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ABSTRACT

This work develops some practical approximations needed to simulate a
high plasma density volume bounded by walls made of dielectrics or metails which
may be either biased or floating in potential. Solving Poisson’s equation in both
the high-density bulk and the sheath region poses a difficult computational
problem due to the large electron plasma frequency. A common approximation is
to assume the electric field is computed in the ambipolar approximation in the
bulk and to couple this to a sheath model at the boundaries. Unfortunately, this
treatment is not appropriate when some surfaces are biased with respect to
others and a net current is present within the plasma. This report develops some
ideas on the application of quasi-static extemnal electric fields to plasmas and the
self-consistent treatment of boundary conditions at the surfaces. These
constitute a generalization of Ohm's law for a plasma body that entails solving for
the internal fields within the plasma and the potential drop and currents through
the sheaths surrounding the plasma.




. INTRODUCTION AND MOTIVATION

The motivation for this work originates in the desire to snmulate a high
plasma density region which is bounded by thin sheaths near walls made of
dielectrics or metals which may be either potential biased or floating. It is well
known that solving Poisson’s equation in both the high-density bulk and the
sheath region poses a difficult computational problem. A common approximation
(in semiconductor processing plasmas, for example) is to assume the electric
field is computed in the ambipolar approximation (zero net current) in the bulk and
couple this to a sheath model at the boundaries. Unfortunately, this treatment is
not appropriate when some surfaces are biased with respect to others and a net
current is present in the plasma. This report develops some ideas on the
application of static external electric fields to plasmas and the self-consistent
treatment of boundary conditions at the surfaces. Together these constitute a
generalization of Ohm’s law for a plasma body that entails solving for the internal
fields within the plasma together with the potential drop and currents through the
sheaths surrounding the plasma. This report targets an audience which includes
those wanting a concise summary of the treatment of quasi-static electric fields in
dense plasmas.

ll. BASIC PLASMA EQUATIONS

While in principle the analysis described here can be cast in terms of a full
kinetic treatment, all the theory here is for a fluid description of plasma evolution
[1] in a background gas with the electrons treated in the drifi-diffusion
approximation. The drift diffusion approximation for the electrons makes the
problem considerably less stiff, since the removal of electron inertia eliminates the
inverse plasma frequency as the fastest timescale. Application of the equations
presented here to other descriptions (such as kinetic or gas flow) will require
some modifications. In particular, it may be necessary to add terms for the flow
and density variations of the background neutral gas and the spatial variation of
the electron temperature. If the ionization fraction is high, there are terms
representing the interaction of the electrons with the ions which should be
included. An estimate of the ionization fraction at which the electrons interact
equally with ions and neutrals is N/N,=0.008 T ?, with T, in eV. These omissions
will be noted in the text at appropriate places. None of these omissions invalidate
the basic method of solution for the fields within the plasma. In order to simulate
the dynamic problem, the displacement current would need to be included in the
formulation. This dynamical situation would arise in the case of a conductor
biased at rf frequencies, as is common in semiconductor processing devices.

The ion continuity equation (iCE) is
A+ V- (i) =r, (1)

where 7; is the ion number density, i; is the ion fluid velocity, and 7; is the
volume ionization source rate. The electron continuity equation (eCE) is:



fip + V- (n,il,) =1, @)

where n, is the electron number density and #, is the electron fluid velocity. The
ion momentum equation (iIME) is

—

;- V)il; =

e = -
m;

where E =— ?d) is the electric field, v; is the sum of momentum transfer and

ionization collision frequencies, and the ion diffusion term, which is almost always
small, has been neglected. There is a constant background neutral density which
is assumed larger than the plasma density and nearly stationary. Corrections can
be introduced for these effects. If we neglect electron inertia in the electron
momentum equation, we arrive at the electron drift-diffusion equation (eDDE):

-

- 1 =
u,=-—u,E—D,—Vn,, (4)
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where 1, is the electron mobility and D, is the electron diffusivity. Again this

neglects collisions with the ions and the flow of the background neutral gas.
Poisson’s equation describes the collective interaction of the charged species:

—V2¢=€7-E=f—(ni—-ne). (5)

(4]

We are assuming that the plasma is dominated by a single positive ion species.

The particle electric current density, J, within the plasma is given by the sum of
the ion and electron currents:

f=e(niui-n u,)=j; + j,. (6)

All other symbols are as usually defined.

Egs.(1)-(6) can be solved numerically as written. This solution would
include the plasma bulk and the sheath regions, with boundary conditions (b.c.) to
be imposed at the actual physical walls or electrodes in contact with the plasma.
The displacement current and electron inertia might be needed in cases with
high-frequency fields applied to the plasma - such situations will not be
considered here. In general for higher density plasmas with slowly varying
applied fields, the plasma is quasi-neutral except in the thin sheaths. This allows
elimination of the Poisson equation with the associated large electron plasma
frequency as done in the next sections. If the plasma density is very low, though,



the restoring field due to charge separation is weak and the plasma will not
remain quasi-neutral. In such a case the approximations discussed here are not
applicable.

LA QUASI-NEUTRAL APPROXIMATION (QNA)
With some care as to all the consequences, we can just set n, =n; in the

above equations to derive this approximation. The QNA should be derived by an
ordering approximation so that the size and importance of various terms can be
assessed. Eq.(1) is unchanged, but Eq.(2) becomes:

A+ V(i) =r, 7)

which is subtracted from Eq.(1) to give

V- @ —5,))=0 (8)
or,
V-J=0, 9)
where, ~
J‘:eni(ﬁi“lx—ie), (10)

using the definition of J from Eq.(6) in the quasi-neutral limit. The current in the
plasma obeys Eq.(9), which can be reformulated as a total surface integral using
the divergence theorem:

0=[drV-J=[d*sn-T=Yda, j, (11)
1% S S,

expressing the total current conservation throughout the volume in terms of the
currents on each surface element labeled by n. These j, are obtained from

boundary conditions and are functions of the local plasma density, plasma
potential, and b.c. potentials. The iME in Eq.(3) is unchanged by quasi-neutrality.
The eDDE in Eqg.(4) now contains the ion density in the diffusion term:

~ = S
u,=—U,E—D,—Vn,, (12)
n;
This electron fluid velocity is then used in the relations (9) and (10) above. An
important point is that the bulk plasma current can be specified throughout the



plasma in the QNA with the only restriction made by the source-free condition in
Eq.(9).

What does this mean? In the basic equations of motion, Egs.(1)-(6), the
Poisson equation determines the field and potential from the charge density.
Thus there is self-consistency between the field due to the space charge and the
acceleration of the electrons and ions. Now in the QNA there is limited self-

consistency. One can specify an arbitrary J, subject to source-free conditions in
Eq.(9) and the yet-to-be-discussed b.c. on the QNA, and solve for the ion and
electron motion without any feedback to the imposed current. This would involve

integration with Egs.(1), (3), (10), and (12), where 1, is determined from #; and J

by Eq.(10), and E from i, and n; in Eq.(12). The field would then enter the iIME
to drive the ion solution.

lll. ANALYSIS OF THE QNA

The computational domain for the QNA must exclude the transition region
between the Bohm point and the physical wall. Since some physical quantities
vary strongly across this region, we must accordingly revise the b.c. to be applied
to the QNA solution. The QNA contains both the ambipolar and strong-internal
field limits, both of which are described in the Appendix. We discuss it from a
more practical point of view here, including the imposition of sheath and surface
b.c. Combining Egs.(10) and (12) to eliminate u,:

.7=eniii,-+eniuel:f+eDevni, (13)
or, in terms of E,

1. M1y,

[4 14

E= ——1u
enil, MU, € n;

(14)

The Einstein identity, D, / u, = kT, / e, was used in Eq.(14). When combined

with the iCE and the iME in Egs.(1) and (3), this fumishes a complete description
of the plasma response when the current density is a prescribed quantity. Of
course the current density in any real situation is an unknown which is dependent
on the potential differences applied to the plasma. That is why the QNA must be
connected across the sheaths to the walls where the potentials are defined. This
will be done next.

lllLA. BOUNDARY CONDITIONS

Boundary conditions can be formulated quite generally in terms of Egs.(1)-
(8), but these equations will not be solved as they stand due to severe numerical
problems related to the plasma frequency (or dielectric response frequency) and
the thin sheath region. Here we will be concemed with imposing sheath-
approximation boundary conditions (b.c.) to the bulk plasma when it is described




by the QNA. The QNA is not valid within the sheath regions. We will use a label
of sto denote a “surface” region for quantities evaluated at the Bohm point and a
label of w to denote “wall” for quantities which are evaluated at the actual physical
surface when they are different across the sheath. Typically, only the potential
and electron density change abruptly across the sheath.

The simplest of the situations can be described as follows. Let the plasma
be contained within a volume defined by surfaces with specified potentials on
some elements (conducting surfaces) and unknown voltages on others
(dielectrics or floating conductors). Currents are not normally b.c. quantities, but
are determined in response to the imposed voltages. However there may be
zero-current conditions imposed on the dielectric surfaces or insulated metal
surfaces. Some of the boundaries may not be actual surfaces, but regions where
the plasma flux and density are specified.

From analysis of the plasma sheath, one knows that the following is
approximately true for any surface embedded within the plasma. First of all, the
ion current at the Bohm point is given by

Jsi=€n;up , (15)

at a particular boundary point in terms of the neighboring ion density and Bohm
velocity [2] in the plasma. This ion current is nearly constant across the sheath.
The Bohm velocity is a function of the local electron temperature and ion mass:

ug = kT, / m; . The velocity is directed toward the surface. The electron

current is given in terms of the potential drop from the plasma bulk, defined at the
Bohm point, to the physical surface. The Bohm point lies near the physical
surface in contact with the plasma, and it is the transition point between the
quasi-neutral bulk and the non-neutral, charge-separated sheath region. The
potential of the surface may be known or unknown. This is represented as

Js.e =—5en; ug, exp(—eAV [ kT,), (16)

where AV is taken to be a positive quantity for a wall potential V,,, less than the
nearby plasma potential. Thus AV=¢, -V, . ¢, denotes the value of the

plasma potential at the Bohm point prior to the sheath drop. The current through
the surface element is the sum of the ion and electron current. uz, is the thermal

electron velocity, ur, = /8kT, / tm, . Displacement current can be neglected

in this study as we are not dealing with rapidly varying applied potentials.

All dielectric surfaces and their free-space analogs are required to have
zero current conditions because they rapidly charge up to such a voltage that the
current is zero. Then the potential drops at those surface elements are evaluated
in terms of the local ion density and electron temperature by combining Egs.(15)
and (16) to give zero current. The voltage-specified, metal-like surface elements
will have a non-zero current determined by the potential drop from the nearby
plasma to the element. It is now obvious that we must solve for the potential field



throughout the plasma bulk (but not in the sheaths) because the currents at the
metal surfaces are expressed in terms of the potential drop between the plasma
potential and the potential specified in the b.c. Designate the potential field as ¢.
It solves:

Vo=-E, (17)

where E is given by the QNA approximation in Eq.(14). The result is the same

as using Eq.(17) to replace E on the RHS of Eq.(13). What we now have for the
“electronic” part of the problem are Egs.(9), (13), and (17), with current b.c.
expressed in terms of the potential as may be expressed using Egs.(15) and (16).

liL.B. SOLVING THE EQUATIONS

The question is how to solve this combination of equations without undo
difficulty. The solution is nonlinear because of the exponential dependence of the
surface currents on the unknown plasma potential in the b.c. The equations for
the potential and the current can be collected as the set:

jz‘—ii+ed_e'u'eniv¢s

—

V.J=0, (18)
J-A, = en (ug — S ur exp(—eAV [ kT,)),
surface
where
fi+ed =en;u; +eD, €7ni (19)

is the total ion and electron diffusion current, which may be regarded as known
from the “ion part” of the plasma solution. One may combine the first and second
members of Eq.(18) to form the Poisson-like equation for the potential:

1 V.ji+ed' (20)

vxm§@=e

e

This equation is “complete” as it stands. Of course the b.c. must be incorporated
by using the third member of Eq.(18). Eq.(20) is just a restatement of Eq.(18)
except for the b.c. Because the equations are linear in ¢, except for the b.c., we

can superimpose a particular solution, ¢ P and a homogeneous solution, ¢ he

Substitution of the superposition into the first member of Eq.(18) shows that, if the
particular solution solves:




e, n; V¢p = Yitedr (21)
then the homogeneous solution must solve:

e“enivgbh:_]"

_ - (22)
V-(niV¢h)=O.

Eq.(21) insures that Eq.(20) is satisfied, of course. Moreover, Eq.(21) uniquely
defines ¢ puptoan additive constant. Eq.(22) shows that ¢, is a homogeneous
solution of Eq.(20), i.e. with the RHS set to zero. The first member of Eq.(22)

cannot be solved directly since J is an unknown within the volume. From this
particular solution and homogeneous solution we can match the b.c. All b.c. are

in terms of J which appears in the equation for the homogeneous solution, but
the nonlinear dependence on potential requires both the homogeneous and
particular solutions.

lll.C. PLASMA WITHOUT APPLIED FIELD
Consider a special case of the plasma problem where all boundaries are
dielectrics or free space where the current b.c. is zero current everywhere. Then

J =0 and Eq.(22) allows us to set ¢, to zero or a constant. There is no need to
find ¢ p as the electric field is all that is needed for the ion EOM, and it may be
solved directly from Eq.(21):

- 1 -
E=_V¢p__ Ji+ed
el n;
1 kT, - kT, = (3)
=—_ﬁl— evnlz‘— evnl‘.
T en,

This is the ambipolar diffusion result for the internal field. An alternative
terminology for (23) is the Langmuir-Tonks equation for the electric field.

H1.D. PLASMA WITH WEAK APPLIED FIELD

The equations for the field can be linearized if we assume that the applied
field is weak. Exactly how “weak is weak” is to be determined. Note that if
iterative methods are employed (i.e. fully-implicit Newton-like methods) the
linearization step is not necessary, indeed the weakness of the field becomes
irrelevant, and will have greater flexibility in the range of applied fields we can
consider. Consider the total ion and electron current through a surface region s,
obtained by combining Eqs.(15) and (16) and shown in the last member of
Eq.(18). This is:




._f-ﬁs = en; (uB —-i—uTe exp(—e((ps—Vw)/k];)), (24)

surface

where 7 is an outward normal to the surface. V,, is the value of the applied
voltage at the physical surface element labeled w which is next to s. We now

write ¢ as a correction to the value of the potential at the surface, ¢§0), that
gives zero current through the surface element:

0, =9+ 9, -9,

6OV Y=V, + ﬁln( U, ]
e 4ug

and assume that ¢, is close to ¢§0) in order to justify an expansion of the current
b.c. formula:

(25)

(0)
J-A;, = en uB%—(p— (26)
surface kT

e

This linearization is to be applied to all surface elements where the current is
nonzero because of voltage b.c. If the current is constrained to be zero as for
dielectric boundaries, it is exact.

Eq.(20) may be solved subject to b.c. derived from Egs.(18), (25), and (26)
to give the Cauchy b.c. description of the linearized equations for the field:

V-, Vo) = —V Ty
ell,
— A 1 > ~
V¢s "Ry = _Ji+ed g tu (27)
éen

- A | ~ € 0
=ui-ns+De—’:Vni-ns+uB T¢g)(VW)

4 e

All quantities in the latter expression are evaluated at the surface. Recall that the
quantity J;_ ., is evaluated from the ion part of the total solution procedure.

Eq.(27) is the generalized Ohm’s law [4] appropriate for the flow of current
through a plasma subjected to voltage boundary conditions at the surface. Of
course a simple Ohm’s law cannot appear until the current in Eq.(18) is
connected to the applied voltages that are the b.c. used to solve Eq.(27). We will
later give example solutions that make the current-to-voltage relations more
transparent.




It is our belief that Eq.(27) constitutes a starting point for numerical solution
of the plasma in an external field. Examination of the linearization approximation
shows that it should be valid for current densities less than the order of the ion
saturation (Bohm) current. This can be seen directly in Eq.(26) where the size of
the exponential is related to the current through the surface.

IV. EXAMPLE SOLUTIONS

An example is sometimes worth many words. The first example solution
is for the field within a 1D (one dimensional) plasma subjected to potential b.c.
on the walls. Generally we will be solving the equations with linearized b.c. given
in Eq.(27). Consider a 1D plasma with constant ion density, stationary ions, and
constant electron temperature. This implies, where primes are used to denote
spatial derivatives:

n; = constant, u; =0, J, =0,

2 ” (28)
V2¢=0¢"=0, ¢(x)=A+Bx, B=—E,

where we have written out the general solution to the Laplace-like Eq.(27). The
b.c. are imposed: V, at x=x, and V; at x = x,. The b.c. in Eq.(27) take the
form:

kT
0(xg) — —£Ee g (xp) = 9O |
e ug 29)
k
o)+ Te Be gy = 0O
€ Upy

from which one can determine the unknown constants A and B in the Laplace

solution. ¢§0) is defined in Eq.(25). The difference of the ¢§°> is just the

difference of the applied voltages because of the constant electron temperature
assumption. The potential and field are found to be:

Vi, + V; Xy + X
¢(x)=——9—1+Vp—E(x———Q———1—j,
2 2
v_v (30)
17 Y0

E=-—1"%
xl"‘xO +}u

where

10



KT be 4D

v, = le( )
€ 4uB

Vp is the usual potential drop in a sheath. Note that the vacuum field (obtained

by setting A = 0 in Eq.(30)) is screened by the presence of A, but notin a
manner that one might expect: the screening in this model example does not
depend on the plasma density within the system! The effect of the plasma does
not go away as n; becomes small until the sheath boundaries become so thick

that they become wide and invalidate the separation of the region into bulk and
sheaths. Another interpretation of A from Eq.(31) is that it is twice the
characteristic length to produce an electron diffusion velocity equal to the ion
Bohm velocity. This is on the order of 100 or more electron mean free paths.

One can use this example to put another condition on the validity of the
linearization. The plasma potential should aways exceed the value of the
applied voltage on the boundaries; otherwise the currents in Egs.(15) and (16) in
the Bohm sheath are not valid. If we evaluate the potential given in Eq.(30) and
require, say, that ¢(x;) > V;, we find that this requires:

A=

(31)

-V 1,51~ % (32)
2, P

For small A this is little concem, but for larger A the voltage difference is
restricted to twice the size of the plasma sheath drop. An evaluation of the size

of A for a typical CI* plasma shows that

1~ %0 0,003

=0 (33)
l A’MFP

where A ,zp is the electron mean free path involved in the electron mobility. For

a H™ plasma the numerical constant in Eq.(33) is 0.02. Thus for low pressure
(mTorr) plasmas of cm dimension, we may expect that the ratio in Eq.(33) is small
and that the applied potential difference is required to be of the size of the plasma
potential or less in order that the linearization be accurate. The current through
this example problem is given by:

11



e.ueni

J=el nE=— Vi -V
:uez xl_x0+/1(l 0) ( )
34
e.ueni
=y —x0)E .
X, —x0+l( 1 O) applied
which identifies the conductivity, ¢ , as:
el n.
Aue 1 (35)

o= .
1+ A/ (x; —xq)

Again the “simple” case is obtained by setting A = 0, whereas the effect of the
sheaths lowers the conductivity.

As a second example, consider the free-space boundary or the b.c. at any
dielectric interface where the total current is zero. In this case the linearization is
exact and the Cauchy b.c. in Eq.(27) reduce to the Neumann b.c. obtained by

inserting the zero-current condition, ¢, = ¢§0):

— ~ 1 > ~
U, V¢s'ns=_ ived "Ts s
en;
= " 1. . kKT,1= .
Vo, -Ag =—ii; -n, +—%—Vn, -n,, (36)
lue e n;
kT, 1 & .
=—£—Vn, - A,.
e n;

This is the same form as the ambipolar approximation for the bulk field obtained
in Eq.(23). Thus, if only dielectric b.c. are present, we may solve for the
ambipolar field directly as done in Section Il.A. In the general case of conducting
and zero-current boundaries, one must solve Eq.(27) with the appropriate b.c.
applied for all boundaries.

Altogether, we have reduced the computation of the plasma in a external
field to the solution of the Poisson-like Eq.(27) with either Cauchy or Neumann

b.c. with the only significant approximation being the linearization of the plasma
current at the sheaths.

V. DISCUSSION

What is done in this work is based on the QNA for the plasma bulk, the
utilization of sheath approximations for the boundaries, and the linearization of
the sheath equations themselves. The linearization of the sheath equations is
probably not a severe problem since the actual currents drawn through the
plasma will be limited to ion saturation currents.

12



The major new feature of these notes is the necessity to solve the
Poisson-like generalized Ohm’s law Eq.(27) to determine the electric field within
the plasma bulk. Since this is a standard equation for certain types of Poisson
solvers, this is not a major obstacle. However it appears that boundary Green’s
function methods are not applicable.

13




V1. APPENDIX

In this Appendix, we consider two limiting forms of the electric field equation
which are commonly in use.

AMBIPOLAR LIMIT

This is an approximation closely related to the QNA which is very useful for
bulk plasma simulations when it is valid. The basic assumption is that the
electrons evolve due to a balance between the charge-separation field and the
spreading due to their kinetic diffusion. From Eq. (12), assume that the mobility

and diffusion terms dominate the equation. Then one solves for E [3]:
kT, 1 o

— Vn, (A-1)
e n

E=-

in terms of the ion (plasma) density. This equation can be expressed in terms of
a pressure gradient if the more complete fluid equations are used for the iIME.

One is left with Egs.(1), (3), and (A-1) to solve. The total current J is small
because of the assumptions. Arbitrary currents can not be imposed because the
fields could exceed the ambipolar field in Eq.(13) and invalidate the assumption.

STRONG-INTERNAL-FIELD LIMIT

In the case that there is an internal field within the plasma stronger than
the field due to the electron diffusion gradients, one can write down a very simple
set of equations describing the plasma motion. Consider the conditions on the
electron fluid velocity:

2, 1>> ;]
15> D, L1n (A-2)
n;
such that Egs.(10) and (12) reduce to
jzfez—eniiiezeniuef?. (A-3)

This relation says that the current, which is dominated by the electrons, is given
by the electron conductivity and the electric field. No other condition determines
the field except that it sustains the imposed current. Now one can solve Egs.(1),

(3), and (A-3) with J,E, or u, arbitrarily specified, subject to Eq. (9) and b.c.
Notice that this has broken the electrons out of the loop of self-consistency
completely. The only constraint on J is the source-free condition of Eq.(9).

14
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