

8/17
DE-FG03-95ER54302

Final Report

DOE/ER/54302--T1

Task III: UCSD/DIII-D/TEXTOR FY-97-98 Accomplishments**Principal Investigator: J.A. Boedo**

The UCSD/TEXTOR collaboration has achieved the completion of three major tasks this year:

1-Pump limiter studies

A comprehensive report on the physics of pump limiters and particularly, the characterization of ALT-II, was published in Nuclear Fusion, bringing the project to a closure. The performance of the toroidal pump limiter was characterized under full auxiliary heating of 7 MW of NBI and ICRH and full pumping, as stated in the project milestones. Relevant highlights are:

- Pumping with ALT-II allows for density control.
- The achieved exhaust efficiency is 4% during NBI operation and near 2% during OH or ICRH operation.
- We have shown that an exhaust efficiency of 2% is sufficient to satisfy the ash removal requirements of fusion reactors.
- The plasma particle efflux and the pumped flux both increase with density and heating power.
- The particle confinement time is less than the energy confinement time by a factor of 4.

In summary, pumped belt limiters could provide the density control and ash exhaust requirements of fusion reactors.

2-RI-mode turbulence studies

We have found that turbulence and radial particle turbulent transport are reduced in the edge of RI-mode discharges as shown in Figs. 1 and 2. The reduction results in increased particle confinement time and concomitant energy confinement time. We are now investigating the mechanism causing the turbulence reduction and so far no edge localized velocity shear layer has been found. The most likely candidate at this point is the stabilization of ITG modes and ITG-trapped electron drift instabilities. The stabilization of ITG modes is produced by the presence of radiating impurities and their influence on the growth rate of ITG modes.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.**

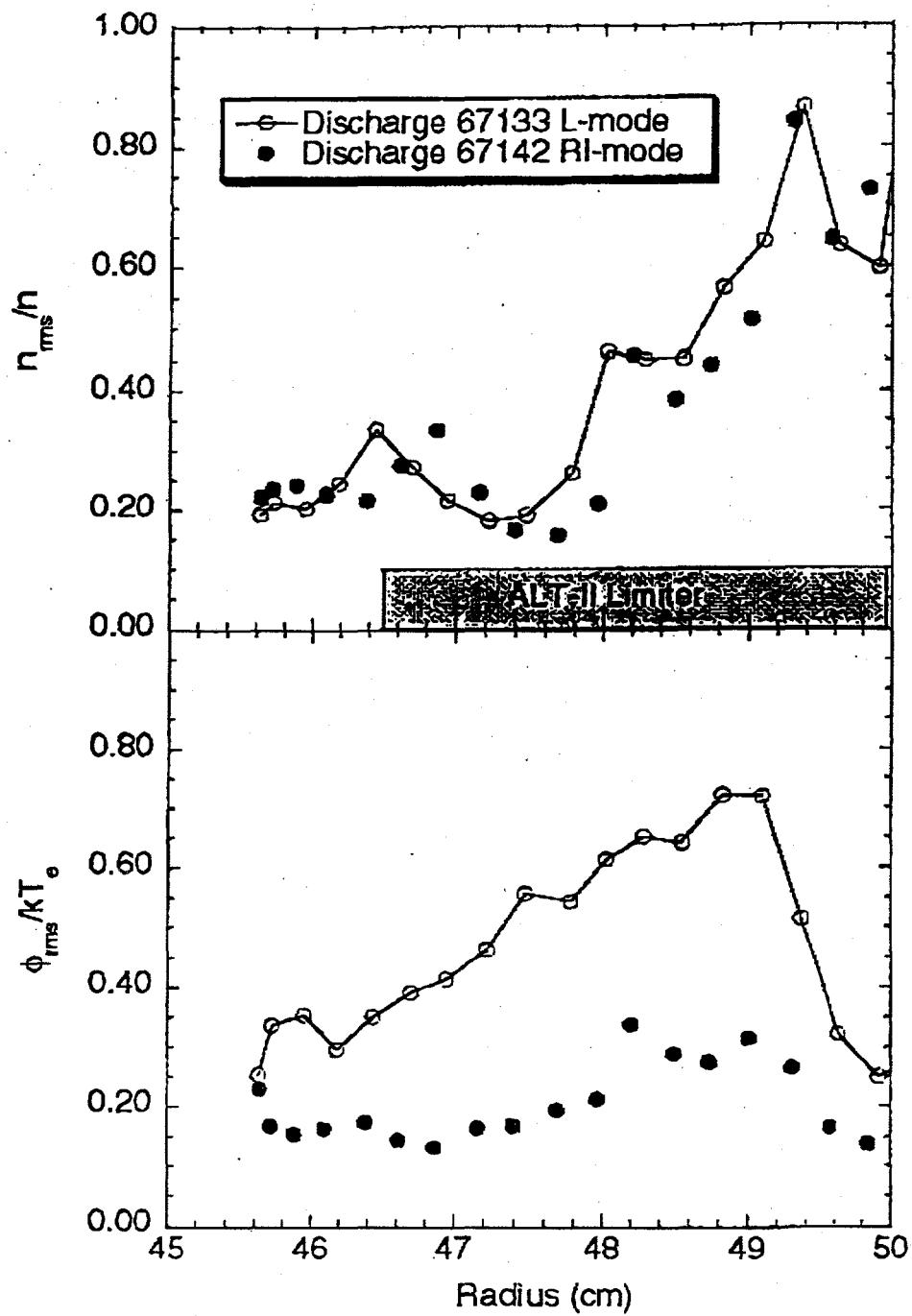


Fig. 1: Reduction of normalized potential fluctuations by factors of 2-5 is observed in the bottom panel. The normalized density fluctuation levels are not much affected by the RI-mode.

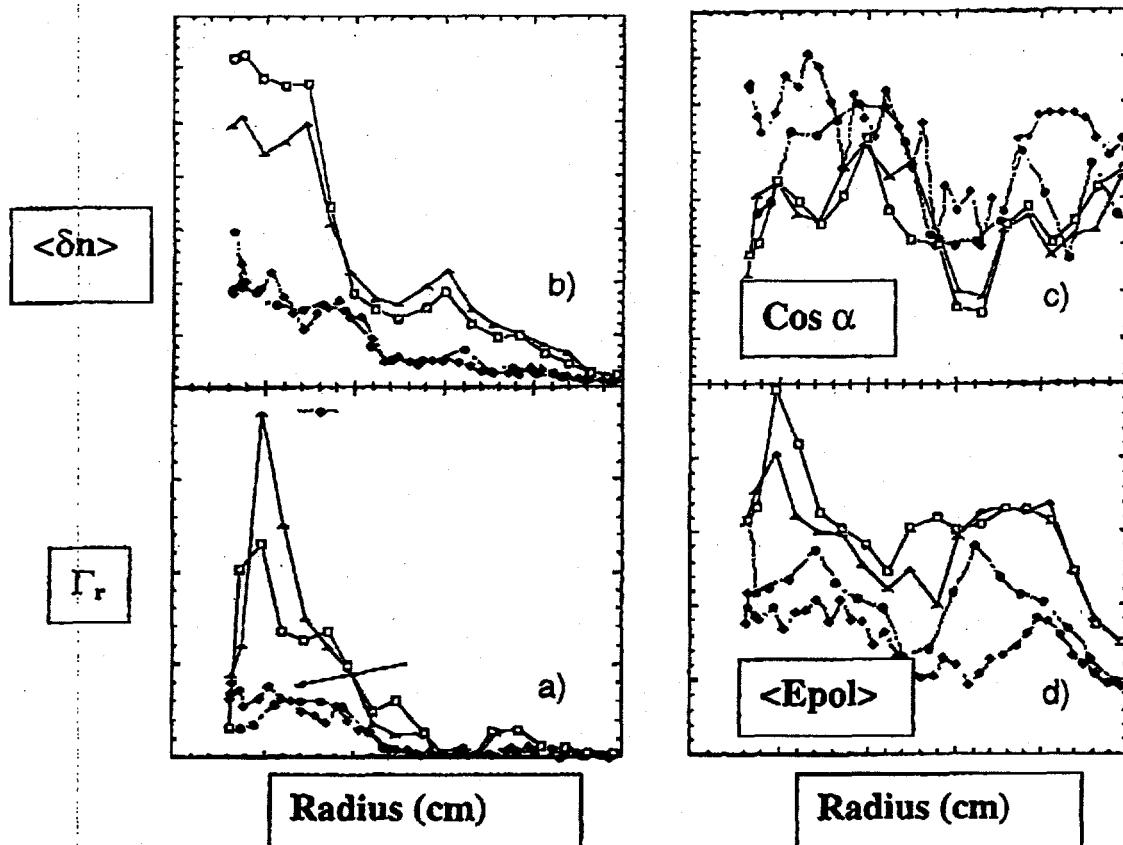


Fig. 2: Turbulent radial particle flux (a), absolute density turbulence level (b), the cosine of the phase between density and poloidal field fluctuations (c) and the poloidal field fluctuation levels (d) are shown vs. radius during RI-mode discharges in TEXTOR. The limiter and SOL are shown as a dark square.

3-Velocity shear stabilization of turbulence.

Experiments conducted in TEXTOR during electrode polarization show that a large poloidal velocity shear is produced in the plasma edge. This velocity shear has the effect of stabilizing turbulence and thus reducing turbulent radial particle transport, resulting in increased particle and energy confinement times. Our results show that:

1. Density and potential fluctuations are reduced due to the velocity shear.
2. The phase between the density and poloidal electric field fluctuations is also changed by the velocity shear.
3. The concomitant changes in turbulent levels and phase result in a reduction in radial turbulent particle transport by factors of 7.
4. The reduced particle fluxes result in increased particle and energy confinement times and energy content in the plasma.
5. We have found an asymmetry in the effect of the velocity shear $\nabla_r V_{ph}$ on the cross-phase. The asymmetry is strong for $\nabla_r V_{ph} > 0$ and weak for $\nabla_r V_{ph} < 0$

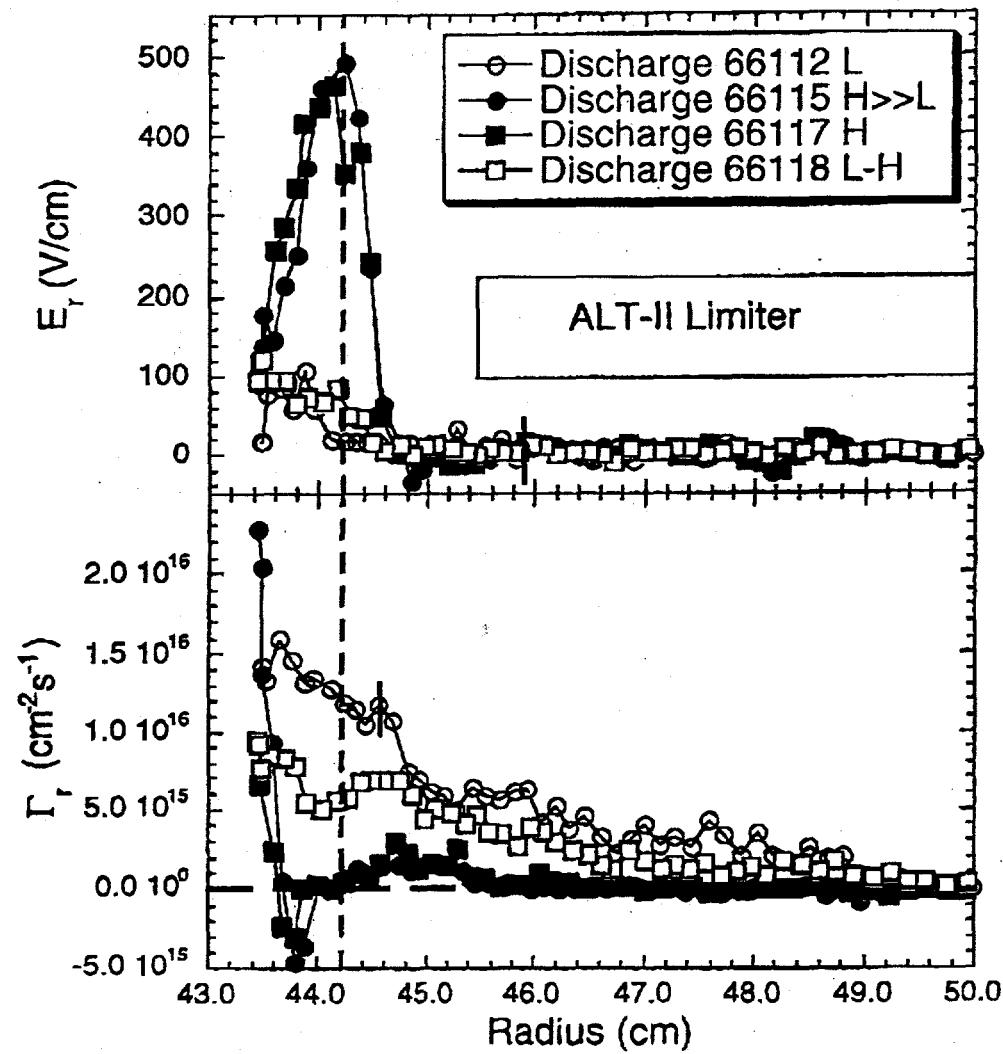


Figure 3: The radial electric field is shown in the upper panel for various applied electrode voltages. The radial particle flux is shown in the bottom panel for the same discharges.

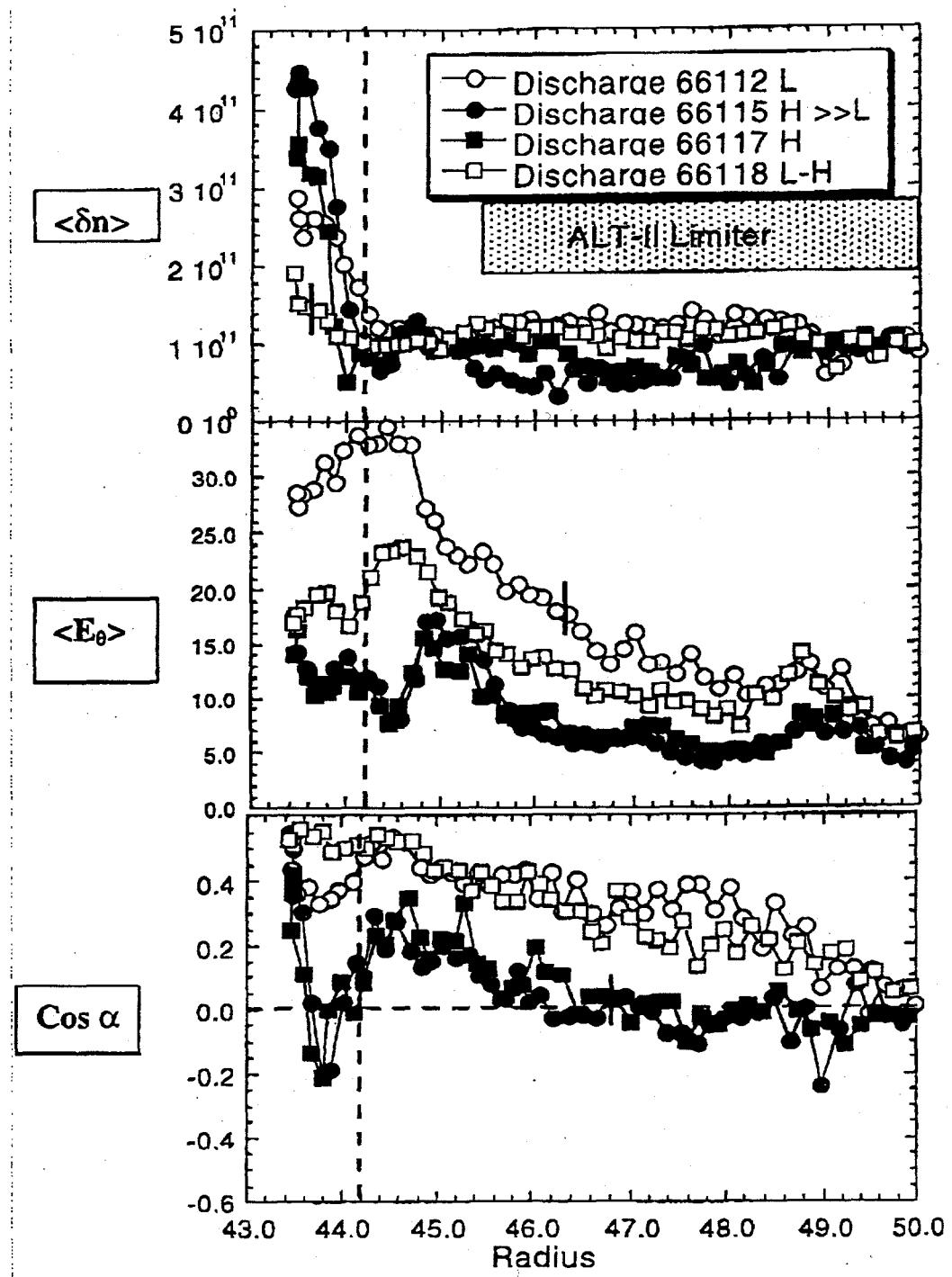


Figure 4: We show the density rms level (top panel), the poloidal field rms levels (middle panel) and the cross-phase (bottom panel) for various degrees of stabilization.

UCSD/DIII-D/TEXTOR FY-99 Future Plans

The UCSD group will continue participation at TEXTOR as part of the DIII-D/UCSD activities in FY99. Two visits are scheduled during RI-mode experiments.

UCSD/DIII-D/TEXTOR FY-97-98 Publications and Conference Papers

- 1) Plasma exhaust and density control in tokamak fusion experiments with neutral beam or ICRF auxiliary heating by Gray, Boedo, Baelmans, Conn, Moyer, Dippel, Finken, Pospieszczyk, Reiter, Doerner, Hillis, Mank, Wolf, TEXTOR team.
- 2) Unterberg, B.; Messiaen, A.M.; Ongena, J.; Brix, M., Boedo, J. A.; and others. The influence of plasma-edge properties on high confinement discharges with a radiating plasma mantle at the tokamak TEXTOR-94. (24th European Physical Society Conference on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany, 9-13 June 1997). *Plasma Physics and Controlled Fusion*, Dec. 1997, vol.39, (no.12B):B189-206.
- 3) Koch, R.; Lyssoivan, A.I.; Giesen, B.; Esser, H.G., Boedo, J. A. ; and others. ICRF plasma production in TEXTOR-94. (Radio Frequency Power in Plasmas. 12th Topical Conference, Savannah, GA, USA, 1-3 April 1997). *AIP Conference Proceedings*, 1997 (no.403):105-8.
- 4) Messiaen, A.M.; Ongena, J.; Unterberg, B.; Durodie, F., Boedo, J. A.; and others. ICRH in radiatively cooled TEXTOR-94 plasmas. (Radio Frequency Power in Plasmas. 12th Topical Conference, Savannah, GA, USA, 1-3 April 1997). *AIP Conference Proceedings*, 1997 (no.403):41-8.
- 5) Messiaen, A.M.; Ongena, J.; Unterberg, B.; Boedo, J.; and others. High confinement and high density with stationary plasma energy and strong edge radiation cooling in the upgraded Torus Experiment for Technology Oriented Research (TEXTOR-94). (38th Annual Meeting of the Division of Plasma Physics of the American Physical Society, Denver, CO, USA, 11-15 Nov. 1996). *Physics of Plasmas*, May 1997, vol.4, (no.5, pt.2):1690-8.
- 6) Gray, D.S.; Boedo, J.A.; Conn, R.W., Plasma exhaust requirement for sustained ignition: relaxation due to profile considerations. *Nuclear Fusion*, Oct. 1997, vol.37, (no.10):1437-43.
- 7) Mank, G.; Boedo, J.A.; Wienhold, P.; Esser, H.G.; and others. In-situ deposition of silicon on the leading edge of the ALT-II limiter in TEXTOR-94. (12th International Conference on Plasma Surface Interactions in Controlled Fusion Devices, Saint Raphael, France, 20-24 May 1996). *Journal of Nuclear Materials*. 1 Feb. 1997, vol.241-243:821-6.
- 8) Scholz, T.; Boedo, J.; Bolt, H.; Duwe, R.; and others. Exposure of CFC-materials to high transient heat loads in the TEXTOR tokamak. (12th International Conference on Plasma Surface Interactions in Controlled Fusion Devices, Saint Raphael, France, 20-24 May 1996). *Journal of Nuclear Materials*, 1 Feb. 1997, vol.241-243:848-52.

- 9) Boedo, J.A.; Shoji, T.; Sakawa, Y.; Gray, D.S.; and others. Effects of an RF limiter on TEXTOR's edge plasmas. (12th International Conference on Plasma Surface Interactions in Controlled Fusion Devices, Saint Raphael, France, 20-24 May 1996). Journal of Nuclear Materials, 1 Feb. 1997, vol.241-243:857-60.
- 10) Koch, R.; Messiaen, A.M.; Ongena, J.; van Nieuwenhove, R., Boedo, J. A.; and others. Recent results on ion cyclotron and combined heating of TEXTOR. (Fifth International Toki Conference on Plasma Physics and Controlled Nuclear Fusion. Physics and Technology of Plasma Heating and Current Drive, Toki, Japan, 16-19 Nov. 1993). Fusion Engineering and Design, Jan. 1995, vol.26, (no.1-4):103-20.
- 11) Mank, G.; Tokar, M.Z.; Finken, K.H.; Boedo, J.A.; and others. Flow reversal in the throat of the pump limiter ALT-II during high density conditions. Nuclear Fusion, Dec. 1994, vol.34, (no.12):1641-51.
- 12) Hothker, K.; Belitz, H.-J.; Schorn, R.P.; Bieger, W.; and others. Experimental study of neoclassical plasma flow and bootstrap current in the tokamak TEXTOR. Nuclear Fusion, Nov. 1994, vol.34, (no.11):1461-72.
- 13) Finken, K.H.; Koch, R.; Euringer, H.; Van Wassenhove, G., Boedo, J. A.; and others. Resonant coupling of ion-cyclotron waves to energetic helium ions. Physical Review Letters, 18 July 1994, vol.73, (no.3):436-9.
- 14) Doerner, R.P.; Boedo, J.A.; Conn, R.W.; Gray, D.S.; and others. Electrostatic biasing of the ALT-II pump limiter. Nuclear Fusion, July 1994, vol.34, (no.7):975-83.
- 15) Jaspers, R.; Finken, K.H.; Mank, G.; Hoenen, F., Boedo, J. A.; and others. Experimental investigation of runaway electron generation in TEXTOR. Nuclear Fusion, Dec. 1993, vol.33, (no.12):1775-85.
- 16) McCracken, G.M.; Samm, U.; Stangeby, P.C.; Bertschinger, G., Boedo, J. A.; and others. Experimental measurements of the fuelling efficiency of impurities injected into TEXTOR. Nuclear Fusion, Oct. 1993, vol.33, (no.10):1409-25.
- 17) Weynants, R.R.; Hillis, D.L.; Boedo, J.A.; Tynan, G.; and others. Confinement and transport studies in TEXTOR in the presence of edge radial electric fields, below and above the H-mode threshold. Plasma Physics and Controlled Nuclear Fusion Research 1992. Proceedings of the Fourteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research. (Plasma Physics and Controlled Nuclear Fusion Research 1992. Proceedings of the Fourteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Wuerzburg, Germany, 30 Sept.-7 Oct. 1992). Vienna, Austria: IAEA, 1993. p. 251-9 vol.1.
- 18) Van Nieuwenhove, R.; Koch, R.; Van Oost, G.; Boedo, J.A.; and others. Comparison of the performance of ICRF antennas with and without Faraday shield on TEXTOR. Nuclear Fusion, Nov. 1992, vol.32, (no.11):1913-25.

- 19) Finken, K.H.; Baek, W.Y.; Dippel, K.H.; Russo, A.J. Boedo; and others. Energy flux to the textor limiters during disruptions. Nuclear Fusion, June 1992, vol.32, (no.6):915-26.
- 20) Weynants, R.R.; van Oost, G.; Bertschinger, G.; Boedo, J.; and others. Confinement and profile changes induced by the presence of positive or negative radial electric fields in the edge of the TEXTOR tokamak. Nuclear Fusion, May 1992, vol.32, (no.5):837-53.
- 21) Hillis, D.L.; Hogan, J.T.; Finken, K.H.; West, W.P., Boedo, J. A.; and others. Helium transport in enhanced confinement regimes on the TEXTOR and DIII-D tokamaks. (Tenth International Conference on Plasma-Surface Interactions in Controlled Fusion Devices, Monterey, CA, USA, 30 March-3 April 1992). Journal of Nuclear Materials, 1992, vol.196-198:35-44.
- 22) Finken, K.H.; Baek, W.Y.; Dippel, K.H.; Boedo, J.A.; and others. Measurements of the edge power flow to the ALT-II limiter in TEXTOR. (Tenth International Conference on Plasma-Surface Interactions in Controlled Fusion Devices, Monterey, CA, USA, 30 March-3 April 1992). Journal of Nuclear Materials, 1992, vol.196-198:220-5.
- 23) Boedo, J.; Gray, D.S.; Tynan, G.R.; Pitts, R.; and others. Flows in the TEXTOR SOL and edge plasma. (Tenth International Conference on Plasma-Surface Interactions in Controlled Fusion Devices, Monterey, CA, USA, 30 March-3 April 1992). Journal of Nuclear Materials, 1992, vol.196-198:489-92.
- 24) Samm, U.; Boedo, J.; Bertschinger, G.; Dippel, K.H.; and others. Helium exhaust in plasmas with strong radiative edge cooling. (Tenth International Conference on Plasma-Surface Interactions in Controlled Fusion Devices, Monterey, CA, USA, 30 March-3 April 1992). Journal of Nuclear Materials, 1992, vol.196-198:633-6.
- 25) Tynan, G.R.; Boedo, J.A.; Gray, D.S.; Van Nieuwenhove, R.; and others. Effects of radial electric fields on the turbulence and transport in the TEXTOR edge and SOL plasma. (Tenth International Conference on Plasma-Surface Interactions in Controlled Fusion Devices, Monterey, CA, USA, 30 March-3 April 1992). Journal of Nuclear Materials, 1992, vol.196-198:770-4.
- 26) Gray, D.S.; Boedo, J.A.; Conn, R.W.; Dippel, K.H.; and others. Particle exhaust above the ohmic density limit in TEXTOR. (Tenth International Conference on Plasma-Surface Interactions in Controlled Fusion Devices, Monterey, CA, USA, 30 March-3 April 1992). Journal of Nuclear Materials, 1992, vol.196-198:1096-100.
- 27) Van Nieuwenhove, R.; Koch, R.; Van Oost, G.; Delvigne, T. Boedo, J. A.; and others. Ion cyclotron resonance heating of a tokamak plasma using an antenna without a Faraday shield. Nuclear Fusion, Sept. 1991, vol.31, (no.9):1770-4.