5 12,776 62 20 85.93%

6 14,925 126 27 87.83%

7 17,028 254 35 89.18%

8 19,063 510 44 90.24%

9 21,065 ' 1022 62 89.82%

10 23,001 | . 2046 : 88 | 90.18%
20 .40,607 2,097,150 846 S 93.30%
30 55,812 2,147,483,646 2626 94.88%

40 69,189 241 9 5004 95.67%

50 81,880 T2 7721 96.23%

60 04,158 281 9 10,629 96.67%

70 106,041 ‘ 21— 2 13,680 97.01%

80 116,757 281 -2 16,704 ; 97.27%

90 126,918 | pAA) 19,691 97.47%
100 136,455 2100 9 22,656 97.64%
84049 1,602,438 28080 _ 9 975,465 99.79%

~ For branch-predictors using static+dynamic information, the only upper bound for unbounded informa-
tion is exactly 100%. The “static information” would be a table of addresses and associated branch-history
strings; the “dynamic information” would be the number of times the branch at that address was executed.
To predict the branch-condition on the kth activation, the predictor simply finds the brdnch history string
associated with the address and returns the kth entry: :

address branch-history string

0000001 NNNNNNTNNNNNNTTTTTNNNN

0000010 TTTNTTTNTTTTTTTTNNNNTT -
etc. etc.

Thus there is no “interference”, static or dynamic, to reduce the upper bound from 100% correct. Such a
table could not be realistically constructed; not only is it large, but it would have to be the same across all
program runs (this is discussed in more detail in section 7.3). In order to make for more realistic bounds,
we now shift from a pure information- Lhcory to an information-based complexity-theory using restricted
quantities of information.

6 Upper-Bounds Given Bounded Information

The three previous upper bounds depended upon the type of information used by a branch-predictor: for
dynamic and static+dynamic information these upper bounds were too high to significantly bound pipeline
utilization or speedup. Furthermore, for dynamic and static+dynamic information the optimal predictor
would have to encode large tables of program trace information, which should not. be practical. By bounding



the quantity of information used by the predictor, we can reduce these upper bounds to more interesting
ranges. . . '

If a branch-predictor associates & bits of information with each conditional-branch instruction, and pre-
dicts each branch based only on these k bits, we can model the predictor as a Moore-machine with 2* states,
Each state represents a configuration of the k bits. The output from each state represents the guess made
from those k bits. The input represents the actual N or T result of the branch-condition. The state-transitions.
represent transformations on the k bits as the branch is executed. There is a designated initial-state if static
information is not used, so all branch instructions start with the same initial & bits. If static information is
used, different branch instructions can start at different initial states. In the presence of static information
. we refer Lo the machine as having a nondeterministic initial state (in the automata-theoretic sense), since
the initial state is chosen to minimize the prediction error. Examiples of such Moore-machines are given in
the appendices. v ‘

Now we can draw information-theoretic upper bounds on the quality of any predictor using k bits, by
deriving the optimal Moore-machine predictor with 2% states. This is done in table 4, for 0,1, and 2 bits
corresponding to 1,2 and 4 states. Unfortunately our (brute-force) optimization procedure [11} was only
effective for up to 2 bits. The optimal Moore-machines for the UNIX composite case are shown in appendix
1, which we dub superpredictors for. outperforming any other predictor of the same size.

[ Table 4 — Bounds for Finite-State Predictors B |
[ Test Designated Initial State Nondeterministic Initial State
Case 0 bits 1 bit 2 bits 0 bits 1 bit 2 bits
ccoml 55.16% | 95.27% | 95.32% | 55.16% | 95.54% 95.86%
ccom? 64.52% | 95.14% | 95.21% | 64.52% | 95.26% | 95.57%
cppl 61.65% | 956.02% | 95.10% | 61.66% | 95.23% 95.41%
cpp? 72.06% | 96.11% | 96.19% | 72.06% | 96.16% | 96.35%
fgrep 55.98% | 93.90% | 93.94% | 55.98% | 93.91% 93.97%
| find 55.95% | 95.19% | 95.22% | 55.95% | 95.25% 95.43%
Is 64.34% | 94.39% | 94.43% | 64.34% | 94.55% 94.83%
(UNIX composite) | 51.08% | 95.00% | 95.06% | 51.08% | 95.10% 95.28%

For 0 bits of information there is no information, static or dynamic; the guess must be uniformly N or
T. The values for the UNIX composite case are shown in figures 2 & 3 as ditub0, ditud?, ditub2 for the 0, 1,
and 2-bit predictor using dynamic information (designated initial state) and sditub!, sditub2 for the 1 and
2-bit predictor using static+dynamic information (nondeterministic initial state). There was little difference
between them. ‘

The accuracy of the finite-state predictors increases as we add states. In fact we could encode the program
execution traces directly into a machine of sufficient size (one state for each distinct substring), achieving
the information-theoretic upper bound for unbounded information for these traces. The results are shown
in table 5; inequalities are used because the traces might be compressible into smaller machines.

[ Table 5 = Optimal Large Machines Directly Encoding History Traces ]
Same Initial State Nondeterministic Initial State
‘Test Case Max Accuracy | Necessary # Bits | Max Accuracy | Necessary # Bits
ccom] . 99.46% <17 100% <18
ccom? 99.77% <17 100% <18
cppl ‘ 99.58% <16 100% <17
cpp2 99.90% < 18 100% <19
fgrep 99.98% <19 100% <19
find 99.94% <18 100% < 18
Is 09.94% <17 100% <17 ]
(UNIX composite) | 99.79% < 20 100% < 21

v ] . e [ INTE I o o [T



7  How General are the Results?

So far we have shown concrete upper bounds on the predictability of branches in a collection of traces, for
various classes of predictors. So long as a given predictor falls into one of these classes, it will predict the
traces no more accurately than the upper bound dictates.

There are a number of side results, however, which are worth pursuing. We constructed optimal static and
dynamic predictors for the 7 traces; if these traces are good indicators of general program behavior, then the
optimized predictors may be accurate for most programs. In particular, the finite-state “superpredictors™
constructed in section G, and the technique of static prediction based on one program run, seem quite
practical:

7.1 Superpredictor Sensitivity Analysis

In section 6 we provided upper bounds on dynamic predictors using 2 bits of information. This was done .
hy deriving optimal predictors for the.given trace. If we were to use one of these superpredictors in a real
machine, it would have to demonstrate high prediction accuracy beyond the one design trace. To study this,
we will analyze the sensitivity of the predictor to the case it was designed for, by comparing its accuracy
across all cases. Interestingly enough, the test cases ccoml, ccom®, cppl, cpp8, ferep, Is, and the UNIX
composite all designed the same 4-state superpredictor; find generated another. Table'6 compares the two
superpredictors across all tesi cases. ' . o
Note that the difference between them was at most 0.12%. The superpredictor derived from find was not
significantly better than the composite superpredictor, which was uniformly better for all the other cases.

|  Table 6 - Sensitivity of 4-Superpredictor Construction |

Design Case
ccoml, ccom?2, cppl, cpp2, ‘
Test Case fgrep, Is, (UNIX composite) find
ccom] 95.32% ‘ 95.30%
ccom? 95.21% 1 95.12%
eppl 95.10% 94.98%
cpp? 96.19% 96.11%
fgrep 93.94% 93.89%
find 95.21% 05.22%
‘ Is 94.43% 94.35%
(UNIX composite) 95.05% 95.00%

7.2 Comparison with Other Predictors

Three 4-state predictors were presented in Lee & Smith [4]), which we show in appendix II. Each exhibits
an interesting symmetry, and is designed to capture an intuitively plausible form of branch behavior. Table
7 compares them against the composite 4-superpredictor. Since the initial states were not specified in the
reference, for each test case we chose the one initial state that minimized the error for the trace.

Note that the 4-superpredictor was strictly superior to the other predictors by a significant amount.
Furthermore it was more stable, in that the range of performance was narrower. The behavior of the other
predictors is fairly consistent with the results for the workloads used by Lee & Smith; unfortunately their
traces were not available for our study.



| ~ Table 7 — Comparison of 4-State Predictors ]

Test, Case 4-Superpredictor | S-1 Proposal | Majority | 2-Branch ]hstory ]

ccoml 95.31% 93.11% 93.52% 93.33%
ccom?2 95.21% 92.79% 93.21% 92.82%

cppl - 96.10% 92.59% 93.04% 92.82%

cpp2 96.19% 94.14% 94.54% 94.39%

fgrep 93.94% ‘ 89.82% 90.43% 91.32%

find 95.21% 92.17% 92.64% 93.18%

ls 94.43% 91.16% 91.76% 91.93%

(UNIX composite) © 95.06% - 92.17% 92.62% - 92.85%

The gap betwecn the dynamic information-theoretic upper bound for 2 bits and for unbounded informa-
tion (=20 bits) was significant. Unfortunately we could not generate superpredictors for 3 or more bits to
see how quickly they approach the upper bound. Other methods, however, may be able to utilize more bits
to achieve higher accuracy. There are two proposed ways of constructing predictors to use any number of
bits; we will see how these work w.r.t. our bounds,

One obvious approach [4] [15] is to simply count the frequency of taken branches vs. not-taken branches,
and guess with whichever is higher. In table 8 we do this one step better (for the UNIX composite case), which
is to guess whichever direction is more frequent upon observing that density. The counter is restricted to stay
at fixed maximum or 'minimum values instead of overflowing or underflowing. Note that the performance is
generally worse for more bits; this is consistent with the previous studies. The likely explanation is that the
behavior at a given activation is a good indicator of the behavior at the next activation, and this pattern is
obscured by the behavior of earlier activations.

Lee & Smith used a method of identifying all branch- history substrings of length k, and assigning the
most, frequently encountered next branch as the guess for each. This constructs a predictor that encodes
the results of the last k activations, and branches with the most frequently encountered next result. Upper-
bounds on this approach are presented in table 8, for up to 16 bits. Note that this upper bound is less
than the 4-superpredictor performance all the way up through 8 bits. The 16-bit performance is rather low
considering the fact that a 20-bit superpredictor can achieve the dynamic information-theoretic upper bound
of 99.79% for this trace.

[ Table 8 ~ Accuracy Upper Bounds for Two Families of Predictors |

# bits | Counter Method History Substring Method

‘ 1 94.99% 95.00%
2 92.73% 95.00%
3 90.80% 95.00%
4 89.97% 95.00%
5 89.58% 95.00%
6 89.28% 95.00%
7 89.156% 95.00%
8 89.06% ‘ 95.00%
9 88.99% 95.85%
10 88.93% 95.85%
11 88.88% 95.85%
12 88.85% 5.85%
13 88.85% (U 85%
14 88.85% ‘ 95.86%
15 88.85% 95.87%
16 88.85% 95.94%

Fxtensions of the superpredictors and the Lee/Smith predictors may be complicated, and hence require
significant amounts of logic to implement. For 16 or more bits the cost in gates and gate-delays could he
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prohibitive. Other ad hoc prediction schemes might be casily designed to use large numbers of bits, but the
structure must be simple enough to allow a compact implementation.

7.3 Consistency Between 2 Program Runs

Static information does not change during the execution of a program, or across multiple executions of the
same program. The usefulness of static information or static information coupled with dynamic information
depends on some uniform beliavior between program runs. Since we have traces for two runs each of the C
compiler and the C preprocessor, we can look for evidence of this uniformity.

For example, vur oplimal static predictor in section b assigned a guess T to cach cond]t]ondl branch with
an associated branch-history string densest with T's, or N otherwise. Such a prediction scheme might be
useful in practice, using a test run of the program to determine the static prediction.. Such a technique is
used in trace-scheduling compilers for VLIW architectures [2]. For this techinique to work, between multiple
runs of the same program the branch-history strings associated with the location of a couditional-branch
instruction should be consistently denser with T’s or N’s. In table 9 we find this pattern holds for our test
cases; the few. branch instructions reversiag the density relationship happened to perform few branches.

In table 10 we extend this to 2 bits of static+dynamic information: not only is a predictor designed from
the trace, but initial static inforrnation associates an initial state with each branch address. For two runs of
the same program we use the same predictor (note that our optimization procedure independently derived
the same predictor for each), as well as the same initial state for the same branch address each time. To
test this, then, we derive the predictor and associate the initial states using the design case, and evaluate it
on the test case, The performance for the test cases was always quite good. Note, though, that if a branch
instruction was never activated in the design case, we use the test case to select the optimal initial state, so
these results are actually upper bounds.

In table 11 we go back to studying unbounded dynamic information. In section b we studied the interfer-
ence between history-string prefixes, to see how predicting for the benefit of one branch would hurt another.
The upper bound was reduced slightly if we measured the interference of one case with all the remaining
cases, rather than just itself. In table 11 we study the interference between multiple runs of cpp and ccom,
to see if there was enough self-consistency between the two runs that no additional dynamic interference
occurred. Comparing against columns 3 and 4 of table 2 shows that there was significant additional interfer-
ence. In some cases the test case interfered more with its other runs than it did with the UNIX composite
case.

| Table 9 - (Static) Consistency Between 2 Runs of the Same Program |
# Aclive Branch Instructions ccoml: 1384
ccom?2: H11

cppl: 320

‘ cpp2: 297

# of Instructions Reversing Behavior | ccoml+ccom2: 18
cppl+4epp2: 2

# Branches Performed ccoml+ccom?: 463,133
cppl+cpp2: 402,781
# Branches Lost ccoml+ccom?2: 206

cppl4-cpp2: 276




[ Table 10 - Oonsnstency in Initial State Selection Tor 4- Supcrpredlctor_J

Design Test, Set
Set ccom! ccom? ccom] + ccom?2
ccoml 95.86% { 95.50% 95.69%
ccom? 956.47% | 95.67% 95.51%
ccoml + ccom?2 | 95.80% | 95.56% 95.71%
cppl ,cpp2 cppl 4 cpp2
cppl . 95.41% | 96.31% 96.14%
cr p2 95.34% | 96.35% 96.16%
eppl + cpp2 | 96.39% | 96.36% . ’ 96.17%
[ Table 11 - (Dynamic) Consistency Between 2 Runs of the Same Program |
% Correct Upper Bound
Design Set ~ Test Set # Branches Performed | Individual | Composite
ccom] + ccom? ccom] 247,262 99.38% 99.36%
v ccom?2 215,871 99.76% - 99.72%
” ccoml 4 ccom? 463,133 99.53% 99.563%
cppl + cpp2 cppl 75,657 ‘ 99.63% 09.48%
" cpp2 ‘ 327,124 99.90% 99.80%
" cppl + cpp? 402,781 99.81% 99.81%

8 Conclusions & Directions for Further Work

Yor our set of UNIX traces, the bounds on the accuracy of the best possible branch-predictor using static
information or < 2 bits of dynamic or static4-dynamic information are enough to limit pipeline speedup
and utilization by a significant degree. For example, in a machine with a pipeline depth (and associated
misprediction penalty) of 4, the utilization will be no better than 92% under static prediction, and 95%
under dynamic or static+dynamic prediction with 2 bits, The speedup will be no better than 3.7x under
static prediction and 3.8x under dynamic or static+dynamic prediction with 2 bits. For a machine with a
pipeline depth (and associated misprediction penalty) of 8, the utilization will be no better than 86% under
static prediction, and 90% under dynamic or static+dynamic prediction with 2 bits. The speedup will be
no better than 6.9x under static prediction and 7.2x under dynamic or static4-dynamic prediction with 2
bits. To achieve higher degrees of speedup and utilization for the same pipeline depth and workload, the
architect will need to design a branch-predictor with more bits of dynamlc or static+dynamic information,
or devise a new class of branch-prediction strategy.

The 4-superpredictor, generated by an optimization procedure, appears to be superior to any proposed
method of branch-prediction using up to 8 bits of information for each branch instruction. The results of
such a study are only as strong as the data used — they look almost too good - and may be biased by
the nature of the test cases. For example, the 2-superpredictor .outperformed the miscellaneous predictors
shown in Appendix II; this contradicts earlier findings [4] [15], suggesting different control-flow patterns
between the test cases. The observed consistency between two program runs in 7.3 is based on too few cases
to be convincing. All the results are based on VAX UNIX utilities; they should be extended to numeric
Fortran codes, sys* :m programs, and Cobol business codes (as is done in [4]) if “superpredictors” are to be
shown practical. Very likely the structure of the 4-superpredictor will change using such design sets, though
by definition it will have to perform at least as well as any other 4-state predictor. With more data the
information-theoretic upper bound on dynamic predictors may also be reduced enough to indicate that small
superpredictors are near-optimal in practice. We consider our methods more interesting than our results at
this stage; an architect needing an improved branch-predictor can use Lhe information-theoretic bounds as
reference in deciding how much iinprovement is possible.

The problem of finding a superpredictor [10] appears to be intractable since it 1s similar to an A7P-
complete problem for finite-state transducers [17). Brute force case-by-case analysis was used to find the
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optimal predictor (11], and was elfective for ouly 1 to 4 states. There may have been a large amount of
redundancy in the enumeration of cases. A more cfficient enumeration scheme might provide results for 8
or 106 state predictors, though a polynomial-time optimization algorithm should allow solutions to arbitrary
sizes. In the meantime, more mediocre prediction schemes might outperform the 4-supcrvredictor simply by
designing predictors on larger numbers of states.

The number of gates required to implement a superpredictor on 16 or more bits would be prohibitive if
it requires a complex boolean mapping. Again a more mediocre prediction scheme may be able to perform
- well with less logic. It might be more realistic to use a theory of circuit-complexity rather than information-

complexity with which to classify and ‘optimize_ the predictors. ‘ ‘

Sonie statistical methods might be used to study the information-theoretic upper bound for unbounded
dynamic information. The bound drawn had depended on there being a small but significant number of
branch-history strings of long length. We might assume these strings were drawn randomly from a distribu-
tion; this underlying distribution would determine the actual information-theoretic upper bound. The set of
strings used was small enough that the underlying distribution could be almost anything, with any resulting
bound between 50-100%. Textbook' distributions, such as Gaussian or Poisson, are unlikely to be realistic,
Judging from the distribution in figure 5. An intéresting hypothesis is that strings of higher Kolmogorov-
complexity [5) occur. with lower frequency, since the Kolmogorov complexity measures the computational
“difficulty” of generating the string. The range of Kolmogorov-complexities increases among longer strings -
this implies that sparse sets of long branch-history strings would tend to be observed. Further, the cumula-
tive Kolmogorov-complexity across strings with a given ratio of 0’s to 1’s should show an irregular pattern.
Sparsity of long strings is illustrated in table 3 and figure 4; an irregular distribution of 0/1 densities is
demonstrated in figure 5. The resulting upper bounds on prediction could be impossible to determine.

The model of pipeline utilization made some gross assumptions regarding the costs of operations and
the penalty of a bad prediction. The model might be extended, and considered in a revised optimization
procedure; alternately the sensitivity of the model to these assumptions could be studied empirically. The
model of finite-state predictors assumes that a predictor is associated with a branch operation for the duration
of the execution; in reality the state may be stored in a cache which is periodically erased, and prediction is
restarted further along the branch-history string. Our model would assume the. predictor states are stored

“and reloaded whenever cache entries are displaced; in fact examples can be constructed where periodically

reinitializing a Moore-machine improves the prediction (12]. A Markov-chain may be a more appropriate
predictor model under these conditions. The penalty of a prediction cache miss can be considered in our
extended model in section 2.

Our definition of predictors based on dynamic information was quite narrow - prediction could only
depend on the prefix of the branch-history string. More exotic methods are possible, such as cross-correlating
the behavior of different conditional branches in the program. Such methods are not necessarily as limited
as the ones treated here; they may be practical for VLIW systems, where the program can be modified to
analyze and predict its own behavior. We did not pursue these possibilities because a) we have found no
proposed methods falling outside our classification scheme, and b) our analytic approaches did not allow us
to make general statements about other classes of predictors. ‘
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Appendix I - Finite-State Superpradictors

Designated Initial State

-

Accuracy: 51,08
Remarks ! Always predict
“not taken."

N i
Accuracy: 95,00Y%
Remarks: Alvays predict
N T T previous input.
T

Accuracy: 95.,056%

Remarks: Kludge on top
of 2-state

superpredic*or.

||!|Ij:|||l’ N
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Nondeterministic Initial State

N

Accuracy:
Remarks:

Accuracy:
N T Remarks:

Accuracy:
N N Remarks:
N T ‘
T
N .
T

51.,08Y
Alvays' predict
"not taken.'

95, 10%
Always predict
previous input.

95.28Y

3 disconnected
components treat
3 kinds of
behavior.



Appendix II — Miscellaneous Predictors

Description: S-1 proposal
Accuracy: 92.16%
Remarks: Requires 2 "takens"
‘ or "not takens' in
a row to change
guess.

Description: Majority
N Accuracy: 92.82Y%
Remarks: Predicts more
frequert result
so far.

Description: 2-Branch History
Accuracy: 92.85Y%

Remarks: State encodes
last 2 branch
results,
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&
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Questions Fundamental to the Theory of Branch-Prediction *

f

Carl (3. Ponder

Computing Research Group, L-419
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94550
(415) 423-7034

" There are a number of issues to be resolved in designing a good branch-predictor. How good is a given
predictor? When is it optimal? How does one predictor perform with respect to another, across some range
of cases? How is the performance conditioned by other considerations, such as cache misses? Some of these
questions can be posed in a genera! way, and answered by constructing (degenerate) examples.

1. Can branches bej predicted 100% correct?

A branch-predictor can be constructed to be 100% correct for a given progfam A:

SimucaTe “a” “
ve To
ComOIYIOMA L
gviamw(H

emeodler

“yes?

Pareorct
Mo

By simulating the program A, the predictor determines the direction of the next branch correctly each time.
No program is bad for all predictors; furthermore, for any predictor there is a program for which another
predictor is at least as good.

2. Can a branch predictor be 100% correct across all programs?

On the flipside, a program can be constructed to render a given branch~prédic(,or B 100% wrong. By
simulating the predictor B on its own execution, the program simply does the opposite of what the predictor

*This material was omitted from [1] for the sake of compactness, but is necessary for a complete treatment of the subject.
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will guess:

“

C\mviAaT 7
or PasST

' » FeEHAVIOR

V(om0 (Y (oM
vt anCcH

No branch-predictor is, or can be proven, infallible.

3. How good can an oblivious predictor be?

The above cases depend upon the predictor encoding the program, or the program encoding the predictor.
If the predictor is limited to monitoring the branch behavior of the program, we can still find limits on its
quality. Let P perform independent flips of a fair coin, and branch accerdingly:

e P
" o
Yes
~o
uuu:;uﬂmuu
CrarnCit

Any predictor will have an expected correctness rate of 50%. Using a pscudo-random number generator
(along the lines of Yao [2]) we can in fact construct a family of programs approaching this behavior, so long
as the predictor does not encode P.

4. Is dynamic information better than static information?

So far we have placed few restrictions on the nature of the predictors. In reality the prediction for a
given branch instruction may be based only on its own behavior. We distinguish two types of prediction
information: static information, which is associated with a branch instruction before the program executes,
and does not change; and dynamic information, which is initially the same across all branch instructions, but,



changes with the behavior of the instruction. The quality of a static predictor is sensitive to the interference
between elements of a given branch- hxstory string. The quality of a dynamic predictor is sensitive to the
interference between strmg‘a

The following branch-history string will be predicted 50% correct by a static predictor:

NTNTNTNTNT

A dynamic predictor need only reverse. its prediction each time to predict 100% correct. The following set of
branch-history strings will be predicted 50% by a dynamic predictor, since the second element is essentially
independent of the first element:

NN
NT
TN
TT

A static predictor will be 75% correct by predicting “NN” for the first two cases, and “T'T” for the second
two. How static and dyramic predictors compare in practice is another matter.

5. What is the effect of re-initializing a predictor?

This question is concerned with the hardware implementation of a predictor. Prediction is usually done by
maintaining a table of information associated with each conditional branch instructior in the program; if
this table is stored as a small cache, entries are periodically displaced. If a displaced entry is not saved and
restored, prediction for the associated branch instruction is re-initialized when il next executes.

Intuitively this re-initialization should degrade the prediction, since information is lost. We can construct
an example where this is not the case: let {T'N*}* be the string we want to predict. No finite-state predictor
will be 100% correct unless it has > k states; however, the following two-state predictor will be 100% correct
if it is re-initialized every (k + 1) steps:

Whether an erasing-cache scheme will outperform a replacing-cache scheme in practice is another question.
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String Prediction by a Small Machine
Carl G. Ponder.

Computing Research Group, L-419
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94550
(415) 423-7034

There are circumstances in online computation whére we wish to predict the value of an input before
it'is actually known. An example is in branch-prediction [2]: the microcontroller guesses whether a brancli
condition will hold before the conditional expression is evaluated. It then prefetches instructions from
the assumed branch destination. The instruction-stream can be processed faster by prefetching than by
repeatedly waiting for conditions to be evaluated. The more correct guesses, the lower the penalty due to
incorrect prefetching. ‘

‘Here we formalize the prediction problem as a prediction of the ith element of a string, based on the
previous (i — 1) elements. The predictor is only allowed to maintain a fixed amount of information. The
predictor is modeled as a Moore-machine (1}, where the states of the machine encode the information states
of the predictor. We can then determine how good the “best” predictor of this type can be.

Definition: Let z and y be two strings over alphabet I, of length m and n respectively. We de-
fine error(z,y) as the number of positions i, 1 < ¢ < min(m,n) such that z[i] # y[i]. For example,
eror((JOOl 110,00001110) = 2. .

Definition: a rootless Moore-machine M over & ! is a four- tuple (Q,u,é A). T is the input and output
“alphabet. @ is the set of states. 6 is the state-transition function § : @ x ¥ — €, determining a new state
based on the old state and the input symbol. A is the output function A : Q@ — ¥ determining an output
symbol for each state. For example:

Given input string ayay...a, and initial state ¢;,, M computes a mapping M(gi,,a102..am) = byba..bpbmyy,
where 6(gi;,a;) = qi,,, and A(gi;) = b;. The machine shown above maps the string 0001110 into 00001110,
wlien started from state qq.

We can niow combine these two definitions, to measure how well M predicts a given string z: let (g, 2) =
error(z, M(q,z)). O is precisely the number of positions where the input z fails to match the output of M,
starting from state ¢. In the above example, ®(¢q,0001110) = 2.

!Note that this definition differs from standard Moare-machines (1); under the standard definition the input and output
alphabets may be different, and there is a preassigned start state qo for every computation. This variation better fits our needs.
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llere are four forms of the prediction problem. We may in some cases want to predict collections of strings,
with or without the restriction that we must start in the same initial state cdch time,

Problem 1: (predicting a single string), Given k and a string 2, what is the sinallest £ = d(q,2) for any
k-state machine M and choice of initial state ¢7

Problem 2: (predicting a set of strings, from the same start state). Given k and a set of strings {z;}, what
is the smallest £'= 37, ®(q,z;) for any k-state machine M and choice of initial state ¢7 ‘

Problem 3: (predicting a set of strings, from arbitrary start states), Given k and a set of strings {rj} what
is the smallest I = L ®(q;,, z;) for any k-state machine M and assignment of initial states 0,7

Problem 4: (predicting a set of strings, where designated subsets must start from same initial state), Given
k, and a sct of strings {2}, what is the smallest [0 = Zj‘,d'(‘q,“,arﬂ) for any k-state machine M and
assignment of initial states ¢;;7

Is there an efficient solution to these prob]mnﬂ-’ An ideal solution would be pol\'nmnml in & and linear
in the lengths of the strings.

Remarks: These problems are clearly in AP, if we ask whether there exists a k-state maching M such that
the error- I < E', for given k and E'. A nondeterministic Turing machine need only gencrate a k-stale
machine M (picking an assignment of initial states as necessary), simulate it on the input, and answer “yes”
if M predicts the input within the margin of error. A related problem for Mmly machines [1] has been shown
NP-complete (3. ‘

Problem 1'is trivial if k is as large as the input string, since-we can encode 2 directly into M. Problems
2-4 are similarly trivialized if k is as large as the sums of the lengths of the input strings.

There is a variation on these questions which is not of direct interest, but seems natural to ask. Ior cacl
machine M there is a string s which M will predict 100% correct, and another s’ which A7 will predict 0%
correct. But for fixed k, there should be “long” strings which any k-state machine will show only limited
success,

Problem §: (the worst possible string for any k-state machine). Given & annd n, what is

max(lhl}l';l(q’(fl» 5)))

where M ranges over all k-state machines, ¢ ranges over the states of M, and s ranges over all strings of
length n? Is there any pattern to these “worst” strings?

Clearly a lower bound is n/|E|, independent of k, since at least 1/]2| of the positions of any string will
contain the same symbol. A l-state machine predicting sequences of the same symbol will he right for that
many positions.
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Abstract

A Moore-machin¢ is a form of finite-state transducer, mapping string = into string ='. Given &
and a string = over {0,1}, the Moore-machine prediction problem is as follows: find a k-state Moaore-
machine such that z; = z/ for as many i as possible. A brute force solution enumerates all k-state
Moore-machines, simulates cach on z, counts the number of positions where each machine produces a
mismatch, and identifies the machine minimizing this count. Some theoretical refinements allow us to
remove redundant Moore-mar tines from consideration. )

Introduction

Variations of the Moore-machine prediction problem are discussed in [2]. The purpose of this report is
to explain how the problem was solved in [3), for readers intending to reproduce or repeat the study on
additional data sets. The problem was solved using a brute-force algorithm. Two details of this algorithm
are sketched: how the Moore-machines are enumerated, which derives from Graph Theory, and how we
eliminate redundant machines, which derives from Automata Theory. Familiarity with Moore-machines and
the string prediction problem are assumed. Details of representing, simulating, and choosing the optimal
machines are straightforward; the code is somewhat readable if one is interested.

The following table shows the number of distinct k-state machines used in the simulation. The number
depends on whether an initial state is designated, or can be chosen to best predict the string (called non-
deterministic initial state). A gross upper bound of k?#2% is shown for compatison; there are 2% ways of
assigning 0 or 1 as the output of each state, and there are k possxble destinations for each of the 2k state-
transitions. Many of the possibilitics compute the same mdppmg, or form improperly configured machines;
the algorithms in the following sections limit the enumeration to nonredundant and correctly-formed cases.

[ Counts of distinct Moore-machines |

number of distinct machines upper
# states | designated initial-state | nondeterministic initial-state bound

1 1 2 2

2 12 - 10 G4

3 216 5832

4 5428 , 14279 1048576

) 160675 312500000

For machines with designated initial states, the states are not assigned outputs. This should reduce the
machine count considerably. The simulation is simplified by assigning outputs to states afler completing, as
described i1 the next section.

Machine wiies of & = 2" are considered in our study [3], where each state corresponds to a configuralion
of n bits. The namber of k-state machines grew fast enough that the problem could not be solved for 2% = &
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states: storing the machine descriptions takes too much space, and simuluting them takes too much tine,
For k = 4, geuerating the machiues takes about o day on w lightly-loaded VAX 8600 or M11'S/1000.

Enumerating Machines with Designated Initial State

The following nondeterministic algorithm generales all possible k-state machines, such that a) every state
is reachable from the initial state, b) every state has two exiting trausitions (0 aud 1). No two machine
descriptions will be isomorplhic,

Three sets of states are maintained: U is the set of unused states with no incoming or outgoing transitions.
W is the sct of working states with incoming, but not outgoing, transitions. / is the set of finished states
with jncoming and outgoing transitions. At each iteration |U| 4 [W|+ [F] = k.

1. Initially W = {1}, the initial state, with an implicit incoming transition, U7 = {2, ...k} contains i,l‘w
remaining states. ‘

2. Draw a state & from W; set the transition on 0 to eithier

e auy onc of the |W/| working states,

e any of the

e a new state if |U] > 0, in which case this new state is moved from U to W.
3. Set the transition on 1 to either

o any one of the |W| working states,

o any of the |F| final states, if [W| > 0 or |Ul = (0 (this prevents the machine from being compldted
with fewer than & states), or :

e anew state if [U| > 0, in which case this new state is moved from U to W.
4. Move S into [7. Return 4o step 2 if |I7] < k.

This will take exactly & iterations, ‘

To actually program the nondeterminism, a recursive pracedure keeps copies of U, W, and F'. Whenever
alternatives are presented, recursive calls are made which create appropriately modified copies of U, W, and
F". Once a machine description is completed, it is written into an array used in the later simulation.

Note that outputs are never assigned to the states. This saves work in the simulation, Rather than
comparing the input and output of each machine, the simulation records the number of times a 1 or 0 is
read as input to each state. After the simulation completes, the state is defined to output whichever input
was more frequent; this minimizes the prediction crror across all 2% &ssl{,nmcnts of outputs, without having
to enumerate them,

Redundancy still exists: states will be equivalent under many assignments of outputs. The machine
will be non-minimal under such assignments, and hence equivalent to a smaller machine. Likewise, some
minimal machines may compute identical mappings. An alternative approach is to assign outputs to the
states, which increases the number of configurations, and remove redundant maclines, which decreases the
number of configurations. This approach had to be used in the following section. The number of machines
grew by less than a factor of 2%, as shown in the table, so a significant number of possibilities must have
been eliminated. Since the number of configurations is larg,('r with nondeterministic initial states, il is still
not clear whether or not this approach would produce more machines with designated initial states.

Enumerating Machines with Nondeterministic Initial States

A harder version of the prediction problem allows each string in a set to be predicted from a different initial
state. We must determine both the best machine and the best assignment of initial states to strings. ‘The
Moore-machines have a diflerent chiaracter: there is no designated initial state, and the states need not all be
connected. The “machine” may actually be divided into disjoint connected components, and different. strings
are predicted by the different parts, The previous enumeration prevented itself from ereating machiues that
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wete toa z-.nmll or had unreachable states, These are no longer considerations: any state may be a start state,
and hence is reachable.

Given o machine with & states, leb ¢ be the number of connected components, Letb si be the size of the ith
connected component, nondecreasing in i, k = 3 s, Il two machines ure isomorpliic, then a) they consist of
the same number of components, and b) corresponding components are isomorphic. The machines fall into
classes according to the arrangement of s we generale distinet machines as combinations of distinet sy-slzed
components. The only problem occurs when two components have equal size: they may be isomorphic to
each other, in which case the machine is non-minimal and can be reduced, or the machine may be shown
isomorphic to another by reordering the components, The next section shows how to eliminate such cases
after they are constructed.

The following nondeterministic algorithm generates all possible n-state connected components: U, W, and
I are defined as before, except the states of £ need not have incoming transitions.

1o Inivially W= {1} and U = {2,..n},
2. Draw a state S from 1 and go to step 3, or from U/ and go to step 4,
3. Set the transition on 0 to either
e any onc of the |W| working states,
e any of the |F| final states, or
¢ anew state if |U] > 0, in which case this new state is moved from U to W,
Repeat for the transition ou 1, and go to step 6,
4. Set one of the transitions to either
e any one of the |W| working states, or
e any of the |F| final states, if [W| > 0or |U| =0
This prevents a new connecled componeut from forming
5. Set the remaining transition to either
e any one of the |W| working states,
o any of the || final states, if [W] > 0or U] =0, or
e anew state if |7] > 0, in which case this new s ate is moved from U/ to W,
6. Move S into /. Return to step 2if [£] < n

Again, this process tukes n iterations. »

The simulation processes euch string using each state as the initial state. State outputs must be assigned:
the balance of 0’s and 1’s predicted by each state depends upou the initial state assignment of each string,
which is not fixed. All 2% outpul assignments must be considered. Nen-minimal machines are eliminated,
since they are implicitly considered with smaller k. Machines are discarded if an equivalent machine has
already been produced. Testing minimality and equivalence is explained in the next section.

Identification of Non-Minimal and Equivalent Machines

The Myhill-Nerode theorem [1] provides a way to test the minimality of a machine, or the equivalence of
two machines, using the following fact:

Two states are inequivalent if, for some input string 2, the machine produces diflerent output
depending upon which is used as the initial state.

Textbooks define the theorem in terms of finite-state machines; the extension to transducers is identical in
all ways.
Ak x k table marks pairs of states known to be inequivalent, The minimality test s as follows:
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1. If two states have diflerent output, mark them as inequivalent,
2, On a given input, if two states transfer to inequivalent states then mark them inequivalent.

For each pair of inequivalent states, then, we follow each transition backwards to find the states they transfer
from, This requires only k? tests, since each pair of states is considered at most once, and only after the
two have been shown inequivalent, Once every pair of inequivalent states is processed, and no new ones
appear, any pair not marked inequivalent are now equivalent. If two equivalent states exist, the machine is
nor-minirnal.

Testing equivalence between machines is identical. Instead of comparing states of the same machine, we
compare the states of one machine with the states of the other, Repeat the above procedure; the machines
are equivalent if a correspondence can be found between the states of the two machines, such that none of
the pairs of corresponding states are showu inequivalent, ‘
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