
u

UCRL- JC-103980
PREPRINT

SISAL 1.2: High-Performance
Applicative Computing

David C. Cann
John T. Feo

Thomas M. DeBoni

Lawrence Livermore National Laboratory
Livermore, CA

This paper was prepared for submittal to
the 2nd IEEE Symposium on Parallel &

Distributed Processing,
December, 9-13, 1990, Dallas, TX 1

May 1990

NUI 1^1
i

DrSTRfBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or useful­
ness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

SISAL 12: High-Performance Applicative Computing

David C. Cann
John T. Feo UCRL-JC—103980

Thomas M. DeBoni
DE90 011461

Computer Research Group (L-306), Lawrence Livermore Nat. Lab.,
P.O. Box 808, Livermore, CA 94550

Abstract: The acquisition of parallel processors in the scientific community is
increasing, but the difficulties of parallel programming persist. Three approaches
have emerged: automatic parallelizing compilers for extant languages, extended
languages, and new languages that provide a cleaner and easier-to-use parallel
programming model. One such new language is SISAL 1.2 [13], a general-purpose
applicative language. Regrettably, applicative languages have acquired a reputa­
tion for inefficiency because of their single-assignment semantics, and dynamic
creation of aggregate objects. We show that a set of powerful yet simple opti­
mization techniques can reduce the overhead of applicative semantics without sac­
rificing parallelism. Optimized SISAL codes can achieve execution speeds com­
parable to FORTRAN, and effectively exploit shared-memory multiprocessors.

*This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

The views, opinions, nnd/or findings contained in this report arc those of the authors and should not be construed as an
official Department of the Army position, policy, or decision, unless so designated by other documents.

i Of
i

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

1. Introduction

The acquisition of parallel processors in the scientific community is increasing, but the diffi­
culties of parallel programming persist. Three approaches have emerged: automatic paralleliz­
ing compilers for sequential languages, extended languages, and new languages that provide a
cleaner and easier-to-use parallel programming model. Automatic parallelizing compilers have
failed to meet expectation; moreover, we believe that sequential languages restrict the formulation
of parallel algorithms and will always deter the automatic exploitation of parallel architectures.
Programming in extended languages has proven arduous and error prone. Such languages
thwart programmer productivity and hinder analysis. They fail to separate problem specification
and implementation, fail to emphasize modular design, and inherently hide data dependencies.
In response, researchers are developing new languages of both conventional and novel design
[11,13,15] that provide cleaner and easier-to-use parallel programming models.

One such language is SISAL 1.2, a general-purpose applicative language. Regrettably,
applicative languages have acquired a reputation for inefficiency because of their single-assign­
ment semantics, and dynamic creation of aggregate objects. Strict adherence to single assign­
ment semantics requires that operations deriving new values copy their operands. In large scien­
tific computations, such copying can significantly limit performance and consume large
amounts of memory. Because of the dynamics of applicative programs, the sizes of aggregates is
often not known until runtime. Allocating and deallocating memory at runtime can degrade per­
formance and limit parallelism.

This paper illustrates that a set of simple yet powerful compilation techniques can reduce the
overhead of applicative semantics without sacrificing parallelism. These optimizations are O(n)
and, in practice, add little to the compilation times of programs. In the next section we highlight
the attributes of applicative languages and discuss their inefficiencies. In section three we present
an overview of the SISAL compiler and our optimization techniques. In section four we present the
performance of five large scientific codes written in Sisal. In each case, our optimization tech­
niques significantly reduced the semantic overhead of the SISAL programs without sacrificing
parallelism. On a single processor, four of the five optimized SISAL programs executed as fast as
the equivalent FORTRAN programs. In section five we draw some conclusions and introduce
future work.

2

2. Applicative Computations

An applicative program is a collection of function definitions and applications, where a func­
tion defines a side effect free correspondence between members of its domain and members of its
range.

The merits of this simple programming model are far reaching. First, programs are inher­
ently modular, hence easier to write, debug, and maintain. Second, programs describe data de­
pendence graphs. There is a clean separation between data and control dependencies; thus com­
pilers can spend more time restructuring programs and less time unraveling their behavior.
Third, programs are determinate. If they run correctly on one processor, they run correctly on
multiple processors - there are no time dependent errors. However, without optimization, the over­
head of applicative computation can be high. Implementations that adhere religiously to applica­
tive semantics must copy data when deriving new values. For languages like SISAL, that support
arrays, this copying can severely degrade performance and make the use of applicative languages
infeasible.

Most copying results from operations that build new aggregates or modify extant aggregates.
Consider the following SISAL for expression, which returns an array of 100 elements

A := for i in 1, 100
returns array of sqrt(double_real (i))
end for

In unoptimized form, this expression builds 99 intermediate arrays, each one element larger than
the previous, and requires 100 memory allocation requests, 99 memory deallocation operations,
and 4950 double precision move operations. If the loop is sliced1 and the slices executed concur­
rently, the components will be built separately. After all the slices have finished, the parent task
will gather the components together, further increasing copy costs. On the other hand, our
compiler preallocates an array of 100 elements and stores each element directly into memory, thus
eliminating the intermediate arrays and all the associated operations. If the loop is sliced, each
slice includes the starting address of its segment of the array.

Now consider the expression

A[5: O.OdO]

1 A slice is an autonomous computational unit comprised of one or more consecutive loop
iterations.

3

which changes the 5th element of A to zero. Even if this were the last use of A, strict adherence to
applicative semantics would require us to build an entirely new array. Our compiler recognizes
most instances of last use and generates code to update in-place; that is, destructively update ag­
gregates.

In SISAL, the size and shape of all aggregate objects are defined by the expressions that build
them. This increases SISAL's expressive power, but also increases runtime overhead to allocate
and deallocate memory, and to decide when deallocation should occur. A number of memory
management schemes exist [5]. One scheme, regaining popularity, is reference counting. Its ma­
jor advantages are: conduciveness to real-time processing, ease of implementation, and natural
support for aggregate sharing and copy avoidance. However, if done improperly, reference count­
ing can reduce sequential performance and parallel efficiency [16]. Consider an aggregate that is
read by n concurrent tasks. Since each task decrements the aggregate's reference count in a criti­
cal section, the reads are sequentialized. For most programs, our compiler optimizes away over
96% of the reference count operations while reclaiming memory as soon as possible.

An additional source of inefficiency in SISAL 1.2, although not a product of its applicative se­
mantics, is its representation of n-dimensional arrays as an array of fn-lj-dimensional arrays.
This can cause excessive storage allocation and deallocation requests, and can be a source of
overhead when dereferencing columns or planes.

3. The SISAL Compiler and Runtime System

In this section we present a brief overview of the SISAL compiler (Osc) and runtime system.
For a detailed discussion see [3,8,17,18], Figure 1 depicts the SISAL compilation process. First, a
front end translates SISAL source into IF1 [19], an intermediate form defining data flow graphs.
Second, the compiler forms a monolithic IF1 program (linking all separately compiled files) and
runs a machine independent optimizer (IFIOPT) to expand function calls, move invariant code,
eliminate common subexpressions, fuse loops, fold constants, and remove dead code [20].

Third, the build-in-place analyzer (IF2MEM) inserts explicit memory operations to preallo­
cate array storage wherever possible [17], During this analysis, the compiler translates the IF1
monolith into IF2 [22], an extension of IF1 that includes explicit memory management nodes.
Fourth, the update-in-place analyzer (IF2UP) tries to minimize copy and reference count opera­
tions [2,9,10,211. At all times preserving program correctness, this analyzer restructures some
graphs to help identify operations that can execute in-place and to improve chances for in-place op-

4

Sisal Sisal Sisal

librariesinclude files

ParserParserParser

IF2Mem

IF2Up

IF2Part

CGen

IFlOpt

IF1 Load libraries

executable

Figure 1 - Sisal language processing

eration at runtime when analysis fails. Fifth, IF2PART defines the desired granularity of paral­
lelism based on estimates of execution time.

Finally, CGEN translates the optimized IF2 graphs into C, which is compiled into executable
form using the local C compiler. Calls to the SISAL runtime system, linked during this phase of
compilation, provide support for parallel execution, storage management, and I/O. We choose C
as an intermediate form to shorten development time and increase portability; however, the
quality of most C compilers is poor. On the Sequent Balance 210002, we reduced the execution times
of some SISAL codes by 25% after implementing a simple machine dependent optimizer to better
utilize scratch registers and reduce overall code size. We expect SISAL's performance to improve

as C compilers mature.

2 Sequent Balance is a trademark of the Sequent Computer Corporation.

5

3.1 Build-in-place analysis

The build-in-place analyzer is a two pass algorithm that operates on IF1 dataflow graphs. Pass
one inserts code to preallocate array storage where analysis or runtime calculations can deter­
mine array sizes. Pass two "rewires" the graph, where possible, to build array components in-
place. Both passes are linear in the number of nodes in the IF1 graph. The result of this analysis
is a semantically equivalent program graph in IF2. The graph now includes explicit memory
management operations (called AT-nodes).

Consider the SISAL expression

B := A || array_fill(1,N,0)

which concatenates A and an array of zeros (note that A is an array object). Its IF1 graph is

1 N 0

W I
(AFI11)

i
------------sr ACat)

Without optimization, the AFill node calls the memory manager to allocate space for an array of (V
integers, fills the space with zeros, and passes the array's address to the ACat node. The catenate
operation then calls the memory manager to allocate memory for B, of size Size(A) + N, and copies
into that space A and the array of zeros. In all, the memory manager is called twice and
Size(A) + N integer values are copied.

IF2MEM creates the graph shown in Figure 2. The first three nodes along the left-hand side
compute the size of B. The MemAlloc node then allocates memory for B (its result is B's address).
The three nodes along the right-hand side preceding the AFillAT node compute the starting ad­
dress of the array of zeros within B. The AFillAT and ACatAT nodes are identical to the AFill
and ACat nodes in the unoptimized graph except that the AT-nodes are told where to build their
results, whereas the non-AT-nodes call the memory manager to allocate space for their results.
Notice that the optimizer has marked the edge from the AFillAT node to the ACatAT node with a P,
indicating that the array of zeros is in-place. If IF2MEM also builds A in place, then both data
edges to the ACatAT node will be marked with a P. The code generator will then replace the

6

A

(ASize ^

C Plus)
bytes in Int

^ ASize)

bytes in IntTimes

Times

(AFillAT)

(ACatAT

Figure 2 - Optimized IF2 graph for memory preallocation

ACatAT node with a NoOp, removing the catenate operation completely - overhead and all. As is,
the graph in Figure 2 calls the memory manager once and copies Size(A) integer values.

3.2 Update-in-place analysis

After inserting code to preallocate memory, the compiler rearranges nodes and introduces ar­
tificial dependencies to reduce copy and reference count operations. The analysis considers itera­
tion, handles nested aggregates, and crosses function boundaries. It proceeds in three phases.
Phase one inserts explicit copy and reference count operations. Phase two inserts artificial depen­
dence edges to schedule read operations before write operations and eliminates all unnecessary
reference count operations. Phase three eliminates the unnecessary copy operations and tags those

7

that require runtime analysis for copy avoidance. Each phase is linear in the number of nodes in

the IF1 graph.

Consider the SISAL expression

B, C := A[i: 0], A[i];

and its IF1 graph

sr = 2

cm = -1
i 0

,—iJL
(AReplace)

cm = -1
f------------
(AElement 1

Without optimization, the runtime system must copy A since the read operation may execute after
the update operation, sr and cm are pragmas that set and decrement the reference count of aggre­
gate objects, respectively.

To eliminate the copy, IF2UP introduces an artificial dependence from the AElement node to
the AReplace node and marks the AReplace node for in-place operation (R). IF2UP then pushes the
reference count operation of the AElement node down to the AReplace node, changing the cm = -1
pragma to cm = -2,

sr = 2

R
cm = -2

i 0

il
f AReplace

sr = 1

AElement J

Since the AReplace node updates the array in-place and resets its reference count, the cm pragma
is eliminated in the final graph, (note that the reference count of A is now set to 1).

8

A
sr = 1

R i 0
Ul

T AReplace V#-

sr = 1

AElement J

In all, IF2UP has eliminated a copy of A and two reference count operations.

While the introduction of artificial dependences does reduce potential parallelism, only fine-
grain dataflow machines can exploit this extra parallelism. On a medium- or course-grain ma­
chine, the read and update operations the preceding example will execute on the same processor. In
this case, the artificial dependence edge does not limit actual parallelism, but simply eliminates a
useless copy. In those instances in which IF2UP can not guarantee the safety of update-in-place,
the decision is postponed until runtime (the update operation is marked for conditional copy, r).
Since we usually avoid the copy, the runtime test is cost effective.

3.3 SISAL runtime system

The SISAL runtime system is a microtasking kernel that supports only stream and loop paral­
lelism. Currently, we do not spawn user functions as separate tasks; instead we expand all func­
tions inline. We have found that on medium-grain machines like the Sequent we rarely recover
the cost of a spawn, and that on coarse-grain machines like the Cray-XM/P the overhead actually
hurts performance 112J. A command line option specifies the number of worker processes (the de­
fault is 1). After execution begins, the kernel creates and assigns a worker process to each partici­
pating processor. The workers then spin-wait for producer or consumer tasks to appear on a ready
list or loop tasks to appear in a global loop pool. If a task blocks, waiting for the completion of a
storage request or the results of another task, the governing worker saves its hardware state,
records the outstanding event, and returns to the ready state. Thus, workers never spin wait
unless there is no work to do.

In SISAL, streams are non-strict by definition. To implement parallelism, stream producers
and consumers are packaged by the SISAL compiler as separate tasks, and a bounded buffer is
created to store stream values (the buffer's size is a runtime option). If a consumer attempts to use
a value not yet produced, it blocks. Likewise, a producer will block if the buffer is full. To prevent
continuous blocking and unblocking, producers and consumers awake only after some number of

9

values have been consumed or produced, respectively. The user may set these numbers at runtime
or use the default values.

When a loop appears in the global loop pool, each worker takes a slice of the loop, executes the
slice, and returns to the pool for another slice. Based on estimates of execution times, IF2PART de­
cides which loops should be sliced. A loop is either not sliced or sliced into n chunks, where n is a
runtime option (the default is the number of workers).

4. Reductions in semantic overhead

In sections 2 and 3, we illustrated the high overhead of single-assignment semantics and
briefly described how our compiler reduces, and even eliminates, this overhead without violating
SISAL's applicative semantics. In this section, we compare the number of memory management,
copy, and reference count operations before and after optimization in five scientific codes: the
Livermore Loops, Gauss-Jordan elimination with full pivoting, RICARD, SIMPLE, and Parallel
Simulated Annealing. Table I gives the compilation statistics for the five programs: columns 2-4
list the number of arrays built, preallocated, and built in-place; columns 5 and 6 list the number of
copy and reference count operations before optimization; and columns 7-10 list the number of copy,
conditional copy and reference count operations after optimization, and the number of artificial
dependency edges introduced by IF2UP. All five programs achieved good speedup on the Sequent
Balance 21000 and four out of the five programs ran as fast as equivalent FORTRAN programs on
one processor.

4.1 The Livermore Loops

The Livermore Loops [14] are a set of 24 scientific kernels from production codes run at
Lawrence Livermore National Laboratory. For many years scientists have used the Loops to
benchmark high performance computers. The kernels include both sequential and parallel com­
putations of varying complexity [7], In general, we used iterative for expressions to implement the
sequential loops, and parallel for expressions to implement the parallel loops. Because the input
data sizes of Loops 2 and 23 are too small to justify parallel execution, we wrote sequential versions
of each loop.

Statically, the SISAL version of the Loops builds 76 arrays. IF2MEM preallocated memory and
built all the arrays in place. IF2UP eliminated all 39 copy operations, reduced the number of refer­
ence count operations from 1565 to 43, and introduced 114 artificial dependence edges. The har­
monic means of the execution speeds of the SISAL Loops on one and five processors were 44 and 77

10

Programs Arrays Before Opt Aftei Opt
Built PreA In Copy RefC Copy Ccopy RefC ADE

Loops 76 76 76 39 1565 0 0 43 114
GJ 7 7 7 5 118 0 0 1 9

RICARD 29 29 28 17 207 0 6 7 5
SIMPLE 261 261 261 214 2066 0 19 61 347

PSA 46 46 42 18 696 0 4 41 168

Table I - Compilation Statistics

KFlops (thousands of floating point operations per second), respectively. In comparison, the har­
monic mean of the FORTRAN Loops was 45 KFlops. With copy and reference count operations all
but eliminated, it is not surprising that the SISAL Loops ran as fast as the FORTRAN Loops.

Eight of the sixteen parallel loops achieved speedups of 3.8 or better. Seven of the sixteen loops
(Loops 2, 6, 9, 10, 14, 16, and 24) achieved smaller speedups due to insufficient parallel work. In
fact, the amount of parallel work in Loops 4 and 6 was so small that the compiler generated sequen­
tial code. Only Loop 8 exhibited poor speedup. Using a profile facility built into the SISAL runtime
kernel, we observed that Loop 8 spent considerable time building and recycling arrays. The pro­
file showed that the memory operations were idling processors. Loops 8 manipulates three dimen­
sional arrays, which SISAL 1.2 stores as arrays of arrays. The structures are built and recycled
one dimension at a time. Although the memory subsystem can handle simultaneous storage re­
quests, some sections require atomic access to shared data, limiting potential parallelism. We
saw the same effect, but to a smaller degree, in some loops that manipulate two dimensional arrays
(Loops 15 and 18).

4.2 Gauss-Jordan Elimination with full pivoting

Gauss-Jordan elimination with full pivoting solves a set of linear equations of the form

A x = B

where A is an n x n matrix and x and B are n x 1 column vectors. The algorithm comprises n
iterative steps. At each step, the largest element in a previously unselected row is found and moved
onto the major diagonal. Say the element is found at position then the element is moved onto
the diagonal by interchanging rows i and j. In the new matrix, row j is the pivot row and A(j, j) is

11

the pivot element. After the interchange, A and B are reduced by the pivot row. The effect of the
reductions are to transform A into the identity matrix and B into x.

The static SISAL program builds 7 arrays. All the arrays are preallocated and built in place.
Before optimization, the code included 5 copy operations and 118 reference count operations. After
optimization, the code included no copy operations, 1 reference count operation, and 9 artificial de­
pendency edges. For n = 100, the optimized SISAL program ran in 54.5 seconds on one processor
and in 8.8 seconds on ten processors (a speedup of 6.2). The equivalent FORTRAN program ran
in 54.0 seconds on one processor. Although both phases of a step (finding the pivot element and
reducing the matrix) are data independent, neither phase is computationally intensive. In our
implementation sequential work accounted for 6% of the execution time. While 6% seems small,
it is enough to limit speedup on ten processors to at most 6.4.

4.3 RICARD

RICARD [4] simulates experimentally observed elution patterns of proteins and ligands in a
column of gel by numerical solution of a set of simultaneous second-order partial differential
continuity equations. As the system evolves over time, the protein concentrations at the bottom of
the column are sampled to construct the elution patterns. Each time step, the program calculates
the change in protein concentrations at each level of the column due to, first, chromatography, and
then, chemical reaction. The new values serve as the initial conditions for the next time step. The
computations during the chromatography step are data independent, whereas the computations of
the chemical reaction phase are independent across levels and dependent across proteins. Since
the independent tasks are computationally intensive, the program should achieve near linear
speedup on medium- and course-grain machines.

The static SISAL program builds 29 arrays. The memory for all the arrays was preallocated,
and 28 of the arrays were built in place. The one array not built in-place was constructed during
program initialization, thus the copying was inconsequential. Before optimization, the static pro­
gram included 17 copy operations and 207 reference count operations. After optimization, there
were no unconditional copy operations, 6 conditional copies, 7 reference count operations, and 5
artificial dependency edges. The 6 conditional copy operations were introduced because of row
sharing. Initially, a number of the arrays share rows. When the shared rows are updated, they
have to be copied; but once copied, the rows are unique and can be updated in place. Thus, the condi­
tional copies executed only once each.

12

For a 1315 level, 5 protein problem, the execution times of the optimized SISAL code were 31.00
hours and 3.45 hours on one and ten processors, respectively (a speedup of 9.0). In comparison, the
equivalent FORTRAN program ran in 30.63 hours on one processor. The small differential in se­
quential times and the near linear speedup are a testimony to the compiler's ability to remove the
overhead introduced by applicative semantics.

4.4 SIMPLE

SIMPLE [6J is a two dimensional Lagrangian hydrodynamics code developed at Lawrence
Livermore National Laboratory that simulates the behavior of a fluid in a sphere. The hydrody­
namic and heat conduction equations are solved by finite difference methods. A tabular ideal gas
equation is provided to determine the relation between state variables. The implementation of
SIMPLE in SISAL 1.2 is straightforward and exposes considerable parallel work. Two potential
sources of copying are the functions Node Ref lect and Zone_Ref lect that build borders around
arrays.

Node Ref lect takes a.r\nx m array as input and returns the array

a Top Row b c
d e

Left_ lllllllll Input Array 11111111
Vp-

kQtr
rt_Side

1
C/5
H-a<t>

f Bottom_Row Ig h

where a, b, c, d, e, f, g, h are scalars, Top_Row and Bottom_Row are (m - l)-element row vectors,
and Left_Side and Right_Side are (n - f)-element column vectors. The computations of the bor­
der elements are data independent and can be computed in parallel. The most natural way to ex­
press the computation in SISAL 1.2 is to compute each element separately and then glue the pieces
together as follows (letX be the input array),

13

let
frist_row := array_addl(arrayaddh(arrayaddh(TopRow, b), c), a);

second_row := array_addl(array_addh(X[1], e), d) ;
last_row := array_addl(array_addh(array_addh(Bottom_Row, g), h), f);
middle_row := for i in 2, n

returns array of
array_addl(array_addh(X[i), Right_Side[i-1]),

Left_Side[i-1])
end for

in
first_row || second_row |I middle_row I| last_row

end let

Note that unless the pieces are built in place, each element is copied twice. Although the analysis is
complicated, IF2MEM inserts code into the computation graph that computes the size and location
of each piece in the final array, and rewires the graph to build the array in place.

The static SISAL program builds 261 arrays. The memory for all the arrays was preallocated,
and all the arrays were built in place. Before optimization, the program included 214 copy opera­
tions and 2066 reference count operations. After optimization, the program included no uncondi­
tional copy operations, 19 conditional copies, 61 reference count operations, and 347 artificial de­
pendency edges. The 19 conditional copy operations were introduced because of row sharing.
They executed only once each.

The optimized SISAL code completed 62 iterations for a 100 x 100 grid in 3099.3 seconds and
422.0 seconds on one and ten processors, respectively (a speedup of 7.3). The equivalent
FORTRAN programs executed in 3081.3 seconds on one processor. Although the speedup of the
SISAL code is good, it could be better. We are losing at least an equivalent of 1.5 processors in the
allocation and deallocation of two-dimensional arrays. We noticed the same phenomenon in
some of the Livermore Loops that handled two- and three-dimensional arrays.

4.5 Parallel Simulated Annealing

Simulate annealing is a generic Monte Carlo optimization technique that has proven effective
at solving many difficult combinatorial problems. In this study, we employed the method to solve
the school timetable problem [1], The objective is to assign a set of tuples to a fixed set of time slots
(periods) such that no critical resource is scheduled more than once in any period. Each tuple is a
record of four fields: class, room, subject, and teacher. Classes, rooms, and teachers are critical
resources; subjects are not. At each step of the procedure, a tuple is chosen at random and moved to

14

another period. If the new schedule has equivalent or lower cost, the move is accepted. If the new
schedule has higher cost, the move is accepted with probability,

e(-AC IT)

where AC is the change in cost and T is a control parameter. If the move is not accepted, the tuple is
returned to its original period. We parallelized the procedure by simultaneously choosing one tu­
ple from each nonempty period and applying the move criterion to each. We then carried out the
accepted moves one at a time. Note that more than one move may involve the same period.

OSC had little difficulty optimizing the computation graph. The static program builds 46 ar­
rays. Memory for all the arrays was preallocated, and all but 4 of the arrays were built in place.
The unoptimized static program included 18 copy and 696 reference count operations. The opti­
mized static program included no absolute copy operations, 4 conditional copy operations, 41 refer­
ence count operations, and 168 artificial dependency edges. The 4 conditional copy operations
were introduced because of the possibility of row sharing. In fact, there was no row sharing and no
copying.

The 4 arrays not built in place result from the expressions that add a tuple to a period. Since the
old period is created on the previous iteration, the new period can not be built in place. However, the
SISAL runtime system decouples the physical and logical sizes of arrays. If an element is re­
moved from the high-end of an array, the array's logical size shrinks by one (assuming the array
can be updated in place), but its physical size remains constant; i.e., the physical space is not re­
leased. Then if an element is added to the high-end of the array, there will be space for the element
and we avoid copying (assuming the array can be updated in place). If there is no space for the
element, the runtime system allocates a new, larger space and copies the array. When the system
allocates new space, it always allocates a few extra bytes to accomodate future growth. In the paral­
lel simulated annealing code, the periods are continually growing and shrinking as tuples are
removed and added. Although the compiler does not mark the new periods for build-in-place, the
runtime system (except for the first time) always finds room for the new tuples. This implementa­
tion of array storage saves over 15000 copies at the cost of a few hundred bytes of storage.

For a problem size of (30 periods, 300 tuples, 10 classes, 10 rooms, 10 teachers), the optimized
SISAL program ran in 956.2 seconds and 267.8 seconds on one and five processors, respectively (a
speedup of 3.6). The speedup is quite good given the fact that the update of the schedule is
sequential. The equivalent FORTRAN program executed in 476.6 seconds on one processor, about
twice as fast as the SISAL program. The discrepancy in times is due to the allocation and

15

deallocation of the data structures for the move set during every iteration in the SISAL program.
However, it is a simple optimization (loop invariant removal) to save the structures and pass them
to the next iteration. We expect that once this optimization is implemented, the SISAL and
FORTRAN execution times will be comparable.

5.0 Conclusions

Table I clearly illustrates why applicative languages have a reputation for inefficiency; how­
ever, it also illustrates just as clearly that the SISAL 1.2 compiler can eliminate this inefficiency.
The speedups and the comparison of SISAL and FORTRAN execution times on one processor show
that, with appropriate optimization, applicative semantics are not a deterrent to high-performance
parallel computing on shared-memory multiprocessors. The scientific community should no
longer consider applicative languages inefficient, or ignore their potential. Given the expressive
and easy-to-use parallel programming model they provide, these languages represent an attrac­
tive alternative to conventional programming languages on shared-memory multiprocessors.
While we acknowledge that the FORTRAN compiler on the Sequent Balance is poor, so is the C
compiler used by CC on the Sequent Balance. With respect to conventional optimizations and code
generation, we believe that there is as much room for improvement in the FORTRAN compiler as
there is in the SISAL and C compilers.

We are currently revising the definition of SISAL to eliminate its known deficiencies. First
we are adding true rectangular arrays - the overhead of arrays of arrays is just too high. Second,
to enhance expressive power, we are adding high-order functions, user-defined reductions, infix
array operations, subarray operations, parameterized types, and a foreign language interface.
We are also unifying the two loop forms. We plan to implement the revised language on both
shared and distributed memory multiprocessors.

Acknowledgements

We would like to thank Dr. Rod Oldehoeft, Chairman of the Computer Science Department at
Colorado State University, for providing access to the Department's Sequent, and for his contribu­
tions to SISAL’s design and implementation.

16

References

1. Abramson, D. Using Simulated Annealing to Solve School Timetables: Serial and
Parallel Algorithms. RMIT Technical Report TR-112-069R, Royal Melbourne
Institute of Technology, Melbourne, Australia, 1988.

2. Cann, D. C. and R. R. Oldehoeft. Reference count and copy elimination for parallel
applicative computing. Department of Computer Science Technical Report CS-88-129,
Colorado State University, Fort Collins, CO, November 1988.

3. Cann, D. C. Compilation Techniques for High Performance Applicative
Computation. Ph.D. thesis, Department of Computer Science, Colorado State
University, 1989.

4. Cann, J. R. et. al. Small Zone Gel Chromotography of Interacting Systems:
Theoretical and Experimental Evaluation of Elution Profiles for Kinetically
Controlled Macromolecule-Ligand Reactions. Analytical Biochemistry 175,
2(December 1988), pp. 462-473.

5. Cohen, J. Garbage collection of linked data structures. ACM Computing Surveys 13, 3
(September 1981), pp. 341-367.

6. Crowley, W. P., C. P. Hendrickson, and T. E. Rudy. The SIMPLE Code. Lawrence
Livermore National Laboratory Technical Report UCID-17715, Lawrence Livermore
National Laboratory, Livermore, CA, February 1978.

7. Feo, J. T. An analysis of the computational and parallel complexity of the Livermore
Loops. Parallel Computer 8, 7 (July 1988), pp. 163-185.

8. Feo, J.T., D. C. Cann and R. R. Oldehoeft. A report on the SISAL language project.
Lawrence Livermore National Laboratory Technical Report UCRL-10440, Lawrence
Livermore National Laboratory, Livermore, CA, January 1990.

9. Hudak, P. and A. Bloss. The aggregate update problem in functional programming
systems. Proc. Twelfth ACM Symposium on the Principles of Programming
Languages. ACM, New Orleans, LA, January 1985, pp. 300-313.

10. Hudak, P. A semantic model of reference counting and its abstraction. Proc. of the
ACM Conference on Lisp and Functional Programming, Cambridge, MA, August
1986, pp. 351-363.

11. Hudak, P. et. al. Report on the Programming Language Haskell, A Non-Strict
Purely Functional Language (Version 1.0). Department of Computer Science
Technical Report RR777, Yale University, New Haven, CT, April 1990.

12. Lee, C-C., S. K. Skedzielewski, and J. T. Feo. On the implementation of applicative
languages on shared-memory, MIMD multiprocessors. Proc. Parallel
Programming: Environments, Applications, Language, and Systems Conference.
IEEE Computer Society, New Haven, CT, July 1988, pp. 188-197.

13. McGraw, J. R. et. al. Sisal: Streams and iterations in a single-assignment lan­
guage, Language Reference Manual, Version 1.2. Lawrence Livermore National
Laboratory Manual M-146 (Rev. 1), Lawrence Livermore National Laboratory,
Livermore, CA, March 1985.

14. McMahon, F. H. Livermore Fortran Kernels: A Computer Test of the Numerical
Performance Range. Lawrence Livermore National Laboratory Technical Report
UCRL-53745, Lawrence Livermore National Laboratory, Livermore, CA, December
1986.

15. Nikhil, R. S. ID Reference Manual, Version 88.1. Computation Structures Group
Memo 284, Laboratory for Computer Science, MIT, Cambridge, MA, August 1988.

16. Oldehoeft, R. R. and D. C. Cann. Applicative parallelism on a shared-memory
multiprocessor. IEEE Software 5,1 (January 1988), pp. 62-70.

17. Ranelletti, J. E. Graph Transformation Algorithms for Array Memory Optimization
in Applicative Languages. Ph.D. thesis, Department of Computer Science,
University of California at Davis/Livermore, 1987.

18. Richert, T.R. Efficient task management for SISAL. Department of Computer
Science Technical Report 89-111, Colorado State University, Fort Collins, CO, July
1989.

18

19. Skedzielewski, S. K. and J. Glauert. IF1 - An intermediate form for applicative lan­
guages. Lawrence Livermore National Laboratory Manual M-170, Lawrence
Livermore National Laboratory, Livermore, CA, July 1985.

20.

•-

Skedzielewski, S. K. and M. L. Welcome. Dataflow graph optimization in 1F1. In
Jouannaud, J. P. (Ed.). Functional Programming Languages and Computer
Architectures. Springer-Verlag, New York, NY, 1985, pp. 17-34.

21. Skedzielewski, S. K. and R. J. Simpson. A simple method to remove reference count­
ing in applicative programs. Proc. ACM SIGPLAN '89 Conference on Programming
Language Design and Implementation, Portland, OR, June 1989.

22. Welcome, M. L. et. al. IF2: An applicative language intermediate form with explicit
memory management. Lawrence Livermore National Laboratory Manual M-195,
Lawrence Livermore National Laboratory, Livermore, CA, November 1986.

19

