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Tearing mode analysis in tokamaks, revisited

Y. Nishimura, J. D. Callen, and C. C. Hegna

Department of Engineering Physics

University of Wisconsin-Madison, Wisconsin, 53706-1687

Abstract

A new A’ shooting code has been developed to investiga.te.tokamak plasma tear-
ing mode stability in a cylinder and large aspect ratio (¢ < 0.25) toroidal geome-
tries, neglecting toroidal mode coupling. A different computational algorithm is used
(shooting out from the singular surface instead of into it) to resolve the strong sin-
gularities at the mode rational surface, particularly in the presence of finite pressure
term. Numerical results compare favorably with Furth et al. [H. P. Furth et al.,
Phys. Fluids 16, 1054 (1973)] results. The effects of finite pressure, which are shown
to decrease A’, are discussed. It is shown that the distortion of the flux surfaces by
the Shafranov shift, which modifies the geometry metric elements stabilizes the tear-
ing mode significantly, even in a low 8 regime before the toroidal magnetic curvature
effects come into play. Double tearing modes in toroidal geometries are examined as
well. Furthermore, m > 2 tearing mode stability criteria are compared with three
dimensional initial value MHD simulation by the FAR code [ L. A. Charlton et al.,

J. Comp. Phys. 63, 107 (1986)].

PACS numbers: 52.30.Jb, 52.35Py, 52.55.Fa, 52.65




I. INTRODUCTION

Understanding resistive magnetohydrodynamic (MHD) stability is important for long pulse
tokamak operations, since tearing modes form magnetic islands, and if islands of incommen-
surate helicity overlap, they can induce plasma disruptions.! Also, the existence of a single
helicity magnetic island can deteriorate plasma confinement due to the change in magnetic
field line topology.?? In resistive MHD, tearing mode stability is determined by a parameter
delta prime (A’), which was first defined by Furth et a.l.;4 a positive A’ implies instability.
Recently, A’ was measured in Tokamak Test Fusion Reactor (TFTR) supershot plasma ex-
periments through an analysis of electron temperature fluctuations.® It has been shown that
when m/n = 2/1 modes are present, A’ > 0. This can be explained by classical tearing
mode theory. On the other hand, A’ is observed to be negative fdr cases with m/n = 3/2
and m/n = 4/3 modes, which indicates the presence of destabilizing neoclassical effects.®
The qualitative framework of tearing mode theory seems to be well established.

In toroidal tokamak plasmas, Fourier harmonics of tearing modes are correlated to éach
other, both through the poloidal mode coupling and nonlinear effe’cts. These couplings can
play an important role in destabilizing the modes on magnetic surfaces of incommensurate
helicity. The final goal of our research is to investigate such a multi-mode coupled system,
for example, as pursued in the PEST-3 code.” However, quantitative determination of the
tearing mode stability parameter A’ still remains an essential issue: a precise prediction
of stability becomes important, especially when the tearing modes are marginally stable
(A"} £0). The vdlue of A’ is sensitive to the local current gradient even in the single helic-
ity case. For the purpose of seeking optimized discharge current profiles for the experiments
and simultaneous feedback control,® it is important to understand and clarify the nature of
the numerical procedures that correctly relate A’ to the current profile,

A shooting-type code® for determining the perturbed helical flux profile and hence A’ is

compact, intuitively straightforward, and has fast convergence. Obtaining a A’ value for a

single helicity case takes less than a second of cpu-time on nominal workstation computers.




This fast convergence is tractable for developing a feedback stabilization scheme for control-
ling tearing modes in tokamak discharges.®

Finite pressure effects were ignored in the previous analyses by Furth et al.? and Wesson.1°
This is due to the fractional power-like singularity that arises at the mode rational surface
when pressure gradient effects are present. Furthermore, difficulties arise in separating the
large and the small solutions near the rational surface.! In this work, a different type of
numerical algorithm was employed (integrate out from the singular surface rather than into
it). The algorithm converges correctly in a high 8 (8 > 7%) regiime for cylindrical geometry
(B represents the ratio between the plasma and magnetic pressure). To check the validity
of our computational results, we start (see Section III) by comparing our results with the
Furth et al.® results for zero-pressure cases. |

The effects of toroidal geometry are considered in this work. The effects can be sepa-
rated into (1) distortion of the flux surfaces due to the Shafranov shift; (2) the existence
of an averaged magnetic well; and (3) mode coupling effects due to the 1/R dependence of
the magnetic field which is neglected here. We have included (1) and (2), and obtained A’
as a function of 3.12 The Shafranov shift appear as a global effect contribution that enters
through changes in the geometry metric elements. The’ second effect appears as a localized
property near the mode rational surface; we have included toroidal curvature (the Mercier
index!®) in the analysis, but have not included resistive layer effects.’* The mode coupling
effect can be neglected in the case of a rotating tokamak plasma where shear flows are large
and modes at different surfaces decouple.!®

As an example of multi-helicity mode analysis by the shooting method, we present initial
results for double tearing modes that are considered as a cause of an off axis sawtooth in
the recent experiments of reversed shear discharge in TFTR.!® The growth rate predicted
by A’ is compared with that ol;tained from the toroidal mdgnetohydrodynamic initial value
code FAR.Y7

This paper is organized as follows. In Sec. II the original definition and the physical

significance of A’ is discussed. In Sec. III the basic model of Furth et al.? for the exterior
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region is presented and our A’ calculation is compared with their results. The logarithmic
singularity at the resistive layer as well as the algorithm for solving the boundary value
problem are discussed in detail. Finite pressure effects are discussed in Sec. IV. The effects
of toroidal geometry are introduced in Sec. V. Double tearing modes in toroidal geometry

are discussed in Sec. VI. Finally, we summarize in Sec. VII.

II. THE DEFINITION OF A’

The physical significance of the sign of A’ can be understood intuitively from the one dimen-

sional magnetic field line diffusion equation given by Faraday’s law and the Ohm’s law:®

aB, n . n 0%B,
= Ty 1L
6t Ho Ho 67‘2 ’

(1)

where 1 and o stand for the plasma resistivity and vacuum magnetic permeability re-
spectively. According to Ref. 18, it can be seen that if 6235, /Or? < 0 then 0B./0t < 0
and perturbation damps in the initial phase. On the other hand, if 8*B,/0r® > 0 then
dB,/8t > 0 and perturbation grows.

The plasma column is divided into two “exterior regions”? by a resistive layer of width 4.
The mode rational surface where ¢ = m/n resides in this thin layer. Eigenmode profiles are
connected from one exterior region to the other via resistive layer properties. Thus, there
is a jump discontinuities in the slope between the two exterior regions. If the eigenfunction
is locally convex (concave), the mode is stable (unstable). Furth et al.* defined A’ as the
difference of the slopes for the flux function ¢ inside and outside the mode rational surface

T4t

L (et 8) = ¥ (5, = 8)
A= (@) ’ @

where a positive A’ implies instability. Note that the A’ value indicates the relative jump

in B, across the inner layer, and hence to a current sheet in the inner layer.




III. REVIEW OF CYLINDRICAL FORMULATION AND COMPUTATION

In this section, the basic model equation (the exterior equation) and the results of Ref. 9
" are reviewed. A cylindrical coordinate system is employed in the calculation, where r is
the minor radius, 6 is the poloidal angle, and z is in the toroidal direction. Combining the

momentum balance equation, Faraday’s law, Ohm’s law, and plasma incompressibility in a

cylindrical geometry, we obtain the Newcomb equation®!?

d> 1 dH dy 1[9 }-d(Hfl—E)]w:O,

P e T H )

F2 " Far dr
‘where
F=k-B=kB,+ (m/r)By = %‘(1-m/CI),
3
1= G
g= (72227'2_-:-)7:2}:2 + k2r]z2-:—2m2 rF? + FZ(krBz —~ mB&) dP

k%r? + m? dr |’
Note that the toroidal mode number is taken to be n = 1 throughout this paper. After
normalization using z = r/r; (rs; is the mode rational surface radius), b = By/B,, and

p = (P/B)2B2 (B = Py/2u0B? is a figure of merit that represents the ratio between the

plasma and magnetic pressure), Eq. (3) reduces to

b+ g2 (2)Y —gi () =0, (4)

where we have further defined

17g - 1/

a(@) =g [F+ 7 HF)]
H/

gz(IL')E‘ﬁ'.

In Eq. (4), the prime denotes differentiation with respect to z. Here, the poloidal magnetic

field profile, and safety factor are taken to be the peaked profile of Ref. 9:

T

b(z) =

DX ~ (5)




g(z) = g (1+2%). (6)

The pla,smal boundary is located at z; = 2 while the mode rational surface is varied by
changing the go value. The pressure profile was taken to be p = 0 for the zero 8 case and
p(z) =1 — (z/z)* for the finite 8 case which we discuss in Sec. V.

The numerical algorithm of the shooting method will now be explained. In the vicinity

of the rational surface and in the absence of plasma pressure (8 = 0), Eq. (4) reduces to the

form
d &
7z 7 =" g

where X =z — 2, and k = ¢; (a,). The inner limit of the exterior asymptotic solutions

P = (1 + X 1n|X|+ %&ZXQ In |X| — %Fﬂx“’ + ) + Ar (X + %K.XQ + %522(3 + )
(8)

are matched to the numerical solutions at X = +4. Here, the subscripts ‘I’ and ‘III’ denote
the two exterior regions inside and outside the mode rational surface z,. We solve Eq. (4) by
numerically shooting away from the singular surface with an arbitrary boundary condition
toward the other ends at T = 0 and z = 3, and iterate until the boundary conditions
there are satisfied. (This is in the opposite way from Furth et al.,” where the shooting was
done from the boundaries inward and numerical solutions near z; were fit to the asymptotic
solution). We solve Eq. (4) in the two regions 0 < ¢ < z, and z, < z < z; obtaining ¥y
and ¥jj7. Deﬁning Y = (y1,Y2,y3,y4) = (¥, ¥, 00/0A1111,0¢' [0AL 111), Eq. (4) reduces to

a system of simultaneous ordinary differential equations

’
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with boundary conditions at z = z, £ é:
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A fourth order Runge-Kutta-Gill method? is used for the numerical integration. One
changes the unknown constant Aj 7y until the values A" — A’ = — (¢) / (9¢/0A) at the

boundaries converge (I represents the iteration step). The value of A’ is calculated by

A = Phur (%5 + 6) —¥7 (2, — 6)
¥ (zs)

= AIII — AI. - (11)

For a comparison with Furth et al.,® we take the poloidal/toroidal mode numbers to be
m/n = 2/1, while a large aspect ratio is represented by kro = 0.05. Figure 1(a) shows
the eigenmode profile while Fig. 1(b) shows the value of A’ as a function of mode rational
surfaces z,. Figure 1(b) implies that the tearing modes are relatively stable when the mode
rational surfaces are closer to the plasma boundary. The results match exactly with Fig.1
of Ref. 9. (Note that the numerical algorithm we employed is quite different). We have also

reproduced the numerical results by Wessonl® (see the Appendix A).

IV. EIGENMODE SOLUTIONS IN THE PRESENCE OF FINITE PRESSURE

An algorithm for cases with the pressure term is discussed in this section. In the presence of
finite pressure effects, the exterior equation Eq.(4) has strong singularities with two indepen-
dent solutions called large (dominant) and the small (subdominant),'? exhibiting different

fractional power-like asymptotic behaviors:
= AfX|"" — Brlx|™, (12)

in region I, and

¥ = AP + Bl X7, (13)




in region III. Here h = -1 + /1 —4D,, D, = 8 (—2q2/q’23221‘) (dp/dz) |s=z,,'! and X =
z — z; as before. Note that in the A = 0 limit, this reduces to the same form as the zero-
pressure case. As in the 8 = 0 case, the asymptotic solutions Egs. (12) and (13) at the

resonant surface are matched to the numerical solution.
Deﬁning Y = (yla Y2,Y3, Y4, Ys, yﬁ) = (lb, ¢Ia a'l)b/aA’ ad)l/aA? ad)/aBa ad)l/aB)
AN vz \

U —1292(z) + g1 (2)w
%YZ - y? - g ) (14)
Ys —y192(z) + 91 (x)ys
y; Ys
\ ¥ K—ysgz(w) +g1(2)ys /
we shoot with a boundary condition at z = z,+ §
[ y1) Alz|"*! £ Ble[™*
Yo A(h + 1)|z|* £ Bh|z|~"
Y3 ||+
= (15)
Ya (h+1)lz|®
Ys £e|™
\ve/ \ h|a|H1 /
One changes the unknown constants A and B until
AU+ 4B Oy /0A 0y /OB\ " [y1 — iz =0or z = x)
(B(l+1) — B(l)) B (83/2/6/1 ayz/aB) (yz —y(z=00rz= :cb)) ’ (19)

converges at z = 0 and = = ;. The value of A’ is calculated by
= - = (17)

Since we have two unknowns A and B at z = z,+4, we need additional boundary conditions
at z = 0 and z = z; for ¥'. However, the value of A’ is independent of these additional

boundary conditions, since only the ratio A/B in each region I and II] is required to obtain
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Figure 2(a) shows the resultant eigenfunction of an m/n = 2/1 mode with 8 = 7% (h=-
0.076) which has singular behavior in the vicinity of the mode rational surface. Here, z, =1
and z, = 2 were taken. Figure 2(b) expands the singular behavior in the vicinity of z,; the
analytical solutions (dashed line) given by Eqs. (12) and (13) are successfully matched to
the numerical solutions (solid line). Figure 2(c) shows the value of A’ versus 8 with the layer
width set to § = 10~7. The effect of the finite pressure term decreases the A’ value, and
thus stabilizes the tearing mode, even in a cylindrical tokamak. Note that D, > 0 (h < 0)
in a cylinder while D, < 0 (h > 0) for a ¢ > 1 surface in a toroidal geometry.!*

In a 8 — 0 limit, the A’ value reduces to the zero-pressure case A’ = 1.54 (see Fig. 1(b)).
In this # — 0 limit (but with pressure term), the second terms in Eqs. (12) and (13) become
constants and reduce to the form of Eq. (8). In Fig. 2(c), the A’ value in a relatively high
B regime (B8 > 7%) is calculated correctly. (See Table I for the estimated scale length ¢ as
function of 3). Note that the value of A’ approaches —2 as D, approaches 1 /4, where the
large and the small solutions become comparable. This feature can be predicted analytically
from Eq. (17); Ar11/Brrr—Aj/Br = —1—1 = —2. These results guarantee that the algorithm
is mathematically appropriate.

When § < 1072, the numerical method becomes troublesome. The limit of the numerical
method depends on the ratio of the coeflicients day; 2 and dpy12 in Eq. (16). For extremely
small layer width §, numerical truncations in calculating the right side of Eq. (16) obscure
the mathematical separation between the large and the small solutions.

In a 8 — 0 limit, the characteristic layer scale width for pressure effect § ~ e'/* becomes
literally infinitesimal (for example, § ~ 107% for 8 = 1% and § ~ 1078 for B8 = 7%, see
Table I). However, needless to say, at the same time, the pressure effect becomes negligible.
Furthermore, in the range 0% < 8 < 7%; one can conjecture that A’ takes on values that
smoothly match with A’ = 1.54 at § = 0, and the curve of Fig.2(c) in the 8 > 7% regime.
Physically, a layer must have a finite width: a layer width § smaller than the ion Larmor
radius (on the order of 107° even in a plasma of a temperature as low as 100eV) is only

a metaphysical consideration. In short, we see that the shooting method presented here
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extracts the finite pressure effects on A’, within a reasonable parametric regime for tokamak

plasmas. Finite pressure effects in toroidal geometry are discussed in the next section.

V. EIGENMODE IN A TOROIDAL GEOMETRY

In a toroidal equilibrium, straight magnetic field lines?! are represented by

B =1(p) V(+ V¢ x Vo (p) = Vibeg () x Vg (p) 6 = (], (18)

where ( is the toroidal angle and p is the equilibrium magnetic surface label. With a relation
Obeq/Op = Ip/q, the flux surface averaged exterior equation in toroidal geometry'? reduces

to (small aspect ratio € < 1 and I = const assumed for simplicity)

a 2 d 2.2 d d 2

z 0z dxr  z2 m — nq) dz z2(m — ng)’ dz dz
where 0 is the poloidal angle, 7 (z) stands for the toroidal current, and R = R (p, #) stands
for the major radius. Here, {) stands for a flux surface average. The magnetic well®? is
approximated by (—z)(d(R?) /dz); as stated in Ref. 12, a more careful derivation of the
pressure term yields the "E+F+H” terms of Glasser, Greene, and Johnson.!* Note that
in a cylindrical plasma with a monotonically decreasing current, d(R?) /dz > 0, while
d{R?) /dz < 0 can occur in a torus since a good curvature region (a magnetic well) exists
in a tokamak for ¢ > 1.23

From a mathematical viewpoint, this second order ordinary differential equation gives
system of first order equations that are similar to the cylindrical ones, except for the radially
dependent functions (g**), <g”> (metric elements), and (R?). The toroidicity effects are
included in these latter functions. In this study, radial profiles of the flux surface averaged
metric elements are obtained from an equilibrium code RSTEQ.?* Figure 3(a) exhibits the
grids of the straight field line, PEST?! coordinate system — both the equilibrium flux
contours and the § contours at 8 = 10%. In Fig. 3(a), the abscissa X = (R — 1)/¢ and the
ordinate Z are horizontal and vertical dimensionless minor radius coordinates, respectively.

In Fig. 3(a), the area of each grids represents the volume element Vp x V8-V({ = R~2 (p,9).
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Note that the equation reduces to the cylindrical version of the Newcomb equation!® (see
Appendix A) in the (g} = <g‘99> =1 limit.

The dashed line in F ig. 3(b) is the eigenmode profile in a toroidal geometry with 8 = 10%
while the solid line is the profile in the cylindrical limit (In Fig. 3(b), 8 has been taken to
be zero in Egs. (3) and (19) to bring out the Shafranov shift, geometry effects). The safety
factor was taken to be g (z) = 1+z2, so that the m/n = 2/1 mode rational surface is located
at z, = 1.0 (the plasma boundary located at z; = 2.0). The dashed line (S — Shafranov
shift) in Fig. 4(a) shows the value of A’ as function of 3 [see Table II for the corresponding
Shafranov shift A,; a magnetic axis shift measured in (X, Z) coordinate system]. The
distortion of the flux surfaces (Shafranov shift effects) from the first and the second term of
Eq. (19) significantly contribute to the decrease of A’ with 3.

The curvature effect!* is now investigated quantitatively by including the 3 # 0 curvature
term in Eq. (19) . As a reminder, in toroidal geometry the D, value of Eq.(13) is replaced
by!4

5 (35) (2) () e~ (22) (£) - )i o0

The last relation is given in the limit of large aspect ratio.?® (The first form of Eq. (20) is

D,

Hh

employed for computation). Thus, the Ds value in a toroidal system can be negative (h
can be positive) when g is above unity. If h is positive, the asymptotic solution given by
Eqs.A(12) and (13) gives rise to a 1/X"-like singularity (|| = oo at X — 0 ). In contrast
- to the h < 0 case discussed in Séc.IV, the numerical truncation in Eq. (16) will be severe
in higher 3 cases rather than for lower 3 cases because of the change in the sign of D, and
thus the power h. Figure 4(b) shows an eigenfunction of an m/n = 2/1 mode in a torus
with 3 =7% which has a positive spike in the vicinity of the mode rational surface. This is
expected analytically from Egs. (12) and (13). Figure 4(c) shows the detail of the singular
behavior in the vicinity of z;; the analytical solutions (solid line), Egs. (12) and (13), are

successfully matched to the numerical solutions (dashed line).

The dot-dashed line in Fig. 4(a) shows the value of A’ as a function of § in the presence
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of the pressure term (C — curvature effect) but without toroidal shape effects (the metric

elements are set to their cylindrical limits). The solid line in Fig. 4(a) shows the value of A’
in the presence of both of the effects. As one can see from the difference of the three lines in
Fig. 4(a), toroidal geometry effects (S) stabilize the tearing mode significantly even in a low
0 regime before the curvature effect (C) comes into play, for the typical tokamak g¢-profile
and a pressure profile we have employed (see Fig. 5). More generally, the curvature effect is
expected to be modest, unless one enters an extremely high g regime, or extremely low shear
region where the 1/¢'> in D, becomes influential. The line (C) in Fig. 4(a) supports this
latter fact numerically. Note that the curvature effect is rather a localized layer property,

while the Shafranov shift is a global effect obtained via the metric elements.

VI. DOUBLE TEARING MODE

The double tearing mode is considered to be a cause of off axis sawteeth in reversed shear
discharges in TFTR,'® which have a nonmonotonic g-profile. In the case of a double tearing
mode, four parameters are needed from the exterior solution. These are defined by'®

Ay Ay (W1 (a1 4 6) = ¥1 (T — 8)] /th1 (221) — 1 (zs2 — 6) /91 (za1)
(A'm A'zz) - (
where z;; and z;; correspond to the two mode rational surfaces, and 1 and ¢, are the two

eigenmode profiles of double teaﬁng modes. The dispersion relation can be written as
(A" () = A'ul AN () — A'u] = A'A"y = 0. ' (21)

The roots for v will give the growth rate of the modes.'® Here, A’ (y) = é7vS, and a layer
width is given by § = (zy/nz,)/°S-1/3. (S is the Lundquist number. The inner layer
properties enter through S which represents the resistivity). An important feature of the
double tearing mode is the contribution from the off diagonal elements A’;; and A’y in

addition to A’;; and/or A’y,. Figure 6(a) shows the nonmonotonic g-profile used in this

study:

12
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q(z) = qo + az® + bz? (22)

which satisfies ¢’(0) = 0 and ¢(0) = go. The profile is similar to that shown in Fig. 5(b) of
Ref. 16. Here, fixed values g = 2.3 and 2, = 0:5 are taken and z,, is varied. Figure 6(b)
shows the eigenmode profiles of ¢; and %, obtained in a toroidal geometry with 8 = 0.12%
and € = 0.25. In Fig. 6(b), the dashed line represents the mode rational surfaces z, and
Zs3. Figure 6(c) shows the values of A’ as a function of: a distance z,; — z,3. Values of A’
decrease as the distance z,; — 7, increases, except for A'y;.

This analysis is compared with a numerical simulation from the FAR7 initial value insta~
bility code. The qg-profile of Fig. 6(a) has been taken for the equilibrium. The linear growth
of an m/n = 2/1 mode has been calculated. The dashed line in Fig. 6(d) is the growth rate
obtained from the numerical simulation while the solid lines are obtained analytically from
Eq. (21). While, as inferred in Ref. 25, the growth rate from A’ (denoted as yas) decreases
as the distance z,; — 7,2 increases, the growth rate from the simulation (denoted as ypar)
tend to increase with the distance (this is also true in a cylinder). This feature suggests that
the double tearing mode is not merely driven by the current gradient free energy. This dis-
crepancy will be prominent in a higher § equilibrium. Note that, for example 8 = 2% gives
a large Shafranov shift (30% of minor radius for a nonmonotonic g-profile). For comparison,
~var and yragr matches well in monotonic g-profiles.

Figure 6(e) shows the radial profile of the eigenfunction t;/; obtained from the sim-
ulation. This eigenfunction can be regarded as a combination of ¥; and #, in Fig. 6(b).
Figures 6(f) and 6(g) show Poincaré plots of field line trajectories in a poloidal cross section;
here, the abscissa and ordinate correspond to the major radius and the vertical coordinate,
respectively. The trajectories form two chains of m/n = 2/1 magnetic islands. Note that
the two islands are different in phase by 7 /2. For example, the O-point (X-point) of the
inner island is located on the same equi-@ line as the X-point (O-point) of the outer island.
This is because the helical component of the perturbed magnetic field on the inner surface

is in the opposite direction compared to the outer surface, while the parity of the radial
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magnetic field perturbation remains the same for both.

The bad (good) curvature side is located to the right (left) in Fig. 6(f). The good (bad)
curvature side is located to the left (right) in Fig. 6(g). As one can see, the core region is
close to the wall on the bad curvature side of Fig. 6(g). Further simulation studies in the
nonlinear stage (off-axis crash phase) together with the ballooning effects and anisotropic
pressure effects are currently being studied. However, this is not consistent with the rest of
the work in this paper which focuses on the linear phase of the tearing mode, and will be

presented as another work.

VII. SUMMARY AND DISCUSSION

In this paper, we have reviewed tearing mode theory and computations in a cylinder and
extended the studies to axisymmetric toroidal geometries. A new numerical algorithm that
shoots out from the singular surface rather than in toward the singular layer was developed
and employed. Numerical results obtained from the shooting code for cylindrical cases
matched results obtained previously by Furth et al..®

The effect of finite pressure on tearing modes has been discussed. For the first time,
the A’ value as a function of D, has been reported. It has been shown that, with the new
algorithm we employed (shooting ‘away from the mode rational surface rather than into it),
shooting methods resolve the singularities® due to the finite pressure effect. The method
guarantees separation of the large and the small solutions in the vicinity of a resonant
surface. It has been demonstrated that the method is convergent for a relatively high g
regime (8 > 7%) for cylinders and low 8 regime (8 < 20%) for toroidal geometries. It has
been shown that the finite pressure effects stabilize the constant-i tearing mode in a high-3
(8 > 7%) cylindrical geometry.

In toroidal geometries, it is suggested that the distortion of the flux surfaces by large
Shafranov shifts (a macroscopic effect) stabilizes the tearing mode. The magnetic well
£13

effect’® was investigated quantitatively as well. By comparing the éhange in A’ as a function
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of 3, it has been shown that the distortion of the flux surface (or Shafranov shift) stabilizes
the tearing mode significantly even in a low (3 regime (near the § limit) before the magnetic
well effect comes into play. Thus we believe that, for practical purposes in estimating A’
in the linear stage, the pressure term can be neglected unless one enters an extremely high
(3 regime, or an extremely low shear region. Inclusion of the pressure gradient term merely
complicates the prediction of tearing mode stability.

A double tearing mode has been studied as an example of a coupled-mode instability,
by calculating the off-diagonal elements of A’ matrix. The analytical growth rate obtained
from A’ is compared with the FAR code simulation.!” The results suggest that additional
effects other than the current gradient contribution determines the linear growth rate of the
instability.

The analysis of mode coupling of incommensurate helicity perturbations is beyond the

scope of this paper and will be a sub ject for future work.
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Appendix A: REVIEW OF WESSON’S ANALYSIS AND COMPUTATION

In this section, the results of Ref. 10 will be reviewed. In the large aspect ratio limit, the

Newcomb equation Eq.(4) reduces to

" ]. / K
v+ =0 —g(2)h =0, (A1)
where
_m? mq dj n’¢* dp
9@ = Tt Tmngde T P m gl (A2)

Wesson'® used current profiles in the form of j(z) = (1 — z?) and correspondingly b(z) =
z/2~2%/4 and q(z) = 4e/ (2 — 2%). Here € = (2 — 22) (gm/n/4) stands for the inverse aspect
ratio. The numerical algorithm applied for Eq. (A1) is the same as in Sec.III. The value of
A’ is calculated by A" = Ajyr — Ap as before. Figure 7(a) shows the eigenmode profile for
an m/n = 2/1 mode with mode rational surface located at z, = 0.5. Figure 7(b) shows the

value of A’ as a function of mode rational surfaces z,. The results match with Fig.6.7.1 of

Ref. 10.
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TABLES

Table I. The relation between S, h, and é. Here, D, = § with a peaked profile.

B (%) h Layer width &
1 -0.010 3.7 x 10—44
5 -0.053 6.3 x 107°
7 -0.076 1.9 x 1078
10 -0.11 1.1 x 10~
20 -0.27 2.1 x 1072

Table II. The relation between 8 and Shafranov shift Ag in the equilibrium with ¢(z) = 1 + 22

B (%) A,
1 0.14
2 0.21
3 0.27
5 0.36
10 0.48
20 0.60
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FIGURES
FIG. 1. (a) The eigenmode profile for an m/n = 2/1 mode. The position of the mode rational

surface z, indicated by dashed lines, is varied. These results correspond to Fig. 2 of Ref. 9. (b)

Values of A’ as a function of zs, which corresponds to the m = 2, z;, = 2 case of Fig. 1 of Ref. 9.

FIG. 2. (a) The eigenmode profile for an m/n = 2/1 mode. (b) Expansion of the eigenfunction
behavior in the vicinity of z;. Both analytical solutions (solid line) and the numerical solutions
(dashed line) are shown. (c) A’ versus f in the high 8 (8 > 7%) regime. The dashed line signifies

regions where layer widths wider than physical ones (6 ~ el/*) are imposed.

FIG.3. (a) The equilibrium flux surfaces and 6 contour lines in a toroidal geometry with 8 = 10%
which show geometrical distortions. (b) The eigenmode profile of 1;/;. The solid line is for
a toroidal geometry with 8 = 10% and the dashed line is for a cylindrical limit (the pressure

gradient drive term in the eigenmode equation is absent for both lines).

FIG. 4. (a) A’ as function of 3, [S (Shafranov) indicates in the absence of the pressure gradient
drive term but with toroidal shape, C (curvature) in the presence of pressure gradient drive term
but without toroidal geometrical effects ((¢%?) = <g‘99> = 1), and S+C both the toroidal effects and
pressure-drive effects present]. (b) The eigenmodé profile of an vm/ n = 2/1 mode with § = 7%. (c)
Expanded eigenfunction in the vicinity of z;. Analytical solutions (solid line) and the numerical

solutions (dashed line) are both shown.

FIG. 5. The Grad-Shafranov equilibrium pressure profile employed for Fig. 4(a), (b), and (c).
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F1G. 6. (a) A nonmonotonic g-profile. The minimum value located is at z,;, = 1. (b) The
eigenmode profiles for v and 3. The vertical dashed lines represent the mode rational surfaces
zs1 and . (c) The values of A’ as a function of a distance d = &5 — z55. Values of A’ decrease
as the distance z5; — 7, increases. (d) The linear growth rate of the ¢,/; mode as a function of
a distance d = 75 — isg obtained from simulation. (e) The eigenmode profile of the %, /1 mode
obtained from the numerical simulation. (f) Poincaré mappings of magnetic field line trajectories,

at a toroidal angle { = 0. (g) Poincaré mappings at a toroidal angle { = 7.

FIG. 7. (a) The eigenmode profile for an m/n = 2/1 mode. (b) A’ versus z,. These results
corresponds to Fig. 6.7.1 of Ref. 10.
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