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ABSTRACT

This paper investigates procedures for univariate nonparametric estimation
of tail probabilities. Extrapolated values for tail probabilities beyond the
data are also obtained based on the shape of the density in the tail. Several
estimators which use exponential weighting are described. These are compared
in a Monte Carlo study to nonweighted estimators, to the empirical cdf, to an
integrated kernel, to a Fourier series estimate, to a penalized 1likelihood
estimate and a maximum 1ikelihood estimate. Selected weighted estimators are
shown to compare favorably to many of these standard estimators for the sam-
pling distributions investigated.
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ESTIMATING TAIL PROBABILITIES

1.0 INTRODUCTION

This paper discusses the nonparametric estimation of tail probabilities.
Statistical data analysts frequently evaluate tail probabilities. Typically,
tail probabilities are found by making assumptions and looking up results in
tables of theoretical distributions. However, if a substantial amount of data
is available as a reference distribution, assumptions can be avoided and tail
probabilities can be evaluated more directly. Large data sets frequently con-
tain relevant reference distributions. For many problems the empirical cdf
based on such reference distributions will answer the questions about tail
probabilities. However, the empirical cdf or binomial estimate of tail proba-
bility is somewhat rough. We believe that tail estimates can be improved by
smoothing. Density estimates are smoothed estimates that correspond to a
smoothed cdf and provide a starting place for estimating tail areas. The exact
choice of a density estimation procedure and the corresponding smoothing is not
crucial in the center distribution where there is a 1ot of data. The smoothing
does become important when we are so far out in the tails that very little data
is directly re]evant,'and especially important in the extrapolation problem,
when the critical point is beyond all the data.

The major method developed for empirical cdf smoothing in this paper is a
weighted-data Fourier series procedure. To motivate the use of weighted data,
this paper first presents Esscher's procedure for estimating and approximating
tail probabilities. Then weighted procedures are discussed in more detail and
the Fourier series smoothing method is developed. To evaluate this smoothing
method and other smoothing methods a Monte Carlo study is performed and those
results are described.
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2.0 ESSCHER'S WEIGHTING PROCEDURE

The problem of estimating tail areas is a major concern to actuaries try-
ing to control the probability of company ruin due to accumulation of claims in
too short a period. To specifically address the actuarial problem, Esscher
(1932) proposed weighting the data before trying to represent the density using
an Edgeworth series. Although the technique does not globally improve the
estimation of the density, it considerably improves the density estimate in the
tail. In the actuarial literature, the technique is used in estimating the
right-hand tail of the compound Poisson distribution, and the estimate is
amazingly accurate (Bohman 1963; Bohman and Esscher 1963-1964).

For the general Esscher procedure, define the following:

f(x) = density for which tail area is desired (2.1)
S(t) = ff(x)dx (2.2)
9
¢, (s) = f xKeSK£(x)dx k=0, 1 (2.3)
k rA : ] 9 1
_ -1 SX

g(x,s) = < (s)e™f(x) (2.4)
ty = critical point in the right-hand tail . (2.5)

The Esscher technique transforms the problem from a question regarding
the tail of f(x) to one regarding the tail of g(x,s), for a suitable value of
s. After weighting the f(x) by e°*, the constant cal(s) is used to make
g(x,s) a density.

The Esscher procedure is summarized as follows:

2.1



where

and

Determine s* such that

l? xg(x,s*)dx = ty -

Replace g(x,s*) by an Edgeworth expansion g(x,s*) with moments

-

_ ck(s*)

Mg = co(s*)

Approximate S(to) by

S(to) = tj? co(s*)e's*xa(x,s*)dx .
0

The Edgeworth expansion for g(x,s*) is given by

txs®) = [2) - 3B 2000 + o @ - 9270

Z(j)(y)

il

+ 7%—812(6)(yil/; .
-Qi-e‘yj/z Yo
dx? ’

(x - to)/o .

N

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)



The standard deviation, skewness and kurtosis in (2.9) is a function of s*
through the central moments, i.e.,

5 =\ (2.12)

VBT = gy 2 (2.13)
and
32 = u4u£2 . (2.14)
These are found from ug in (2.7) using the relation
r . . e
et & (G e 2-15)
Changing variables in (2.8) gives
N vy (1
S (tg) = colst)e ™™ LZ:O e f e "Yd@(‘)(y)]. (2.16)
® is the Gaussian cdf. The ej‘s are 0 except for
eg = 15 ey =.--é\ﬁTZ e, = 2}(82 - 3); eg = 7%-81 . (2.17)

Following Beard et al. (1969), the integral in (2.16) is derived recursively
using

£5(x) = of a1 (y) = -o)(0) + x4 () . (2.18)
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Since

VE Ey(x) = ﬁ%)(if A(x)/V2 (2.19)
T X
then
V2T El(x) = xA(x) - 1,
/2 E2(x) = sz(x) - X ,
V2T Eg(x) = x3A(x) - xF + 1, (2.20)
ven E4(x) = x4A(x) - x3 4 x .
Ver E5(x) = x5A(x) ~xt e X8 o3 .
and
Ver E6(x) = x6A(x) Sx2 xS - 3x .
Thus
R -s*tg 8
S(ta) = cal(s*)e > e.E.(s*o) . (2.21)
0) = Cols*

{373

In many applications, only the first two nonzero terms are used in (2.21).

With asymptotic evaluation in mind, we illustrate the procedure when f(x)
is known to have a gamma density

) Bcxxa—le-Bx

f(X) = ——IT('&')'— . (2,22)
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Then

a a=1e-(8-s)x

= BX
g(x,s) CO(S)F(OL) (2.23)
From Step 1, knowing the moments of g(x,s) gives
s* = B = a/to s (2.24)
with standard deviation, skewness and kurtosis of g(x,s*) given by
o= al/z/(B = g*) = a-1/2t0 ’ (2.25)
\B; = 272 (2.26)
and
B, = 3 + 6/a (2.27)

For the values o = n/2 and B = 1/2, a chi-square with n degrees of freedom is

obtained. The results are shown in Table 2.1.

Examination of Table 2.1 illustrates several points. First, the relative
errors are small [see for example, Gross and Hosmer (1978) and Andrews (1973)].
This is expected for large degrees of freedom, when the central 1imit theorem

TABLE 2.1. Relative Errors (p - p)/p in Approximating
a x2 Distribution

Degrees of Freedom

Target p 10 2 1
0.05 -0.003 -0.007 -0.024 -0.056
0.01 - -0.002 -0.004 -0.008 -0.002
0.001 -0.001 -0.001 0.004 0.032
0.0005 ~-0.001 0 0.006 0.036
0.0001 0 0.001 0.009 0.040
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applies. Surprisingly, the estimate works well for the thicker tails corre-
sponding to fewer degrees of freedom. The Esscher density estimate at t0 is a
saddlepoint approximation (Daniels 1954) for the density of a mean, but with-
out large degrees of freedom the ordering of terms for the series expansion is
not established. Consequently, the good results for one degree of freedom are
unexpected.

Values for the tables are easily computed using a continued fraction
expansion [see Bouver and Bargmann (1979); and Abramowitz and Stegun (1968)]
for Mills ratio in (2.19). Were the bias smaller, an implementation of (2.21)
for the incomplete gamma distribution might be considered. The bias is rela-
tively small in this case, but can be large in others.

Table 2.2 shows the relative errors from the Esscher procedure from
approximating the tails of a contaminated Gaussian distribution. The Esscher
procedure is unable to follow the bump in the tail added by the contamination.
Thus, the Esscher procedure, which works well for its intended application
involving the compound Poisson and other situations involving the central
limit theorem, should not be routinely used in nonparametric situations. In
fact, for thick-tailed distributions, the theoretical moments in (2.3) do not
exist. The procedure, however, éuggests the use of weighted samples in con-
junction with alternative density estimates. The La Guarre series, the Fourier
series, and a host of other density estimates are candidates.

TABLE 2.2. Relative Error in Estimating a Standard Normal with
5% Contamination from N(u2,0.04)

Critical U

Point t, 0 1 7 —3
0 0.0 0.0 0.0 0.0
1 0.01 -0.03 0.0 0.2
2 -0.07 0.18 -0.2 -0.2
3 -0.18 0.23 1.6 0.7
4 -0.31 0.29 3.4 16.0
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3.0 WEIGHTED ESTIMATION PROCEDURES

In the previous section, the Esscher procedure improved tail estimates by
weighting the data, approximating the density for the weighted data, and adjust-
ing for the weights during integration. In this section, we investigate the
same strategy using different weights and/or different estimation procedures.

3.1 CHOICE OF A WEIGHTING FUNCTION

The exponential weights used in the Esscher procedure are ideally suited
to the Gaussian distribution, because the weighted density has a Gaussian dis-
tribution. Only the mean is changed. Similarly, the weight function changes
only the scale when applied to the family of gamma densities. However, the
general choice of an exponential weight function is unappealing since it domi-
nates the tails of thick-tailed unimodal distributions. That is, for s > 0,
lig esxf(x) -+ o, Consequently, the proposed procedure uses the exponential
function only up to the critical point and uses a constant weight thereafter.
Further, zero weight is given to data less than the sample mean. Omitting the
data below the mean focuses the modeling effort on the relevant portion of the
distribution. Other cutoff points could be used. The resulting weight func-
tion is illustrated in Figure 3.1.

Because of the shape of the weight function, the weight parameter s in
part controls the degree of smoothing that takes place. If s is large, the
weight function approximates the step function corresponding to the binomial
estimate. An advantage of the weight function given in Figure 3.1 is the
simplicity in inverting it on the interval [to, »). A minor disadvantage is
that the discontinuity in the derivative of weight function leads to a corre-
sponding discontinuity in the weighted density to be modeled. When smooth
functions are used in the modeling, some lack of fit can be expected. Various
values of s are considered in Section 4.
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FIGURE 3.1. Truncated Exponential Weight Function

3.2 CHOICE OF A NONPARAMETRIC DENSITY ESTIMATION PROCEDURE

A variety of nonparametric procedures for estimating the density are
available. Considerations in this choice include prior knowledge about the
distribution to be modeled, theoretical optimality criteria, preferences of
form for an estimation procedure and preference of form for smoothing parameter
estimation. For illustrative purposes, we select two density estimation proce-
dures: a Fourier series estimator (F) [see Kronmal and Tarter (1968);

Tarter and Kronmal (1970, 1976); and Tarter (1979)] and a kernel estimator (K)
[see Parzen (1962)]. We select the F estimator because its theoretical prop-
erties for unweighted samples are known and because the smoothing parameter,
the number of terms in series expansions, is readily determined. The kernel
estimate is chosen for comparison purposes. Technically, the F procedure can
be expressed as a particular kernel procedure, but the choice of the smoothing
parameter leads it to be viewed differently.
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3.3 A WEIGHTED DATA FOURIER ESTIMATION PROCEDURE

Modifying the Fourier series estimator to accommodate the weight function
in Figure 3.1 is straight forward. Let the sample be Yio i=1, ..., nand
let the subsample X i=1, ..., ny be observations with X; > y where

y = n'1 AP The estimates of the coefficients for a weighted Fourier proce-
dure are given by

) M km(x; - a ,
C, = 2_: Wy COS T (3.1)
i=1
and
n
n 1 kw(x: - a
S, = 2w, sin[f—%f————)] , (3.2)
i=1 ' -2
where
| s(*i~%o) ]
Wi = nm1n[; - . 1 and a =y . (3.3)
1 [s(xi-to) ]
min je s 1
j=1 .
Then X = W. X and

", i=l
S(to) =7 * -
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Note that the expression in brackets in (3.4) has the same form as 1 - F(t) in
the unweighted Fourier series estimate. The factor nl/n in (3.4) adjusts for
omitting values below y. The factor

" -t
nil 2. minlzes(x1_ 0) . 1]

i=1

adjusts for the weights and the weight inversion. The undetermined constants
in (3.3) and (3.4) are the upper bound b, the weighting factor s, and the num-
ber of terms m. Selected vdlues for b and s are investigated in Section 4.

The derivation: of the optimal stopping rule to determine m in the
unweighted F estimate does not hold for weighted sampies. However, as sample
sizes get large, distinguishing between a weighted sample and samples from the
correspondingly weighted density becomes more difficult. This suggests that
stopping rules for a sample from a weighted density would approximate the rules
for a weighted sample from a nonweighted density. Therefore, based upon the
results of Kronmal and Tarter, we use the rule to stop if

~2 ~2 2
(Sk * Ck) N (3.5)

9-8375, The value of 0.4357 = 7/16 is

an arbitrary choice. This is to keep m = o(n%) which ensures a variance of 0
as m and n go to infinity in the unweighted case.

for two consecutive terms, or if m > n

In the following Monte Carlo study, the maximum number of terms is typi-
cally reached on the thicker-tailed distributions. This and the results of
Kronmal and Tarter (1968) for the Cauchy distribution suggests that less than
the optimal number of terms are being used. Hence, better results may be
obtained than demonstrated in this paper.

3.4 AN INTEGRATED KERNEL ESTIMATE

The weighting concept is also applied to kernel estimates. Kernel density
estimates have the form
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K( )d? (z) (3.6)

where K is a kernel. A tail estimate is obtained by integration of f(y).
Thus

§(t0) = tof?(y) dy = _[ H(z - to) d?e(z) , (3.7)
where
1) = [ Ky oy (3.8)
~-x/h

Following Tapia and Thompson (1978), the kernel

% (1 - )’2)2 for |y| <1
K(y) = (3.9)
0 otherwise
is selected. Thus
(1 for x>h>0
_ 15]x 1/x\5
H(x) = W -1;5; §(F) §<ﬁ) ] for -h < x < h (3.10)
0 : for x < -h

This kernel was chosen as one 1ikely to be used in practice (at least
prior to Silverman's 1981 fast Gaussian kernel algorithm). The choice is not
based on knowledge of the density to be estimated. However, we exploit our
knowledge of the sampling distribution to obtain optimal smoothing parameters.
If we choose to minimize the mean-square error of the density over the tail,
the optimal smoothing parameter becomes [Tapia and Thompson (1978)]
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) tfm f(y)dy [1/5
ho=nl/5 Xy 0 (3.11)
8| [y*K(y)ay/2! 162 )2y
to
= nl/3 4(K)8(f) = n"Y/3 2.0362 B(f) . (3.12)

Algorithms for computing B(f) for the t distribution and the mixture of normals
are given in the appendix.

Given h, modification of the integrated kernel estimate yields

X.-t n
S(to) = Z m"‘[ ( 0 1] Zl wiH(x; - tg) - (3.13)

The weighting modifies the shape of the function H(-) and consequently of the
kernel K(+). Since the shape of the kernel is of importance in the tails, the
results are of interest.

3.5 OTHER ESTIMATION PROCEDURES

A variety of procedures can be used to estimate tails directly or modified
to accommodate weighted samples. The interplay between the weighting, the
smoothing parameter and the choice of density estimate can be explored for the
numerous combinations. It is beyond the scope of this paper to look at this
relationship in any detail.

Even with the domain of Fourier series estimates, there are numerous
choices and variations. The specification of the modeling interval is one
such choice. A significant variation involves Watson's (1969) extension to
the orthogonal series estimate that includes a "damping" function (applied to
the coefficients) parameterized by a smoothing parameter. Fellner and Tarter
(1971) and Tarter and Raman (1972) develop the criterion of mean integrated
weighted squared error. Using this the damping function can be determined so
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the emphasis is placed on a chosen region of the density's support. Wahba

(1978) considers the adaptive choice of the smoothing parameter. Anderson and
DeFiqueiredo (1980) consider the adaptive choice of the orthogonal series and
note some improvement in the tails. Thus in the Monte Carlo study below, only

a few possibilities are being considered.
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4.0 THE MONTE CARLO STUDY

To see how the weighted Fourier estimator (WF) performs, a Monte Carlo
study is conducted. Several variations on the pfoposed estimate are considered.
Three values of s in the weighting are used, 0.5/G, 1/c and 2/5. Thus the drop
in weight to the left of the critical point is in sigmé units and the estimator
presumes the existence of two moments. For measured quantities this is a
reasonable assumption. Three values were also used as the upper bound on the
modeling interval. These are k*max(zi), where k is 1.2, 1.3 and 1.4. z
represents the standardized data. This impacts the number of terms used in the
estimate as well as the coefficients. When the standardized critical points
were beyond the upper bound, the estimate described below occasionally produced

negative values. These estimates are also taken as O.

For comparison purposes several other estimates are computed. The empiri-
cal cdf, denoted CDF is an obvious choice. An ordinary Fourier series estimate
(F) is also used. The modeling interval is taken to be k times the extremes of
the standardized data. Values of k used were 1.2, 1.3 and 1.4. Estimates from
the optimally smoothed kernel (K) and the weighted variation (WK) as described
in Section 3 are computed.

To consider another major approach to density estimation, tail estimates
based on the penalized likelihood (PL) described in Tapia and Thompson (1978)
are evaluated. The double precision IMSL routine NDMPLE is used. Here the
data is scaled into the interval -2.75 to 2.75. The modeling interval was
taken to be -3 to 3 with 29 internal partitions. The smoothing parameter o was
set at a single number depending on the distribution being simulated. When
using the same smoothing parameter the routine does not always converge. Thus
the number of convergent results and the smoothing parameter are also reported.

Finally as a comparison against the parametric estimator, the maximum
likelihood estimates (ML) for the mixture of normals are obtained when those
distributions are studied. The maximum 1ikelihood estimates are then used to
obtain tail probabilities. The algorithm described by Hosmer (1973) is used
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with iterations Timited to 1000 and a change in the log likelihood convergence
criterion of 0.0001. Again the algorithm did not always converge so the number
of convergent results is reported.

4.1 DISTRIBUTIONS INVESTIGATED AND GENERATION METHODS

For sampling distributions, the t distribution with 30, 10 and 3 degrees
of freedom is used. We also investigated mixtures of normals of the form
(1 - p)N(O, 1) + pN(u,o), where p = 0.05 and 0.01, u = 2 and 4, and 02 = 0.25.
The t distribution is used to investigate progressively thicker tails and the
contaminated normals are used to investigate the effects of bumps.

To generate random numbers, the multiplicative congruential generator
SEED = 69069*SEED + 1 (MOD 2**32)

is used to generate uniform [0,1] numbers. The 24 high-order bits of the

32 bit numbers are converted to floating point and are used as the next seed.
Congruential generators of this type tend to have triples lying in planes, but
are adequate for purposes here. For further details on congruential generators
see Marsaglia (1976). The inversion to produce the t distribution uses the
IMSL routine MDSTI and is considered sufficiently accurate (Hi1l 1970).

The study is performed by determining critical points corresponding to
right-tail probabilities of 0.1, 0.005, 0.0001 and 0.0005. Results are sum-
maries of 500 replicates of samples size 1000.

4.2 RESULTS

Only selected estimators are presented. For the WF estimate, s = 2/ and
k = 1.4 generally gives slightly better results. Consequently, we present only
this variation.

The weighted kernel with s = 0.5/g was usually the better Variation and
is reported here. Only the Fourier estimate with k = 1.2 is presented.
Results not reported here are available from the authors on request. Since the
estimators tend to have small bias, relative to their variability, we are
reporting the mean-square relative errors MSRE. The CDF estimate typically has
the smallest bias and confirms the consistency between the critical points
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computed and the random numbers generated. Note that in the last column of
Tables 4.1 through 4.7 the MSRE is greater than 1. Here the estimate "0" pro-
vides an improvement. Other error criteria may be more informative.

Some results are similar across the tables. The weighted data estimates
WF and WK always gave smaller mean-squared error than the CDF estimate. With .
one exception the kernel estimate K gave smaller mean-squared error. If the
underlying distribution is smooth, a smoothed estimate can be as good as or
better cdf. Thus while the empirical cdf maintains the practical advantages
of simplicity and availability of confidence bounds, for some situations
smoothing procedures are warranted.

TABLE 4.1. Mean-Square Relative Error for a
T30 Distribution

Target p
_Estimator _0.01 - 0.005 0.001 ~ 0.0005
CDF 0.100 0.21 0.96 2.0
WF 0.092 0.19 0.88 1.6
WK 0.088 0.18 0.85 1.6
F 0.100 0.22 1.60 2.6
K 0.095 0.19 0.88 1.6
PL (o = 5) 0.090 0.18 0.68 1.3

TABLE 4.2. Mean-Square Relative Error for a
T10 Distribution

Target p
_Estimator _0.01 0.005 0.001 0.0005
CDF 0.094 0.18 0.91 2.1
WF 0.085 0.16 0.84 1.9
WK 0.080 0.15 0.78 1.8
F 0.088 0.20 1.00 3.0
K 0.083 0.15 0.77 1.8
PL (a = 1) 0.15 0.36 0.83 1.7
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TABLE 4.3. Mean-Square Relative Error for a T3 Distribution

Target p

Estimator 0.01 0.005 0.001 0.0005
CDF 0.091 0.19 0.81 1.7
WF 0.084 0.17 0.80 1.7
WK | 0.083 0.17 0.74 1.5
F (a) (a) (a) (a)
K 0.084 0.17 0.74 1.5
PL (a = 0.1) 1.278(P) 0.37 1.3 2.2

(a) Very large.
(b) 486 of 500 cases.

TABLE 4.4. Mean-Square Relative Error for a Standard Normal
with 5% Contamination from N(2,0.25)

Target p

Estimator 0.01 0.005 0.001 0.0005
CDF 0.098 0.21 0.99 2.1
WF 0.085 0.17 0.79 1.7
WK 0.084 0.18 0.82 1.8
F 0.110 0.27 1.50 2.9
K 0.092 0.20 0.95 2.1
PL (o = 0.5) 0.098(a) 0.22 0.79 1.7
ML 0.077(b) 0.13 0.40 0.7

(a) 497 of 500 cases.
(b) 484 of 500 cases.

The ordinary Fourier series and penalized 1ikelihood estimates on the sur-
face appear very desirable in that after a pass at the data, they provide a
density estimate and readily computed tail estimates for any desired critical
point. The occasional poor results, for example in Table 4.3 with the thick-
tailed distribution suggests that care is required in selecting a modeling
interval. Kronmal and Tarter are very careful in their selection of a
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TABLE 4.5. Mean-Square Relative Error for a Standard Normal
~  with 1% Contamination from N(2,0.25)

Target p

Estimator 0,01 0.005 0.001 00005
CDF 0.094 0.19 0.97 2.0
WF 0.084 0.17 0.82 1.5
WK 0.081 0.16 0.80 1.6
F 0.088 0.22 2.10 5.0
K 0.095 0.19 0.92 1.8
PL (o = 0.5) 0.092(2) 0.18 0.82 1.6
ML 0.081(b) 0.15 0.41 0.6

(a) 492 of 500 cases.
(b) 471 of 500 cases.

TABLE 4.6. Mean-Square Relative Error for a Standard Normal
with 5% Contamination from N(4,0.25)

Target p
Estimator 0.01 0.005 0.001 0.0005
CDF 0.077 0.19 1.3 2.1
WF 0.059 0.14 0.9 1.8
WK 0.070 0.17 1.1 2.0
F 0.067 0.19 1.1 1.7
K 0.067 0.17 1.1 1.9
PL (@ = 0.05) 0.067 0.17 0.9 1.7
ML 0.052 0.11 0.4 0.7
modeling interval when looking at a thick-tailed Cauchy distribution. They
provide for not including all of the data. This seems inappropriate for the

problem at hand.

That the penalized likelihood estimate was occasionally poor is a bit
surprising. The subroutine documentation suggests throwing out outliers.

When this is not done as in the above Monte Carlo, many consecutive intervals

can have no data and the routine sometimes fails to converge.

For the conver-

gent situations with the thick-tailed t distribution, a closer look reveals



TABLE 4.7. Mean-Square Relative Error for a Standard Normal
with 1% Contamination from N(4,0.25)

Target p

Estimator _0.01 0.005 0.001 '0.0005
COF 0.013 0.091 0.85 1.9
WF 0.011 0.078 0.68 I.3
WK 0.010 0.081 0.76 1.6
0.025 0.089 0.96 2.8

0.009 0.074 0.71 1.5

PL (o = 0.05) 0.012 0.091 0.75 1.4
ML 0.011 0.084 0.51 0.8

that a few large tail estimates make almost all of the contribution to the
mean-square error. In about half of these problem cases, an extreme data point
(maximum or minimum) was present. Consequently the scaling bunches most of the
data into a few intervals. The coarse binning in the region of the critical
point leads to poor estimates. Thus omitting data not only helps with conver-
gence but can improve the modeling in the region of interest. Of course the
tail estimates would have to be adjusted to account for the omitted data.

In the remaining problem cases the poor estimates are due to some other
source. For example, in the single problem case for the t distribution was
with ten degrees of freedom, the discrete penalized 1ikelihood estimate was
0.0618 and the binomial estimate was 0.011. The density estimates in the tail
all seemed to be inflated relative to those in the center of the distribution.
The reason for this is not self evident. A possibility is that a false con-
vergence has been reached that is not clearly indicated by the Tog likelihood.
Whatever the situation, the existence of a problem is clearly evident from the
mismatch with the binomial estimate. With a 1ittle bit of care given to the
data modeled, the number of intervals and the smoothing parameter, much better
estimates can be obtained.

For the contaminated normal distribution, the penalized 1ikelihood does
not differ much from the binomial estimate at the 0.01 and 0.005 critical
points. It provides improvement for the more extreme critical points. The
situation may change with different selection of algorithm parameters.
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Silverman (1982) points out that the penality function can be chosen to yield a
particular distribution when the smoothing is heavy. Thus the analyst has
several decisions to make in using penalized 1ikelihood procedures. Some
choices can be made by looking at the data, but some seem arbitrary. How much
the arbitrary choices impact the'tai1 estimates remains an open question.

The kernel estimates performed fairly well in this study. This is
expected since the optimal smoothing parameter was derived from the distribu-
tions used to generate the samples. We have no explanation why they did not
perform better for the contaminated normals. The WK estimator is sometimes a
little better than the K estimator. This suggests that the chosen kernel does
not have the best shape for estimating tail values and that an asymmetric
weighting in the window is helpful. To use a kernel procedure, the analyst
must specify both the kernel and the smoothing parameter. For general density
estimation purposes the exact shape of the kernel is not considered crucial.
Unfortunately this result may not hold in the tails. Additionally, it is not
well established how to get a good smoothing parameter for the tails. Methods
1ike those in Silverman (1978) are not well suited to the tail problem.

The data weighted Fourier series estimator performed well. Results are
biased somewhat in its favor since different settings of the arbitrary parame-
ters s and b were investigated. However, since the one set reported performed
reasonably well for all distributions investigated, there is hope that this set
is a reasonable selection for many other distributions.

Perhaps the biggest criticism of Fourier series estimates is the possi-
bility of negative tail estimates and of tail estimates that are not monotone
decreasing as the critical point moves to the right. Trade offs are involved.
Kernel density estimates that can only be positive cannot reduce the bias as
much as estimates that can take on negative values. Consequently guaranteeing
positive estimates costs in terms of increased bias. Fejer weights are some-
times used to guarantee that the resulting Fourier based estimates are positive.
Our results and others indicate that such estimates are typically much poorer.

A minor criticism might be the computational cost, since each critical
point requires a separate computation with the full data set. The Chebyshev
recursive relationships for the sine and cosine are fast and have good accuracy
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for a substantial number of terms [see Tarter et al. (1967) and Tarter and
Kronmal (1968)]. Certainly FFT methods could be applied to binned weighted
data. Thus the computational costs should not be prohibitive.

A third criticism concerns the lack of theoretical results about the prop-
erties of the estimator that do not carry over from the unweighted situation.
The lack of theoretical results for smoothing is a general problem. Generally,
density estimation procedures require the analyst to choose the smoothing and
modeling parameters. Theoretical results do not typically incorporate the
information that goes into such decisions.

What has the weighting bought? Basically it focuses the modeling attenua-
tion on the part of the distribution of interest. It helps gquarantee that
bumps to the right of the critical point are modeled while still letting points
to the left of the critical point have some contribution. The weighting has
made the specification of the modeling interval much less crucial. Here the
modeling interval is chosen so that the weighted data is not bunched up at the
end of the interval. The naive algorithm works pretty well in the Monte Carlo
study. Certainly better results could have been obtained by judiciously
selecting the interval after looking at the data.

The mixture of normals maximum likelihood results address the question,
how much could be gained if a parametric model could be specified? Condi-
tional on convergence of the algorithm, the answer in this study is quite a
lot for extreme critical points. However if one percent or more of the data
is beyond the critical point the improvement is marginal. The fall-back posi-
tion when the algorithm fails to converge is another issue. Estimating the
parameters of the mixture of normals is not a trivial problem and better
results may be obtained for more tractable distributions. However for almost
all practical situations the question is irrelevant. Anyone who is mildly con-
cerned about the ad hoc nature of the smoothing above should be horrified at
the specification of a parametric model appropriate for the tail.
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5.0 SUMMARY AND CONCLUSIONS

The empirical cdf estimator of the tail probability is simple and its
properties are well known. However for many situations the underlying distri-
bution is believed to be smooth and the empirical cdf estimate of the tail
probability can be improved by smoothing. Generally available smoothing
methods tend to be ad hoc and cannot always be applied naively while still
obtaining improved estimates. As a part of smoothing process, weighting the
sample is a reasonable way of placing emphasis on the tail of interest. In
Section 3, two tail estimators, the Fourier series and the integrated kernel
were modified to use weighted data. For the Fourier series, the weighting
simplified the modeling process to the point where a very simple algorithm
could produce consistently good tail estimates as demonstrated in a Monte
Carlo study. The weighting did not markedly change the kernel estimates which
had made explicit use of the optimal smoothing parameter. For practical situa-
tions in which the optimal smoothing parameter is not known, the weighted data
Fourier series estimate provides one relatively safe method of obtaining
smoothed tail estimates. It appears that weighting may also be used advanta-
geously with the penalized likelihood and other density estimates, particularly
when part of the modeling problem is associated with the tail that is not of
interest. The best method for obtaining smoothed tail estimates remains an
open issue.
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APPENDIX A

EVALUATING THE SMOOTHING PARAMETER g(f) FOR A T DISTRIBUTION

The purpose of this appendix is to show how

t/ f(x)dx 1/5

= 0_
Y’[w E"(z)(x)_] 2dx

B(f)

can be reduced to a form that can be numerically evaluated when f(x) is the
student t density. Expression (A.1) results when trying to determine the opti-
mal smoothing parameter in Equation (3.11).

Let

T(to,r)= t/w f£(x)dx (A.2)
0

where f(x) has a t density with r degrees of freedom. T is readily evaluated
using numerical methods so only the denominator in (A.1) need be considered.
Now

Xz)-(r+1)/2
f(x)= c(r) <1 + (A.3)
-(r+3)/2
2
f(l)(x)= _c(r)(r_%_l)<1 + 3‘-—) . 2% (A.4)

and
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where

c(r) = [/F (3 5)]'1 ., (A.6)

c(r) involves the beta coefficient which is directly computable when r is inte-
ger valued.

Squaring and integrating (A.5) yields three terms denoted T1, T2, and T3.

2 = 2\~ {r+5)
Tl = cz(r)(‘” ks 1) / (1 + X—) dx (A.7)
r t3 r
The integral has the form of the t so we have
r + 1
Tl = c 2r + 9) T(t , 2r + 9) (A.8)
The second term is given by
J X2 (A.9)
T2 =¢C dx A.9
2 (1 +x /r)r+5
where C2 is defined as
c,=-2r*2 cz(r)(‘” * 1)2 (A.10)
2 r r ’ :

A.2
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Recall the following mathematical identity

m m-1 m-2
f X | rx # Lm - 1) X . (A.11)
(1 + x2/r ntl  2n-m+1 (1 + X2/r)n 2n - m+ 1 _/(1 + XZ/r)n+1

Thus we find that

- .3/2 to//F

-1/2 -1
25 ¥ 7 (1 T ),,+4 +rfC e (e +9) Tt 2r + 9)| . (A12)
0 r

For the T3 term, let

3 = (11—2-)2 cz(r)(f-l‘—l—)2 . (A.13)

r r

Then

4 C t3 2
13 =0Cy f 7 ~vaat 4 = 7 5 ez 3 7 rraT 9| -
ts (1 + x%/r) ,(i + to/r) (1 + X /r)
' (A.14)

Applying (A.11) a second time yields

3
C,r t 3/2 t //r
3 0 r 0 -1/2 -1
T3 = . +3 +r c(2r+9)T(t,2r+9)
2r + 5 2, \r+d 2r + 7 2, \r+d o
(1 + to/f) (} + to/r)
(A.15)
Thus if we let
K=r12 10 4 9 T(t,» 2r + 9) (A.16)
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the denominator becomes

2, )(r+1)2 1/2 | _2(r + 2 ty//r . K
r r +7 2, \r+d
(1 * to/r)
rs22f t/F° 5 YR
+ +
2r + 5 (1 + tg/r)r+4 2r + 7 (1 + tg/r)r+4
(A.17)

Thus (A.1) can be readily evaluated for the t distribution.
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APPENDIX B

EVALUATING THE SMOOTHING PARAMETER g(f) FOR A MIXTURE OF NORMAL DENSITIES

The purpose of this appendix is to show how

2r+l
Jf(x)
0

t/‘” | £42) ()| 2ax

o]

B(f) = (8.1)

where r = 2 can be reduced to a form that can be numerically evaluated. Let
f be given by

f(x) = p f(x) + (1 - p)fy(x) (B.2)

where fi are normal densities with means M and standard deviations o;. The
numerator in (B.1) is simply evaluated using a Gaussian cdf algorithm. The
denominator will be evaluated as follows.

First note that

#D(x) = B - up i - o0) % -y, (8.3)
1 %2
and
2 2
X - pf, (x) X - f,(x)
#2)(x) = < = u1> -1 12 + ( = 2) - 1j(1- p) 22
1 o 2 o
1 2
(B.4)
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Squaring (B.4) and integrating requires the evaluation of three integrals desig-
nated here as Tl, T2 and T3:

‘- ul T2 #m
T1 = — dx
t o
0 1
[ x-u12 x—u22 p(1 - p) fy(x) fy(x)
T2 =2 -1 -1 dx
% 92 02 02
o} L J 1 2

2l x - w, (1 - p)? F5(x)
T3= —s -1 7 dx
t 2

o ) 9

Deriving the expressions for Tl and T3 are similar and are as follows:

2/ 2
2 2 -(x 7
2 X - *x w) /o
i 5;'" /( UI) -1 S 9 o (8:5)

01 o %

Then changing variables using z = [(x - ul)/ol]2 yie1ds

00

2
-l / (312 _ 5,112, ;1/2) -2 4, (5.6)
o] 2
1 (to—u1>
%9
For this study to is positive so the transformation is 1 to 1. Then if G(asx)

denotes the incomplete gamma integral, T1 can be found using numerical algo-
rithms from
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T = %l_n{( )[1 - (3 t)] - 2 F(’z)[l - 63 t)] + F(z)[ 7 *)]} (8.7)

where t* = [(t0 - ul)/cl]2

The third term follows immediately by replacing p by 1 - p and the subscript 1
by the subscript 2.

The cross product term is

d X u2 X uz X uzx u2
_ 2p(1 - p) ~ M1 T2 ! T2
Tp = 3 /1' o o 175 > o
2m o, O t 1 2 1 2
2 72 0
2

2 [x - My
exp Z ( ) dx (B.8)

'I

If the exponent currently has form -(ax2 + 2bx + c¢) we complete the square to

get a form -(ax2 + 2/adx + d% + ¢ - d2).

Applying this to the exponential term in (B.8) we get

(k) (3.9)
91 9
H H
b = ,}(%+ _§> (B.10)
%9 9
112 112
c = % —;+ —% (B.11)
91 92
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a
1

u u (
1/, _§> /%. (lf + .1_2.> © (B.12)
92 o1 92

Then transforming with y = Jax + d yields

(c d ) ~ 2

g 3 Z 9¥ e dy (8.13)
vam o] 95 /' +d i=0

Postponing for the moment the determination of constants 9is making a
change of variables in (B.13) of z = y? yields

=(c-d2) F 4
.t p3U - p) f Z 22 7 g (8.14)
va 2m o] 9 (/_t +d) i=0

~(c-d? :
ef; ;):%13- 2 é 1z + ’lz)(l -6prp (ats d)ZD (8.15)

192
which is readily evaluated using numerical algorithms. The transformation

from (B.13) to (B.14) is 1 to 1 provided va t, +d>0. In terms of the
parameters of our model, this is the same as requiring

u
t, >% —% —%) (lz+1—2> (B.16)
9 92//\%1 9

For the Monte Carlo study up = 0, O% = 1 and cg = 0.25 so that we must have

to > 0.4 Uy

This is satisfied for the uz's and critical points investigated. To find the
constants 9i» expressions are simplified by letting
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Sy = va oy
Sp = v/a gy
(B.17)
cf = (g + d/¥a)/oy
cs = (up + d/Va)/0,

Thus when x = (y - d)//a, (x - ”1)/01 becomes y/s; - c;.

Table B.1 shows the coefficients that sum into 9 -
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9°d

TABLE B.1.

Numbered
Terms

Selected Coefficients in Finding the Mixture of Normal Smoothing Parameter

vA

1

3 Powers of Y 2

Y Y Y
1
c
- —% +2 e —c2
S S1 1
1
c
1 2 2
-7 25 -,
52 2
2 2
c c c c c
wled g oede g
1°2 |1 2 sp 8] 2
c, C c
4 s1 52 -2 Cg El
1°2 1



Summing the coefficients in Table B.1 yields:

_ 2 2. 2
gp=l-cp-crte

o o
- o2 2 1 _ .2
91—2[2(1-c1)+51 (1 c2>]

) ¢y - 1 ¢, - 1 . 4 €1Cy

2
2

g, = + (B.18)
2 s% s% 5152
3 sls2 s1 So
1
g 2 —
4 s%sg
Thus B(f) can be found from
0.2

tf f(x)

B(f) = 0 : (B.19)

T+ T, %1,
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