

SANDIA REPORT

SAND98-8237 • UC-423

Unlimited Release

Printed April 1998

RECEIVED

MAY 15 1998

OSTI

Status of Radiation Damage Measurements in Room Temperature Semiconductor Radiation Detectors

Larry A. Franks and Ralph B. James

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; distribution is unlimited.

Sandia National Laboratories

MASTER

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P. O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

DISCLAIMER

**Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.**

STATUS OF RADIATION DAMAGE MEASUREMENTS IN ROOM TEMPERATURE SEMICONDUCTOR RADIATION DETECTORS

Larry A. Franks and Ralph B. James
Materials Processing Department
Sandia National Laboratories
P. O. Box 969
Livermore, CA 94551-0969

Abstract

The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI_2) is reviewed for the purpose of determining their applicability to space applications. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after $10^{10} p/cm^2$ and significant bulk leakage after $10^{12} p/cm^2$. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of $5 \times 10^9 p/cm^2$ in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum neutrons after fluences up to $10^{10} n/cm^2$, although activation was evident. CT detectors show resolution losses after fluences of $3 \times 10^9 p/cm^2$ at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of $2 \times 10^{10} n/cm^2$. Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to $10^{12} p/cm^2$ and with 1.5 GeV protons at fluences up to $1.2 \times 10^8 p/cm^2$. Neutron exposures at 8 MeV have been reported at fluences up to $10^{15} n/cm^2$. No radiation damage was found under these irradiation conditions.

Table Of Contents

	<u>Page</u>
Introduction	5
Methods	5
Results	5
Mercuric Iodide	6
Cadmium Telluride	7
Cadmium Zinc Telluride	8
Conclusions	11
Recommendations	12
References	13

Status of Radiation Damage Measurement in Room Temperature Semiconductor Radiation Detectors

Introduction

As part of its FY-97 PIDDP work scope, Sandia National Laboratories, California, was tasked to assess the status of radiation damage measurements for a group of wide-bandgap semiconductor materials being developed for use as x-ray and gamma-ray spectrometers. Interest in radiation damage in these materials stems from the growing interest in their application to space science and from the known susceptibility of cryogenic germanium and silicon to damage at relatively modest fluence levels.

Radiation damage in semiconductor radiation detectors is manifest in a number of ways including changes in energy resolution, leakage current, and peak position. Under certain conditions, activation may also occur. While the space environment contains a wide variety of high energy particles, damage to semiconductor detectors is due primarily to electrons, protons, and neutrons. Parameters affecting the response of materials to radiation fields include fluence level, flux, incident energy, detector bias, and detector temperature. Additionally, detector dimensions and impurities can also be of importance.

Methods

Radiation effects data were obtained through a literature search using the computer data bases INSPEC, CALPLUS, and COMPENDEX, together with DOE archives. In all, more than 300 abstracts were reviewed. The review was confined to the materials cadmium zinc telluride, (CZT), cadmium telluride (CT), and mercuric iodide (HgI_2), the most promising of the wide-band gap materials now under development.

Results

The radiation effect reported most frequently was the change in energy resolution although changes in the leakage current and peak position shifts were sometimes cited. Energy resolution (ΔE) was determined in most cases by recording the spectrum of a monochromatic photon or alpha particle before and after exposure. Detector energy resolution is reported in terms of the

full width of a given spectral line at its half intensity point (FWHM). In general, neither the detector bias conditions nor the detector temperature were reported. Where available, this information is noted in this report. The results of this investigation are summarized in Tables 1-3. References are indicated in the final column of each table and listed in Appendix A.

Before discussing results of the current study, it is useful to note that significant energy resolution losses in silicon occur at about 10^{12} n/cm² for fast neutrons (Ewan, 1975) and leakage current and pulse height changes after 5×10^{11} protons/cm². Planar germanium detectors exhibit significant resolution losses after 10^9 n/cm². Coaxial (n-type) are significantly more resistant to neutrons (Pehl, 1979) than p-type. Coaxial (p-type) germanium detectors exhibit resolution losses at about 2×10^7 protons/cm² while in n-type coaxial (reverse electrode) detectors, resolution losses appear at about 2×10^8 protons/cm². Despite the susceptibility of germanium to radiation damage, thermal annealing methods have been developed to mitigate, if not reverse, the symptoms of high fluence exposures.

Mercuric Iodide

The results of this investigation are summarized in Table 1. Proton exposures at 10, 10.7, 33, and 1500 MeV have been reported. (Iwanczyk, 1996; Becchetti, 1983; Patt, 1990, and Nakano, 1976). Fluences ranged from 1.2×10^8 protons/cm² (1500 MeV) to 10^{12} protons/cm² (10.7 MeV). Also reported were 8 MeV neutron exposures at fluences up to 10^{15} n/cm². No evidence of radiation-induced damage was reported in HgI₂ under the exposure conditions cited. We note, however, that the 1500 MeV data did not extend beyond a fluence of 1.2×10^8 protons/cm² which is equivalent to only about one year in earth orbit.

TABLE 1.
Radiation Damage in HgI₂ Room Temperature Semi-Conductor Detectors

Material	Radiation	Effects	Reference
HgI ₂	Proton/10.7 MeV	No ΔE loss @ 5.9 KeV after 10^{12} p/cm ²	1
	10.0 MeV	No effect on 5.5 MeV alpha pulse height up to 10^{10} p/cm ²	2
	1500 MeV	No ΔE loss @ 5.9 KeV up to 1.2×10^8 p/cm ²	3
	33 MeV	No ΔE loss @ 59.6 and 122 KeV up to 2.5×10^{10} p/cm ²	4
	Neutron/8 MeV	Little ΔE effect up to 10^{15} n/cm ² in 5.3 MeV alpha spectrum.	2
	Photon	No data	--

Cadmium Telluride

Damage studies were found for proton, neutron, and photon irradiations. The results are summarized in Table 2. Proton exposures at 33 MeV were made on chlorine and indium-doped material. This energy was selected so that the beam passed through the thickest samples (2.8 mm) and thus contributed no Bragg peak in the test samples. In chlorine-doped samples, the energy resolution degraded sharply after about 3×10^9 protons/cm² at photon energies of 59.6 and 122 KeV. There was some evidence of a slight resolution improvement at lower fluences. Evidence of a detector thickness dependence in the resolution response was also noted. While quantitative data were not obtained for the single indium-doped device tested, the data suggests a higher degree of radiation resistance than with the chlorine-doped material. Neutron irradiations were reported at an energy of 8 MeV. Significant reductions in energy resolution were reported after about 2×10^{10} n/cm² in 5.5 MeV alpha spectra. Photon irradiations were reported using Co-60 (1.17 and 1.33 MeV) with the resolution monitored at 662 and 59.6 KeV. Marked changes in peak shape were reported at both energies after exposure of several times 10^5 R. No data were found at intermediate and low exposure levels.

TABLE 2.

Radiation Damage in CdTe Room Temperature Semiconductor Detectors

Material	Radiation/Energy	Effects	Reference
CdTe	Proton/33 MeV	<u>Chlorine doped</u> — ΔE degradation after $\sim 3 \times 10^9 p/cm^2$ @ 59.6 and 122 KeV in 0.9 mm thick sample <u>Onset of ΔE loss</u> in 1.75 mm sample @ 59.6 KeV near $3 \times 10^8 p/cm^2$ <u>Indium doped</u> — evidence of greater radiation resistance, no quantitative data	4
	Neutron/8 MeV	p-type — increasing ΔE loss (5.5 MeV alpha) @ $> 2 \times 10^{10} n/cm^2$	5
	Photon/1.25 MeV	Substantial ΔE loss @ 59.6 KeV after $10^5 R$	6

Cadmium Zinc Telluride

Radiation damage studies on CZT have been conducted using both protons (1.3 and 200 MeV) and neutrons (moderated fission spectrum). The results of these studies are shown in Table 3. With 1.3 MeV protons, the bulk leakage was found to increase significantly after $10^{12} p/cm^2$ in unbiased strip detectors (10 x 10 x 2 mm). The interstrip leakage increased significantly after about $10^{10} p/cm^2$. No energy resolution data were reported (Bartlett, 1996).

Considerable work has been reported in the region of 200 MeV. Varnell (1996) irradiated 2 and 3 mm thick planar detectors with up to $5 \times 10^9 p/cm^2$ and found resolution losses in the thicker devices (3 mm). The initial (unirradiated) FWHM values at 59.6 and 122 KeV of 3.2 KeV and 3.9 KeV, respectively, degraded to 4.1 and 4.3 after $10^9 p/cm^2$ and to 6.2 and 9.2 KeV after $5 \times 10^9 p/cm^2$. The thinner device (2 mm) showed no degradation at either energy after like exposures, however. A downward shift in peak channel with increasing fluence was reported for both thick and thin detectors. Varnell attributes the resolution degradation to increased electron trapping.

In a similar study, Bartlett (unpublished data), exposed both strip and planar detectors to 200 MeV protons. The strip detectors (15 x 15 x 2 mm) were exposed under bias to fluences from 10^8 to $5 \times 10^9 p/cm^2$. A small gain shift (3%) was noted after a fluence of $1 \times 10^9 p/cm^2$ and a significant shift (>25 %) after $5 \times 10^9 p/cm^2$. No consistent pattern of resolution degradation was

found. The resolution of a single detector exposed to 5×10^9 p/cm² was unchanged at a photon energy of 59.6 KeV and significantly degraded at 122 KeV while small losses (and gains) were found at 1×10^8 and 1×10^9 p/cm². In this study, the outputs of three strips in each detector were summed; one detector was used for each fluence level (1, 10, and 50×10^8 p/cm²). Two planar devices (10 x 10 x 2 mm and 15 x 15 x 2 mm) were exposed to a fluence of 5×10^9 p/cm², one under bias the other unbiased. Gain shift and energy resolution were measured at photon energies of 14.4, 17.8, 59.6, and 122 KeV. Gain shifts were found at all energies in both biased and unbiased cases. Significant (>45%) resolution losses were found at 59.6 and 122 KeV in the unbiased device. Minor changes (both positive and negative) were reported for the biased case.

Neutron irradiations with a moderated fission spectrum source (CF-252) at fluences up to about 10^{11} n/cm² on a single detector were reported (Bartlett, 1996). The detector (10 x 10 x 2 mm) was biased during exposure. No resolution degradation was found at photon energies of 14.4, 26.3, 59.6, and 122 KeV for fluences up to 10^{10} n/cm². Significant resolution losses were found after 7×10^{10} n/cm², however. It is interesting to note that the resolution losses were largely recovered after 12 weeks of annealing at room temperature. Evidence of neutron activation, in the form of gamma-ray lines from cadmium and tellurium isotopes, was apparent at fluences beyond about 10^{10} n/cm².

TABLE 3.

Radiation Damage in Cadmium Zinc Telluride (CZT) Room Temperature
Radiation Detectors

Material	Radiation/Energy	Effects	Reference
CZT	Protons/199 MeV	<p><u>3 mm thick detector</u> — ΔE @ 59.6 and 122 KeV degrades starting at 10^8 p/cm², 2 fold increase in ΔE @ 5×10^9 p/cm²</p> <p>-- 2 mm thick detector — little ΔE change up to 5×10^9 p/cm²</p> <p>-- Downward peak shift proportional to fluence in 2 mm and 3 mm devices</p> <p>-- Effects attributed to increased e- trapping</p>	7
	Protons/200 MeV	<p><u>Strip detector (biased)</u> — <u>2 mm thick</u></p> <p>-- Significant (>25%) gain shift @ 59.6 and 122 KeV from 5×10^9 p/cm²</p> <p>-- ΔE loss @ 122 KeV after 5×10^9 p/cm² — no ΔE effect @ 59.6 KeV</p> <p><u>Planar (biased)</u> — <u>2 mm thick</u></p> <p>-- Small ΔE effects, both positive and negative found @ 14.4, 59.6, and 122 KeV</p> <p><u>Planar (unbiased)</u> — <u>2 mm thick</u></p> <p>-- Large (>45%) ΔE losses at 59.6 and 122 KeV following 5×10^9 p/cm² exposure</p> <p>-- Gain shifts in both biased and unbiased detectors at 14.4, 17.8, 59.6, and 122 KeV</p>	8
	Proton/1.3 MeV	<p><u>2 mm thick strip detector (unbiased)</u></p> <p>-- Bulk leakage increases significantly after 10^{12} p/cm²</p> <p>-- Interstrip leakage increases after 10^{10} p/cm²</p> <p>-- No spectral data</p>	9

TABLE 3. (continued)

Radiation Damage in Cadmium Zinc Telluride (CZT) Room Temperature
Radiation Detectors

Material	Radiation/Energy	Effects	Reference
CZT	Neutron/Moderated Fission Spectrum	<p><u>Planar detection — (10 x 10 x 2 mm)</u></p> <p>-- No ΔE effects @ 59.6 or 122 KeV for fluence up to 10^{10} n/cm²</p> <p>-- Measurable ΔE loss @ 10^{11} n/cm²</p> <p>-- Activation emission (γ) from cadmium and tellurium isotopes appear at 10^{10} n/cm²</p> <p>-- Thermal annealing reverses most of ΔE loss in 12 weeks</p>	10

Conclusions

Knowledge of the radiation susceptibility of the leading room temperature semiconductor detectors CZT, CdTe, and HgI₂, is at best fragmentary. Factors known to be of significance in semiconductor radiation damage such as rate effects (flux), incident energy, and device temperature have not yet been examined. Moreover, the available data are from a very small sampling of detectors (sometimes a single device) and do not, in general, cover the complete fluence range of interest.

Despite these shortcomings, several interesting features emerge from the existing data. The most apparent is that HgI₂ appears to relatively immune to proton and neutron-induced radiation damage. No resolution degradation was found from intermediate energy protons at fluences up to 10^{12} p/cm². Similarly, no degradation was found from high energy protons although the effects of fluences significantly beyond 10^8 p/cm² have not been investigated and accordingly the suitability of HgI₂ for long-term space mission remains in question. Additionally, the material is apparently not susceptible to damage from intermediate energy neutrons.

The situation for cadmium telluride is less clear. No data were found for effects of high energy protons although the results at intermediate energy suggest vulnerability beginning in the region of 10^8 p/cm². Neutron data are also incomplete although at intermediate energies (8 MeV) the damage threshold for resolution degradation is relatively high (10^{10} n/cm²). While no evidence of activation was reported, effects similar to those in CZT can be expected.

The radiation susceptibility of CZT is also in question. There is evidence of resolution degradation from 200 MeV protons beginning in the region of 10^9 p/cm² as well as a downward shift in peak channel proportional to the proton fluence. However, the resolution degradation was apparent only in a 3 mm thick device and not a 2 mm detector. There is also evidence that the resolution degradation is dependent on bias conditions although this is based on the results from a single detector. Detector response changes following high energy proton irradiation are consistent with increased electron trapping and the associated decreases in the mobility-lifetime product. With intermediate energy protons (1.3 MeV), bulk and interstrip leakage was evident but only at high fluence levels. Damage for moderated fission neutrons is evident only after 10^{10} n/cm². Neutron activation lines from cadmium and tellurium isotopes appear after about 10^{10} n/cm². It is interesting to note that annealing at room temperature was very effective in restoring resolution losses.

Recommendations

A substantial amount of work remains before an understanding of the radiation susceptibility of room-temperature, semiconductor detectors emerges. Because of the great interest in deploying CZT-based instruments (and the apparent resistance of HgI₂) it is suggested that initial efforts be confined to developing a working knowledge of CZT related effects. Several areas are in particular need of near-term attention. Of particular interest are high energy proton-induced resolution losses in the fluence region beyond 10^8 p/cm² where a larger number of detectors encompassing a wider range of detector types is required. Questions concerning the effects of device thickness and bias conditions also need to be resolved. Further measurements at low and intermediate proton energies should be carried out to determine the vulnerability of the contact-CZT interface and validate the promising results obtained on a single device. Because of the potential for resolution degradation at relatively modest fluence levels, a practical annealing procedure should be developed.

References

1. G. T. Ewan, *Nuclear Instruments and Methods*, 162, 75, 1979.
2. R. H. Pehl, N. W. Madden, J. H. Elliott, T. W. Raudorf, R. C. Tramell, and L. S. Darken, *IEEE Transactions on Nuclear Science*, NS-26, No. 1, p. 321, 1979.
3. J. S. Iwanczyk, Y. J. Young, J. G. Bradley, J. M. Conley, A. L. Albee, and T. E. Economov, *IEEE Transactions on Nuclear Science*, Vol. 36, No. 1, p. 841, 1989.
4. F. D. Becchetti, R. S. Raymond, R. A. Ristinen, W. F. Schepple, and C. Ortale, *Nuclear Instruments and Methods*, 213, p. 127, 1983.
5. B. E. Patt, R. C. Dolin, T. M. Devore, J. M. Markakis, J. S. Iwanczyk, N. Dorri, and J. Trombka, *Nuclear Instruments and Methods*, A 299, p. 176, 1990.
6. G. H. Nakano, W. L. Imhof, and J. R. Kilner, *IEEE Transactions Nuclear Science*, Vol. NS-23, No. 1, p. 468, 1976.
7. R. A. Ristinen, R. J. Petersen, J. J. Hamill, F. D. Becchetti, and G. Entine, *Nuclear Instruments and Methods*, 188, p. 445, 1981.
8. T. Shoji, T. Taguchi, Y. Hiratake, and Y. Inuishi, *IEEE Transactions on Nuclear Science*, Vol. NS-26, No. 1, p. 316, 1979.
9. L. S. Varnell, W. A. Mohone, E. L. Hull, J. F. Butler, A. S. Wong, *SPIE Technical Conference Proceedings*, Denver, Colorado, Vol. 2806, 1996.
10. L. M. Bartlett, NASA Goddard Space Flight Center, Greenbelt, Maryland, private communication.
11. L. M. Bartlett, C. M. Stahle, P. Shu, L. M. Barber, S. D. Barthelmy, N. Gehrels, J. F. Krizmanic, P. Kurczyski, D. Palmer, A. Parsons, B. J. Teegarden, and T. Tueller, *SPIE Technical Conference Proceedings*, Denver, Colorado, Vol. 2859, 1996.
12. L. M. Bartlett, C. M. Stahle, P. Shu, L. M. Barber, S. D. Barthelmy, N. Gehrels, J. F. Krizmanic, P. Kurczyski, D. Palmer, A. Parsons, B. J. Teegarden, and T. Tueller, *SPIE Technical Conference Proceedings*, Denver, Colorado, Vol. 2859, 1996.

DISTRIBUTION:

11 NASA/Goddard Space Flight Center
Attn: Jacob I. Trombka, Code 691 (5)
Upenda Desai, Code 682.0
Pamela E. Clark, Code 691
Carl M. Stahle, Code 718.1
Samuel R. Floyd, Code 691
Larry G. Evans, Code 691
Richard D. Starr, Code 691

Greenbelt, MD 20771

1 University of Arizona
Department of Planetary Science
Attn: William V. Boynton
Space Sciences Building
Tucson, AZ 85721

5 DOE's Special Technologies Laboratory
Attn: Larry Franks
130 Robin Hill Road
Goleta, CA 93117

1 Jet Propulsion Laboratory
California Institute of Technology
Attn: Albert E. Metzger, Mail Stop 183-501
4800 Oak Grove Drive
Pasadena, CA 91109

2 Los Alamos National Laboratory
Attn: Cal Moss, MS D438
Robert C. Reedy, MS D438
Los Alamos, NM 87545

2 Constellation Technology
Attn: George Lasche
Lodewijk van den Berg
9887 4th Street North, Suite 100
St. Petersburg, FL 33702

1 Schlumberger-Doll Research
Attn: Jeffrey S. Schweitzer
Old Quarry Road
Ridgefield, CT 06877

1 EMR Schlumberger
Attn: Joel Groves
P. O. Box 44
Princeton, NJ 08542

1 Fisk University
Attn: Arnold Burger
Department of Physics
1000 17th Avenue North
Nashville, TN 37208

1 MS9001 T. O. Hunter; Attn:
MS9002 P. N. Smith
MS9003 D. L. Crawford
MS9004 M. E. John
MS9005 J. B. Wright
MS9007 R. C. Wayne
MS9054 W. J. McLean
MS9141 L. A. Hiles
MS9141 P. E. Brewer
MS9405 T. M. Dyer

1 MS9405 J. M. Hruby
5 MS9405 R. B. James

1 MS9420 L. A. West; Attn:
MS9133 B. E. Affeldt
MS9409 C. T. Oien
MS9409 R. H. Stulen
MS9420 M. H. Rogers
MS9430 A. J. West
MS9430 L. N. Tallerico

3 MS9018 Central Technical Files, 8940-2
4 MS0899 Technical Library, 4916
1 MS9021 Technical Communications Dept., 8815/Technical Library, 4916
2 MS9021 Technical Communications Dept., 8815 for DOE/OSTI

This page intentionally left blank