

DOE/SF/19090--76

ADVANCED LIGHT WATER REACTOR PLANTS

SYSTEM 80+™ DESIGN CERTIFICATION PROGRAM

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



MASTER

FY-96 ANNUAL REPORT

ABB

## **DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

## **DISCLAIMER**

**Portions of this document may be illegible electronic image products. Images are produced from the best available original document.**

**ADVANCED LIGHT WATER REACTOR PLANTS**  
**SYSTEM 80+<sup>TM</sup> DESIGN CERTIFICATION PROGRAM**

**ANNUAL PROGRESS REPORT**  
for period October 1, 1995  
through September 30, 1996

Prepared for:

**UNITED STATES DEPARTMENT OF ENERGY**  
**OFFICE OF NUCLEAR ENERGY**  
**UNDER CONTRACT DE-AC03-91SF19090**

## Table of Contents

|                                                                  | <u>Page No.</u> |
|------------------------------------------------------------------|-----------------|
| Legal Notice                                                     | iii             |
| A. Purpose                                                       | 1               |
| B. History and Status of Project                                 | 2               |
| C. Design Certification Overview                                 | 3               |
| D. Progress in FY 1996                                           | 5               |
| - Design Certification Rule                                      | 5               |
| - System 80 + Design Changes                                     | 6               |
| - Standard Safety Analysis Report - Design Certification         | 6               |
| E. Summary                                                       | 6               |
| F. Complete Bibliography of System 80 + and Related Publications | 9               |

## LEGAL NOTICE

This report was prepared by Combustion Engineering, Inc. (C-E) as an account of work sponsored by the U.S. Department of Energy (DOE). Neither DOE, nor C-E or its suppliers, nor any person acting on behalf of any of them:

- A. Makes any warranty or representations, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

## A. Purpose

The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+™ during the U.S. government's 1996 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2 and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems.

Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units and the System 80+ design form the basis of the Korean standardization program.

The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was docketed by the Nuclear Regulatory Commission (NRC) in May 1991 and a Draft Safety Evaluation Report (DSER) was issued in October 1992. The advance Final Safety Evaluation Report (FSER) was issued in February 1994, with no open issues. The NRC's Advisory Committee on Reactor Safeguards (ACRS) completed its review in only five meetings and issued a strong positive letter in May 1994. The FSER was formally released and the Final Design Approval (FDA) was issued in July 1994. A

revision to the FSER was issued in November 1994 to extend the expiration date for the FDA from 5 years to 15 years.

Major licensing achievements include 1) the resolution of all severe accident issues, including both deterministic and probabilistic analyses showing improved safety by a factor of more than 120, 2) implementation of the new radiological source term, 3) resolution of shutdown risk concerns, 4) approval of an all-digital instrumentation and controls design, 5) approval of major control room features using state-of-the-art human factors engineering principles, and 6) development of a seismic envelope (i.e., standard seismic design). CESSAR-DC also contains the technical basis for compliance with the EPRI URD for reduced emergency planning. The improved safety of the System 80+ design and its implications for revised emergency planning were documented in a letter from the ACRS to the Commission in July 1994.

#### **B. History and Status of Project**

Since 1985, ABB-CE and Duke Engineering & Services, Inc. (DESI) have been developing the next generation of the pressurized water reactor plant for worldwide deployment. In 1990, Stone & Webster Engineering Corporation (SWEC) joined this team, thereby adding the expertise of an Architect Engineer to the development of System 80+. The result is an NRC-approved, standard plant design that can satisfy the need for a reliable and economic supply of electricity for residential, commercial, and industrial use. To ensure that such a design is available to meet utility needs, it has been based on proven technology and the most current NRC licensing criteria. These requirements dictate the application of nuclear technology that is advanced, yet evolutionary in nature. This has been achieved with the System 80+ Standard Plant Design.

In 1985, ABB-CE and DESI joined forces under the aegis of the EPRI ALWR Program to develop, with utility oversights, the design requirements for the next generation of nuclear power plants. The final version of the EPRI ALWR URD was submitted to the NRC in September 1990, and in May 1991 CESSAR-DC was docketed by NRC. CESSAR-DC, initially consisting of 18 volumes, expanded to 26 volumes after responses to NRC questions and a Probabilistic Risk Assessment were incorporated. A DSER was issued by NRC on October 1, 1992. In 1993, after working on several commercial projects related to System 80+ development, SWEC became an approved subcontractor for Design Certification, taking on selected aspects of BOP design and licensing for the System 80+ Standard Plant Design. Other organizations involved in the technical development of System 80+ include Bechtel Power Corporation, Impell Corporation, RPK Structural Mechanics Consulting, United Engineers and Constructors, and ABB-Atom. To resolve issues raised by NRC in the DSER, responses to 3361 questions were provided. All technical issues were resolved and the FSER and FDA were issued on schedule in July 1994.

### **C. Design Certification Overview**

Licensing in the United States has been facilitated by a new process called Design Certification, described in Title 10, Part 52, of the Code of Federal Regulations (CFR). This part of the U.S. nuclear program is characterized by one-step licensing, where a single combined license is required to both build and operate the plant. Further, only complete, standardized plant designs can be licensed, and all safety issues must be resolved before construction begins, rather than after, as in the past. Opportunities for public participation are double, but are placed up front, where they are more effective, respecting both the public will and the public purse.

The first phase of Design Certification, technical review by NRC staff, was completed upon issuance of the FSER and FDA. As part of the Design Certification

process, ABB-CE has received 4,951 Requests for Additional Information (RAIs) and follow-on questions from the NRC during their review of System 80+. This includes 1,590 RAIs before the DSER, 939 DSER open items, and 802 questions on System 80+ Inspections, Tests, Analyses and Acceptance Criteria (ITAAC), and 1620 "follow-on" questions, including NRC independent review of the Technical Specifications and ITAAC.

Intensive interactions with the NRC were initiated in 1991 and continued until the System 80+ FDA was issued in July 1994. In the first quarter of FY 1995, the Design Control Document (DCD) was completed and submitted to the NRC. Staff review was completed and the DCD was revised in the second quarter of FY 1995. The NRC issued the System 80+ Notice of Proposed Rule (NOPR) and a nearly identical NOPR for General Electric's ABWR design in April 1995. ABB-CE provided extensive comments to the NRC on the proposed rule in addition to providing input to the Nuclear Energy Institute (NEI) and the U. S. Department of Energy for their comment packages. In December 1995, the NRC conducted a workshop on comments they received on the System 80+ and ABWR Notices of Proposed Rulemaking (NOPRs). ABB-CE, GE and NEI addressed the unresolved issues of scope of finality, Tier 2\* expiration dates, post-certification design changes and applicable regulations to record on the rulemaking docket issues needing consideration by the Commission. During FY 1995 a great deal of effort was expended by ABB-CE and its subcontractors to complete the DCD and comment on NRC's NOPR. As a result, Certification of the System 80+ Standard Plant design in the United States represents a major technical and licensing advance.

The final phase of the Design Certification process involves resolution of comments and issuance of the final rule by the Commission. The final Design Certification rule, originally scheduled to be issued by the NRC in 1996, is now expected to be published in the Federal Register by mid-1997.

## D. Progress in FY 1996

### **Design Certification Rule**

Substantial discussions were held with the NRC during 1996 to review the NRC position and industry-proposed resolutions for Design Certification issues. Topics discussed included applicable regulations, finality for safeguards and proprietary information as well as requirements found in secondary references, 50.59 change finality, and an amended proposal for vendor-sponsored 50.59 changes after issuance of the design certification rule. In March, ABB-CE joined by GE and NEI in briefing the Commission on the industry position on the new "applicable regulations". The NRC indicated they were prepared to significantly reduce the number applicable regulations for System 80+.

The NRC staff provided a draft Design Certification rule, SECY-96-077, to the Commission on April 15th and released it to the public on April 19th. ABB-CE coordinated with NEI and GE to review and comment on the proposed final Design Certification rules and Statement of Considerations. Industry objected to the draft rules since they preserve the NRC ability to impose backfit requirements on the certified designs through operational avenues, thus circumventing the requirements of 10 CFR 52.63. A Senior Review Group composed of the NRR Director and other senior NRC managers was appointed to discuss design certification issues with the industry. Issues under discussion include applicable regulations, technical specifications, finality of operational requirements contained in the DCD, design certification renewal standards, and post-DC changes by the DC applicants.

In December 1996, the five NRC Commissioners affirmed their votes to approve the design certification rules for System 80+ and the ABWR (SECY-96-077) in accordance with the provisions of the NRC's August 13th and October 21st memoranda, subject to selected disapprovals. The most significant disapproval was the staff's provision for applicable regulations which will be removed and

replaced with alternative language in the rules and in the statements of consideration. The Commission also disapproved the application of the special backfit provisions of 52.63 to technical specifications; approved a staff proposal for limited finality to operational issues in the design certification rules, and deferred consideration of specific design certification renewal provisions until after the certification rulemaking has been issued.

### **System 80 + Design Changes**

A number of changes to the System 80 + Standard Plant design were reviewed and approved by the staff during 1996. The changes involved addition of hot-leg tanks for mid-loop level measurement, provisions for additional CEAs, a revised damping factor for response spectrum piping analyses, application of alternative leak-before-break evaluation methods, updated materials specified for NSSS components, and allowance for either hydraulic or explosive expansion of tubes into the steam generator tube sheets. These changes plus editorial corrections in the System 80 + Design Control Document that have been made subsequent to issuance of the Final Design Approval were approved by the ACRS in August 1996.

### **Standard Safety Analysis Report - Design Certification**

In November 1996, ABB-CE requested that the NRC confirm the status of CESSAR-DC relative to the FDA for the System 80 + design. The NRC advised that the revised FDA could reference CESSAR-DC, but this document must be updated to conform with the current version of the System 80 + design, including the probabilistic risk assessment, verified by the NRC staff, and maintained for the duration of the FDA.

Amendments to the Design Control Document and to CESSAR-DC are being prepared to incorporate all approved technical changes, to provide consistency

between the ITAAC and the Tier 2 information, and to remove minor typographical and editorial errors. Except for the PRA (Chapter 19), these amendments will ensure that both CESSAR-DC and Tier 2 of the DCD contain identical information.

#### **E. Summary**

The U.S. NRC has completed its review of the System 80+ Standard Plant Design, approving advanced design features and closing severe accident licensing issues, and has issued the proposed Design Certification rule for the System 80+ design. The System 80+ design is an evolutionary ALWR plant, producing 3931 MWt, or 1350 MWe, whose development was sponsored by the U.S. DOE. The NRC released the System 80+ advance FSER in February, 1994 with no open technical issues. It was then approved by the NRC Commissioners and the System 80+ FDA was issued in July 1994. The NRC review required written responses to 4951 questions. Not only were all regulatory concerns resolved, but the review process was flexible and efficient. This was due to NRC and ABB-CE management commitments to schedule and technical correctness. The task was formidable for both ABB-CE and the NRC. Design features to address improved plant safety had to be incorporated, evaluated and approved by the NRC.

The System 80+ design was developed and supported during NRC review by a single, closely-coordinated design team. This ensures that structures and systems which interface with each other and licensing issues which cross boundaries of multiple structures and systems were addressed in an integrated manner. ABB-CE assigned a "Chapter Champion" to each of the chapters in CESSAR-DC. These Chapter Champions were authorized to resolve all outstanding questions with their counterpart reviewers at the NRC.

Plant safety was evaluated using a "defense-in-depth" analytical approach. Design basis accidents were analyzed with the historic conservative methods. Severe

accidents were analyzed deterministically using best-estimate methods, as well as probabilistically using a detailed three-level PSA. These analyses demonstrated the importance of consistently analyzing design features, since changing a characteristic or component in one structure or system was found to impact design features or safety analyses in other structures or systems. Examples of such integrated structures, systems and analyses are: 1) structural design, soil properties analysis, and seismic margins assessment; 2) equipment qualification, radiological source term dose analysis, ventilation system design, water chemistry control, and plant emergency evacuation; 3) reactor cavity floor design, wall design, and containment ultimate strength; and 4) electrical distribution system, emergency and standby power sources, and hydrogen control systems.

An integrated approach to the design and analysis of the System 80+ advanced design features has resulted in not only a safer plant design, but also a balanced allocation of safety functions. A comprehensive PSA was used to select the most effective design features and allocate risk among plant structures, systems, and components. The PSA was also used to demonstrate that plant safety has been improved by more than two orders of magnitude relative to the current generation of nuclear power plants.

The Design Control Document which is required as the main reference for the Design Certification rule was submitted to and approved by NRC in FY 1995. ABB-CE and other industry participants provided substantial comments on NRC's proposed DC rules. Revisions to the System 80+ design were submitted and approved by the ACRS and the NRC during 1996.

## **F. Complete Bibliography of System 80+ and Related Publications**

For information purposes, a bibliography of System 80+ publications is provided below. This list covers all public information provided on System 80+ since February 1985, when development began, through December 1996 including papers to be presented. Together, papers marked with an asterisk (\*) give a fairly comprehensive and up-to-date picture of the System 80+ design, including the status of licensing and commercial efforts. These are recommended for anyone wishing to obtain a basic understanding, without having to digest the entire collection of publications.

1. I. Spiewak, Survey of Light-Water-Reactor Designs to be Offered in the United States, ORNL/TM-9948, Oak Ridge National Laboratory, March 1986.
2. G.A. Davis and R.S. Turk, A Standard Design for the 1990s, Transactions of the American Nuclear Society, 52: 561-562 (June 1986).
3. S.T. Brewer, C-E's Advanced PWR for the 1990s, Nuclear Engineering International, 32 (398): 59-60 (September 1987).
4. K. Scarola, Advanced Control Room Design for Nuclear Power Plants, Transactions of the American Nuclear Society, 56 (Suppl. 1): 97-102 (September 1987).
5. W.P. Chernock, W.R. Corcoran, W.H. Rasin, and K.E. Stahlkopf, Establishing Requirements for the Next Generation of Pressurized Water Reactors - Reducing the Uncertainty, Transactions of the American Nuclear Society, 56 (Suppl. 1): 120-126 (September 1987).
6. G.A. Davis, R.A. Matzie, E.P. Flynn, and R.S. Turk, System 80+: Evolutionary Advancement to Meet Utility Needs, 87-JPGC/NE-22, ASME Transactions of the Joint ASME/IEEE Power Generation Conference, October 1987.
7. S.T. Brewer and G.A. Davis, System 80+: Increased Safety and Public Acceptance, in The Safety of Next-Generation Power Reactors, American Nuclear Society, 1988.

8. S. Rosen, R.D. Ivany, J. Kapinos, and S. Sim, LOCA Aspects of the Combustion Engineering Advanced Light Water Reactor: System 80+, in The Safety of Next-Generation Power Reactors, American Nuclear Society, 1988.
9. A.E. Scherer, M.D. Green, and G.A. Davis, Design Certification - Key to the Nuclear Option, Transactions of the American Nuclear Society, 56: 455-456 (June 1988).
10. Status of Advanced Technology and Design for Water Cooled Reactors: Light Water Reactors, IAEA-TECDOC-479, International Atomic Energy Agency, October 1988.
11. Early Site Permits; Standard Design Certifications; and Combined Licenses for Nuclear Power Plants, Code of Federal Regulations, Title 10, Part 52, Federal Register, 54 (73): 15386 (April 18, 1989).
12. G.A. Davis and E.H. Kennedy, Design Certification of System 80+, in Proceedings of the American Power Conference, Institute of Electrical and Electronics Engineers, 1989.
13. R.E. Newman, System 80+ Design and Licensing: Improving Plant Reliability, in Proceedings of the 4th KAIF/KNS Annual Conference, Korean Nuclear Society, 1989.
14. E.P. Flynn, R.F. Schumacher, E.B. Abrams, and W.A. Fox, System 80+: Benefits of Spherical Steel Containment, Transactions of the American Nuclear Society, 59: 270-271 (June 1989).
15. R.A. Matzie, R.S. Turk, and M.D. Green, System 80+: Design Certification of a Nuclear Power Module, in Proceedings of the 23rd Intersociety Energy Conversion Engineering Conference, American Society of Mechanical Engineers, 1989.
16. J.I. Choi and K. Scarola, Evaluation of the Megawatt Demand Setter for Load-Follow Operation of C-E's System 80+, Transactions of the American Nuclear Society, 59 (Suppl. 1): 78-80 (August 1989).
17. R.E. Jaquith and D.J. Finnicum, Use of PRA in the Design of the System 80+ Advanced Light Water Reactor, in Proceedings of the International Topical Meeting on Probability and Safety Assessment, American Nuclear Society, 1989.

18. C.W. Bagnal, M.W. Crump, D.J. Finnicum, and R.S. Turk- The System 80+ Standard Design: Simpler, Safer and Available Now, 89-JPGC/NE-9, in ASME Transactions of the Joint ASME/IEEE Power Generation Conference, October 1989.
19. Advanced Water-Cooled Reactor Technologies: Rationale, State of Progress and Outlook, OECD-44953, Organization for Economic Cooperation and Development (Nuclear Energy Agency), November 1989.
20. J.T. Hawley, R.J. Hammersley, and M.G. Plys- Study of Hydrogen Mixing Within the Combustion Engineering System 80+ Containment, Transactions of the American Nuclear Society, 60: 740-742 (November 1989).
21. M.K. Chung and R.A. Matzie, Cooperative Development of Standardized Advanced Light Water Reactors, Transactions of the American Nuclear Society, 61 (Suppl. 1): 74-80 (March 1990).
22. J.D. Crawford and R.A. Matzie, System 80+: Evolution of a Standard Design, Transactions of the American Nuclear Society, 61 (Suppl. 1): 199-206 (March 1990).
23. Design for Constructability, DOE/SF-16566, Duke Power Company, March 1990.
24. G.A. Davis, R.E. Allen, and W.A. Fox, System 80+: Controlling Construction Costs and Schedule, in Proceedings of the American Power Conference, Institute of Electrical and Electronics Engineers, 1990.
25. G.A. Davis, R.A. Matzie, M.D. Green, H.D. Brewer, and W.A. Fox, Design Considerations for Severe Accident Containment Performance, Nuclear Engineering and Design, 120 (1): 115-121 (June 1990).
26. G.A. Davis and R.A. Matzie, System 80+: Meeting Utility Needs for the 1990s, Transactions of the American Nuclear Society, 61 (Suppl. 2): 22 (September 1990).
27. G.A. Davis and E.H. Kennedy, System 80+ PWR Aims for Design Certification, Nuclear Engineering International, 35 (435): 63-64 (October 1990).
28. National Energy Strategy, DOE/S-0082P, U.S. Department of Energy, February 1991.

29. A. Jonsson, J.R. Parrette, and N.L. Shapiro, Application of Erbium in Modern Fuel Cycles, in Proceedings of the 6th KAIF/KNS Annual Conference, Korean Nuclear Society, 1991.
30. H.R. Hwang and K. Scarola, Use of Expanded Reactor Power Cutback System to Reduce Reactor Trips, in Proceedings of the 6th KAIF/KNS Annual Conference, Korean Nuclear Society, 1991.
31. J.D. Crawford, Safety Benefits of the System 80+ Nuclear Steam Supply System: Deterministic and Probabilistic Results, in Proceedings of the 6th KAIF/KNS Annual Conference, Korean Nuclear Society, 1991.
32. L.V. Corsetti, S.C. Hatfield, and A. Jonsson, Recent Advances in PWR Fuel Design at ABB-CE, in Light Water Reactor Fuel Performance, American Nuclear Society, 1991.
33. M.A. Manrique, S.N. Dermitzakis, L.D. Gerdes, R.P. Kennedy, I.M. Idriss, and J.R. Cassidy, Seismic Design Criteria for the System 80+ Advanced Light Water Reactor, in Proceedings of the 3rd Natural Phenomena Hazards Mitigation Conference, U.S. Department of Energy, 1991.
34. C.L. Naugle, T.D. Crom, and G.A. Davis, System 80+: Design Features Which Enhance Radiation Protection, in Proceedings of the Executive Conference on Radiation Protection in Nuclear Power Plants, American Nuclear Society, 1991.
35. R.E. Newman, S.T. Brewer, G.A. Davis, and R.W. Knapp, "ABB's Global Strategy for Supplying Nuclear Energy Plants Into the 21st Century, in Nuclear Power - A Fresh Start, International Business Communications," 1991.
36. R.A. Matzie, C.W. Bagnal, and R.S. Turk, ABB Advances in Nuclear Power Reactor Technology, in Nuclear Power - A Fresh Start, International Business Communications, 1991.
37. E.H. Kennedy and S.E. Ritterbusch, System 80+: Overwhelming Regulatory Issues by Design, in The Next Generation of Nuclear Power Plants: A Status Report, American Nuclear Society, 1991.
38. R.L. Rescorl, T.M. Starr, and T.D. Williams, The System 80+ Man-Machine Interface: Designing for Operators With Operators, in The Next Generation of Nuclear Power Plants: A Status Report, American Nuclear Society, 1991.

39. R.A. Gagnon, D.L. Van Olinda, and M.S. Novak, Nuplex 80+: I&C Reliability by Design, Not Just Numbers, in The Next Generation of Nuclear Power Plants: A Status Report, American Nuclear Society, 1991.
40. F.L. Carpertino, M.T. Cross, J.E. Robertson, and R.S. Turk, System 80+: An Evolutionary Advancement in the Technology of LWR Safety, in Proceedings of the 1st JSME-ASME Joint International Conference on Nuclear Engineering, The Japan Society of Mechanical Engineers, 1991.
- 41.\* C.W. Bagnal, R.A. Matzie, and R.S. Turk, System 80+ PWR Safety Design, Nuclear Safety, 33 (1): 47-57 (January-March 1992).
42. J.D. Crawford, R.A. Matzie, and R.E. Newman, Advanced Light Water Reactors for the Next Century, in Proceedings of the 8th Pacific Basin Nuclear Conference, American Nuclear Society, 1992.
43. R.A. Matzie, R.W. Bonsall, and W.A. Fox, An Integrated Design Approach for System 80+ for Improved Operations and Maintenance, in Proceedings of the 7th KAIF/KNS Annual Conference, Korean Nuclear Society, 1992.
44. J.W. Veirs, ABB Combustion Engineering's Experience in Nuclear Power Plant Engineering and Construction in Korea, in Proceedings of the 7th KAIF/KNS Annual Conference, Korean Nuclear Society, 1992.
45. D.J. Dixon and W.D. Wohlsen, ABB C-E's Guardian Debris Resistant Fuel Assembly Design, in Proceedings of the 7th KAIF/KNS Annual Conference, Korean Nuclear Society, 1992.
46. C.P. Litke, B.T. Lubin, and F.L. Carpertino, 3-D Computational Fluid Dynamics Model of Reactor Vessel Annulus With Direct Vessel Injection, in Proceedings of the 7th KAIF/KNS Annual Conference, Korean Nuclear Society, 1992.
47. R.E. Newman, System 80+ Licensing Gears Up, Nuclear Engineering International, 37 (453): 49-50 (April 1992).
48. R.A. Matzie, Status of System 80+ Design Certification, in Proceedings of the American Power Conference, Institute of Electrical and Electronics Engineers, 1992.
49. R.E. Schneider, L.D. Gerdes, J.T. Oswald, and J.F. Snipes, Design Bases and Severe Accident Considerations for the System 80+ Containment Design, in Proceedings of the 5th Workshop on Containment Integrity, U.S. Nuclear Regulatory Commission, 1992.

50. D.L. Harmon and T.M. Starr, Alarm and Status Processing and Display in the Nuplex 80+ Advanced Control Complex, in Proceedings of the 5th Conference on Human Factors and Power Plants, Institute of Electrical and Electronics Engineers, 1992.
51. R.B. Fuld and D.L. Harmon, Human Factors Integration for Large Scale Facility Designs, in Proceedings of the 5th Conference on Human Factors and Power Plants, Institute of Electrical and Electronics Engineers, 1992.
52. D.L. Harmon, Nuplex 80+: An Evolutionary Approach to Meeting ALWR Requirements, in Proceedings of the 5th Conference on Human Factors and Power Plants, Institute of Electrical and Electronics Engineers, 1992.
53. Nuclear Power: Technical and Institutional Options for the Future, National Academy of Sciences, June 1992.
54. Advanced Design Nuclear Power Plants: Competitive, Economical Electricity, U.S. Council for Energy Awareness, June 1992.
55. B.R. Lee, K.S. Chang, and J.S. Yang, Korean Standard Nuclear Power Plant: Safer, Simpler, Easier to Build, Nuclear Engineering International, 37 (457): 29-35 (August 1992).
56. NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document, NUREG-1242, U.S. Nuclear Regulatory Commission, August 1992.
57. R.A. Matzie, R.W. Bonsall, and W.A. Fox, System 80+ Standard Plant - Improved Operations and Maintenance Through Design, in Proceedings of the EEI Engineering & Operating Computer Committee Forum, Edison Electric Institute, 1992.
58. C.W. Bagnal, The ABB Combustion Engineering System 80+, Nuclear News, 35 (12): 68-69 (September 1992).
59. Draft Safety Evaluation Report Related to the Design Certification of Combustion Engineering System 80+, NUREG-1462, U.S. Nuclear Regulatory Commission, September 1992.
60. R. Knapp, C. Brinkman, T. Collier, K. Ehlers, and L. Tirén, Licensing ABB LWRs Around the World, in Proceedings of the 1st International Conference on Nuclear Safety Standards, International Business Communications, 1992.
61. An American in Korea, Nuclear Industry, 5 (3): 6-7 (Third Quarter 1992).

62. R.W. Knapp and T.J. Pedersen, A Realistic Approach to Nuclear Power for Tomorrow, in Proceedings of the 3rd Annual Scientific Conference, Nuclear Society International, Moscow, 1992.
63. R.A. Matzie, C.W. Bagnal, and R.W. Bonsall, The System 80+ Design for Safety, Economy, and Reliability, in Design and Safety of Advanced Nuclear Power Plants, Atomic Energy Society of Japan, 1992.
64. National Energy Policy Act of 1992.
- 65.\* R.S. Turk and R.A. Matzie, System 80+: PWR Technology Takes a Major Step Up the Evolutionary Ladder, Nuclear Engineering International, 37 (460): 15-22 (November 1992).
66. R.J. Slember, The ABB Perspective on the Future of Nuclear Energy, Transactions of the American Nuclear Society, 66: 354-355 (November 1992).
67. R.E. Newman and R.A. Matzie, The Status of System 80+ Development and Licensing, Transactions of the American Nuclear Society, 66: 355-356 (November 1992).
68. R.S. Turk, S.L. Stamm, and W.A. Fox, System 80+ Integrated Design of a Complete Plant, Transactions of the American Nuclear Society, 66: 356-357 (November 1992).
69. W. Gill and K. Scarola, Nuplex 80+ Advanced Instrumentation and Control, Transactions of the American Nuclear Society, 66: 357-360 (November 1992).
70. H. Bliss, R. Priory, and J. Burn, System 80+: The Utility Perspective, Transactions of the American Nuclear Society, 66: 360-361 (November 1992).
71. G.M. Taylor, KEPCO Plans 18 More Reactors by 2006, Nuclear News, 35 (14): 41-50 (November 1992).
72. Advanced Light Water Reactor Utility Requirements Document, Revision 5, Electric Power Research Institute, December 1992.
- 73.\* F. Ridolfo, D. Harmon, and K. Scarola, The Nuplex 80+ Advanced Control Complex from ABB Combustion Engineering, Nuclear Safety, 34 (1): 64-75 (January-March 1993).

74. P. Brunzell, Standardized NSSS Versus Vendor Competition, in Towards the Next Generation of Light Water Reactors, European Nuclear Society, 1993.
75. L.I. Tirén and R.A. Matzie, ABB Program for Evolutionary Light Water Reactors, in Towards the Next Generation of Light Water Reactors, European Nuclear Society, 1993.
76. K. Scarola and K. Rohde, Design of Nuplex 80+ for Maintainability, in Proceedings of the 8th KAIF/KNS Annual Conference, Korean Nuclear Society, 1993.
77. M.W. Crump, E.P. Flynn, and R.W. Knapp, System 80+: The Premier Plutonium Burner, Transactions of the American Nuclear Society, 68 (Part A): 75 (June 1993).
78. R.A. Matzie, G.A. Davis, C.W. Bagnal, and R.S. Turk, Reaping the Benefits of Evolutionary Critical Technology Development - System 80+ Standardized Plant Design, Transactions of the American Nuclear Society, 68 (Part B): 4-5 (June 1993).
79. M.W. Crump and E.P. Flynn, System 80+ Plutonium Disposition Capability, in Future Nuclear Systems: Emerging Fuel Cycles and Waste Disposal Options, American Nuclear Society, 1993.
80. C.M. Molnar, R.D. Ivany, and R.W. Knapp, Design Certification and Safety Evaluation of the System 80+ Evolutionary Standard Plant for U.S. and U.K. Application, in Proceedings of the 2nd International Conference on Nuclear Safety Standards, Institution of Mechanical Engineers, 1993.
81. R.A. Matzie, K. Scarola, and R.S. Turk, System 80+ I&C: Certification of a Reliable Design, in Proceedings of the 2nd International Conference on Nuclear Safety Standards, Institution of Mechanical Engineers, 1993.
82. R.E. Newman, Evolutionary Advances in Nuclear Power - Meeting the Growing Power Needs in Asia, in Proceedings of the 17th Annual Joint Business Conference of USA-ROC and ROC-USA Economic Councils, USA-ROC Economic Council, 1993.
83. C.B. Brinkman and S.E. Ritterbusch, Licensing an Evolutionary Advanced LWR, System 80+, in Proceedings of the 2nd JSME-ASME Joint International Conference on Nuclear Engineering, American Society of Mechanical Engineers, 1993.

- 84.\* M.C. Jacob, R.E. Schneider, and D.J. Finnicum, System 80+ Design Features for Severe Accident Prevention and Mitigation, in Proceedings of the 2nd JSME-ASME Joint International Conference on Nuclear Engineering, American Society of Mechanical Engineers, 1993.
- 85.\* L. Gerdes, S. Esfandiari, S. Dermitzakis, R. Kennedy, I. Idriss, and T. Oswald, Seismic Design of the ABB-CE System 80+ Standard Plant for a Site Envelope, in Proceedings of the 4th Natural Phenomena Hazards Mitigation Conference, U.S. Department of Energy, 1993.
86. R.A. Matzie, A Vendor's View of the EPRI ALWR Utility Requirements Document in the Aspects of Reactor Safety, in Proceedings of the International Workshop on Next Generation PWR Nuclear Power Plant Design Requirements, Korea Advanced Institute of Science and Technology, 1993.
- 87.\* S. Stamm, D. Finnicum, and G. Weiss, System 80+ Balance of Plant Improvements Reduce Challenges to Safety Systems, ASME Transactions, November 1993.
88. J. Metcalf, Closing the Accident Gap - The New DBA Source Term, Transactions of the American Nuclear Society, 69: 394-395 (November 1993).
89. M.L. Kantrowitz, J.A. Brown, and R.G. Rosenstein, Design of the System 80+ High-Performance Reactor Core, Transactions of the American Nuclear Society, 69: 477-479 (November 1993).
90. R.E. Schneider and R.R. Sherry, Application of a Two-Call Adiabatic Model for Direct Containment Heating to the ABB-CE System 80+ ALWR, Transactions of the American Nuclear Society, 69: 509-510 (November 1993).
91. Strategic Plan for Building New Nuclear Power Plants, 3rd Annual Update, Nuclear Power Oversight Committee, November 1993.
92. C.M. Molnar, The Licensability of System 80+ in the United Kingdom, Atom, 37 (431): 20-24 (November-December 1993).
93. Combustion Engineering Standard Safety Analysis Report for Design Certification (CESSAR-DC), Docket No. 52-002, Amendment U, Combustion Engineering, Inc., December 31, 1993.
94. C.W. Bagnal, R.W. Knapp, and T.G. Rudek, ABB's Program for Advanced Nuclear Power Plant, in The Future of Nuclear Power, International Business Communications, 1994.

- 95.\* D.J. Finnicum, M.C. Jacob, R.E. Schneider, and R.A. Weston, System 80 + PRA Insights on Severe Accident Prevention and Mitigation, in Proceedings of the 4th International Topical Meeting on Nuclear Thermal Hydraulics, Operations, and Safety, American Nuclear Society, 1994.
96. S. Ritterbusch and J. Metcalf, System 80 + Transition to the New Accident Source Term, in Proceedings of the 4th International Topical Meeting on Nuclear Thermal Hydraulics, Operations, and Safety, American Nuclear Society, 1994.
97. R.C. Mitchell, Steam Generator Tube Rupture Analysis for the System 80 + ALWR Design, in Proceedings of the 4th International Topical Meeting on Nuclear Thermal Hydraulics, Operations, and Safety, American Nuclear Society, 1994.
98. J.P. Rezendes and A.W. Hyde, Evaluation of Common-Mode Failure of Safety Functions for Limiting Fault Events, in Proceedings of the 4th International Topical Meeting on Nuclear Thermal Hydraulics, Operations, and Safety, American Nuclear Society, 1994.
99. R.E. Schneider, M.C. Jacob, F.L. Carpentino, and R.M. Wachowiak, Hydrogen Control in the System 80 + ALWR Design, in Proceedings of the 4th International Topical Meeting on Nuclear Thermal Hydraulics, Operations, and Safety, American Nuclear Society, 1994.
100. J. Longo, R. Matzie, and S. Ritterbusch, Resolution of Safety Issues for the System 80 + Final Design Approval, in Proceedings of the International Topical Meeting on Advanced Reactors Safety, American Nuclear Society, 1994.
101. P.C. Rohr and U.N. Singh, Physics and Safety Characteristics of the System 80 + Plutonium Burner, in Proceedings of the Topical Meeting on Advances in Reactor Physics, American Nuclear Society, 1994.
102. J.D. Crawford and R.A. Matzie, Advancements in Design and Analysis of System 80 +, in Proceedings of the 9th Pacific Basin Nuclear Conference, American Nuclear Society, 1994.
- 103.\* R.S. Turk, S.A. Serafin, J.B. Leckey, and J.S. Morgan, Information Management Systems Improve Advanced Plant Design, in Proceedings of the 9th Pacific Basin Nuclear Conference, American Nuclear Society, 1994.

104. G.A. Davis, R.A. Matzie, C.B. Brinkman, and S.E. Ritterbusch, Lessons Learned from Design Certification of System 80+, in Proceedings of the 9th Pacific Basin Nuclear Conference, American Nuclear Society, 1994.
105. J. Longo, Jr., R. A. Matzie, S.E. Ritterbusch, System 80+ Advanced Light Water Reactor: the Next Generation Plant for Nuclear Safety, Ninth Korean Nuclear Society Annual Conference, 1994.
106. Combustion Engineering Standard Safety Analysis Report for Design Certification (CESSAR-DC), Docket No. 52-002, Amendment V, Combustion Engineering, Inc., April 29, 1994.
107. Combustion Engineering Standard Safety Analysis Report for Design Certification (CESSAR-DC), Docket No. 52-002, Amendment W, Combustion Engineering, Inc., June 20, 1994.
- 108.\* Technical Information on Design Features of the ABB Combustion Engineering System 80+™ Standard Plant Design, report written for IAEA, July 15, 1994.
- 109.\* S. E. Ritterbusch and M.W. Crump, System 80+ Final Design Approval: Integrated Resolution of Safety Issues, Third International Conference on Nuclear Engineering, Tokyo, 1995.
110. Design Control Document for the System 80+ Standard Plant Design, Combustion Engineering, Inc., December 16, 1995.
111. T. Rozek, NUPLEX 80+ Advanced Control Complex: A Proven and Licensed Design, International Conference on Nuclear Power Industry, Beijing, March, 1995.
112. "Resolution of Thermal-Hydraulic, Safety and Licensing Issues for the System 80+ Design" presented at the 7th International Meeting on Nuclear Reactor Thermal Hydraulics, Saratoga Springs, NY, September 10-15, 1995.
113. TIS 95-110, "Evolutionary Development of ALWR Design Features fo the System 80® Family of Plants", by R. A. Mazie, J. Longo, Jr., J. R. Rec & R.F. Schumacher, Presented at Power-Gen Asia, Singapore, September 27-29, 1995.
114. "A Conservative Approach to SBLOCA Boron Dilution", presented at OECD Specialist Meeting on Boron Dilution, Penn State, PA, October 18-20, 1995.
115. "The Use of PSA in the Design of System 80+, International Conference on PSA, Seoul, Korea, November 1995.

116. Regulatory Issues Resolved Through the Design Certification of the System 80+™ Standard Plant Design, Fourth International Conference on Nuclear Engineering, New Orleans, Louisiana, March 1996.
117. "Improved Safety of the System 80+ Standard Plant Design through Increased Diversity and Redundancy of Safety Systems", Regis Matzie, James Robertson, Fred Carpentino. Presented by Regis Matzie at the 11th Annual KAIF/KNS Symposium: Seoul, Korea, April 1996.
118. "Economic Factors for the Next Generation of Nuclear Power Plants, Regis Matzie, Bengt Ivung. Presented at the TOPNUX International Conference, Paris, France, October 1996.
119. "Applications of Level 2 PSA Results and Insights in the System 80+™ Reactor Containment Design", Matthew Jacob, David Finnicum, Ray Schneider. Presented by D. J. Finnicum at PSA 96, Park City, Utah, October 1996.
120. "System 80+ Standard Plant Design", Regis Matzie, Richard Knapp, Zbig Jastrebski. Presented by Z. Jastrebski at the International Seminar of New Generation Power Plants, Warsaw, Poland, September 1996.
121. "Simplified Source Term Codes - Extension of System 80+ Experience to Operating and Future Advanced Plants", Stanley Ritterbusch. Presented at the Winter ANS Meeting, November 1996.