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Abstract

In the framework of Benders decomposition for two-stage stochastic linear programs,
we estimate the coefficients and right-hand sides of the cutting planes using Monte
Carlo sampling. We present a new theory for estimating a lower bound for the optimal
objective value and we compare (using various test problems whose true optimal value
is known) the predicted versus the observed rate of coverage of the optimal objective
by the lower bound confidence interval.
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1. Introduction

It has long been recognized that traditional deterministic models do not reflect the true
dynamic behavior of real-world applications because they fail to take into account uncer-
tainty. Since Dantzig (1955) [9] and Beale (1955) [1] independently proposed a stochastic
model formulation, these models have been studied intensively. In the literature, a number
of different algorithmic approaches have been proposed that we can broadly categorize as
deterministic methods, approximation schemes, sampling-based algorithms and others.

Deterministic methods attempt to solve the deterministic equivalent problem, either
directly or by exploiting structure. Prominent among these are the L-shaped method of
Van Slyke and Wets (1969) 48], its multi-cut variant by Birge and Louveaux (1985) [4], the
Progressive Hedging algorithm of Rockafellar and Wets (1989) [46], the use of interior-point
methods by Lustig et al. (1991) [37], Ruszczynski’s (1986) [47] regularized decomposition
method, and other large-scale techniques implemented on serial and parallel computers.
Clearly, even the most sophisticated deterministic techniques can only solve problems with
a limited number of scenarios. So far, problems with up to about 100,000 scenarios have
been solved using deterministic techniques.

Approximation schemes calculate deterministic lower and upper bounds on the optimal
objective of the problem via the inequalities of Jensen (1906) {33] (lower bound) and Ed-
mundson (1956) [17] and Madansky (1959) [39] (upper bound), and successively improve
these bounds. Refinements of these bounds have been proposed by many authors, e.g., Kall
(1974) [34], Huang, Ziemba and Ben-Tal (1977) {30], Frauendorfer and Kall (1988) [21],
Frauendorfer (1988) [20], (1992) [22], Birge and Wallace (1988), Birge and Wets (1987) [6],
(1989) [7], Prékopa (1989) [43] and others. Approximation techniques work very well for
problems with a small number of stochastic parameters, but seem to encounter difficulties
when the number of stochastic parameters is large.

Sampling-based algorithms can be further categorized into methods that pre-sample a
number of scenarios to create a tractable deterministic equivalent problem, which is then
solved by a suitable deterministic method, and methods that use sampling within the al-
gorithm. In the latter category fall stochastic quasigradient methods (Ermoliev (1983) {18]
and Gaivoronski (1988) [23]) that select sequentially random search directions based on a
limited number of observations of the random function in each iteration. Others are based
on modifications of deterministic decomposition techniques to allow for sampling. Higle and
Sen’s (1991) [26] Stochastic Decomposition method relies on taking only one observation
or a very small number of observations per iteration, while Pereira et al. (1989) [44] used__
control variables as a variance-reduction technique in Monte Carlo sampling in a modified
Benders decomposition framework.

Sampling seems to be the best method for practical problems with a large number of
stochastic parameters. The approach by Dantzig and Glynn (1990) [10] and Infanger (1992)
[31] combines Benders decomposition and Monte Carlo importance sampling for solving
stochastic linear programs. Importance sampling serves as a variance-reduction technique
and in practice often results in accurate estimates being obtained with only small sample
sizes. Infanger (1992) [31] and Dantzig and Infanger (1991) [13] report the solution on
personal computers of large-scale problems that seemed to be intractable in the past, even
on large mainframes. '



In this paper we present a rigorous theory for obtaining a probabilistic lower bound for
the true optimal objective value when using Benders (1962) [2] decomposition and Monte
Carlo sampling for estimating coefficients and right-hand sides of cuts to solve two-stage
stochastic linear programs. In Section 2, we state the problem. In Section 3 we review the
original Benders decomposition algorithm for two-stage stochastic linear programs (Van
Slyke and Wets (1969) [48]). We then derive in Section 4 the theory of a probabilistic lower
bound. Finally, in Section 5, we discuss the numerical results obtained from testing the
theory on a number of practical problems.

2. The Problem

We consider the following two-stage stochastic linear program:

min z = cz + EY fYy¥
s/t Az = b
—B¥z + Duyw - dw, we (21)
z, v 2 0

The matrix of constraint coefficients A, the right-hand side vector b, and the objective
function coefficients ¢ of the first stage are assumed to be known with certainty. In the
second stage, the transition matrix B, the technology (or recourse) matrix D, the right-
hand side vector d and the objective function coefficients f are not known with certainty
— only their joint distribution of values is assumed to be known.

We denote particular outcomesby B=B“, D=D¥d=d¥ f= fY,w=1,...,Wand
the known probability of realization w occurring by p(w). The set of all possible realizations
of w is denoted by @ = {1,...,W}, or by w € §. Since in many practical applications, D
and f don’t depend on w, we have omitted their w superscript in the rest of the paper to
simplify the presentation; the analysis is the same if D and f are replaced by D“ and fv.

The equivalent deterministic form of (2.1) is (2.2):

min 2z = cx + 4
-1 -8 + Pyt 4+ + PFY o+ VY = 0
p: Az = b
plﬂ']': _Blz + Dyl — dl
perY . ~B¥z + Dy = &
V¥ o + Dy = 4%
z, ylv yw, s yW Z O’
(2.2)

where 8 denotes the expected second-stage costs.

The dual variables corresponding to the primal constraints of (2.2) are displayed in the
column to the left of the equations. In particular, p is the vector of dual variables associated
with the first-stage constraints Az = b, and p“#“ is the vector of dual variables associated
with the second-stage constraint —B“z + Dy“ = d¥, for each w € Q.




In practical applications the number of possible second-stage realizations W can be very
large (e.g., 10%° or even 10'%), and it is impossible to express system (2.2) explicitly . The
different realizations are implicitly generated as needed by a combination of an underlying
small set of h independent random parameters ¢y, s, ..., Jn, where h might be 100 or so.
Sampling is required to solve such problems. The ¢ structure underlying the set  makes
it possible to use variance-reduction techniques, such as importance sampling, to reduce the
size of sample required. Since the theory for the lower bound estimate is the same with
variance reduction, we omit the discussion of the latter to simplify the presentation.

The stochastic algorithm follows the same steps as the original Benders algorithm, except
that the necessary conditions (the true cuts) are approximated by pseudo cuts obtained by
summing over a random sample of w instead of all w. After a preassigned number of
iterations K the algorithm terminates with a proposed first-stage decision z = &, which
yields the lowest approximate expected first-stage and second-stage cost found so far. We
review the original algorithm first and then use estimated cuts based on random samples
to determine the first-stage decision and estimate bounds on how close its objective is to
the true minimum of 2.

3. Benders Decomposition
Assumption 1
The problem mincz, Az = b, z > 0 has a finite optimal solution z = £'. It is used to
initiate iteration 1 of the Benders algorithm for solving (2.2).
Assumption 2
For any feasible first-stage decision z = £, each second-stage subproblem w,
min 67 = fy*

sft 7. Dy* d“ + B¥¢ (3.1)

has optimal primal and dual feasible solutions y* = g, 7 = ¢ that depend on £. By the
duality theorem, these satisfy

f-7¢D20, Dyf=d"+B“C, fyf=n¢(d”+B), (f-r¢Dyg=0. (32
Assumptions 1 and 2 imply that the convex set C of feasible solutions to (2.2) is non-empty—

and that there exists an optimal solution to (2.2): z*, z*, 6*, y¥, for w € Q.

Generating True Cuts
Let z, 0, y%,...,3" be any feasible solution to (2.2). It satisfies
— B¥Yz+ DyY =d¥, foreachwe€ Q. (3.3)

For any given first-stage solution £ and optimal dual feasible 7, multiplying by 7¢ and
then adding and subtracting fy“ we obtain

~7¢BYa + (vgDy” — fy*) + fy* = 7{d”. (3.4)
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Note that

7¢Dy” — fy* <0 (3.5)
because f — 7¢D > 0 by (3.2) and 3 > 0. Dropping this term in parentheses in (3.4) we
obtain

-7 Bz + fy¥ 2 wfdY, we. (3.6)
Multiplying by p¥ > 0 and taking the sum over all w € Q yields
- Do pUm¢BUz+ Y Py 2 ) pinEa. (3.7)
we weR wEQR

In iteration k the value of £ is denoted by € = €%, and we denote
GF =Y ps¢B¥, ¢F =3 pUngd, £=¢ (3.8)
weR weR

Substituting these into (3.7), and noting from (2.2), the second term is 4 by definition, we
obtain the true cut (k), which is valid for all feasible solutions to (2.2):

True Cut (k)
~Gkz + 0> g~ (3.9)

Starting with the first-stage solution z = £! (see Assumption 1), cut (1) is generated and
used to form master program (1). The optimal solution z of master problem (1) generates
the first-stage solution z = £2. After k iterations of the Benders decomposition algorithm,
we arrive at the master problem (k), see (3.10).

Master Problem (%)

minv = cz + 6
Az
-Gz +

B )
AVAN
-

(3.10)

g*
0.

-Gkz + @

z,

v Iv

Master problem (%) is optimized and its optimum solution is denoted z = £5+1, ¢ = g*+1 7
v = vF+l, gF+1 s used to initialize iteration £+ 1. Cut (k + 1) is then determined by (3.8)
and adjoined to master (k) to generate master (k¥ + 1), and so on.

Lower bound
In particular, an optimal solution to (2.2), z*, 8%, y¥, w € Q, satisfies (3.10). Therefore
" =cz" + 6" (3.11)

and A .
Gz + 07> 45, k=1,2,.... (3.12)
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Since master problem (k) is a set of necessary conditions derived from (2.2), clearly its
optimum objective v = v*+! is a lower bound for z*, i.e.,

vkt < 27, (3.13)

because master (k) may be viewed as a relaxation of its conditions evaluated at z = z~,
6 = 6" as shown here:

ezt + & = z*
Az = b
~Glz= + 6 > ¢!
: . (3.14)
-Gk + ¢ > gk
z* > 0.

Upper bound
Given the first-stage solution z = £5+1, the corresponding minimum second-stage cost is

6c* =3 oy, E=¢€ (3.15)
weR

The minimum expected cost, given the first-stage decision £ = £¥+1, is zé““ = c£k+t +9§+1.
Therefore, .

< zg’*'l. (3.16)
Termination

If o5+ = zé for some [ < k+ 1, then = = €' is an optimal first-stage decision and zé = z".
The condition v*+! = 2} will be reached in a finite number of iterations; see Benders (1962)
[2]. In practice, however, the iterative process is terminated if

7 —v* < TOL, 1<k+1, (3.17)
where TOL is a preassigned “close enough” criterion, implying
zt — 2" < TOL. (3.18)

The objective value of the first-stage decision z = ¢’ is then deemed to be “close enough” to™
z*. Otherwise, the iterative process continues with increasing & until k reaches a preassigned
maximum number K and the solution z = €, where [ = argmin zé‘ ,k=1,...,K,is then
chosen as the first-stage decision.

4. Probabilistic Lower Bound
4.1. Cut Generation Using Sampling

The need for sampling arises if W, the number of possible realizations, is large. We then
use Monte Carlo sampling to estimate the cutting planes. If a cut is estimated by a sample
of w, we will call it a pseudo cut. Givern a first-stage solution z = £, to generate a pseudo




cut, a random sample § of size |S| of the necessary conditions (3.3) with replacement is
taken according to the distribution p!,p?,...,p" and averaged. Thus, summing (3.6) for
w € § and averaging, we obtain a true cut, called a stochastic cut. Adding 8 = 3,cq p“ fy~
to both sides and rearranging terms, we obtain

1 1 1
—EZTF&”BWI'*'@Zmzrgdu”(mz}fyw‘e)- (4.1)
wES w€S weS :
On iteration k, we denote £ and § by £* and S* and we denote the various terms of (4.1)

by
Sk 1 w nw - 1 w k
G = o L 7 I =g 1w €=¢ (42
: wES wE
and define 1
wE

as the sampling error of estimating § = 3 cqp“f¥“ by 2 random sample S* of size |5¥|
from the distribution of fy* with density p¥. Substituting G*, §* and & for the expressions
in (4.1) we obtain the stochastic cut (k) as follows:

Stochastic Cut (k)

~-Gfz 49> -, c=¢, S§5=S5~ (4.4)
We note that this is a true statement for any feasible solution of (2.2), z, 6, y“, for all
‘w € Q. The corresponding pseudo cut (k) is obtained by dropping the error term:

Pseudo Cut (k)
-G*z+0> 5, ¢=¢ S=S5~ (4.5)

4.2. Stochastic Benders Algorithm

Starting with any feasible solution z = £! to the first-stage problem (such as the optimal
solution of mincz, Az = b, £ > 0) each subsequent iteration % is initialized using as its
feasible first-stage solution z = £*. A random sample §* of size |S*| is drawn and the
parameters G* and §* of the pseudo cut (k) are computed according to (4.2). The pseudo

cut (k) is then adjoined to pseudo master (k — 1) to generate the pseudo master problem —
(k), see (4.6).

Pseudo Master (k)




Pseudo cuts are iteratively adjoined in this manner until the maximum iteration k = K is
reached.

4.3. First-Stage Decision z = ¢, Upper Confidence Interval for 2*

An unbiased estimate of the minimum ezpected second-stage costs Gf , calculated on iteration
k, is

Z fyf ’ E fk (47)

& ‘Skl Z

where y¢ minimizes subproblem w given z = £€*; see (3.1). An unbiased estimate of the
variance of éé‘ about its true mean,

0= p*fuf (4.8)
wER
is also calculated on iteration %:
=2 _ — G2 = gk,
k= Skl(lskl gk(fyf ) ’ f § (49)

Therefore an unbiased estimate of the first-stage and second-stage costs (given £ = £€¥) is
BF=cth+ 85, e=¢" (4.10)

and &7 is an unbiased estimate of the variance of 2? .

At the termination of the stochastic Benders algorithm, we choose z = ¢ as the first-
stage decision, where ! = argmin #*. However, the minimum of several minima ¥ is no
longer an unbiased estimate of z!. To obtain an unbiased estimate of 2!, we re-estimate Gé,
zé and &} using a new independently drawn sample $%. In our applications, sample sizes

are |S| = 100 or more, so it is reasonable (by the central limit theorem) to assume Z is
normally distributed. Therefore an a upper confidence interval for 2* is

Prob(, +to; > z°) > @, (4.11)
where ¢ is defined as ) . \
—_— “5dt = a. 4. -
V2r ./—oo ¢ ( 12)

4.4. Lower Confidence Interval fpr z*

In order to know how close the objective associated with the first-stage decision z = € is
to the true min z = z*, we estimate a lower confidence level for z*. All feasible solutions to
(2.2) satisfy the stochastic cuts (4.4), —~G*z + 8 > §* — &, where & = 317‘7 Lwesk fy —90.




In particular, the optimum z*, z*, §*, €5, k = 1,..., K satisfies the following system of
inequalities:

czx + 9u - z:l

Az” = b
—Glz* + 8 > gl - gi
_G?zt + 9~ 2 52 €2 (4.13)
~-GKz* + 6= > GK -

z* > 0,
where for each k,
: Sk' Z fy-u (4‘14)
wES*

is a sample average about the true mean 6 drawn from the same distribution of fy~. We
now show how the optimal dual multipliers of the pseudo master (X'), depicted in (4.15)
below, can be applied to (4.13) to derive a lower bound for the optimal solution z*.

Pseudo Master Problem (K)

min? = cx + 6
p: . Az = b
;'\1 -Gz + 6 > @
X2 -Gz + 0 > @ (4.15)
AK -GKz + 4 > g¥
T > 0.

Let 5, AL, ..., XX be the optimal dual variables of (4.15) and let 7" = min ¥. These satisfy

K
7 =pb+ Y Mg (4.16)
k=1
K - -
PA= NGF+y=¢, 720 (4.17)
k=1
K -~
S M =1 (4.18)
k=1
>0, k=1,...,K. (4.19)

Applying these same multipliers to the corresponding relations in (4.13) and subtracting
from the first relation of (4.13), we obtain

K K
0<yz™ <z —(Bb+ D Xgh)+ > Xkek. (4.20)
k=1 k=1




Dropping yz* > 0, substituting o* from (4.16) for the middle term in parentheses, and
rearranging terms, we obtain a lower bound for the optimal objective z* of (2.2):

K
T-ALZ, A=) M, (4.21)

k=1
where \* are optimal dual multipliers of the pseudo master (K), A* > 0, Zf=1 =1,
and & for k = 1,...,K are the deviations from their true mean 6" of the sample means of

samples §* of size |S*| of terms fy¥.

4.5. The Distribution of the Error Term A

Our goal is to derive an approximation of the probability distribution for the random vari-
able A = TK | 3¢ In fact we develop two such distributions upper bounding A; the first
we call “worst-case bound” and the second we call “conservative bound”. For this analysis
we need the distributions of the error terms é~.

By definition, o2, the variance of the population of the optimal second-stage costs fy,

w € Q corresponding to the optimal first-stage solution z*, is given by

ol=> pU(fyr - 67) (4.22)
we
We assume that all sample sizes used in the various iterations are equal to N, i.e.,
S| =N, k=1,...,K. (4.23)

Since we have fixed z = z* at the optimum, the random samples S* of size N for computing
the means '—51,,—[ Y wese fy¥ are all drawn from the same distribution of values fy“. Therefore

each variance of €8, the expected value of (Tglq Twesk fy¥ — 07)%, is the same:

2
- O,
var(ek) = L k=1,...,K. (4.24)
Note that this is a theoretical result because we do not know z* and hence cannot generate
sampled values of fy¥ to estimate o2. We estimate o2 by setting it equal to the estimated
variance of fyg, where £ = ¢":

- 1 1
estimated o2 = ? = o1 Z(fyg' - nyg’)z, E=¢, §5=45"% (4.25)
w€eS

Each error term & is the difference of the average of N independently drawn observations—
with repacements from the same distribution of fy¥ minus its true mean 6*. Because sample
sizes in our applications typically satisfy N > 100 and are often several hundred, it is
reasonable (by the central limit theorem) to assume & are normally distributed:

Tx
& ~ N(0, —

j—*_]-v—) = =N (0,1). (4.26)

Our goal now is to determine an upper bound for A = Zle Xegk say A% such that
Prob(A < A®) > a. Since we do not know the distribution of A, we cannot compute
A% directly. Instead, we determine two distributions, a worst-case distribution Ay and
a conservative distribution A, each of which dominates the A distribution, and find an
a-point for each distribution.
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4.6. Worst-Case Lower Bound for z*

Since M* > 0 and R, A* = 1, the worst-case upper bound for A is Ay,

K
Aw = ma,xéf > S\kéf = A. 4.27
w = maxé, > Ié (4.27)
We know from (4.26) that Aw = max € is a random variable distributed as the maxi-
mum of K independent normal (c./vN)N(0,1) variates. We determine the point A%, on
this distribution such that
Prob(Aw < ASy) 2 «a, (4.28)

where -
*®

A, =5 — tk‘/.ﬁ, o . (429
and tx is defined according to
1 tk g2 1
72__;/_00 eFdt=ak. (4.30)
Since A < Aw by (4.27),
Prob(A £ A%) 2 «a, (4.31)
and ‘
Prob(?* - A 2 4" - AY) 2 a. (4.32)
Since 2* > ¥ — A by (4.21),
Prob(#" - A%, <" -A<Lz") 2. (4.33)

We call the lower bound (" — A%,) the probabilistic worst-case o lower bound for z*.

4.7. Conservative Lower Bound for z*

The conservative lower bound is based on the observation that the A* and & in the ex-
pression A = ZE__.I Megk tend to be positively correlated. This can be seen intuitively. It
is reasonable to expect, in forming the pseudo master problem, that dropping the term &*
when it is large and positive will give rise to a tighter constraint k, and dropping it when __
negative will slacken the constraint. This positive correlation of A\¥ with & is very evident
in practical problems; see the empirical evidence presented in Figures 1 and 2.

In order to obtain A¢ (the conservative upper bound for A) and hence * — A. (the

conservative lower bound for z*), we reorder the A¥ from high to low and relabel them
B2z >EF >0 (4.34)
We also order the & from high to low and relabel them

>8> ...>458, (4.33)




It is then obvious (and straightforward to prove) that
K K
A =S5 <SR (4.36)
k=1 k=1

The difference K | i¥3* — A depends on how correlated A* and & are; the higher the
correlation, the smaller the difference. We have observed empirically that after A* and &
are reordered, ﬁ" and §* are no longer correlated; accordingly, for the development of the
conservative lower bound, we make the assumption that i* and 6% are independent,

Notice that the §*’s are the distribution of instances of K normal (o./vVN)N(0,1)
variates ordered from high to low. We do not know which particular instance of the K
ordered normal deviates 6% formed the products with the ordered z* and were then summed.
We can, however, by our assumption of independence, view

K
Ag = Z [1"5" , for the observed value of ¥, (4.37)
k=1

as a random variable, generated by all possible instances of ordered sets of K ordered nor-
mal deviates §*. The distribution of Ac can be determined, either by numerical integration
or by Monte Carlo approximation. We approximate it by generating many K indepen-
dent (0./v/N)N(0,1) normal deviates, and reordering them into many ordered instances
of 81,...,6%. Substituting each of these ordered instances into (4.37) we obtain an ap-
proximate distribution that we call the probabilistic upper bound distribution for As. We
determine A%, the o percent point of this distribution, for which

Prob(Ac¢c £ A%) 2 a. (4.38)
Since A < K | i*6F = A by (4.36) and (4.37),

Prob(A £ A%Z) 2 a, (4.39)
and
Prob(s* — A > 5 — A%) > a. (4.40)
Since z* > #* — A by (4.21),
Prob(?" - A% <" -A L") > 0. (4.41)

We call the lower bound (%* — A%) the probabilistic o lower bound for z*.
To summarize, the main steps are as follows:

e Obtain a realization of 5, A\*, k = 1,...,K and #* = pb+ Xf:l Ak g% by solving the
pseudo master problem (4.15) for 4* = min 4.

e Order A from high to low to obtain g*, k=1,...,K.

e Obtain the distribution A, by generating many sets of X independent observations
of the distribution (o /¥ N)N(0,1), reordering them from high to low to form the
&1,...,8K observations, and substituting into A = Y f— i¥* to obtain instances of
Ac.
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¢ Determine the A% point of the distribution Ac by Monte Carlo and construct the
confidence interval Prob(7* — A% < #* - A < z*) > a, where the estimate of the lower
bound for z* is ¥~ - A%.

Comment

When generating the distribution Ac for approximating Ek_l i 6 we are assuming that
ji* and é* are uncorrelated. Empirically, once we reorder, that seems to be the case. Even if
there is some correlation remaining, it cannot have much effect because the §* are confined
to a narrow range of values.

What deserves more study, and is a goal for future research, is how best to estimate o,.
If € is a nearly optimal solution, &, should be a good approximation to the true value of

. Alternatively, §x 41, the estimated variance of 25+ corresponding to £ = EK+1 the
optxmal solution of the pseudo master problem (K'), could be used as a good estimate for
O«. As a third way of estimating o., we suggest computing the solution

. .
£=3 M (4.42)
k=1

and estimating the variance of 0'5 = ]'é‘[zues fyg, &€= £ around its true mean b =

Zweﬂfpwy?’§=éya's N

l
M

using an independent sample § = §. We recommend in practice using &; as an estimator
for o.. Nevertheless, to be on the safe side, it may be a good idea to inflate the estimated
., say by 5%.

5. Test

In order to test the theory, we used a number of problems discussed in the literature (see,
e.g., [29]), and also problems we designed in-house. For each of these, the number W of
scenarios w was small enough to allow us to compute the optimal solution exactly. For
the test we solved the universe problem to obtain the optimal universe solution z*, z*, 3y,
and the true population variance 2. We also recorded the sequence of solutions z = £F,
k=1,...,K that led to the optimal solution. Actually, we reserved room for only a fixed
number of cuts, say K = K. If the number of iterations for solving the universe problem
exceeded K.y, we replaced previously generated cuts. The solutions €%, k = 1,..., K then
represented the solutions corresponding to the cutting planes stored in the master problem
when it terminated at the optimal solution.

To carry out the test we used the recorded solutions €%, k = 1,...,K to genera.te the
stochastic cuts. For each of these, we computed the true correctxon terms €. Based on
the true correction terms we computed the true value of the lower bound %~ ~ 4, where
7 = pb+ LK., A*3* is the optimal objective of the pseudo master problem (K), and we
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computed the less tight but true lower bound %™ — A, based on the reordering of the A*
and &~,

We then computed empirically an upper bound distribution Ac by repeating R times
the sampling of K observations from the normal distribution (o./v/N )N(0, 1), and ordering
the resulting values to obtain R observations of Ag = YK | i*6*. We used this empirical
distribution of A¢ to calculate A% and used A% to calculate ¥ — A%, a one-sided o lower
confidence interval for 2*.

For illustration purposes we describe in detail the results of applying the methodology
to the test problem APLIP, which is a small electric power expansion planning problem
with uncertainty in three demands and in the availability of two generators; see Infanger
(1992) [31]. The master problem has 3 rows and 3 columns and each second-stage scenario
has 6 rows and 9 columns. The total number of scenarios is W = 1280. The optimal values
of z* and y¥ resulted in 2* = 24642.3, §* = 13513.7 and o, = 4808.8. For the experiment
we estimated K = 20 cuts using a sample size of N = 100. The optimal dual multipliers for
the pseudo master problem AF, and the values of &, as well as the ordered values i* and

@k for £ =1,...,20, are displayed in Table 1. The lower bound for z* before reordering the
A* and & is

K
25" =) e = 25188.6 — 546.3 = 24642.3, (5.1)
k=1
which verifies that 7* — 1K | AF&* is, as stated earlier, a true lower bound (24642.3) for
z*. It happened in this case that the 20 corrected cuts were sufficient to determine the true
minimum 2" = 24642.3. We then reordered the \* to obtain ﬁk, and reordered the €* to
obtain 6%. Clearly,

K
2" > 5" — Y p*6F = 25188.6 — 559.1 = 24629.5, (5.2)
k=1

which verifies that 5 — T8 fi*§* is a smaller true lower bound for z*. Using the largest
observed value max; &, the worst-case lower bound for z* is

29 - max & = 25188.6 - 636.6 = 24552.0. (5.3)

So far, all the evaluations for the example were exact; there were no estimates. We now
discuss how we estimated the term Z{‘;l ji*8%. We know that the &* are a reordering of
€, and that these 6%, k = 1,..., K are randomly drawn (approximately) (o./vN)N(0,1)
deviates. What we did was draw R = 500 samples of K = 20 independent normally
distributed (o./vN)N(0,1) deviates. We ordered the & in each of the sets of twenty from
high to low, and for each reordered set 7 of the twenty §; we computed TR akek = Al
Next we generated the distribution of Al, ¢ = 1,...,500 cases of A and computed the
point A%% as the upper bound estimate of Ac, where A%% is the value of A¢ that was
exceeded in 95% of the cases. Hence

27> 5" = A%% = 25188.6 — 1143.7 = 24044.9, (5.4)

where 0. = 4808.90. In practice, of course, we do not have the true value of .. Using
Fx -2 = 4449.8 as an estimate of g. (to simulate a situation where the optimum z* has not
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been reached yet), we obtain
" > 5" - AYB|;, _, = 25188.6 — 1058.3 = 24130.3, (5.5)

which under-bounds the true value of z* = 24642.3 by 2.1%. We calculated the worst-case
lower bound using the true value of ¢* as

2>

<

* — A% = 25188.6 — 1345.9 = 23842.7, (5.6)
and using the estimate G _o = 4449.8 as

z* > 5" — AYP|5 ., = 25188.6 — 1245.4 = 23943.2. (5.7)

Table 1: Test results for problem APL1P

cut(k) Py & i* 6*

1 0.558 636.757 0.558 636.757
2 0.000 | -656.181 0.276 504.965
3 0.276. | 504.965 | 0.166 388.265
4 0.000 | -500.738 | 0.000 339.834
5 0.000 | - 71.361 0.000 316.619
6
7
8

0.000 | -519.535 | 0.000 311.268
0.000 | -457.835 0.000 114.471
0.000 | -181.275 | 0.000 96.202
9 0.000 388.265 | 0.000 - 48.166
10 0.000 96.202 | 0.000 - 71.361
11 0.000 | -362.272 | 0.000 [ -117.495
12 0.000 | -117.495 | 0.000 -181.275
13 0.000 | -929.552 | 0.000 | -331.046
14 0.000 339.834 | 0.000 | -362.272
15 0.000 114.471 | 0.000 | -457.835
16 0.166 311.268 | 0.000 | -500.738
17 0.000 | -601.078 | 0.000 } -519.535
18 0.000 | - 48.166 | 0.000 | -601.078
19 0.000 316.619 | 0.000 -656.181
20 0.000 | -331.046 0.000 -929.552
EX= | TNE= [ TF = | SET =

1 546.309 1 559.086

To test the coverage of the computed lower bound, we repeatedly (say 100 times) ran the
test described above with different seeds. That is, for each replication we used the sequence
of solutions &%, k¥ = 1,...,K to compute cutting planes using independent samples S*,
and solved the corresponding pseudo master problem (K) to obtain the optimal j and
AL,...,AK. We computed for each of these replications the minimum objective function
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value of the pseudo master problem #* = b+ K, A*3; a true lower bound '7"21{(:1 f*E%,
based on the true ordered values of the correction terms &; and the 95% point #* — A%95
based on the reordering procedure. We also computed and recorded & — A%?%, the 95%
point of the worst-case lower bound distribution #* — Aw. Based on the 100 replications of
the experiment we estimated the coverage of the probabilistic lower bounds by computing
the percent of the 100 cases in which the probabilistic lower bound was actually less than
or equal to the true optimal objective value z*. The results for the test problem APL1P
are represented in Figure 1, which displays the values of %, 7* — YK, a*8*, 5 — A%SS,
and 7" — A% respectively as a histogram of the 100 values from the replications. Instead
of the actual values, we report the quantities as percent deviation from the true objective
function value z*. The true objective function value in the graph is labeled as 0.

The curve labeled “v-pseudo” represents the histogram of %™, the minimum objective of
the pseudo master problem. One can see that most of the 100 replications had #* values
larger than the true optimal objective z*. It clearly reveals the bias of the optimal objective
of the pseudo master #* as an under-estimator for z*. The curve labeled “true” represents
the histogram of the true lower bound #* — zi‘;l [i*8% based on the reordering of A* and &.
There was (as predicted by the theory) no instance in which this true lower bound exceeded
the true optimal objective. The two observations at the zero point of the curve are two
observations in the interval between —1 and 0. The curve labeled “conservative” represents
the histogram (constructed from the 100 replications) of #* — A%%, the 95% point of the
#* — A% distribution. The curve shows that A% is a conservative estimate of A. The
coverage of the #* — A%%5 turned out to be 96%. Finally, the curve labeled “worst-case”
represents the histogram of o~ —~ A%, the 95% point of the probabilistic worst-case lower
bound. As expected, the & — A%? values turned out to be smaller than the &* — A%
values, which makes the probabilistic worst-case lower bound #* — A% an even smaller
but nevertheless tight lower bound for z*. Its coverage turned out to be 96%.

With the other test problems, we obtained very similar results. As a representative ex-
ample, we show the results for the test problem STORM described in Mulvey and Ruszczyn-
ski (1992) [41]. The problem is a freight-scheduling problem with uncertainty in demands.
The version we used had a total of 40 universe scenarios. The size of the master problem was
126 rows and 289 columns, and each of the 40 subproblems had 347 rows and 769 columns.
The optimal objective of the universe problem was z* = 15.569 10° and the variance o, was
89159.5. For the experiment we used K = 30 cutting planes estimated with a sample size
of N = 20. Figure 2 gives the results. The Figure looks very similar to the one for APLIP,
except the pseudo cutting planes are better estimates of the true cutting planes. Looking™
at the distribution labeled “v-pseudo” one can see the bias of the optimal solution of the
pseudo master problem 7" as an estimator for z*.  There was no instance where the true
conservative lower bound 7 — YK | 7%é* (labeled “true”) exceeded the true objective z*.
The 95% point & — A% of the estimated conservative lower bound distribution (labeled
“conservative”) gave a conservative estimate but nevertheless an excellent lower bound for
z*. The coverage of 7 — A%% turned out to be 100%. The point A%?® of the worst-case
lower bound distribution (labeled “worst-case™) gave a smaller but nevertheless tight lower
bound for z=. The coverage of the worst-case lower bound #* — A% proved to be 100%.

We tested further with the following problems: PGP2, CEP1, and SCTAPI, all described
in {29]. PGP2 (Louveaux and Smeers (1988) [38]) is a small electric power capacity expansion
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planning test problem (master: 2 rows and 4 columns, sub: 7 rows and 16 columns) with
uncertain parameters in three demands. The number of universe scenarios was W = 1280.
CEP1 (Higle and Sen (1990) [25]) is a small machine capacity expansion planning problem
(master: 9 rows and 8 columns, sub: 7 rows and 15 columns) with uncertain parameters in
the right-hand side. The number of universe scenarios was W = 1000. SCTAP1 (Ho (1980)
[28]) is a traffic assignment problem (master: 30 rows and 48 columns, sub: 60 rows and 96
columns) with stochastic right-hand sides. The number of universe scenarios was W = 864.
The values of z* and 0. for the various test problems, as well as the sample sizes N and the
number of cutting planes K used for the experiments, are given in Table 2. The coverage
results of the test problems are summarized in Table 3 based on using the true value of o,,
and in Table 4 based on using the estimate &x_; as approximation for o, (to simulate a '
situation where the optimum z* has not been reached yet).

Table 2: Test data

problem z* Ox N | K
APL1P 24642.3 4808.8 | 100 | 20
PGP2 447.3 77.60 | 100 | 20
CEP1 355159.5 | 420458.4 | 100 | 6
STORM | 15.569-10°% | 89159.5 | 20 | 30
SCTAP1 248.5 2401 |[100 ]| 3

Table 3: Coverage test results (lower bounds calculated using o.)

problem | 7* — A%® [ coverage | #* — AY?° | coverage
% % % %
APL1P -1.78 95 -2.39 94
PGP2 -2.94 97 -3.51 98
CEP1 -12.12 95 -12.27 94
STORM -0.40 100 -0.58 100
SCTAP1 -0.9 99 -0.91 99




Table 4: Coverage test results (lower bounds calculated using &x_5)

References

_ A0.§5

problem | 7* — A%® | coverage | ¥ 2> | coverage
% % % %
APL1P -1.80 96 -2.41 96
PGP2 -2.35 91 -2.84 94
CEP1 -12.07 92 -12.23 92
STORM -0.40 98 -0.58 99
SCTAP1 -0.9 98 -0.91 98
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Figure 1: APL1P: lower bound distributions
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