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ABSTRACT 

This paper investigates procedures for univariate nonparametric estimation 
of tail probabilities. Extrapolated values for tail probabilities beyond the 
data are also obtained based on the shape of the density in the tail. Several 
estimators which use exponential weighting are described. These are compared 
in a Monte Carlo study to nonweighted estimators, to the empirical cdf, to an 
integrated kernel, to a Fourier series estimate, to a penalized likelihood . 
estimate and a maximum likelihood estimate. Selected weighted estimators are 
shown to compare favorably to many of these standard estimators for the sam­
pling distributions investigated. 
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ESTIMATING TAIL PROBABILITIES 

1.0 INTRODUCTION 

This paper discusses the nonparametric estimation of tail probabilities. 
Statistical data analysts frequently evaluate tail probabilities. Typically, 
tail probabilities are found by making assumptions and looking up results in 
tables of theoretical distributions. However, if a substantial amount of data 
is available as a reference distribution, assumptions can be avoided and tail 
probabilities can be evaluated more directly. Large data sets frequently con­
tain relevant reference distributions. For many problems the empirical cdf 
based on such reference distributions will answer the questions about tail 
probabilities. However, the empirical cdf or binomial estimate of tail proba­
bility is somewhat rough. We believe that tail estimates can be improved by 
smoothing. Density estimates are smoothed estimates that correspond to a 
smoothed cdf and provide a starting place for estimating tail areas. The exact 
choice of a density estimation procedure and the corresponding smoothing is not 
crucial in the center distribution where there is a lot of data. The smoothing 
does become important when we are so far out in the tails that very little data 
is directly relevant, and especially important in the extrapolation problem, 
when the critical point is beyond all the data. 

The major method developed for empirical cdf smoothing in this paper is a 
weighted-data Fourier series procedure. To motivate the use of weighted data, 
this paper first presents Esscher's procedure for estimating and approximating 
tail probabilities. Then weighted procedures are discussed in more detail and 
the Fourier series smoothing method is developed. To evaluate this smoothing 
method and other smoothing methods a Monte Carlo study is performed and those 
results are described. 
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2.0 ESSCHER'S WEIGHTING PROCEDURE 

The problem of estimating tail areas is a major concern to actuaries try­
ing to control the probability of company ruin due to accumulation of claims in 
too short a period. To specifically address the actuarial problem, Esscher 
(1932) proposed weighting the data before trying to represent the density using 
an Edgeworth series. Although the technique does not globally improve the 
estimation of the density, it considerably improves the density estimate in the 
tail. In the actuarial literature, the technique is used in estimating the 
right-hand tail of the compound Poisson distribution, and the estimate is 
amazingly accurate (Bohman 1963; Bohman and Esscher 1963-1964). 

For the general Esscher procedure, define the following: 

f(x) = density for which tail area is desired 

00 

Set) = f f(x)dx 
to 

00 

ck(s) = j/eSkf(X)dX 
-00 

k = 0, 1, ... , 

to = critical point in the right-hand tail . 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

The Esscher technique transforms the problem from a question regarding 
the tail of f(x) to one regarding the tail of g(x,s), for a suitable value of 
s. After weighting the f(x) by eSx , the constant c01(s) is used to make 
g(x,s) a density. 

The Esscher procedure ;s summarized as follows: 
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1. Determine s* such that 

_~ xg(x,s*)dx = to . (206) 

2. Replace g(x,s*) by an Edgeworth expansion g(x,s*) with moments 

~ 

ck(s*) 
(2.7) llk = cO{s*} . 

3. Approximate S(tO) by 

00 

S(tO) ~ ~ co(s*)e-s*xg(x,S*)dX . (2.8) 
to 

The Edgeworth expansion for g(x,s*) is given by 

g(x,s*) = [Z(y) - t VTfi z(3)(y) + J (B2 - 3)Z(4)(y) 

+ ti- B1Z(6) (y)J/cr , 

(2.9) 

where 

Z(j)(y) = d~ e-ll ,I2'if , 
dxJ 

(2.10) 

and • 

y = (x - to)/ cr . (2.11) 
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The standard deviation, skewness and kurtosis in (2.9) ;s a function of s* 
through the central moments, i.e., 

0=~ (2.12) 

(2.13) 

and 

(2.14) 

These are found from ~k in (2.7) using the relation 

(2.15) 

Changing variables in (2.8) gives 

(2.16) 

¢ is the Gaussian cdf. The ej's are 0 except for 

(2.17) 

Following Beard et al. (1969), the integral in (2.16) is derived recursively 
using 

(2.18) 
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Since 

then 

and 

Thus 

Iz.IT E1(x) = xA(x) - 1 , 

Iz.IT E2(x) = x2A(x) - x , 

Iz.IT E3(x) = x3A(x) - x2 + 1 , 

Iz.IT E4(X) = x4A(x) - x3 + x , 

/ZIT ES(x) = x5A(x) - x4 + x2 - 3 , 

(2.20) 

(2.21) 

In many applications, only the first two nonzero terms are used in (2.21). 

With asymptotic evaluation in mind, we illustrate the procedure when f(x) 
is known to have a gamma density 

(2.22) 
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Then 

g(x,s) 
= Saxa-le-(S-S)x 

co(s)r(a) 

From Step 1, knowing the moments of g(x,s) gives 

s* = S - a/to s 

with standard deviation, skewness and kurtosis of g(x,s*) given by 

and 

... Iff - 2a- 1/ 2 
~~1 -

B2 = 3 + 6/a 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

For the values a = n/2 and S = 1/2, a chi-square with n degrees of freedom is 
obtained. The results are shown in Table 2.1. 

Examination of Table 2.1 illustrates several points. First, the relative 
errors are small [see for example, Gross and Hosmer (1978) and Andrews (1973)J. 
This is expected for large degrees of freedom, when the central limit theorem 

TABLE 2.1. Relative Errors (p - p)/p in Approximating 
a x2 Distribution 

Target E 10 
De~rees of Freedom 

2 1 
0.05 -0.003 -0.007 -0.024 -0.056 
0.01 -0.002 -0.004 -0.008 -0.002 
0.001 -0.001 -0.001 0.004 0.032 
0.0005 -0.001 0 0.006 0.036 
0.0001 0 0.001 0.009 0.040 
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applies. Surprisingly, the estimate works well for the thicker tails corre­
sponding to fewer degrees of freedom. The Esscher density estimate at to is a 
saddlepoint approximation (Daniels 1954) for the density of a mean, but with­
out large degrees of freedom the ordering of terms for the series expansion is 
not established. Consequently, the good results for one degree of freedom are 
unexpected. 

Values for the tables are easily computed using a continued fraction 
expansion [see Bouver and Bargmann (1979); and Abramowitz and Stegun (1968)] 
for Mills ratio in (2.19). Were the bias smaller, an implementation of (2.21) 
for the incomplete gamma distribution might be considered. The bias is rela­
tively small in this case, but can be large in others. 

Table 2.2 shows the relative errors from the Esscher procedure from 
approximating the tails of a contaminated Gaussian distribution. The Esscher 
procedure is unable to follow the bump in the tail added by the contamination. 
Thus, the Esscher procedure, which works well for its intended application 
involving the compound Poisson and other situations involving the central 
limit theorem, should not be routinely used in nonparametric situations. In 
fact, for thick-tailed distributions, the theoretical moments in (2.3) do not 
exist. The procedure, however, suggests the use of weighted samples in con­
junction with alternative density estimates. The La Guarre series, the Fourier 
series, and a host of other density estimates are candidates. 

TABLE 2.2. Relative Error in Estimating a Standard Normal 
5% Contamination from N(~2,0.04) 

with 

Critical ~2 
Point to 0 1 2 3 

0 0.0 0.0 0.0 0.0 
1 0.01 -0.03 0.0 0.2 
2 -0.07 0.18 -0.2 -0.2 
3 -0.18 0.23 1.6 0.7 
4 -0.31 0.29 3.4 16.0 
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3.0 WEIGHTED ESTIMATION PROCEDURES 

In the previous section, the Esscher procedure improved tail estimates by 
weighting the data, approximating the density for the weighted data, and adjust­
ing for the weights during integration. In this section, we investigate the 
same strategy using different weights and/or different estimation procedures. 

3.1 CHOICE OF A WEIGHTING FUNCTION 

The exponential weights used in the Esscher procedure are ideally suited 
to the Gaussian distribution, because the weighted density has a Gaussian dis­
tribution. Only the mean is changed. Similarly, the weight function changes 
only the scale when applied to the family of gamma densities. However, the 
general choice of an exponential weight function is unappealing since it domi­
nates the tails of thick-tailed unimodal distributions. That is, for s > 0, 
lim eSXf(x) + 00. Consequently, the proposed procedure uses the exponential 
function only up to the critical point and uses a constant weight thereafter. 
Further, zero weight is given to data less than the sample mean. Omitting the 
data below the mean focuses the modeling effort on the relevant portion of the 
distribution. Other cutoff points could be used. The resulting weight func­
tion is illustrated in Figure 3.1. 

Because of the shape of the weight function, the weight parameter s in 
part controls the degree of smoothing that takes place. If s is large, the 
weight function approximates the step function corresponding to the binomial 
estimate. An advantage of the weight function given in Figure 3.1 is the 
simplicity in inverting it on the interval [to' 00). A minor disadvantage ;s 
that the discontinuity in the derivative of weight function leads to a corre­
sponding discontinuity in the weighted density to be modeled. When smooth 
functions are used in the modeling, some lack of fit can be expected. Various 
values of s are considered in Section 4. 
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FIGURE 3.1. Truncated Exponential Weight Function 

3.2 CHOICE OF A NONPARAMETRIC DENSITY ESTIMATION PROCEDURE 

A variety of nonparametric procedures for estimating the density are 
available. Considerations in this choice include prior knowledge about the 
distribution to be modeled, theoretical optimality criteria, preferences of 
form for an estimation procedure and preference of form for smoothing parameter 
estimation. For illustrative purposes, we select two density estimation proce­
dures: a Fourier series estimator (F) [see Kronmal and Tarter (1968); 
Tarter and Kronmal (1970, 1976); and Tarter (1979)] and a kernel estimator (K) 
[see Parzen (1962)]. We select the F estimator because its theoretical prop­
erties for unweighted samples are known and because the smoothing parameter, 
the number of terms in series expansions, is readily determined. The kernel 
estimate is chosen for comparison purposes. Technically, the F procedure can 
be expressed as a particular kernel procedure, but the choice of the smoothing 
parameter leads it to be viewed differently. 
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3,3 A WEIGHTED DATA FOURIER ESTIMATION PROCEDURE 

Modifying the Fourier series estimator to accommodate the weight function 
in Figure 3.1 is straight forward, Let the sample be Yi' i = 1, '0', nand 
let the subsample Xi' i = 1, ... , n1 be observations with Xi > Y where 
y = n- 1 rYi' The estimates of the coefficients for a weighted Fourier proce­
dure are given by 

and 

where 

Then 

. rs(x;-to) ] 
m1 n Le , 1 

wi = -n-1----'.--, -r-S-(-X ;---to--');""-=--J 
L m1n l: ' 1 
j=1 

and a = y . 

n; 
X = L: w· x. . 1 1 1 1= 

and 

3.3 

(3.1) 

(3.2) 

(3.3) 

(3.4) 



Note that the expression in brackets in (3.4) has the same form as 1 - F(t) in 
the unweighted Fourier series estimate. The factor n1/n in (3.4) adjusts for 
omitting values below y. The factor 

adjusts for the ~eights and the weight inversion. The undetermined constants 
in (3.3) and (3.4) are the upper bound b, the weighting factor s, and the num­
ber of terms m. Selected values for band s are investigated in Section 4. 

The derivation' of the optimal stopping rule to determine m in the 
unweighted F estimate does not hold for weighted samples. However, as sample 
sizes get large, distinguishing between a weighted sample and samples from the 
correspondingly weighted density becomes more difficult. This suggests that 
stopping rules for a sample from a weighted density would approximate the rules 
for a weighted sample from a nonweighted density. Therefore, based upon the 
results of Kronmal and Tarter, we use the rule to stop if 

ts2 + 22) < 2 , k k n1 + 1 (3.5) 

for two consecutive terms, or if m > n~·4375. The value of 0.4357 = 7/16 is 
an arbitrary choice. This is to keep m = o(n~) which ensures a variance of 0 
as m and n go to infinity in the unweighted case. 

In the following Monte Carlo study, the maximum number of terms is typi­
cally reached on the thicker-tailed distributions. This and the results of 
Kronmal and Tarter (1968) for the Cauchy distribution suggests that less than 
the optimal number of terms are being used. Hence, better results may be 
obtained than demonstrated in this paper. 

3.4 AN INTEGRATED KERNEL ESTIMATE 

The weighting concept is also applied to kernel estimates. Kernel density 
estimates have the form 
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where K is a kernel. A tail estimate is obtained by integration of f(y), 
Thus 

where 

H(x) = 1: K(Y) dy 
-x7h 

Following Tapia and Thompson (1978), the kernel 

{ l~ (I - y2)2 for Iyl < 1 

K(y) = 

is selected. Thus 

H(x) = 

o otherwise 

1 

1 + ~.r! ?J.X)3 + If.X)5] 2 16Lh - j\K 5\h 

o 

for x> h > 0 

for -h < x·< h 

for x < -h 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

This kernel was chosen as one likely to be used in practice (at least 
prior to Silverman's 1981 fast Gaussian kernel algorithm). The choice is not 
based on knowledge of the density to be estimated. However, we exploit our 
knowledge of the sampling distribution to obtain optimal smoothing parameters. 
If we choose to minimize the mean-square error of the density over the tail, 
the optimal smoothing parameter becomes [Tapia and Thompson (1978)J 
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00 J f(y)dy 1/5 

h = 
to 

(3.11) 
jl f(2) (y) 12dy 

to 

= n1/ 5 a(K)S(f) = n-1/ 5 2.0362 S(f) . (3.12) 

Algorithms for computing S(f) for the t distribution and the mixture of normals 
are given in the appendix. 

Given h, modification of the integrated kernel estimate yields 

{
n1 . ~ s (xi -to) J} n1 

S (t ) = L: ml n e ,1 L: w. H (x. - t ) . 
o i=l n i=l 1 1 0 

(3.13) 

The weighting modifies the shape of the function H(·) and consequently of the 
kernel K(o). Since the shape of the kernel is of importance in the tails, the 
results are of interest. 

3.5 OTHER ESTIMATION PROCEDURES 

A variety of procedures can be used to estimate tails directly or modified 
to accommodate weighted samples. The interplay between the weighting, the 
smoothing parameter and the choice of density estimate can be explored for the 
numerous combinations. It is beyond the scope of this paper to look at this 
relationship in any detail. 

Even with the domain of Fourier series estimates, there are numerous 
choices and variations. The specification of the modeling interval is one 
such choice. A significant variation involves Watson's (1969) extension to 
the orthogonal series estimate that includes a "damping" function (applied to 
the coefficients) parameterized by a smoothing parameter. Fellner and Tarter 
(1971) and Tarter and Raman (1972) develop the criterion of mean integrated 
weighted squared error. Using this the damping function can be determined so 
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the emphasis is placed on a chosen region of the density's support. Wahba 
(1978) considers the adaptive choice of the smoothing parameter. Anderson and 
DeFiqueiredo (1980) consider the adaptive choice of the orthogonal series and 
note some improvement in the tails. Thus in the Monte Carlo study below, only 
a few possibilities are being considered. 
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4.0 THE MONTE CARLO STUDY 

To see how the weighted Fourier estimator (WF) performs, a Monte Carlo 
study is conducted. Several variations on the proposed estimate are considered. 
Three values of s in the weighting are used, 0.5/0, 1/0 and 2/0. Thus the drop 
in weight to the left of the critical point is in sigma units and the estimator 
presumes the existence of two moments. For measured quantities this is a 
reasonable assumption. Three values were also used as the upper bound on the 
modeling interval. These are k*max(zi)' where k is 1.2~ 1.3 and 1.4. zi 
represents the standardized data. This impacts the number of terms used in the 
estimate as well as the coefficients. When the standardized critical points 
were beyond the upper bound, the estimate described below occasionally produced 
negative values. These estimates are also taken as O. 

For comparison purposes several other estimates are computed. The empiri­
cal cdf, denoted CDF is an obvious choice. An ordinary Fourier series estimate 
(F) is also used. The modeling interval is taken to be k times the extremes of 
the standardized data. Values of k used were 1.2, 1.3 and 1.4. Estimates from 
the optimally smoothed kernel (K) and the weighted variation (WK) as described 
in Section 3 are computed. 

To consider another major approach to density estimation, tail estimates 
based on the penalized likelihood (PL) described in Tapia and Thompson (1978) 
are evaluated. The double precision IMSL routine NDMPLE is used. Here the 
data is scaled into the interval -2.75 to 2.75. The modeling interval was 
taken to be -3 to 3 with 29 internal partitions. The smoothing parameter a was 
set at a single number depending on the distribution being simulated. When 
using the same smoothing parameter the routine does not always converge. Thus 
the number of convergent results and the smoothing parameter are also reported. 

Finally as a comparison against the parametric estimator, the maximum 
likelihood estimates (ML) for the mixture of normals are obtained when those 
distributions are studied. The maximum likelihood estimates are then used to 
obtain tail probabilities. The algorithm described by Hosmer (1973) is used 
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with iterations limited to 1000 and a change in the log likelihood convergence 
criterion of 0.0001. Again the algorithm did not always converge so the number 
of convergent results is reported. 

4<1 DISTRIBUTIONS INVESTIGATED AND GENERATION METHODS 

For sampling distributions, the t distribution with 30, 10 and 3 degrees 
of freedom is used. We also investigated mixtures of normals of the form 
(1 - p)N(O, 1) + pN(~,o), where p = 0.05 and 0.01, ~ = 2 and 4, and 0 2 = 0.25. 
The t distribution is used to investigate progressively thicker tails and the 
contaminated normals are used to investigate the effects of bumps. 

To generate random numbers, the multiplicative congruentia1 generator 

SEED = 69069*SEED + 1 (MOD 2**32) 

is used to generate uniform [0,1] numbers. The 24 high-order bits of the 
32 bit numbers are converted to floating point and are used as the next seed. 
Congruential generators of this type tend to have triples lying in planes, but 
are adequate for purposes here. For further details on congruentia1 generators 
see Marsag1ia (1976). The inversion to produce the t distribution uses the 
IMSL routine MDSTI and ;s considered sufficiently accurate (Hill 1970). 

The study ;s performed by determining critical points corresponding to 
right-tail probabilities of 0.1, 0.005, 0.0001 and 0.0005. Results are sum- . 
maries of 500 replicates of samples size 1000. 

4.2 RESULTS 

Only selected estimators are presented. For the WF estimate, s = 2/; and 
k = 1.4 generally gives slightly better results. Consequently, we present only 
this variation. 

The weighted kernel with s = 0.5/0 was usually the better variation and 
is reported here. Only the Fourier estimate with k = 1.2 is presented. 
Results not reported here are available from the authors on request. Since the 
estimators tend to have small bias, relative to their variability, we are 
reporting the mean-square relative errors MSRE. The COF estimate typically has 
the smallest bias and confirms the consistency between the critical points 
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computed and the random numbers generated. Note that in the last column of 
Tables 4.1 through 4.7 the MSRE is greater than 1. Here the estimate "0" pro­
vides an improvement. Other error criteria may be more informative. 

Some results are similar across the tables. The weighted data estimates 
WF and WK always gave smaller mean-squared error than the CDF estimate. With 
one exception the kernel estimate K gave smaller mean-squared error. If the 
underlying distribution is smooth, a smoothed estimate can be as good as or 
better cdf. Thus while the empirical cdf maintains the practical advantages 
of Simplicity and availability of confidence bounds, for some situations 
smoothing procedures are warranted. 

TABLE 4.1. Mean-Square Relative Error for a 
T30 Distribution 

Estimator i).01 0.005 
Target E 

0.001 0.00i)5 
CDF 0.100 0.21 0.96 2.0 
WF 0.092 0.19 0.88 1.6 
WK 0.088 0.18 0.85 1.6 
F 0.100 0.22 1.60 2.6 
K 0.095 0.19 0.88 1.6 
PL (a = 5) 0.090 0.18 0.68 1.3 

TABLE 4.2. Mean-Square Relative Error for a 
TID Distribution 

Estimator 0.01 
Target g 

0.005.001 0.0005 
CDF 0.094 0.18 0.91 2.1 
WF 0.085 0.16 0.84 1.9 
WK 0.080 0.15 0.78 1.8 
F 0.088 0.20 1.00 3.0 
K 0.083 0.15 0.77 1.8 
PL (a = 1) 0.15 0.36 0.83 1.7 
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TABLE 4.3. Mean-Square Relative Error for a T3 Distribution 

Target E 
Estimator 0.01 0.005 0.001 0.0005 

CDF 0.091 0.19 0.81 1.7 
WF 0.084 0.17 0.80 1.7 
WK 0.083 0.17 0.74 1.5 
F (a) (a) (a) (a) 

K 0.084 0.17 0.74 1.5 
PL (ex = 0.1) 1.278(b) 0.37 1.3 2.2 

(a) Very large. 
(b) 486 of 500 cases. 

TABLE 4.4. Mean-Square Relative Error for a Standard Normal 
with 5% Contamination from N(2,0.25) 

Target E 
Estimator 0.01 0.005 0.001 0.0005 

CDF 0.098 0.21 0.99 2.1 
WF 0.085 0.17 0.79 1.7 
WK 0.084 0.18 0.82 1.8 
F 0.110 0.27 1.50 2.9 
K 0.092 0.20 0.95 2.1 
PL (ex = 0.5) 0.098(a) 0.22 0.79 1.7 
ML O.077(b) 0.13 0.40 0.7 

(a) 497 of 500 cases. 
(b) 484 of 500 cases. 

The ordin~ry Fourier series and penalized likelihood estimates on the sur­
face appear very desirable in that after a pass at the data, they provide a 
density estimate and readily computed tail estimates for any desired critical 
point. The occasional poor results, for example in Table 4.3 with the thick­
tailed distribution suggests that care is required in selecting a modeling 
interval. Kronmal and Tarter are very careful in their selection of a 
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TABLE 4.5. Mean-Square Relative Error for a Standard Normal 
with 1% Contamination from N(2,0.25) 

Target E 
Estimator 0.01 0.005 0.001 0.0005 

COF 0.094 0.19 0.97 2.0 
WF 0.084 0.17 0.82 1.5 
WK 0.081 0.16 0.80 1.6 
F 0.088 0.22 2.10 5.0 
K 0.095 0.19 0.92 1.8 
PL (a = 0.5) 0.092(a) 0.18 0.82 1.6 
ML 0.081(b) 0.15 0.41 0.6 

(a) 492 of" 500 cases. 
(b) 471 of 500 cases. 

TABLE 4.6. Mean-Square Relative Error for a Standard Normal 
with 5% Contamination from N(4,0.25) 

Target E 
Estimator 0.01 0.005 0.001 0.0005 

COF 0.077 0.19 1.3 2.1 
WF 0.059 0.14 0.9 1.8 
WK 0.070 0.17 1.1 2.0 
F 0.067 0.19 1.1 1.7 
K 0.067 0.17 1.1 1.9 
PL (a = 0.05) 0.067 0.17 0.9 1.7 
ML 0.052 0.11 0.4 0.7 

modeling interval when looking at a thick-tailed Cauchy distribution. They 
provide for not including all of the data. This seems inappropriate for the 
problem at hand. 

That the penalized- likelihood estimate was occasionally poor is a bit 
surprising. The subroutine documentation suggests throwing out outliers. 
When this is not done as in the above Monte Carlo, many consecutive intervals 
can have no data and the routine sometimes fails to converge. For the conver­
gent situations with the thick-tailed t distribution, a closer look reveals 
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that a 

TABLE 4.7. Mean-Square Relative Error for a Standard Normal 
with 1% Contamination from N(4,0.25) 

Target ~ 
Estimator 0.01 0.005 0.001 0.0005 

CDF 0.013 0.091 0.85 1.9 
WF 0.011 0.078 0.68 1.3 
WK 0.010 0,081 0.76 1.6 
F 0.025 0.089 0.96 2.8 
K 0.009 0.074 0.71 1.5 
PL (a = 0.05) 0.012 0.091 0.75 1.4 
ML 0.011 0.084 0.51 0.8 

few large tail estimates make almost all of the contribution to the 
mean-square error. In about half of these problem cases, an extreme data point 
(maximum or minimum) was present. Consequently the scaling bunches most of the 
data into a few intervals. The coarse binning in the region of the critical 
point leads to poor estimates. Thus omitting data not only helps with conver­
gence but can improve the modeling in the region of interest. Of course the 
tail estimates would have to be adjusted to account for the omitted data. 

In the remaining problem cases the poor estimates are due to some other 
source. For example, in the single problem case for the t distribution was 
with ten degrees of freedom, the discrete penalized likelihood estimate was 
0.0618 and the binomial estimate was 0.011. The density estimates in the tail 
all seemed to be inflated relative to those in the center of the distribution. 
The reason for this is not self evident. A possibility is that a false con­
vergence has been reached that is not clearly indicated by the log likelihood. 
Whatever the situation, the existence of a problem is clearly evident from the 
mismatch with the binomial estimate. With a little bit of care given to the 
data modeled, the number of intervals and the smoothing parameter, much better 
estimates can be obtained. 

For the contaminated normal distribution, the penalized likelihood does 
not differ much from the binomial estimate at the 0.01 and 0.005 critical 
points. It provides improvement for the more extreme critical points. The 
situation may change with different selection of algorithm parameters. 
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Silverman (1982) points out that the penality function can be chosen to yield a 
particular distribution when the smoothing is heavy. Thus the analyst has 
several decisions to make in using penalized likelihood procedures. Some 
choices can be made by looking at the data, but some seem arbitrary. How much 
the arbitrary choices impact the tail estimates remains an open question. 

The kernel estimates performed fairly well in this study. This is 
expected since the optimal smoothing parameter was derived from the distribu­
tions used to generate the samples. We have no explanation why they did not 
perform better for the contaminated normals. The WK estimator is sometimes a 
little better than the K estimator. This suggests that the chosen kernel does 
not have the best shape for estimating tail values and that an asymmetric 
weighting in the window is helpful. To use a kernel procedure, the analyst 
must specify both the kernel and the smoothing parameter. For general density 
estimation purposes the exact shape of the kernel is not considered crucial. 
Unfortunately this result may not hold in the tails. Additionally, it is not 
well established how to get a good smoothing parameter for the tails. Methods 
like those in Silverman (1978) are not well suited to the tail problem. 

The data weighted Fourier series estimator performed well. Results are 
biased somewhat in its favor since different settings of the arbitrary parame­
ters sand b were investigated. However, since the one set reported performed 
reasonably well for all distributions investigated, there is hope that this set 
is a reasonable selection for many other distributions. 

Perhaps the biggest criticism of Fourier series estimates is the possi­
bility of negative tail estimates and of tail estimates that are not monotone 
decreasing as the critical point moves to the right. Trade offs are involved. 
Kernel density estimates that can only be positive cannot reduce the bias as 
much as estimates that can take on negative values. Consequently guaranteeing 
positive estimates costs in terms of increased bias. Fejer weights are some­
times used to guarantee that the resulting Fourier based estimates are positive. 
Our results and others indicate that such estimates are typically much poorer. 

A minor criticism might be the computational cost, since each critical 
point requires a separate computation with the full data set. The Chebyshev 
recursive relationships for the sine and cosine are fast and have good accuracy 
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for a substantial number of terms [see Tarter et ale (1967) and Tarter and 
Kronmal (1968)J. Certainly FFT methods could be applied to binned weighted 
data. Thus the computational costs should not be prohibitive. 

A third criticism concerns the lack of theoretical results about the prop­
erties of the estimator that do not carryover from the unweighted situation. 
The lack of theoretical results for smoothing is a general problem. Generally, 
density estimation procedures require the analyst to choose the smoothing and 
modeling parameters. Theoretical results do not typically incorporate the 
information that goes into such decisions. 

What has the weighting bought? Basically it focuses the modeling attenua­
tion on the part of the distribution of interest. It helps guarantee that 
bumps to the right of the critical point are modeled while still letting points 
to the left of the critical point have some contribution. The weighting has 
made the specification of the modeling interval much less crucial. Here the 
modeling interval is chosen so that the weighted data is not bunched up at the 
end of the interval. The naive algorithm works pretty well in the Monte Carlo 
study. Certainly better results could have been obtained by judiciously 
selecting the interval after looking at the data. 

The mixture of normals maximum likelihood results address the question, 
how much could be gained if a parametric model could be specified? Condi­
tional on convergence of the algorithm, the answer in this study is quite a 
lot for extreme critical points. However if one percent or more of the data 
is beyond the critical point the improvement is marginal. The fall-back posi­
tion when the algorithm fails to converge is another issue. Estimating the 
parameters of the mixture of normals is not a trivial problem and better 
results may be obtained for more tractable distributions. However for almost 
all practical situations the question is irrelevant. Anyone who is mildly con­
cerned about the ad hoc nature of the smoothing above should be horrified at 
the specification of a parametric model appropriate for the tail. 
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5.0 SUMMARY AND CONCLUSIONS 

The empirical cdf estimator of the tail probability is simple and its 
properties are well known. However for many situations the underlying distri­
bution is believed to be smooth and the empirical cdf estimate of the tail 
probability can be improved by smoothing. Generally available smoothing 
methods tend to be ad hoc and cannot always be applied naively while still 
obtaining improved estimates. As a part of smoothing process, weighting the 
sample is a reasonable way of placing emphasis on the tail of interest. In 
Section 3, two tail estimators, the Fourier series and the integrated kernel 
were modified to use weighted data. For the Fourier series, the weighting 
simplified the modeling process to the point where a very simple algorithm 
could produce consistently good tail estimates as demonstrated in a Monte 
Carlo study. The weighting did not markedly change the kernel estimates which 
had made explicit use of the optimal smoothing parameter. For practical situa­
tions in which the optimal smoothing parameter is not known, the weighted data 
Fourier series estimate provides one relatively safe method of obtaining 
smoothed tail estimates. It appears that weighting may also be used advanta­
geously with the penalized likelihood and other density estimates, particularly 
when part of the modeling problem is associated with the tail that is not of 
interest. The best method for obtaining ,smoothed tail estimates remains an 
open issue. 

5. 1 





6.0 REFERENCES 

Abramowitz, M., and I. A. Stegun (ed.) 1968. Handbook of Mathematical Func­
tions with Formulas, Graphs and Mathematical Tables. National Bureau of 
Standards, Washington, D.C. p. 932. 

Andrews, D. F. 1973. "A General Method for the Approximation of Tail Areas. 1I 

Annals of Statistics 1:367-372. 

Anderson, G. L., and R. J. P. DeFigueiredo. 1980. IIAn Adaptive Orthogonol­
Series Estimator for Probability Density Functions." Ann. Math. Statist. 
8:347-376. 

Bean, S. J., and C. P. Tsokos. 1980. "Developments in Nonparametric Density 
Estimation." Int'" Statist. Review. 48:267-287. 

Beard, R; E., T. Pentikainen and E. Pesonen. 1969. Risk Theory. Methuen, 
London. 

Bohman, H. 1963. IIWhat is the Reason That Esscher's Method of Approximation 
Is As Good As It Is?" Skand. Aktu. Tidekr. 46:87-94. 

Bohman, H., and F. Esscher. 1963-64. IIStudies in Risk Theory With Numerical 
Illustrations Concerning Distribution Functions and Step-Loss Premiums." 
Skand. Aktu. Tidekr. 46:173-225; 47:1-40. 

Bouver, H. and R. E. Bargmann. 1979. "Comparison of Computational Algorithms 
for the Evaluation of the Univariate and Bivariate Normal Distributions. 
In Proceedings of the Computer Science and Statistics 12th Annual Symposium 
on the Interface, ed. J. F. Gentleman, pp. 344-348. University of Waterloo, 
Waterloo, Ontario. 

Daniels, H. E. 1954. "Saddlepoint Approximations in Statistics. 1I Ann. Math. 
Statist. 25:631-650. 

Es scher, F. 1932. II On the Probabi 1 ity Functi on in the Co 11 ecti ve Theory of 
Risk." Skand. Aktu. Tidekr. 15:175-195. 

Fellner, W. H., and M. E. Tarter. 1971. IISome New Results Concerning Density 
Estimates Based Upon Fourier Series." In Proceedings of Computer Science 
and Statistics: Fifth Annual SymDosium on Interface, ed. M. O. Locks, 
pp. 54-64. Oklahoma State University, Stillwater, Oklahoma. 

Gross, A. J., and D. W. Hosmer, Jr. 1978. "Approximating Tail Areas of Proba­
bility Distributions." Annals of Statistics 6:1352-1359. 

Hill, G. W. 1970. "Algorithm 396 Student's t Quantiles." Communications of 
the ACM 13:619. 

6.1 



Hosmer, D. W. 1973. liOn MLE of the Parameters of 'Two Normal Distributions 
when the Sample Size Is Small'." Communications in Statistics 1(3):217-227. 

Johnston, N. L., and S. Kotz. 1970. Continuous Univariate Distributions-I. 
Distributions in Statistics. John Wiley & Sons, New York. New York. 

Kronmal, R. A., and M. E. Tarter. 1968. liThe Estimation of Probability Den­
sity and Cumulatives by Fourier Series Methods." J. of the Amer. Statist. 
Assoc. 63:925-952. 

Kronmal, R. A., and M. E. Tarter. 1976. "An Introduction to the Implementa­
tion and Theory of Nonparametric Density Estimation.". Amer. Stat. 30:105-112. 

Marsaglia, S. 176. "Random Number Generators." In The Encyclopedia of Com­
puter Science, ed. Anthony Rolston, pp. 1192-1197. Petrocelli/Charter. 

Parzen, E. 1962. liOn Estimation of a Probability Density Function and Mode." 
Ann. Math. Statist. 33:1065-1076. 

Silverman, B. W. 1978. "Choosing the Window When Estimating a Density. II 

Biometrika 65(1):1-11. 

Silverman, B. W. 1981. "Density Estimation for Univariate and Bivariate Data. 1I 

In Interpreting Multivariate Data, ed. V. Barnett, Chapter 3. Wiley, 
Chichester. 

Silverman, B. W. 1982. "Density Estimation of Orthogonal Series." Ann. Math. 
Statist. 40:1496-1488. 

Tapia, R. A., and J. R. Thompson. 1978. Nonparametric Probability Density 
Estimation, pp. 59-60. Johns Hopkins University Press, Baltimore, Maryland. 

Tarter, M. E. 1979. "Biocomputational Methodology, an Adjunct to Theory and 
Applications." Biometrika 35:9-24. 

Tarter, M. E., R. L. Holcomb and R. A. Kronmal. 1967. "A Description of New 
Computer Methods for Estimating the Population Density." Proceedings of the 
23rd National Conference of Association for Computing Machinery. Brandon 
Systems Press, Inc .• Princeton, New Jersey. 

Tarter, M. E., and S. Raman. 1972. "A Systematic Approach to Graphical 
Methods in Biometry." In Proceedings of the Sixth Berkeley Symposium on 
Mathematical Statistics and Probability, Vol. 4, pp. 192-221. University of 
California Press, Berkeley and Los Angeles, California. 

Wahba, G. 1978. Data-Based Optimal Smoothing of Orthagonal Series Density 
Estimators. Dept. Statist. University of Wisconsin Report No. 509. 

6.2 



Watson, G. S. 1969. "Density Estimation of Orthogonal Series." Ann. Math. 
Statist. 40:1496-1488. 

Wegman, E. J. 1972. IINonparametric Probability Density Estimation. r. A 
Summary of Available Methods. Technometrics 14:533-546. 1111. A Comparison 
of Density Estimation Methods. lI · J. Statist.Comput. Simul. 1:225-245. 

Wertz, W. 1978. Statistical Density Estimation. A Survey. Vandenhoeck and 
Ruprecht, Gottingen. 

6.3 





APPENDIX A 

EVALUATING THE SMOOTHING PARAMETER S(f) FOR A T DISTRIBUTION 



,. 

APPENDIX A 

EVALUATING THE SMOOTHING PARAMETER B(f) FOR A T DISTRIBUTION 

The purpose of this appendix is to show how 

B(f) = (A.1 ) 

can be reduced to a form that can be numerically evaluated when f(x) is the 
student t density. Expression (A.1) results when trying to determine the opti­
mal smoothing parameter in Equation (3.11). 

Let 

(A.2) 

where f(x) has a t density with r degrees of freedom. T is readily evaluated 
using numerical methods so only the denominator in (A.1) need be considered. 
Now 

( 
2 )- ( r+ 1 ) / 2 

f(x) = c(r) 1 + ~ r (A.3) 

(A.4) 

and 
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( 
2)-(r+5)/2 ' 

f(2)(x) = c(r) r + 1 1 + ~ (~i - 1) (A.5) 
r r r I 

where 

c(r) = [rr sG, f)]-l . (A.6) 

c(r) involves the beta coefficient which is directly computable when r ;s inte­
ger valued. 

Squaring and integrating (A.5) yields three terms denoted Tl, T2, and T3. 

The integral has the form of the t so we have 

The second term is given by 

00 x2 
T2 = C2 f ( 2) r+5 dx , 

t 1 + x /r 

where C2 ;s defined as 

A.2 

(A.7) 

(A.8) 

(A.9) 

(A.lO) 

., 



Recall the following mathematical identity 

f xm -1 
(""-I-+-X""-2j- r)n+l = 2n - m + 1 

m-1 () fi m-2 
( rx 2 ) + {m - ! 1 ( x 2 ) +1 . (A.ll) 
1 + x /r n n - m 1 + x /r n 

Thus we find that 

(A.12) 

For the T3 term, let 

(A.13) 

Then 

Applying (A. 11) a second time yields 

T3 = 3· 0 + 3 r 0 + -1/2 c-1(2r + 9) C r [t3 3/2 [ t /Ir 
2r + 5 (1 + t~/r) r+4 2r + 7 (1 + t~/r )r+4 r 

T(tO.2r + 9)]] 

(A.15) 

Thus if we let 

(A.16) 
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the denominator becomes 

(r + 2)2 ( t/rr 3 3 [t/rr ]) 
+ 2r + 5 ~l + t~/r)r+4 > 2r + 7 (1 + t~/r)r+4 + K 

(A.I7) 

Thus (A.I) can be readily evaluated for the t distribution. 
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APPENDIX B 

EVALUATING THE SMOOTHING PARAMETER S(f) FOR A MIXTURE OF NORMAL DENSITIES 

The purpose of this appendix is to show how 

S(f) = 

Jf(X) 
o 

1 
2r+l 

(8.1 ) 

where r = 2 can be .reduced to a form that can be numerically evaluated. Let 
f be given by 

f(x) = p f1(x) + (1 - p)f2(x) (B.2) 

where fi are normal densities with means ~i and standard deviations aio The 
numerator in (B.l) is simply evaluated using a Gaussian cdf algorithm. The 
denominator will be evaluated as follows. 

Fi rst note that 

(B.3) 

and 

(B.4) 
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Squaring (8.4) and integrating requires the evaluation of three integrals desig­
nated here as T1, T2 and T3: 

T2 = 2 J [C :lV1)2 1] [C :2V2)2 1] 

T3 = t!~ x :2V2)2 - { 

Deriving the expressions for T1 and T3 are similar and are as follows: 

(8.5) 

? . 
Then changing variables using z = [(x· ~ Ul)/a1]- yields 

(8.6) 

For this study to is positive so the transformation is 1 to 1. Then if G(a,x) 
denotes the incomplete gamma integral, T1 can be found using numerical algo~ 

rithms from 
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2 where t* = [( to - 11l)/ol] 

The third term follows immediately by replacing p by 1 - P and the subscript 1 
by the subscript 2. 

The cross product term is 

T2 = ~;(~~-of t! [1 -C :1~1)2 -C :2~2) +(' :1~1)2 C :/2)2] 

exp [-} ;t1 (' :; ~; )2] dx (B .B) 

If the exponent currently has form _(ax2 + 2bx + c) we complete the square to 
get a form _(ax2 + 2ladx + d2 + c _ d2). 

Applying this to the exponential term in (B.8) we get 

(B.9) 

.' 

(B.10) 

(B.11) 
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(B012) 

Then transforming with y = /ax + d yields 

_(c_d 2) ( ) J.co 4 . 2 
T ::: e p 1 - p 2: g. y' e -y dy 

2 r.:: 33 r.:: • , va TI cr1 cr2 va o+d ,=0 
(B.13) 

Postponing for the moment the determination of constants gi' making a 
change of variables in (B.13) of Z = y2 yields 

00 

f ~ .zi/2-1/2 e-z dz 
2 t..... g, 

(/ato +d) i =0 
(8014) 

(Bo15) 

which is readily evaluated using numerical algorithms. The transformation 
from (B.13) to (B.14) is 1 to 1 provided ra to + d > O. In terms of the 
parameters of our model, this is the same as requiring 

For the Monte Carlo study ~1 = 0, cri = 1 and cr~ = 0.25 so that we must have 

This is satisfied for the ~21S and critical points investigated. To find the 
constants gi' expressions are simplified by letting 
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sl = ra 0"1 

s2 = ra 0"2 

ci = (111 + d/raYO"l 

c2 = (112 + d/ra)/0"2 

Thus when x = (y - d)/ra, (x - l1;)/O"i becomes y/si - ci ' 

Table B.1 shows the coefficients that sum into 9i' 

B.5 

(B.l7) 



TABLE B.l. Selected Coefficients in Finding the Mixture of Normal Smoothing Parameter 

Numbered 
y4 y3 

Power5 of Y y2 Terms Y 1 
1 1 

1 c 2 2 +2 ~ -2" sl 
-c1 

sl 
tXJ . c 0\ 1 +2 -.1. 2 3 -"'""'"2" 52 

-c2 
s2 

1 2 2 
2 c2 4 -2 [C2 Cl~ c1 c2 2 2 22 5152 S1+'S2 -+- -2 c - +c1 c2 5152 5~ 51 1 52 

c1 c2 c 
4 4 5 -2 c2 ~ 

1 52 2.s1 



Summing the coefficients in Table B.1 yields: 

(B.18) 

Thus B(f) can be found from 

[ f ]
002 

t f(x) 

B(f) = T ~ T + T 
1 2 3 

(B.19) 
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